1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/pci.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/if_vlan.h> 42 #include <linux/mdio.h> 43 #include <linux/sockios.h> 44 #include <linux/workqueue.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/firmware.h> 48 #include <linux/log2.h> 49 #include <linux/stringify.h> 50 #include <linux/sched.h> 51 #include <linux/slab.h> 52 #include <linux/uaccess.h> 53 #include <linux/nospec.h> 54 55 #include "common.h" 56 #include "cxgb3_ioctl.h" 57 #include "regs.h" 58 #include "cxgb3_offload.h" 59 #include "version.h" 60 61 #include "cxgb3_ctl_defs.h" 62 #include "t3_cpl.h" 63 #include "firmware_exports.h" 64 65 enum { 66 MAX_TXQ_ENTRIES = 16384, 67 MAX_CTRL_TXQ_ENTRIES = 1024, 68 MAX_RSPQ_ENTRIES = 16384, 69 MAX_RX_BUFFERS = 16384, 70 MAX_RX_JUMBO_BUFFERS = 16384, 71 MIN_TXQ_ENTRIES = 4, 72 MIN_CTRL_TXQ_ENTRIES = 4, 73 MIN_RSPQ_ENTRIES = 32, 74 MIN_FL_ENTRIES = 32 75 }; 76 77 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 78 79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 82 83 #define EEPROM_MAGIC 0x38E2F10C 84 85 #define CH_DEVICE(devid, idx) \ 86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 87 88 static const struct pci_device_id cxgb3_pci_tbl[] = { 89 CH_DEVICE(0x20, 0), /* PE9000 */ 90 CH_DEVICE(0x21, 1), /* T302E */ 91 CH_DEVICE(0x22, 2), /* T310E */ 92 CH_DEVICE(0x23, 3), /* T320X */ 93 CH_DEVICE(0x24, 1), /* T302X */ 94 CH_DEVICE(0x25, 3), /* T320E */ 95 CH_DEVICE(0x26, 2), /* T310X */ 96 CH_DEVICE(0x30, 2), /* T3B10 */ 97 CH_DEVICE(0x31, 3), /* T3B20 */ 98 CH_DEVICE(0x32, 1), /* T3B02 */ 99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 100 CH_DEVICE(0x36, 3), /* S320E-CR */ 101 CH_DEVICE(0x37, 7), /* N320E-G2 */ 102 {0,} 103 }; 104 105 MODULE_DESCRIPTION(DRV_DESC); 106 MODULE_AUTHOR("Chelsio Communications"); 107 MODULE_LICENSE("Dual BSD/GPL"); 108 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 109 110 static int dflt_msg_enable = DFLT_MSG_ENABLE; 111 112 module_param(dflt_msg_enable, int, 0644); 113 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 114 115 /* 116 * The driver uses the best interrupt scheme available on a platform in the 117 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 118 * of these schemes the driver may consider as follows: 119 * 120 * msi = 2: choose from among all three options 121 * msi = 1: only consider MSI and pin interrupts 122 * msi = 0: force pin interrupts 123 */ 124 static int msi = 2; 125 126 module_param(msi, int, 0644); 127 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 128 129 /* 130 * The driver enables offload as a default. 131 * To disable it, use ofld_disable = 1. 132 */ 133 134 static int ofld_disable = 0; 135 136 module_param(ofld_disable, int, 0644); 137 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 138 139 /* 140 * We have work elements that we need to cancel when an interface is taken 141 * down. Normally the work elements would be executed by keventd but that 142 * can deadlock because of linkwatch. If our close method takes the rtnl 143 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 144 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 145 * for our work to complete. Get our own work queue to solve this. 146 */ 147 struct workqueue_struct *cxgb3_wq; 148 149 /** 150 * link_report - show link status and link speed/duplex 151 * @dev: the port whose settings are to be reported 152 * 153 * Shows the link status, speed, and duplex of a port. 154 */ 155 static void link_report(struct net_device *dev) 156 { 157 if (!netif_carrier_ok(dev)) 158 netdev_info(dev, "link down\n"); 159 else { 160 const char *s = "10Mbps"; 161 const struct port_info *p = netdev_priv(dev); 162 163 switch (p->link_config.speed) { 164 case SPEED_10000: 165 s = "10Gbps"; 166 break; 167 case SPEED_1000: 168 s = "1000Mbps"; 169 break; 170 case SPEED_100: 171 s = "100Mbps"; 172 break; 173 } 174 175 netdev_info(dev, "link up, %s, %s-duplex\n", 176 s, p->link_config.duplex == DUPLEX_FULL 177 ? "full" : "half"); 178 } 179 } 180 181 static void enable_tx_fifo_drain(struct adapter *adapter, 182 struct port_info *pi) 183 { 184 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 185 F_ENDROPPKT); 186 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 187 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 188 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 189 } 190 191 static void disable_tx_fifo_drain(struct adapter *adapter, 192 struct port_info *pi) 193 { 194 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 195 F_ENDROPPKT, 0); 196 } 197 198 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 199 { 200 struct net_device *dev = adap->port[port_id]; 201 struct port_info *pi = netdev_priv(dev); 202 203 if (state == netif_carrier_ok(dev)) 204 return; 205 206 if (state) { 207 struct cmac *mac = &pi->mac; 208 209 netif_carrier_on(dev); 210 211 disable_tx_fifo_drain(adap, pi); 212 213 /* Clear local faults */ 214 t3_xgm_intr_disable(adap, pi->port_id); 215 t3_read_reg(adap, A_XGM_INT_STATUS + 216 pi->mac.offset); 217 t3_write_reg(adap, 218 A_XGM_INT_CAUSE + pi->mac.offset, 219 F_XGM_INT); 220 221 t3_set_reg_field(adap, 222 A_XGM_INT_ENABLE + 223 pi->mac.offset, 224 F_XGM_INT, F_XGM_INT); 225 t3_xgm_intr_enable(adap, pi->port_id); 226 227 t3_mac_enable(mac, MAC_DIRECTION_TX); 228 } else { 229 netif_carrier_off(dev); 230 231 /* Flush TX FIFO */ 232 enable_tx_fifo_drain(adap, pi); 233 } 234 link_report(dev); 235 } 236 237 /** 238 * t3_os_link_changed - handle link status changes 239 * @adapter: the adapter associated with the link change 240 * @port_id: the port index whose limk status has changed 241 * @link_stat: the new status of the link 242 * @speed: the new speed setting 243 * @duplex: the new duplex setting 244 * @pause: the new flow-control setting 245 * 246 * This is the OS-dependent handler for link status changes. The OS 247 * neutral handler takes care of most of the processing for these events, 248 * then calls this handler for any OS-specific processing. 249 */ 250 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 251 int speed, int duplex, int pause) 252 { 253 struct net_device *dev = adapter->port[port_id]; 254 struct port_info *pi = netdev_priv(dev); 255 struct cmac *mac = &pi->mac; 256 257 /* Skip changes from disabled ports. */ 258 if (!netif_running(dev)) 259 return; 260 261 if (link_stat != netif_carrier_ok(dev)) { 262 if (link_stat) { 263 disable_tx_fifo_drain(adapter, pi); 264 265 t3_mac_enable(mac, MAC_DIRECTION_RX); 266 267 /* Clear local faults */ 268 t3_xgm_intr_disable(adapter, pi->port_id); 269 t3_read_reg(adapter, A_XGM_INT_STATUS + 270 pi->mac.offset); 271 t3_write_reg(adapter, 272 A_XGM_INT_CAUSE + pi->mac.offset, 273 F_XGM_INT); 274 275 t3_set_reg_field(adapter, 276 A_XGM_INT_ENABLE + pi->mac.offset, 277 F_XGM_INT, F_XGM_INT); 278 t3_xgm_intr_enable(adapter, pi->port_id); 279 280 netif_carrier_on(dev); 281 } else { 282 netif_carrier_off(dev); 283 284 t3_xgm_intr_disable(adapter, pi->port_id); 285 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 286 t3_set_reg_field(adapter, 287 A_XGM_INT_ENABLE + pi->mac.offset, 288 F_XGM_INT, 0); 289 290 if (is_10G(adapter)) 291 pi->phy.ops->power_down(&pi->phy, 1); 292 293 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 294 t3_mac_disable(mac, MAC_DIRECTION_RX); 295 t3_link_start(&pi->phy, mac, &pi->link_config); 296 297 /* Flush TX FIFO */ 298 enable_tx_fifo_drain(adapter, pi); 299 } 300 301 link_report(dev); 302 } 303 } 304 305 /** 306 * t3_os_phymod_changed - handle PHY module changes 307 * @adap: the adapter associated with the link change 308 * @port_id: the port index whose limk status has changed 309 * 310 * This is the OS-dependent handler for PHY module changes. It is 311 * invoked when a PHY module is removed or inserted for any OS-specific 312 * processing. 313 */ 314 void t3_os_phymod_changed(struct adapter *adap, int port_id) 315 { 316 static const char *mod_str[] = { 317 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 318 }; 319 320 const struct net_device *dev = adap->port[port_id]; 321 const struct port_info *pi = netdev_priv(dev); 322 323 if (pi->phy.modtype == phy_modtype_none) 324 netdev_info(dev, "PHY module unplugged\n"); 325 else 326 netdev_info(dev, "%s PHY module inserted\n", 327 mod_str[pi->phy.modtype]); 328 } 329 330 static void cxgb_set_rxmode(struct net_device *dev) 331 { 332 struct port_info *pi = netdev_priv(dev); 333 334 t3_mac_set_rx_mode(&pi->mac, dev); 335 } 336 337 /** 338 * link_start - enable a port 339 * @dev: the device to enable 340 * 341 * Performs the MAC and PHY actions needed to enable a port. 342 */ 343 static void link_start(struct net_device *dev) 344 { 345 struct port_info *pi = netdev_priv(dev); 346 struct cmac *mac = &pi->mac; 347 348 t3_mac_reset(mac); 349 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 350 t3_mac_set_mtu(mac, dev->mtu); 351 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 352 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 353 t3_mac_set_rx_mode(mac, dev); 354 t3_link_start(&pi->phy, mac, &pi->link_config); 355 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 356 } 357 358 static inline void cxgb_disable_msi(struct adapter *adapter) 359 { 360 if (adapter->flags & USING_MSIX) { 361 pci_disable_msix(adapter->pdev); 362 adapter->flags &= ~USING_MSIX; 363 } else if (adapter->flags & USING_MSI) { 364 pci_disable_msi(adapter->pdev); 365 adapter->flags &= ~USING_MSI; 366 } 367 } 368 369 /* 370 * Interrupt handler for asynchronous events used with MSI-X. 371 */ 372 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 373 { 374 t3_slow_intr_handler(cookie); 375 return IRQ_HANDLED; 376 } 377 378 /* 379 * Name the MSI-X interrupts. 380 */ 381 static void name_msix_vecs(struct adapter *adap) 382 { 383 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; 384 385 snprintf(adap->msix_info[0].desc, n, "%s", adap->name); 386 adap->msix_info[0].desc[n] = 0; 387 388 for_each_port(adap, j) { 389 struct net_device *d = adap->port[j]; 390 const struct port_info *pi = netdev_priv(d); 391 392 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 393 snprintf(adap->msix_info[msi_idx].desc, n, 394 "%s-%d", d->name, pi->first_qset + i); 395 adap->msix_info[msi_idx].desc[n] = 0; 396 } 397 } 398 } 399 400 static int request_msix_data_irqs(struct adapter *adap) 401 { 402 int i, j, err, qidx = 0; 403 404 for_each_port(adap, i) { 405 int nqsets = adap2pinfo(adap, i)->nqsets; 406 407 for (j = 0; j < nqsets; ++j) { 408 err = request_irq(adap->msix_info[qidx + 1].vec, 409 t3_intr_handler(adap, 410 adap->sge.qs[qidx]. 411 rspq.polling), 0, 412 adap->msix_info[qidx + 1].desc, 413 &adap->sge.qs[qidx]); 414 if (err) { 415 while (--qidx >= 0) 416 free_irq(adap->msix_info[qidx + 1].vec, 417 &adap->sge.qs[qidx]); 418 return err; 419 } 420 qidx++; 421 } 422 } 423 return 0; 424 } 425 426 static void free_irq_resources(struct adapter *adapter) 427 { 428 if (adapter->flags & USING_MSIX) { 429 int i, n = 0; 430 431 free_irq(adapter->msix_info[0].vec, adapter); 432 for_each_port(adapter, i) 433 n += adap2pinfo(adapter, i)->nqsets; 434 435 for (i = 0; i < n; ++i) 436 free_irq(adapter->msix_info[i + 1].vec, 437 &adapter->sge.qs[i]); 438 } else 439 free_irq(adapter->pdev->irq, adapter); 440 } 441 442 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 443 unsigned long n) 444 { 445 int attempts = 10; 446 447 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 448 if (!--attempts) 449 return -ETIMEDOUT; 450 msleep(10); 451 } 452 return 0; 453 } 454 455 static int init_tp_parity(struct adapter *adap) 456 { 457 int i; 458 struct sk_buff *skb; 459 struct cpl_set_tcb_field *greq; 460 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 461 462 t3_tp_set_offload_mode(adap, 1); 463 464 for (i = 0; i < 16; i++) { 465 struct cpl_smt_write_req *req; 466 467 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 468 if (!skb) 469 skb = adap->nofail_skb; 470 if (!skb) 471 goto alloc_skb_fail; 472 473 req = __skb_put_zero(skb, sizeof(*req)); 474 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 475 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 476 req->mtu_idx = NMTUS - 1; 477 req->iff = i; 478 t3_mgmt_tx(adap, skb); 479 if (skb == adap->nofail_skb) { 480 await_mgmt_replies(adap, cnt, i + 1); 481 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 482 if (!adap->nofail_skb) 483 goto alloc_skb_fail; 484 } 485 } 486 487 for (i = 0; i < 2048; i++) { 488 struct cpl_l2t_write_req *req; 489 490 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 491 if (!skb) 492 skb = adap->nofail_skb; 493 if (!skb) 494 goto alloc_skb_fail; 495 496 req = __skb_put_zero(skb, sizeof(*req)); 497 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 498 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 499 req->params = htonl(V_L2T_W_IDX(i)); 500 t3_mgmt_tx(adap, skb); 501 if (skb == adap->nofail_skb) { 502 await_mgmt_replies(adap, cnt, 16 + i + 1); 503 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 504 if (!adap->nofail_skb) 505 goto alloc_skb_fail; 506 } 507 } 508 509 for (i = 0; i < 2048; i++) { 510 struct cpl_rte_write_req *req; 511 512 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 513 if (!skb) 514 skb = adap->nofail_skb; 515 if (!skb) 516 goto alloc_skb_fail; 517 518 req = __skb_put_zero(skb, sizeof(*req)); 519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 521 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 522 t3_mgmt_tx(adap, skb); 523 if (skb == adap->nofail_skb) { 524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 526 if (!adap->nofail_skb) 527 goto alloc_skb_fail; 528 } 529 } 530 531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 532 if (!skb) 533 skb = adap->nofail_skb; 534 if (!skb) 535 goto alloc_skb_fail; 536 537 greq = __skb_put_zero(skb, sizeof(*greq)); 538 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 539 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 540 greq->mask = cpu_to_be64(1); 541 t3_mgmt_tx(adap, skb); 542 543 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 544 if (skb == adap->nofail_skb) { 545 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 546 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 547 } 548 549 t3_tp_set_offload_mode(adap, 0); 550 return i; 551 552 alloc_skb_fail: 553 t3_tp_set_offload_mode(adap, 0); 554 return -ENOMEM; 555 } 556 557 /** 558 * setup_rss - configure RSS 559 * @adap: the adapter 560 * 561 * Sets up RSS to distribute packets to multiple receive queues. We 562 * configure the RSS CPU lookup table to distribute to the number of HW 563 * receive queues, and the response queue lookup table to narrow that 564 * down to the response queues actually configured for each port. 565 * We always configure the RSS mapping for two ports since the mapping 566 * table has plenty of entries. 567 */ 568 static void setup_rss(struct adapter *adap) 569 { 570 int i; 571 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 572 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 573 u8 cpus[SGE_QSETS + 1]; 574 u16 rspq_map[RSS_TABLE_SIZE + 1]; 575 576 for (i = 0; i < SGE_QSETS; ++i) 577 cpus[i] = i; 578 cpus[SGE_QSETS] = 0xff; /* terminator */ 579 580 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 581 rspq_map[i] = i % nq0; 582 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 583 } 584 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */ 585 586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 589 } 590 591 static void ring_dbs(struct adapter *adap) 592 { 593 int i, j; 594 595 for (i = 0; i < SGE_QSETS; i++) { 596 struct sge_qset *qs = &adap->sge.qs[i]; 597 598 if (qs->adap) 599 for (j = 0; j < SGE_TXQ_PER_SET; j++) 600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 601 } 602 } 603 604 static void init_napi(struct adapter *adap) 605 { 606 int i; 607 608 for (i = 0; i < SGE_QSETS; i++) { 609 struct sge_qset *qs = &adap->sge.qs[i]; 610 611 if (qs->adap) 612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll); 613 } 614 615 /* 616 * netif_napi_add() can be called only once per napi_struct because it 617 * adds each new napi_struct to a list. Be careful not to call it a 618 * second time, e.g., during EEH recovery, by making a note of it. 619 */ 620 adap->flags |= NAPI_INIT; 621 } 622 623 /* 624 * Wait until all NAPI handlers are descheduled. This includes the handlers of 625 * both netdevices representing interfaces and the dummy ones for the extra 626 * queues. 627 */ 628 static void quiesce_rx(struct adapter *adap) 629 { 630 int i; 631 632 for (i = 0; i < SGE_QSETS; i++) 633 if (adap->sge.qs[i].adap) 634 napi_disable(&adap->sge.qs[i].napi); 635 } 636 637 static void enable_all_napi(struct adapter *adap) 638 { 639 int i; 640 for (i = 0; i < SGE_QSETS; i++) 641 if (adap->sge.qs[i].adap) 642 napi_enable(&adap->sge.qs[i].napi); 643 } 644 645 /** 646 * setup_sge_qsets - configure SGE Tx/Rx/response queues 647 * @adap: the adapter 648 * 649 * Determines how many sets of SGE queues to use and initializes them. 650 * We support multiple queue sets per port if we have MSI-X, otherwise 651 * just one queue set per port. 652 */ 653 static int setup_sge_qsets(struct adapter *adap) 654 { 655 int i, j, err, irq_idx = 0, qset_idx = 0; 656 unsigned int ntxq = SGE_TXQ_PER_SET; 657 658 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 659 irq_idx = -1; 660 661 for_each_port(adap, i) { 662 struct net_device *dev = adap->port[i]; 663 struct port_info *pi = netdev_priv(dev); 664 665 pi->qs = &adap->sge.qs[pi->first_qset]; 666 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 667 err = t3_sge_alloc_qset(adap, qset_idx, 1, 668 (adap->flags & USING_MSIX) ? qset_idx + 1 : 669 irq_idx, 670 &adap->params.sge.qset[qset_idx], ntxq, dev, 671 netdev_get_tx_queue(dev, j)); 672 if (err) { 673 t3_free_sge_resources(adap); 674 return err; 675 } 676 } 677 } 678 679 return 0; 680 } 681 682 static ssize_t attr_show(struct device *d, char *buf, 683 ssize_t(*format) (struct net_device *, char *)) 684 { 685 ssize_t len; 686 687 /* Synchronize with ioctls that may shut down the device */ 688 rtnl_lock(); 689 len = (*format) (to_net_dev(d), buf); 690 rtnl_unlock(); 691 return len; 692 } 693 694 static ssize_t attr_store(struct device *d, 695 const char *buf, size_t len, 696 ssize_t(*set) (struct net_device *, unsigned int), 697 unsigned int min_val, unsigned int max_val) 698 { 699 ssize_t ret; 700 unsigned int val; 701 702 if (!capable(CAP_NET_ADMIN)) 703 return -EPERM; 704 705 ret = kstrtouint(buf, 0, &val); 706 if (ret) 707 return ret; 708 if (val < min_val || val > max_val) 709 return -EINVAL; 710 711 rtnl_lock(); 712 ret = (*set) (to_net_dev(d), val); 713 if (!ret) 714 ret = len; 715 rtnl_unlock(); 716 return ret; 717 } 718 719 #define CXGB3_SHOW(name, val_expr) \ 720 static ssize_t format_##name(struct net_device *dev, char *buf) \ 721 { \ 722 struct port_info *pi = netdev_priv(dev); \ 723 struct adapter *adap = pi->adapter; \ 724 return sprintf(buf, "%u\n", val_expr); \ 725 } \ 726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 727 char *buf) \ 728 { \ 729 return attr_show(d, buf, format_##name); \ 730 } 731 732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 733 { 734 struct port_info *pi = netdev_priv(dev); 735 struct adapter *adap = pi->adapter; 736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 737 738 if (adap->flags & FULL_INIT_DONE) 739 return -EBUSY; 740 if (val && adap->params.rev == 0) 741 return -EINVAL; 742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 743 min_tids) 744 return -EINVAL; 745 adap->params.mc5.nfilters = val; 746 return 0; 747 } 748 749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 750 const char *buf, size_t len) 751 { 752 return attr_store(d, buf, len, set_nfilters, 0, ~0); 753 } 754 755 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 756 { 757 struct port_info *pi = netdev_priv(dev); 758 struct adapter *adap = pi->adapter; 759 760 if (adap->flags & FULL_INIT_DONE) 761 return -EBUSY; 762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 763 MC5_MIN_TIDS) 764 return -EINVAL; 765 adap->params.mc5.nservers = val; 766 return 0; 767 } 768 769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 770 const char *buf, size_t len) 771 { 772 return attr_store(d, buf, len, set_nservers, 0, ~0); 773 } 774 775 #define CXGB3_ATTR_R(name, val_expr) \ 776 CXGB3_SHOW(name, val_expr) \ 777 static DEVICE_ATTR(name, 0444, show_##name, NULL) 778 779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 780 CXGB3_SHOW(name, val_expr) \ 781 static DEVICE_ATTR(name, 0644, show_##name, store_method) 782 783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 786 787 static struct attribute *cxgb3_attrs[] = { 788 &dev_attr_cam_size.attr, 789 &dev_attr_nfilters.attr, 790 &dev_attr_nservers.attr, 791 NULL 792 }; 793 794 static const struct attribute_group cxgb3_attr_group = { 795 .attrs = cxgb3_attrs, 796 }; 797 798 static ssize_t tm_attr_show(struct device *d, 799 char *buf, int sched) 800 { 801 struct port_info *pi = netdev_priv(to_net_dev(d)); 802 struct adapter *adap = pi->adapter; 803 unsigned int v, addr, bpt, cpt; 804 ssize_t len; 805 806 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 807 rtnl_lock(); 808 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 809 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 810 if (sched & 1) 811 v >>= 16; 812 bpt = (v >> 8) & 0xff; 813 cpt = v & 0xff; 814 if (!cpt) 815 len = sprintf(buf, "disabled\n"); 816 else { 817 v = (adap->params.vpd.cclk * 1000) / cpt; 818 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 819 } 820 rtnl_unlock(); 821 return len; 822 } 823 824 static ssize_t tm_attr_store(struct device *d, 825 const char *buf, size_t len, int sched) 826 { 827 struct port_info *pi = netdev_priv(to_net_dev(d)); 828 struct adapter *adap = pi->adapter; 829 unsigned int val; 830 ssize_t ret; 831 832 if (!capable(CAP_NET_ADMIN)) 833 return -EPERM; 834 835 ret = kstrtouint(buf, 0, &val); 836 if (ret) 837 return ret; 838 if (val > 10000000) 839 return -EINVAL; 840 841 rtnl_lock(); 842 ret = t3_config_sched(adap, val, sched); 843 if (!ret) 844 ret = len; 845 rtnl_unlock(); 846 return ret; 847 } 848 849 #define TM_ATTR(name, sched) \ 850 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 851 char *buf) \ 852 { \ 853 return tm_attr_show(d, buf, sched); \ 854 } \ 855 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 856 const char *buf, size_t len) \ 857 { \ 858 return tm_attr_store(d, buf, len, sched); \ 859 } \ 860 static DEVICE_ATTR(name, 0644, show_##name, store_##name) 861 862 TM_ATTR(sched0, 0); 863 TM_ATTR(sched1, 1); 864 TM_ATTR(sched2, 2); 865 TM_ATTR(sched3, 3); 866 TM_ATTR(sched4, 4); 867 TM_ATTR(sched5, 5); 868 TM_ATTR(sched6, 6); 869 TM_ATTR(sched7, 7); 870 871 static struct attribute *offload_attrs[] = { 872 &dev_attr_sched0.attr, 873 &dev_attr_sched1.attr, 874 &dev_attr_sched2.attr, 875 &dev_attr_sched3.attr, 876 &dev_attr_sched4.attr, 877 &dev_attr_sched5.attr, 878 &dev_attr_sched6.attr, 879 &dev_attr_sched7.attr, 880 NULL 881 }; 882 883 static const struct attribute_group offload_attr_group = { 884 .attrs = offload_attrs, 885 }; 886 887 /* 888 * Sends an sk_buff to an offload queue driver 889 * after dealing with any active network taps. 890 */ 891 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 892 { 893 int ret; 894 895 local_bh_disable(); 896 ret = t3_offload_tx(tdev, skb); 897 local_bh_enable(); 898 return ret; 899 } 900 901 static int write_smt_entry(struct adapter *adapter, int idx) 902 { 903 struct cpl_smt_write_req *req; 904 struct port_info *pi = netdev_priv(adapter->port[idx]); 905 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 906 907 if (!skb) 908 return -ENOMEM; 909 910 req = __skb_put(skb, sizeof(*req)); 911 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 912 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 913 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 914 req->iff = idx; 915 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 916 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 917 skb->priority = 1; 918 offload_tx(&adapter->tdev, skb); 919 return 0; 920 } 921 922 static int init_smt(struct adapter *adapter) 923 { 924 int i; 925 926 for_each_port(adapter, i) 927 write_smt_entry(adapter, i); 928 return 0; 929 } 930 931 static void init_port_mtus(struct adapter *adapter) 932 { 933 unsigned int mtus = adapter->port[0]->mtu; 934 935 if (adapter->port[1]) 936 mtus |= adapter->port[1]->mtu << 16; 937 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 938 } 939 940 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 941 int hi, int port) 942 { 943 struct sk_buff *skb; 944 struct mngt_pktsched_wr *req; 945 int ret; 946 947 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 948 if (!skb) 949 skb = adap->nofail_skb; 950 if (!skb) 951 return -ENOMEM; 952 953 req = skb_put(skb, sizeof(*req)); 954 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 955 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 956 req->sched = sched; 957 req->idx = qidx; 958 req->min = lo; 959 req->max = hi; 960 req->binding = port; 961 ret = t3_mgmt_tx(adap, skb); 962 if (skb == adap->nofail_skb) { 963 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 964 GFP_KERNEL); 965 if (!adap->nofail_skb) 966 ret = -ENOMEM; 967 } 968 969 return ret; 970 } 971 972 static int bind_qsets(struct adapter *adap) 973 { 974 int i, j, err = 0; 975 976 for_each_port(adap, i) { 977 const struct port_info *pi = adap2pinfo(adap, i); 978 979 for (j = 0; j < pi->nqsets; ++j) { 980 int ret = send_pktsched_cmd(adap, 1, 981 pi->first_qset + j, -1, 982 -1, i); 983 if (ret) 984 err = ret; 985 } 986 } 987 988 return err; 989 } 990 991 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 992 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 993 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 994 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 995 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 996 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 997 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 998 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 999 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 1000 MODULE_FIRMWARE(FW_FNAME); 1001 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 1002 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 1003 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 1004 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1005 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1006 1007 static inline const char *get_edc_fw_name(int edc_idx) 1008 { 1009 const char *fw_name = NULL; 1010 1011 switch (edc_idx) { 1012 case EDC_OPT_AEL2005: 1013 fw_name = AEL2005_OPT_EDC_NAME; 1014 break; 1015 case EDC_TWX_AEL2005: 1016 fw_name = AEL2005_TWX_EDC_NAME; 1017 break; 1018 case EDC_TWX_AEL2020: 1019 fw_name = AEL2020_TWX_EDC_NAME; 1020 break; 1021 } 1022 return fw_name; 1023 } 1024 1025 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1026 { 1027 struct adapter *adapter = phy->adapter; 1028 const struct firmware *fw; 1029 const char *fw_name; 1030 u32 csum; 1031 const __be32 *p; 1032 u16 *cache = phy->phy_cache; 1033 int i, ret = -EINVAL; 1034 1035 fw_name = get_edc_fw_name(edc_idx); 1036 if (fw_name) 1037 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev); 1038 if (ret < 0) { 1039 dev_err(&adapter->pdev->dev, 1040 "could not upgrade firmware: unable to load %s\n", 1041 fw_name); 1042 return ret; 1043 } 1044 1045 /* check size, take checksum in account */ 1046 if (fw->size > size + 4) { 1047 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1048 (unsigned int)fw->size, size + 4); 1049 ret = -EINVAL; 1050 } 1051 1052 /* compute checksum */ 1053 p = (const __be32 *)fw->data; 1054 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1055 csum += ntohl(p[i]); 1056 1057 if (csum != 0xffffffff) { 1058 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1059 csum); 1060 ret = -EINVAL; 1061 } 1062 1063 for (i = 0; i < size / 4 ; i++) { 1064 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1065 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1066 } 1067 1068 release_firmware(fw); 1069 1070 return ret; 1071 } 1072 1073 static int upgrade_fw(struct adapter *adap) 1074 { 1075 int ret; 1076 const struct firmware *fw; 1077 struct device *dev = &adap->pdev->dev; 1078 1079 ret = request_firmware(&fw, FW_FNAME, dev); 1080 if (ret < 0) { 1081 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1082 FW_FNAME); 1083 return ret; 1084 } 1085 ret = t3_load_fw(adap, fw->data, fw->size); 1086 release_firmware(fw); 1087 1088 if (ret == 0) 1089 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1090 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1091 else 1092 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1093 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1094 1095 return ret; 1096 } 1097 1098 static inline char t3rev2char(struct adapter *adapter) 1099 { 1100 char rev = 0; 1101 1102 switch(adapter->params.rev) { 1103 case T3_REV_B: 1104 case T3_REV_B2: 1105 rev = 'b'; 1106 break; 1107 case T3_REV_C: 1108 rev = 'c'; 1109 break; 1110 } 1111 return rev; 1112 } 1113 1114 static int update_tpsram(struct adapter *adap) 1115 { 1116 const struct firmware *tpsram; 1117 char buf[64]; 1118 struct device *dev = &adap->pdev->dev; 1119 int ret; 1120 char rev; 1121 1122 rev = t3rev2char(adap); 1123 if (!rev) 1124 return 0; 1125 1126 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1127 1128 ret = request_firmware(&tpsram, buf, dev); 1129 if (ret < 0) { 1130 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1131 buf); 1132 return ret; 1133 } 1134 1135 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1136 if (ret) 1137 goto release_tpsram; 1138 1139 ret = t3_set_proto_sram(adap, tpsram->data); 1140 if (ret == 0) 1141 dev_info(dev, 1142 "successful update of protocol engine " 1143 "to %d.%d.%d\n", 1144 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1145 else 1146 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1147 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1148 if (ret) 1149 dev_err(dev, "loading protocol SRAM failed\n"); 1150 1151 release_tpsram: 1152 release_firmware(tpsram); 1153 1154 return ret; 1155 } 1156 1157 /** 1158 * t3_synchronize_rx - wait for current Rx processing on a port to complete 1159 * @adap: the adapter 1160 * @p: the port 1161 * 1162 * Ensures that current Rx processing on any of the queues associated with 1163 * the given port completes before returning. We do this by acquiring and 1164 * releasing the locks of the response queues associated with the port. 1165 */ 1166 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 1167 { 1168 int i; 1169 1170 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 1171 struct sge_rspq *q = &adap->sge.qs[i].rspq; 1172 1173 spin_lock_irq(&q->lock); 1174 spin_unlock_irq(&q->lock); 1175 } 1176 } 1177 1178 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features) 1179 { 1180 struct port_info *pi = netdev_priv(dev); 1181 struct adapter *adapter = pi->adapter; 1182 1183 if (adapter->params.rev > 0) { 1184 t3_set_vlan_accel(adapter, 1 << pi->port_id, 1185 features & NETIF_F_HW_VLAN_CTAG_RX); 1186 } else { 1187 /* single control for all ports */ 1188 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX; 1189 1190 for_each_port(adapter, i) 1191 have_vlans |= 1192 adapter->port[i]->features & 1193 NETIF_F_HW_VLAN_CTAG_RX; 1194 1195 t3_set_vlan_accel(adapter, 1, have_vlans); 1196 } 1197 t3_synchronize_rx(adapter, pi); 1198 } 1199 1200 /** 1201 * cxgb_up - enable the adapter 1202 * @adap: adapter being enabled 1203 * 1204 * Called when the first port is enabled, this function performs the 1205 * actions necessary to make an adapter operational, such as completing 1206 * the initialization of HW modules, and enabling interrupts. 1207 * 1208 * Must be called with the rtnl lock held. 1209 */ 1210 static int cxgb_up(struct adapter *adap) 1211 { 1212 int i, err; 1213 1214 if (!(adap->flags & FULL_INIT_DONE)) { 1215 err = t3_check_fw_version(adap); 1216 if (err == -EINVAL) { 1217 err = upgrade_fw(adap); 1218 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1219 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1220 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1221 } 1222 1223 err = t3_check_tpsram_version(adap); 1224 if (err == -EINVAL) { 1225 err = update_tpsram(adap); 1226 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1227 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1228 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1229 } 1230 1231 /* 1232 * Clear interrupts now to catch errors if t3_init_hw fails. 1233 * We clear them again later as initialization may trigger 1234 * conditions that can interrupt. 1235 */ 1236 t3_intr_clear(adap); 1237 1238 err = t3_init_hw(adap, 0); 1239 if (err) 1240 goto out; 1241 1242 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1243 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1244 1245 err = setup_sge_qsets(adap); 1246 if (err) 1247 goto out; 1248 1249 for_each_port(adap, i) 1250 cxgb_vlan_mode(adap->port[i], adap->port[i]->features); 1251 1252 setup_rss(adap); 1253 if (!(adap->flags & NAPI_INIT)) 1254 init_napi(adap); 1255 1256 t3_start_sge_timers(adap); 1257 adap->flags |= FULL_INIT_DONE; 1258 } 1259 1260 t3_intr_clear(adap); 1261 1262 if (adap->flags & USING_MSIX) { 1263 name_msix_vecs(adap); 1264 err = request_irq(adap->msix_info[0].vec, 1265 t3_async_intr_handler, 0, 1266 adap->msix_info[0].desc, adap); 1267 if (err) 1268 goto irq_err; 1269 1270 err = request_msix_data_irqs(adap); 1271 if (err) { 1272 free_irq(adap->msix_info[0].vec, adap); 1273 goto irq_err; 1274 } 1275 } else { 1276 err = request_irq(adap->pdev->irq, 1277 t3_intr_handler(adap, adap->sge.qs[0].rspq.polling), 1278 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 1279 adap->name, adap); 1280 if (err) 1281 goto irq_err; 1282 } 1283 1284 enable_all_napi(adap); 1285 t3_sge_start(adap); 1286 t3_intr_enable(adap); 1287 1288 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1289 is_offload(adap) && init_tp_parity(adap) == 0) 1290 adap->flags |= TP_PARITY_INIT; 1291 1292 if (adap->flags & TP_PARITY_INIT) { 1293 t3_write_reg(adap, A_TP_INT_CAUSE, 1294 F_CMCACHEPERR | F_ARPLUTPERR); 1295 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1296 } 1297 1298 if (!(adap->flags & QUEUES_BOUND)) { 1299 int ret = bind_qsets(adap); 1300 1301 if (ret < 0) { 1302 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1303 t3_intr_disable(adap); 1304 quiesce_rx(adap); 1305 free_irq_resources(adap); 1306 err = ret; 1307 goto out; 1308 } 1309 adap->flags |= QUEUES_BOUND; 1310 } 1311 1312 out: 1313 return err; 1314 irq_err: 1315 CH_ERR(adap, "request_irq failed, err %d\n", err); 1316 goto out; 1317 } 1318 1319 /* 1320 * Release resources when all the ports and offloading have been stopped. 1321 */ 1322 static void cxgb_down(struct adapter *adapter, int on_wq) 1323 { 1324 t3_sge_stop(adapter); 1325 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1326 t3_intr_disable(adapter); 1327 spin_unlock_irq(&adapter->work_lock); 1328 1329 free_irq_resources(adapter); 1330 quiesce_rx(adapter); 1331 t3_sge_stop(adapter); 1332 if (!on_wq) 1333 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1334 } 1335 1336 static void schedule_chk_task(struct adapter *adap) 1337 { 1338 unsigned int timeo; 1339 1340 timeo = adap->params.linkpoll_period ? 1341 (HZ * adap->params.linkpoll_period) / 10 : 1342 adap->params.stats_update_period * HZ; 1343 if (timeo) 1344 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1345 } 1346 1347 static int offload_open(struct net_device *dev) 1348 { 1349 struct port_info *pi = netdev_priv(dev); 1350 struct adapter *adapter = pi->adapter; 1351 struct t3cdev *tdev = dev2t3cdev(dev); 1352 int adap_up = adapter->open_device_map & PORT_MASK; 1353 int err; 1354 1355 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1356 return 0; 1357 1358 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1359 goto out; 1360 1361 t3_tp_set_offload_mode(adapter, 1); 1362 tdev->lldev = adapter->port[0]; 1363 err = cxgb3_offload_activate(adapter); 1364 if (err) 1365 goto out; 1366 1367 init_port_mtus(adapter); 1368 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1369 adapter->params.b_wnd, 1370 adapter->params.rev == 0 ? 1371 adapter->port[0]->mtu : 0xffff); 1372 init_smt(adapter); 1373 1374 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1375 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1376 1377 /* Call back all registered clients */ 1378 cxgb3_add_clients(tdev); 1379 1380 out: 1381 /* restore them in case the offload module has changed them */ 1382 if (err) { 1383 t3_tp_set_offload_mode(adapter, 0); 1384 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1385 cxgb3_set_dummy_ops(tdev); 1386 } 1387 return err; 1388 } 1389 1390 static int offload_close(struct t3cdev *tdev) 1391 { 1392 struct adapter *adapter = tdev2adap(tdev); 1393 struct t3c_data *td = T3C_DATA(tdev); 1394 1395 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1396 return 0; 1397 1398 /* Call back all registered clients */ 1399 cxgb3_remove_clients(tdev); 1400 1401 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1402 1403 /* Flush work scheduled while releasing TIDs */ 1404 flush_work(&td->tid_release_task); 1405 1406 tdev->lldev = NULL; 1407 cxgb3_set_dummy_ops(tdev); 1408 t3_tp_set_offload_mode(adapter, 0); 1409 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1410 1411 if (!adapter->open_device_map) 1412 cxgb_down(adapter, 0); 1413 1414 cxgb3_offload_deactivate(adapter); 1415 return 0; 1416 } 1417 1418 static int cxgb_open(struct net_device *dev) 1419 { 1420 struct port_info *pi = netdev_priv(dev); 1421 struct adapter *adapter = pi->adapter; 1422 int other_ports = adapter->open_device_map & PORT_MASK; 1423 int err; 1424 1425 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1426 return err; 1427 1428 set_bit(pi->port_id, &adapter->open_device_map); 1429 if (is_offload(adapter) && !ofld_disable) { 1430 err = offload_open(dev); 1431 if (err) 1432 pr_warn("Could not initialize offload capabilities\n"); 1433 } 1434 1435 netif_set_real_num_tx_queues(dev, pi->nqsets); 1436 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1437 if (err) 1438 return err; 1439 link_start(dev); 1440 t3_port_intr_enable(adapter, pi->port_id); 1441 netif_tx_start_all_queues(dev); 1442 if (!other_ports) 1443 schedule_chk_task(adapter); 1444 1445 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1446 return 0; 1447 } 1448 1449 static int __cxgb_close(struct net_device *dev, int on_wq) 1450 { 1451 struct port_info *pi = netdev_priv(dev); 1452 struct adapter *adapter = pi->adapter; 1453 1454 1455 if (!adapter->open_device_map) 1456 return 0; 1457 1458 /* Stop link fault interrupts */ 1459 t3_xgm_intr_disable(adapter, pi->port_id); 1460 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1461 1462 t3_port_intr_disable(adapter, pi->port_id); 1463 netif_tx_stop_all_queues(dev); 1464 pi->phy.ops->power_down(&pi->phy, 1); 1465 netif_carrier_off(dev); 1466 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1467 1468 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1469 clear_bit(pi->port_id, &adapter->open_device_map); 1470 spin_unlock_irq(&adapter->work_lock); 1471 1472 if (!(adapter->open_device_map & PORT_MASK)) 1473 cancel_delayed_work_sync(&adapter->adap_check_task); 1474 1475 if (!adapter->open_device_map) 1476 cxgb_down(adapter, on_wq); 1477 1478 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1479 return 0; 1480 } 1481 1482 static int cxgb_close(struct net_device *dev) 1483 { 1484 return __cxgb_close(dev, 0); 1485 } 1486 1487 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1488 { 1489 struct port_info *pi = netdev_priv(dev); 1490 struct adapter *adapter = pi->adapter; 1491 struct net_device_stats *ns = &dev->stats; 1492 const struct mac_stats *pstats; 1493 1494 spin_lock(&adapter->stats_lock); 1495 pstats = t3_mac_update_stats(&pi->mac); 1496 spin_unlock(&adapter->stats_lock); 1497 1498 ns->tx_bytes = pstats->tx_octets; 1499 ns->tx_packets = pstats->tx_frames; 1500 ns->rx_bytes = pstats->rx_octets; 1501 ns->rx_packets = pstats->rx_frames; 1502 ns->multicast = pstats->rx_mcast_frames; 1503 1504 ns->tx_errors = pstats->tx_underrun; 1505 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1506 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1507 pstats->rx_fifo_ovfl; 1508 1509 /* detailed rx_errors */ 1510 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1511 ns->rx_over_errors = 0; 1512 ns->rx_crc_errors = pstats->rx_fcs_errs; 1513 ns->rx_frame_errors = pstats->rx_symbol_errs; 1514 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1515 ns->rx_missed_errors = pstats->rx_cong_drops; 1516 1517 /* detailed tx_errors */ 1518 ns->tx_aborted_errors = 0; 1519 ns->tx_carrier_errors = 0; 1520 ns->tx_fifo_errors = pstats->tx_underrun; 1521 ns->tx_heartbeat_errors = 0; 1522 ns->tx_window_errors = 0; 1523 return ns; 1524 } 1525 1526 static u32 get_msglevel(struct net_device *dev) 1527 { 1528 struct port_info *pi = netdev_priv(dev); 1529 struct adapter *adapter = pi->adapter; 1530 1531 return adapter->msg_enable; 1532 } 1533 1534 static void set_msglevel(struct net_device *dev, u32 val) 1535 { 1536 struct port_info *pi = netdev_priv(dev); 1537 struct adapter *adapter = pi->adapter; 1538 1539 adapter->msg_enable = val; 1540 } 1541 1542 static const char stats_strings[][ETH_GSTRING_LEN] = { 1543 "TxOctetsOK ", 1544 "TxFramesOK ", 1545 "TxMulticastFramesOK", 1546 "TxBroadcastFramesOK", 1547 "TxPauseFrames ", 1548 "TxUnderrun ", 1549 "TxExtUnderrun ", 1550 1551 "TxFrames64 ", 1552 "TxFrames65To127 ", 1553 "TxFrames128To255 ", 1554 "TxFrames256To511 ", 1555 "TxFrames512To1023 ", 1556 "TxFrames1024To1518 ", 1557 "TxFrames1519ToMax ", 1558 1559 "RxOctetsOK ", 1560 "RxFramesOK ", 1561 "RxMulticastFramesOK", 1562 "RxBroadcastFramesOK", 1563 "RxPauseFrames ", 1564 "RxFCSErrors ", 1565 "RxSymbolErrors ", 1566 "RxShortErrors ", 1567 "RxJabberErrors ", 1568 "RxLengthErrors ", 1569 "RxFIFOoverflow ", 1570 1571 "RxFrames64 ", 1572 "RxFrames65To127 ", 1573 "RxFrames128To255 ", 1574 "RxFrames256To511 ", 1575 "RxFrames512To1023 ", 1576 "RxFrames1024To1518 ", 1577 "RxFrames1519ToMax ", 1578 1579 "PhyFIFOErrors ", 1580 "TSO ", 1581 "VLANextractions ", 1582 "VLANinsertions ", 1583 "TxCsumOffload ", 1584 "RxCsumGood ", 1585 "LroAggregated ", 1586 "LroFlushed ", 1587 "LroNoDesc ", 1588 "RxDrops ", 1589 1590 "CheckTXEnToggled ", 1591 "CheckResets ", 1592 1593 "LinkFaults ", 1594 }; 1595 1596 static int get_sset_count(struct net_device *dev, int sset) 1597 { 1598 switch (sset) { 1599 case ETH_SS_STATS: 1600 return ARRAY_SIZE(stats_strings); 1601 default: 1602 return -EOPNOTSUPP; 1603 } 1604 } 1605 1606 #define T3_REGMAP_SIZE (3 * 1024) 1607 1608 static int get_regs_len(struct net_device *dev) 1609 { 1610 return T3_REGMAP_SIZE; 1611 } 1612 1613 static int get_eeprom_len(struct net_device *dev) 1614 { 1615 return EEPROMSIZE; 1616 } 1617 1618 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1619 { 1620 struct port_info *pi = netdev_priv(dev); 1621 struct adapter *adapter = pi->adapter; 1622 u32 fw_vers = 0; 1623 u32 tp_vers = 0; 1624 1625 spin_lock(&adapter->stats_lock); 1626 t3_get_fw_version(adapter, &fw_vers); 1627 t3_get_tp_version(adapter, &tp_vers); 1628 spin_unlock(&adapter->stats_lock); 1629 1630 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1631 strscpy(info->bus_info, pci_name(adapter->pdev), 1632 sizeof(info->bus_info)); 1633 if (fw_vers) 1634 snprintf(info->fw_version, sizeof(info->fw_version), 1635 "%s %u.%u.%u TP %u.%u.%u", 1636 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1637 G_FW_VERSION_MAJOR(fw_vers), 1638 G_FW_VERSION_MINOR(fw_vers), 1639 G_FW_VERSION_MICRO(fw_vers), 1640 G_TP_VERSION_MAJOR(tp_vers), 1641 G_TP_VERSION_MINOR(tp_vers), 1642 G_TP_VERSION_MICRO(tp_vers)); 1643 } 1644 1645 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1646 { 1647 if (stringset == ETH_SS_STATS) 1648 memcpy(data, stats_strings, sizeof(stats_strings)); 1649 } 1650 1651 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1652 struct port_info *p, int idx) 1653 { 1654 int i; 1655 unsigned long tot = 0; 1656 1657 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1658 tot += adapter->sge.qs[i].port_stats[idx]; 1659 return tot; 1660 } 1661 1662 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1663 u64 *data) 1664 { 1665 struct port_info *pi = netdev_priv(dev); 1666 struct adapter *adapter = pi->adapter; 1667 const struct mac_stats *s; 1668 1669 spin_lock(&adapter->stats_lock); 1670 s = t3_mac_update_stats(&pi->mac); 1671 spin_unlock(&adapter->stats_lock); 1672 1673 *data++ = s->tx_octets; 1674 *data++ = s->tx_frames; 1675 *data++ = s->tx_mcast_frames; 1676 *data++ = s->tx_bcast_frames; 1677 *data++ = s->tx_pause; 1678 *data++ = s->tx_underrun; 1679 *data++ = s->tx_fifo_urun; 1680 1681 *data++ = s->tx_frames_64; 1682 *data++ = s->tx_frames_65_127; 1683 *data++ = s->tx_frames_128_255; 1684 *data++ = s->tx_frames_256_511; 1685 *data++ = s->tx_frames_512_1023; 1686 *data++ = s->tx_frames_1024_1518; 1687 *data++ = s->tx_frames_1519_max; 1688 1689 *data++ = s->rx_octets; 1690 *data++ = s->rx_frames; 1691 *data++ = s->rx_mcast_frames; 1692 *data++ = s->rx_bcast_frames; 1693 *data++ = s->rx_pause; 1694 *data++ = s->rx_fcs_errs; 1695 *data++ = s->rx_symbol_errs; 1696 *data++ = s->rx_short; 1697 *data++ = s->rx_jabber; 1698 *data++ = s->rx_too_long; 1699 *data++ = s->rx_fifo_ovfl; 1700 1701 *data++ = s->rx_frames_64; 1702 *data++ = s->rx_frames_65_127; 1703 *data++ = s->rx_frames_128_255; 1704 *data++ = s->rx_frames_256_511; 1705 *data++ = s->rx_frames_512_1023; 1706 *data++ = s->rx_frames_1024_1518; 1707 *data++ = s->rx_frames_1519_max; 1708 1709 *data++ = pi->phy.fifo_errors; 1710 1711 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1715 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1716 *data++ = 0; 1717 *data++ = 0; 1718 *data++ = 0; 1719 *data++ = s->rx_cong_drops; 1720 1721 *data++ = s->num_toggled; 1722 *data++ = s->num_resets; 1723 1724 *data++ = s->link_faults; 1725 } 1726 1727 static inline void reg_block_dump(struct adapter *ap, void *buf, 1728 unsigned int start, unsigned int end) 1729 { 1730 u32 *p = buf + start; 1731 1732 for (; start <= end; start += sizeof(u32)) 1733 *p++ = t3_read_reg(ap, start); 1734 } 1735 1736 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1737 void *buf) 1738 { 1739 struct port_info *pi = netdev_priv(dev); 1740 struct adapter *ap = pi->adapter; 1741 1742 /* 1743 * Version scheme: 1744 * bits 0..9: chip version 1745 * bits 10..15: chip revision 1746 * bit 31: set for PCIe cards 1747 */ 1748 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1749 1750 /* 1751 * We skip the MAC statistics registers because they are clear-on-read. 1752 * Also reading multi-register stats would need to synchronize with the 1753 * periodic mac stats accumulation. Hard to justify the complexity. 1754 */ 1755 memset(buf, 0, T3_REGMAP_SIZE); 1756 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1757 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1758 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1759 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1760 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1761 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1762 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1763 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1764 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1765 } 1766 1767 static int restart_autoneg(struct net_device *dev) 1768 { 1769 struct port_info *p = netdev_priv(dev); 1770 1771 if (!netif_running(dev)) 1772 return -EAGAIN; 1773 if (p->link_config.autoneg != AUTONEG_ENABLE) 1774 return -EINVAL; 1775 p->phy.ops->autoneg_restart(&p->phy); 1776 return 0; 1777 } 1778 1779 static int set_phys_id(struct net_device *dev, 1780 enum ethtool_phys_id_state state) 1781 { 1782 struct port_info *pi = netdev_priv(dev); 1783 struct adapter *adapter = pi->adapter; 1784 1785 switch (state) { 1786 case ETHTOOL_ID_ACTIVE: 1787 return 1; /* cycle on/off once per second */ 1788 1789 case ETHTOOL_ID_OFF: 1790 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1791 break; 1792 1793 case ETHTOOL_ID_ON: 1794 case ETHTOOL_ID_INACTIVE: 1795 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1796 F_GPIO0_OUT_VAL); 1797 } 1798 1799 return 0; 1800 } 1801 1802 static int get_link_ksettings(struct net_device *dev, 1803 struct ethtool_link_ksettings *cmd) 1804 { 1805 struct port_info *p = netdev_priv(dev); 1806 u32 supported; 1807 1808 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1809 p->link_config.supported); 1810 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 1811 p->link_config.advertising); 1812 1813 if (netif_carrier_ok(dev)) { 1814 cmd->base.speed = p->link_config.speed; 1815 cmd->base.duplex = p->link_config.duplex; 1816 } else { 1817 cmd->base.speed = SPEED_UNKNOWN; 1818 cmd->base.duplex = DUPLEX_UNKNOWN; 1819 } 1820 1821 ethtool_convert_link_mode_to_legacy_u32(&supported, 1822 cmd->link_modes.supported); 1823 1824 cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1825 cmd->base.phy_address = p->phy.mdio.prtad; 1826 cmd->base.autoneg = p->link_config.autoneg; 1827 return 0; 1828 } 1829 1830 static int speed_duplex_to_caps(int speed, int duplex) 1831 { 1832 int cap = 0; 1833 1834 switch (speed) { 1835 case SPEED_10: 1836 if (duplex == DUPLEX_FULL) 1837 cap = SUPPORTED_10baseT_Full; 1838 else 1839 cap = SUPPORTED_10baseT_Half; 1840 break; 1841 case SPEED_100: 1842 if (duplex == DUPLEX_FULL) 1843 cap = SUPPORTED_100baseT_Full; 1844 else 1845 cap = SUPPORTED_100baseT_Half; 1846 break; 1847 case SPEED_1000: 1848 if (duplex == DUPLEX_FULL) 1849 cap = SUPPORTED_1000baseT_Full; 1850 else 1851 cap = SUPPORTED_1000baseT_Half; 1852 break; 1853 case SPEED_10000: 1854 if (duplex == DUPLEX_FULL) 1855 cap = SUPPORTED_10000baseT_Full; 1856 } 1857 return cap; 1858 } 1859 1860 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1861 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1862 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1863 ADVERTISED_10000baseT_Full) 1864 1865 static int set_link_ksettings(struct net_device *dev, 1866 const struct ethtool_link_ksettings *cmd) 1867 { 1868 struct port_info *p = netdev_priv(dev); 1869 struct link_config *lc = &p->link_config; 1870 u32 advertising; 1871 1872 ethtool_convert_link_mode_to_legacy_u32(&advertising, 1873 cmd->link_modes.advertising); 1874 1875 if (!(lc->supported & SUPPORTED_Autoneg)) { 1876 /* 1877 * PHY offers a single speed/duplex. See if that's what's 1878 * being requested. 1879 */ 1880 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1881 u32 speed = cmd->base.speed; 1882 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1883 if (lc->supported & cap) 1884 return 0; 1885 } 1886 return -EINVAL; 1887 } 1888 1889 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1890 u32 speed = cmd->base.speed; 1891 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1892 1893 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1894 return -EINVAL; 1895 lc->requested_speed = speed; 1896 lc->requested_duplex = cmd->base.duplex; 1897 lc->advertising = 0; 1898 } else { 1899 advertising &= ADVERTISED_MASK; 1900 advertising &= lc->supported; 1901 if (!advertising) 1902 return -EINVAL; 1903 lc->requested_speed = SPEED_INVALID; 1904 lc->requested_duplex = DUPLEX_INVALID; 1905 lc->advertising = advertising | ADVERTISED_Autoneg; 1906 } 1907 lc->autoneg = cmd->base.autoneg; 1908 if (netif_running(dev)) 1909 t3_link_start(&p->phy, &p->mac, lc); 1910 return 0; 1911 } 1912 1913 static void get_pauseparam(struct net_device *dev, 1914 struct ethtool_pauseparam *epause) 1915 { 1916 struct port_info *p = netdev_priv(dev); 1917 1918 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1919 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1920 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1921 } 1922 1923 static int set_pauseparam(struct net_device *dev, 1924 struct ethtool_pauseparam *epause) 1925 { 1926 struct port_info *p = netdev_priv(dev); 1927 struct link_config *lc = &p->link_config; 1928 1929 if (epause->autoneg == AUTONEG_DISABLE) 1930 lc->requested_fc = 0; 1931 else if (lc->supported & SUPPORTED_Autoneg) 1932 lc->requested_fc = PAUSE_AUTONEG; 1933 else 1934 return -EINVAL; 1935 1936 if (epause->rx_pause) 1937 lc->requested_fc |= PAUSE_RX; 1938 if (epause->tx_pause) 1939 lc->requested_fc |= PAUSE_TX; 1940 if (lc->autoneg == AUTONEG_ENABLE) { 1941 if (netif_running(dev)) 1942 t3_link_start(&p->phy, &p->mac, lc); 1943 } else { 1944 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1945 if (netif_running(dev)) 1946 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1947 } 1948 return 0; 1949 } 1950 1951 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e, 1952 struct kernel_ethtool_ringparam *kernel_e, 1953 struct netlink_ext_ack *extack) 1954 { 1955 struct port_info *pi = netdev_priv(dev); 1956 struct adapter *adapter = pi->adapter; 1957 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1958 1959 e->rx_max_pending = MAX_RX_BUFFERS; 1960 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1961 e->tx_max_pending = MAX_TXQ_ENTRIES; 1962 1963 e->rx_pending = q->fl_size; 1964 e->rx_mini_pending = q->rspq_size; 1965 e->rx_jumbo_pending = q->jumbo_size; 1966 e->tx_pending = q->txq_size[0]; 1967 } 1968 1969 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e, 1970 struct kernel_ethtool_ringparam *kernel_e, 1971 struct netlink_ext_ack *extack) 1972 { 1973 struct port_info *pi = netdev_priv(dev); 1974 struct adapter *adapter = pi->adapter; 1975 struct qset_params *q; 1976 int i; 1977 1978 if (e->rx_pending > MAX_RX_BUFFERS || 1979 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1980 e->tx_pending > MAX_TXQ_ENTRIES || 1981 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1982 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1983 e->rx_pending < MIN_FL_ENTRIES || 1984 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1985 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1986 return -EINVAL; 1987 1988 if (adapter->flags & FULL_INIT_DONE) 1989 return -EBUSY; 1990 1991 q = &adapter->params.sge.qset[pi->first_qset]; 1992 for (i = 0; i < pi->nqsets; ++i, ++q) { 1993 q->rspq_size = e->rx_mini_pending; 1994 q->fl_size = e->rx_pending; 1995 q->jumbo_size = e->rx_jumbo_pending; 1996 q->txq_size[0] = e->tx_pending; 1997 q->txq_size[1] = e->tx_pending; 1998 q->txq_size[2] = e->tx_pending; 1999 } 2000 return 0; 2001 } 2002 2003 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c, 2004 struct kernel_ethtool_coalesce *kernel_coal, 2005 struct netlink_ext_ack *extack) 2006 { 2007 struct port_info *pi = netdev_priv(dev); 2008 struct adapter *adapter = pi->adapter; 2009 struct qset_params *qsp; 2010 struct sge_qset *qs; 2011 int i; 2012 2013 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 2014 return -EINVAL; 2015 2016 for (i = 0; i < pi->nqsets; i++) { 2017 qsp = &adapter->params.sge.qset[i]; 2018 qs = &adapter->sge.qs[i]; 2019 qsp->coalesce_usecs = c->rx_coalesce_usecs; 2020 t3_update_qset_coalesce(qs, qsp); 2021 } 2022 2023 return 0; 2024 } 2025 2026 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c, 2027 struct kernel_ethtool_coalesce *kernel_coal, 2028 struct netlink_ext_ack *extack) 2029 { 2030 struct port_info *pi = netdev_priv(dev); 2031 struct adapter *adapter = pi->adapter; 2032 struct qset_params *q = adapter->params.sge.qset; 2033 2034 c->rx_coalesce_usecs = q->coalesce_usecs; 2035 return 0; 2036 } 2037 2038 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2039 u8 * data) 2040 { 2041 struct port_info *pi = netdev_priv(dev); 2042 struct adapter *adapter = pi->adapter; 2043 int cnt; 2044 2045 e->magic = EEPROM_MAGIC; 2046 cnt = pci_read_vpd(adapter->pdev, e->offset, e->len, data); 2047 if (cnt < 0) 2048 return cnt; 2049 2050 e->len = cnt; 2051 2052 return 0; 2053 } 2054 2055 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2056 u8 * data) 2057 { 2058 struct port_info *pi = netdev_priv(dev); 2059 struct adapter *adapter = pi->adapter; 2060 u32 aligned_offset, aligned_len; 2061 u8 *buf; 2062 int err; 2063 2064 if (eeprom->magic != EEPROM_MAGIC) 2065 return -EINVAL; 2066 2067 aligned_offset = eeprom->offset & ~3; 2068 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2069 2070 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2071 buf = kmalloc(aligned_len, GFP_KERNEL); 2072 if (!buf) 2073 return -ENOMEM; 2074 err = pci_read_vpd(adapter->pdev, aligned_offset, aligned_len, 2075 buf); 2076 if (err < 0) 2077 goto out; 2078 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2079 } else 2080 buf = data; 2081 2082 err = t3_seeprom_wp(adapter, 0); 2083 if (err) 2084 goto out; 2085 2086 err = pci_write_vpd(adapter->pdev, aligned_offset, aligned_len, buf); 2087 if (err >= 0) 2088 err = t3_seeprom_wp(adapter, 1); 2089 out: 2090 if (buf != data) 2091 kfree(buf); 2092 return err < 0 ? err : 0; 2093 } 2094 2095 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2096 { 2097 wol->supported = 0; 2098 wol->wolopts = 0; 2099 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2100 } 2101 2102 static const struct ethtool_ops cxgb_ethtool_ops = { 2103 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2104 .get_drvinfo = get_drvinfo, 2105 .get_msglevel = get_msglevel, 2106 .set_msglevel = set_msglevel, 2107 .get_ringparam = get_sge_param, 2108 .set_ringparam = set_sge_param, 2109 .get_coalesce = get_coalesce, 2110 .set_coalesce = set_coalesce, 2111 .get_eeprom_len = get_eeprom_len, 2112 .get_eeprom = get_eeprom, 2113 .set_eeprom = set_eeprom, 2114 .get_pauseparam = get_pauseparam, 2115 .set_pauseparam = set_pauseparam, 2116 .get_link = ethtool_op_get_link, 2117 .get_strings = get_strings, 2118 .set_phys_id = set_phys_id, 2119 .nway_reset = restart_autoneg, 2120 .get_sset_count = get_sset_count, 2121 .get_ethtool_stats = get_stats, 2122 .get_regs_len = get_regs_len, 2123 .get_regs = get_regs, 2124 .get_wol = get_wol, 2125 .get_link_ksettings = get_link_ksettings, 2126 .set_link_ksettings = set_link_ksettings, 2127 }; 2128 2129 static int in_range(int val, int lo, int hi) 2130 { 2131 return val < 0 || (val <= hi && val >= lo); 2132 } 2133 2134 static int cxgb_siocdevprivate(struct net_device *dev, 2135 struct ifreq *ifreq, 2136 void __user *useraddr, 2137 int cmd) 2138 { 2139 struct port_info *pi = netdev_priv(dev); 2140 struct adapter *adapter = pi->adapter; 2141 int ret; 2142 2143 if (cmd != SIOCCHIOCTL) 2144 return -EOPNOTSUPP; 2145 2146 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2147 return -EFAULT; 2148 2149 switch (cmd) { 2150 case CHELSIO_SET_QSET_PARAMS:{ 2151 int i; 2152 struct qset_params *q; 2153 struct ch_qset_params t; 2154 int q1 = pi->first_qset; 2155 int nqsets = pi->nqsets; 2156 2157 if (!capable(CAP_NET_ADMIN)) 2158 return -EPERM; 2159 if (copy_from_user(&t, useraddr, sizeof(t))) 2160 return -EFAULT; 2161 if (t.cmd != CHELSIO_SET_QSET_PARAMS) 2162 return -EINVAL; 2163 if (t.qset_idx >= SGE_QSETS) 2164 return -EINVAL; 2165 if (!in_range(t.intr_lat, 0, M_NEWTIMER) || 2166 !in_range(t.cong_thres, 0, 255) || 2167 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2168 MAX_TXQ_ENTRIES) || 2169 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2170 MAX_TXQ_ENTRIES) || 2171 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2172 MAX_CTRL_TXQ_ENTRIES) || 2173 !in_range(t.fl_size[0], MIN_FL_ENTRIES, 2174 MAX_RX_BUFFERS) || 2175 !in_range(t.fl_size[1], MIN_FL_ENTRIES, 2176 MAX_RX_JUMBO_BUFFERS) || 2177 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2178 MAX_RSPQ_ENTRIES)) 2179 return -EINVAL; 2180 2181 if ((adapter->flags & FULL_INIT_DONE) && 2182 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2183 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2184 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2185 t.polling >= 0 || t.cong_thres >= 0)) 2186 return -EBUSY; 2187 2188 /* Allow setting of any available qset when offload enabled */ 2189 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2190 q1 = 0; 2191 for_each_port(adapter, i) { 2192 pi = adap2pinfo(adapter, i); 2193 nqsets += pi->first_qset + pi->nqsets; 2194 } 2195 } 2196 2197 if (t.qset_idx < q1) 2198 return -EINVAL; 2199 if (t.qset_idx > q1 + nqsets - 1) 2200 return -EINVAL; 2201 2202 q = &adapter->params.sge.qset[t.qset_idx]; 2203 2204 if (t.rspq_size >= 0) 2205 q->rspq_size = t.rspq_size; 2206 if (t.fl_size[0] >= 0) 2207 q->fl_size = t.fl_size[0]; 2208 if (t.fl_size[1] >= 0) 2209 q->jumbo_size = t.fl_size[1]; 2210 if (t.txq_size[0] >= 0) 2211 q->txq_size[0] = t.txq_size[0]; 2212 if (t.txq_size[1] >= 0) 2213 q->txq_size[1] = t.txq_size[1]; 2214 if (t.txq_size[2] >= 0) 2215 q->txq_size[2] = t.txq_size[2]; 2216 if (t.cong_thres >= 0) 2217 q->cong_thres = t.cong_thres; 2218 if (t.intr_lat >= 0) { 2219 struct sge_qset *qs = 2220 &adapter->sge.qs[t.qset_idx]; 2221 2222 q->coalesce_usecs = t.intr_lat; 2223 t3_update_qset_coalesce(qs, q); 2224 } 2225 if (t.polling >= 0) { 2226 if (adapter->flags & USING_MSIX) 2227 q->polling = t.polling; 2228 else { 2229 /* No polling with INTx for T3A */ 2230 if (adapter->params.rev == 0 && 2231 !(adapter->flags & USING_MSI)) 2232 t.polling = 0; 2233 2234 for (i = 0; i < SGE_QSETS; i++) { 2235 q = &adapter->params.sge. 2236 qset[i]; 2237 q->polling = t.polling; 2238 } 2239 } 2240 } 2241 2242 if (t.lro >= 0) { 2243 if (t.lro) 2244 dev->wanted_features |= NETIF_F_GRO; 2245 else 2246 dev->wanted_features &= ~NETIF_F_GRO; 2247 netdev_update_features(dev); 2248 } 2249 2250 break; 2251 } 2252 case CHELSIO_GET_QSET_PARAMS:{ 2253 struct qset_params *q; 2254 struct ch_qset_params t; 2255 int q1 = pi->first_qset; 2256 int nqsets = pi->nqsets; 2257 int i; 2258 2259 if (copy_from_user(&t, useraddr, sizeof(t))) 2260 return -EFAULT; 2261 2262 if (t.cmd != CHELSIO_GET_QSET_PARAMS) 2263 return -EINVAL; 2264 2265 /* Display qsets for all ports when offload enabled */ 2266 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2267 q1 = 0; 2268 for_each_port(adapter, i) { 2269 pi = adap2pinfo(adapter, i); 2270 nqsets = pi->first_qset + pi->nqsets; 2271 } 2272 } 2273 2274 if (t.qset_idx >= nqsets) 2275 return -EINVAL; 2276 t.qset_idx = array_index_nospec(t.qset_idx, nqsets); 2277 2278 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2279 t.rspq_size = q->rspq_size; 2280 t.txq_size[0] = q->txq_size[0]; 2281 t.txq_size[1] = q->txq_size[1]; 2282 t.txq_size[2] = q->txq_size[2]; 2283 t.fl_size[0] = q->fl_size; 2284 t.fl_size[1] = q->jumbo_size; 2285 t.polling = q->polling; 2286 t.lro = !!(dev->features & NETIF_F_GRO); 2287 t.intr_lat = q->coalesce_usecs; 2288 t.cong_thres = q->cong_thres; 2289 t.qnum = q1; 2290 2291 if (adapter->flags & USING_MSIX) 2292 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2293 else 2294 t.vector = adapter->pdev->irq; 2295 2296 if (copy_to_user(useraddr, &t, sizeof(t))) 2297 return -EFAULT; 2298 break; 2299 } 2300 case CHELSIO_SET_QSET_NUM:{ 2301 struct ch_reg edata; 2302 unsigned int i, first_qset = 0, other_qsets = 0; 2303 2304 if (!capable(CAP_NET_ADMIN)) 2305 return -EPERM; 2306 if (adapter->flags & FULL_INIT_DONE) 2307 return -EBUSY; 2308 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2309 return -EFAULT; 2310 if (edata.cmd != CHELSIO_SET_QSET_NUM) 2311 return -EINVAL; 2312 if (edata.val < 1 || 2313 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2314 return -EINVAL; 2315 2316 for_each_port(adapter, i) 2317 if (adapter->port[i] && adapter->port[i] != dev) 2318 other_qsets += adap2pinfo(adapter, i)->nqsets; 2319 2320 if (edata.val + other_qsets > SGE_QSETS) 2321 return -EINVAL; 2322 2323 pi->nqsets = edata.val; 2324 2325 for_each_port(adapter, i) 2326 if (adapter->port[i]) { 2327 pi = adap2pinfo(adapter, i); 2328 pi->first_qset = first_qset; 2329 first_qset += pi->nqsets; 2330 } 2331 break; 2332 } 2333 case CHELSIO_GET_QSET_NUM:{ 2334 struct ch_reg edata; 2335 2336 memset(&edata, 0, sizeof(struct ch_reg)); 2337 2338 edata.cmd = CHELSIO_GET_QSET_NUM; 2339 edata.val = pi->nqsets; 2340 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2341 return -EFAULT; 2342 break; 2343 } 2344 case CHELSIO_LOAD_FW:{ 2345 u8 *fw_data; 2346 struct ch_mem_range t; 2347 2348 if (!capable(CAP_SYS_RAWIO)) 2349 return -EPERM; 2350 if (copy_from_user(&t, useraddr, sizeof(t))) 2351 return -EFAULT; 2352 if (t.cmd != CHELSIO_LOAD_FW) 2353 return -EINVAL; 2354 /* Check t.len sanity ? */ 2355 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2356 if (IS_ERR(fw_data)) 2357 return PTR_ERR(fw_data); 2358 2359 ret = t3_load_fw(adapter, fw_data, t.len); 2360 kfree(fw_data); 2361 if (ret) 2362 return ret; 2363 break; 2364 } 2365 case CHELSIO_SETMTUTAB:{ 2366 struct ch_mtus m; 2367 int i; 2368 2369 if (!is_offload(adapter)) 2370 return -EOPNOTSUPP; 2371 if (!capable(CAP_NET_ADMIN)) 2372 return -EPERM; 2373 if (offload_running(adapter)) 2374 return -EBUSY; 2375 if (copy_from_user(&m, useraddr, sizeof(m))) 2376 return -EFAULT; 2377 if (m.cmd != CHELSIO_SETMTUTAB) 2378 return -EINVAL; 2379 if (m.nmtus != NMTUS) 2380 return -EINVAL; 2381 if (m.mtus[0] < 81) /* accommodate SACK */ 2382 return -EINVAL; 2383 2384 /* MTUs must be in ascending order */ 2385 for (i = 1; i < NMTUS; ++i) 2386 if (m.mtus[i] < m.mtus[i - 1]) 2387 return -EINVAL; 2388 2389 memcpy(adapter->params.mtus, m.mtus, 2390 sizeof(adapter->params.mtus)); 2391 break; 2392 } 2393 case CHELSIO_GET_PM:{ 2394 struct tp_params *p = &adapter->params.tp; 2395 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2396 2397 if (!is_offload(adapter)) 2398 return -EOPNOTSUPP; 2399 m.tx_pg_sz = p->tx_pg_size; 2400 m.tx_num_pg = p->tx_num_pgs; 2401 m.rx_pg_sz = p->rx_pg_size; 2402 m.rx_num_pg = p->rx_num_pgs; 2403 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2404 if (copy_to_user(useraddr, &m, sizeof(m))) 2405 return -EFAULT; 2406 break; 2407 } 2408 case CHELSIO_SET_PM:{ 2409 struct ch_pm m; 2410 struct tp_params *p = &adapter->params.tp; 2411 2412 if (!is_offload(adapter)) 2413 return -EOPNOTSUPP; 2414 if (!capable(CAP_NET_ADMIN)) 2415 return -EPERM; 2416 if (adapter->flags & FULL_INIT_DONE) 2417 return -EBUSY; 2418 if (copy_from_user(&m, useraddr, sizeof(m))) 2419 return -EFAULT; 2420 if (m.cmd != CHELSIO_SET_PM) 2421 return -EINVAL; 2422 if (!is_power_of_2(m.rx_pg_sz) || 2423 !is_power_of_2(m.tx_pg_sz)) 2424 return -EINVAL; /* not power of 2 */ 2425 if (!(m.rx_pg_sz & 0x14000)) 2426 return -EINVAL; /* not 16KB or 64KB */ 2427 if (!(m.tx_pg_sz & 0x1554000)) 2428 return -EINVAL; 2429 if (m.tx_num_pg == -1) 2430 m.tx_num_pg = p->tx_num_pgs; 2431 if (m.rx_num_pg == -1) 2432 m.rx_num_pg = p->rx_num_pgs; 2433 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2434 return -EINVAL; 2435 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2436 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2437 return -EINVAL; 2438 p->rx_pg_size = m.rx_pg_sz; 2439 p->tx_pg_size = m.tx_pg_sz; 2440 p->rx_num_pgs = m.rx_num_pg; 2441 p->tx_num_pgs = m.tx_num_pg; 2442 break; 2443 } 2444 case CHELSIO_GET_MEM:{ 2445 struct ch_mem_range t; 2446 struct mc7 *mem; 2447 u64 buf[32]; 2448 2449 if (!is_offload(adapter)) 2450 return -EOPNOTSUPP; 2451 if (!capable(CAP_NET_ADMIN)) 2452 return -EPERM; 2453 if (!(adapter->flags & FULL_INIT_DONE)) 2454 return -EIO; /* need the memory controllers */ 2455 if (copy_from_user(&t, useraddr, sizeof(t))) 2456 return -EFAULT; 2457 if (t.cmd != CHELSIO_GET_MEM) 2458 return -EINVAL; 2459 if ((t.addr & 7) || (t.len & 7)) 2460 return -EINVAL; 2461 if (t.mem_id == MEM_CM) 2462 mem = &adapter->cm; 2463 else if (t.mem_id == MEM_PMRX) 2464 mem = &adapter->pmrx; 2465 else if (t.mem_id == MEM_PMTX) 2466 mem = &adapter->pmtx; 2467 else 2468 return -EINVAL; 2469 2470 /* 2471 * Version scheme: 2472 * bits 0..9: chip version 2473 * bits 10..15: chip revision 2474 */ 2475 t.version = 3 | (adapter->params.rev << 10); 2476 if (copy_to_user(useraddr, &t, sizeof(t))) 2477 return -EFAULT; 2478 2479 /* 2480 * Read 256 bytes at a time as len can be large and we don't 2481 * want to use huge intermediate buffers. 2482 */ 2483 useraddr += sizeof(t); /* advance to start of buffer */ 2484 while (t.len) { 2485 unsigned int chunk = 2486 min_t(unsigned int, t.len, sizeof(buf)); 2487 2488 ret = 2489 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2490 buf); 2491 if (ret) 2492 return ret; 2493 if (copy_to_user(useraddr, buf, chunk)) 2494 return -EFAULT; 2495 useraddr += chunk; 2496 t.addr += chunk; 2497 t.len -= chunk; 2498 } 2499 break; 2500 } 2501 case CHELSIO_SET_TRACE_FILTER:{ 2502 struct ch_trace t; 2503 const struct trace_params *tp; 2504 2505 if (!capable(CAP_NET_ADMIN)) 2506 return -EPERM; 2507 if (!offload_running(adapter)) 2508 return -EAGAIN; 2509 if (copy_from_user(&t, useraddr, sizeof(t))) 2510 return -EFAULT; 2511 if (t.cmd != CHELSIO_SET_TRACE_FILTER) 2512 return -EINVAL; 2513 2514 tp = (const struct trace_params *)&t.sip; 2515 if (t.config_tx) 2516 t3_config_trace_filter(adapter, tp, 0, 2517 t.invert_match, 2518 t.trace_tx); 2519 if (t.config_rx) 2520 t3_config_trace_filter(adapter, tp, 1, 2521 t.invert_match, 2522 t.trace_rx); 2523 break; 2524 } 2525 default: 2526 return -EOPNOTSUPP; 2527 } 2528 return 0; 2529 } 2530 2531 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2532 { 2533 struct mii_ioctl_data *data = if_mii(req); 2534 struct port_info *pi = netdev_priv(dev); 2535 struct adapter *adapter = pi->adapter; 2536 2537 switch (cmd) { 2538 case SIOCGMIIREG: 2539 case SIOCSMIIREG: 2540 /* Convert phy_id from older PRTAD/DEVAD format */ 2541 if (is_10G(adapter) && 2542 !mdio_phy_id_is_c45(data->phy_id) && 2543 (data->phy_id & 0x1f00) && 2544 !(data->phy_id & 0xe0e0)) 2545 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2546 data->phy_id & 0x1f); 2547 fallthrough; 2548 case SIOCGMIIPHY: 2549 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2550 default: 2551 return -EOPNOTSUPP; 2552 } 2553 } 2554 2555 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2556 { 2557 struct port_info *pi = netdev_priv(dev); 2558 struct adapter *adapter = pi->adapter; 2559 int ret; 2560 2561 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2562 return ret; 2563 dev->mtu = new_mtu; 2564 init_port_mtus(adapter); 2565 if (adapter->params.rev == 0 && offload_running(adapter)) 2566 t3_load_mtus(adapter, adapter->params.mtus, 2567 adapter->params.a_wnd, adapter->params.b_wnd, 2568 adapter->port[0]->mtu); 2569 return 0; 2570 } 2571 2572 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2573 { 2574 struct port_info *pi = netdev_priv(dev); 2575 struct adapter *adapter = pi->adapter; 2576 struct sockaddr *addr = p; 2577 2578 if (!is_valid_ether_addr(addr->sa_data)) 2579 return -EADDRNOTAVAIL; 2580 2581 eth_hw_addr_set(dev, addr->sa_data); 2582 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2583 if (offload_running(adapter)) 2584 write_smt_entry(adapter, pi->port_id); 2585 return 0; 2586 } 2587 2588 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2589 netdev_features_t features) 2590 { 2591 /* 2592 * Since there is no support for separate rx/tx vlan accel 2593 * enable/disable make sure tx flag is always in same state as rx. 2594 */ 2595 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2596 features |= NETIF_F_HW_VLAN_CTAG_TX; 2597 else 2598 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2599 2600 return features; 2601 } 2602 2603 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2604 { 2605 netdev_features_t changed = dev->features ^ features; 2606 2607 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2608 cxgb_vlan_mode(dev, features); 2609 2610 return 0; 2611 } 2612 2613 #ifdef CONFIG_NET_POLL_CONTROLLER 2614 static void cxgb_netpoll(struct net_device *dev) 2615 { 2616 struct port_info *pi = netdev_priv(dev); 2617 struct adapter *adapter = pi->adapter; 2618 int qidx; 2619 2620 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2621 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2622 void *source; 2623 2624 if (adapter->flags & USING_MSIX) 2625 source = qs; 2626 else 2627 source = adapter; 2628 2629 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2630 } 2631 } 2632 #endif 2633 2634 /* 2635 * Periodic accumulation of MAC statistics. 2636 */ 2637 static void mac_stats_update(struct adapter *adapter) 2638 { 2639 int i; 2640 2641 for_each_port(adapter, i) { 2642 struct net_device *dev = adapter->port[i]; 2643 struct port_info *p = netdev_priv(dev); 2644 2645 if (netif_running(dev)) { 2646 spin_lock(&adapter->stats_lock); 2647 t3_mac_update_stats(&p->mac); 2648 spin_unlock(&adapter->stats_lock); 2649 } 2650 } 2651 } 2652 2653 static void check_link_status(struct adapter *adapter) 2654 { 2655 int i; 2656 2657 for_each_port(adapter, i) { 2658 struct net_device *dev = adapter->port[i]; 2659 struct port_info *p = netdev_priv(dev); 2660 int link_fault; 2661 2662 spin_lock_irq(&adapter->work_lock); 2663 link_fault = p->link_fault; 2664 spin_unlock_irq(&adapter->work_lock); 2665 2666 if (link_fault) { 2667 t3_link_fault(adapter, i); 2668 continue; 2669 } 2670 2671 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2672 t3_xgm_intr_disable(adapter, i); 2673 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2674 2675 t3_link_changed(adapter, i); 2676 t3_xgm_intr_enable(adapter, i); 2677 } 2678 } 2679 } 2680 2681 static void check_t3b2_mac(struct adapter *adapter) 2682 { 2683 int i; 2684 2685 if (!rtnl_trylock()) /* synchronize with ifdown */ 2686 return; 2687 2688 for_each_port(adapter, i) { 2689 struct net_device *dev = adapter->port[i]; 2690 struct port_info *p = netdev_priv(dev); 2691 int status; 2692 2693 if (!netif_running(dev)) 2694 continue; 2695 2696 status = 0; 2697 if (netif_running(dev) && netif_carrier_ok(dev)) 2698 status = t3b2_mac_watchdog_task(&p->mac); 2699 if (status == 1) 2700 p->mac.stats.num_toggled++; 2701 else if (status == 2) { 2702 struct cmac *mac = &p->mac; 2703 2704 t3_mac_set_mtu(mac, dev->mtu); 2705 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2706 cxgb_set_rxmode(dev); 2707 t3_link_start(&p->phy, mac, &p->link_config); 2708 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2709 t3_port_intr_enable(adapter, p->port_id); 2710 p->mac.stats.num_resets++; 2711 } 2712 } 2713 rtnl_unlock(); 2714 } 2715 2716 2717 static void t3_adap_check_task(struct work_struct *work) 2718 { 2719 struct adapter *adapter = container_of(work, struct adapter, 2720 adap_check_task.work); 2721 const struct adapter_params *p = &adapter->params; 2722 int port; 2723 unsigned int v, status, reset; 2724 2725 adapter->check_task_cnt++; 2726 2727 check_link_status(adapter); 2728 2729 /* Accumulate MAC stats if needed */ 2730 if (!p->linkpoll_period || 2731 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2732 p->stats_update_period) { 2733 mac_stats_update(adapter); 2734 adapter->check_task_cnt = 0; 2735 } 2736 2737 if (p->rev == T3_REV_B2) 2738 check_t3b2_mac(adapter); 2739 2740 /* 2741 * Scan the XGMAC's to check for various conditions which we want to 2742 * monitor in a periodic polling manner rather than via an interrupt 2743 * condition. This is used for conditions which would otherwise flood 2744 * the system with interrupts and we only really need to know that the 2745 * conditions are "happening" ... For each condition we count the 2746 * detection of the condition and reset it for the next polling loop. 2747 */ 2748 for_each_port(adapter, port) { 2749 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2750 u32 cause; 2751 2752 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2753 reset = 0; 2754 if (cause & F_RXFIFO_OVERFLOW) { 2755 mac->stats.rx_fifo_ovfl++; 2756 reset |= F_RXFIFO_OVERFLOW; 2757 } 2758 2759 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2760 } 2761 2762 /* 2763 * We do the same as above for FL_EMPTY interrupts. 2764 */ 2765 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2766 reset = 0; 2767 2768 if (status & F_FLEMPTY) { 2769 struct sge_qset *qs = &adapter->sge.qs[0]; 2770 int i = 0; 2771 2772 reset |= F_FLEMPTY; 2773 2774 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2775 0xffff; 2776 2777 while (v) { 2778 qs->fl[i].empty += (v & 1); 2779 if (i) 2780 qs++; 2781 i ^= 1; 2782 v >>= 1; 2783 } 2784 } 2785 2786 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2787 2788 /* Schedule the next check update if any port is active. */ 2789 spin_lock_irq(&adapter->work_lock); 2790 if (adapter->open_device_map & PORT_MASK) 2791 schedule_chk_task(adapter); 2792 spin_unlock_irq(&adapter->work_lock); 2793 } 2794 2795 static void db_full_task(struct work_struct *work) 2796 { 2797 struct adapter *adapter = container_of(work, struct adapter, 2798 db_full_task); 2799 2800 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2801 } 2802 2803 static void db_empty_task(struct work_struct *work) 2804 { 2805 struct adapter *adapter = container_of(work, struct adapter, 2806 db_empty_task); 2807 2808 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2809 } 2810 2811 static void db_drop_task(struct work_struct *work) 2812 { 2813 struct adapter *adapter = container_of(work, struct adapter, 2814 db_drop_task); 2815 unsigned long delay = 1000; 2816 unsigned short r; 2817 2818 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2819 2820 /* 2821 * Sleep a while before ringing the driver qset dbs. 2822 * The delay is between 1000-2023 usecs. 2823 */ 2824 get_random_bytes(&r, 2); 2825 delay += r & 1023; 2826 set_current_state(TASK_UNINTERRUPTIBLE); 2827 schedule_timeout(usecs_to_jiffies(delay)); 2828 ring_dbs(adapter); 2829 } 2830 2831 /* 2832 * Processes external (PHY) interrupts in process context. 2833 */ 2834 static void ext_intr_task(struct work_struct *work) 2835 { 2836 struct adapter *adapter = container_of(work, struct adapter, 2837 ext_intr_handler_task); 2838 int i; 2839 2840 /* Disable link fault interrupts */ 2841 for_each_port(adapter, i) { 2842 struct net_device *dev = adapter->port[i]; 2843 struct port_info *p = netdev_priv(dev); 2844 2845 t3_xgm_intr_disable(adapter, i); 2846 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2847 } 2848 2849 /* Re-enable link fault interrupts */ 2850 t3_phy_intr_handler(adapter); 2851 2852 for_each_port(adapter, i) 2853 t3_xgm_intr_enable(adapter, i); 2854 2855 /* Now reenable external interrupts */ 2856 spin_lock_irq(&adapter->work_lock); 2857 if (adapter->slow_intr_mask) { 2858 adapter->slow_intr_mask |= F_T3DBG; 2859 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2860 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2861 adapter->slow_intr_mask); 2862 } 2863 spin_unlock_irq(&adapter->work_lock); 2864 } 2865 2866 /* 2867 * Interrupt-context handler for external (PHY) interrupts. 2868 */ 2869 void t3_os_ext_intr_handler(struct adapter *adapter) 2870 { 2871 /* 2872 * Schedule a task to handle external interrupts as they may be slow 2873 * and we use a mutex to protect MDIO registers. We disable PHY 2874 * interrupts in the meantime and let the task reenable them when 2875 * it's done. 2876 */ 2877 spin_lock(&adapter->work_lock); 2878 if (adapter->slow_intr_mask) { 2879 adapter->slow_intr_mask &= ~F_T3DBG; 2880 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2881 adapter->slow_intr_mask); 2882 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2883 } 2884 spin_unlock(&adapter->work_lock); 2885 } 2886 2887 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2888 { 2889 struct net_device *netdev = adapter->port[port_id]; 2890 struct port_info *pi = netdev_priv(netdev); 2891 2892 spin_lock(&adapter->work_lock); 2893 pi->link_fault = 1; 2894 spin_unlock(&adapter->work_lock); 2895 } 2896 2897 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2898 { 2899 int i, ret = 0; 2900 2901 if (is_offload(adapter) && 2902 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2903 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2904 offload_close(&adapter->tdev); 2905 } 2906 2907 /* Stop all ports */ 2908 for_each_port(adapter, i) { 2909 struct net_device *netdev = adapter->port[i]; 2910 2911 if (netif_running(netdev)) 2912 __cxgb_close(netdev, on_wq); 2913 } 2914 2915 /* Stop SGE timers */ 2916 t3_stop_sge_timers(adapter); 2917 2918 adapter->flags &= ~FULL_INIT_DONE; 2919 2920 if (reset) 2921 ret = t3_reset_adapter(adapter); 2922 2923 pci_disable_device(adapter->pdev); 2924 2925 return ret; 2926 } 2927 2928 static int t3_reenable_adapter(struct adapter *adapter) 2929 { 2930 if (pci_enable_device(adapter->pdev)) { 2931 dev_err(&adapter->pdev->dev, 2932 "Cannot re-enable PCI device after reset.\n"); 2933 goto err; 2934 } 2935 pci_set_master(adapter->pdev); 2936 pci_restore_state(adapter->pdev); 2937 pci_save_state(adapter->pdev); 2938 2939 /* Free sge resources */ 2940 t3_free_sge_resources(adapter); 2941 2942 if (t3_replay_prep_adapter(adapter)) 2943 goto err; 2944 2945 return 0; 2946 err: 2947 return -1; 2948 } 2949 2950 static void t3_resume_ports(struct adapter *adapter) 2951 { 2952 int i; 2953 2954 /* Restart the ports */ 2955 for_each_port(adapter, i) { 2956 struct net_device *netdev = adapter->port[i]; 2957 2958 if (netif_running(netdev)) { 2959 if (cxgb_open(netdev)) { 2960 dev_err(&adapter->pdev->dev, 2961 "can't bring device back up" 2962 " after reset\n"); 2963 continue; 2964 } 2965 } 2966 } 2967 2968 if (is_offload(adapter) && !ofld_disable) 2969 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2970 } 2971 2972 /* 2973 * processes a fatal error. 2974 * Bring the ports down, reset the chip, bring the ports back up. 2975 */ 2976 static void fatal_error_task(struct work_struct *work) 2977 { 2978 struct adapter *adapter = container_of(work, struct adapter, 2979 fatal_error_handler_task); 2980 int err = 0; 2981 2982 rtnl_lock(); 2983 err = t3_adapter_error(adapter, 1, 1); 2984 if (!err) 2985 err = t3_reenable_adapter(adapter); 2986 if (!err) 2987 t3_resume_ports(adapter); 2988 2989 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2990 rtnl_unlock(); 2991 } 2992 2993 void t3_fatal_err(struct adapter *adapter) 2994 { 2995 unsigned int fw_status[4]; 2996 2997 if (adapter->flags & FULL_INIT_DONE) { 2998 t3_sge_stop_dma(adapter); 2999 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 3000 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 3001 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 3002 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 3003 3004 spin_lock(&adapter->work_lock); 3005 t3_intr_disable(adapter); 3006 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 3007 spin_unlock(&adapter->work_lock); 3008 } 3009 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 3010 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 3011 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 3012 fw_status[0], fw_status[1], 3013 fw_status[2], fw_status[3]); 3014 } 3015 3016 /** 3017 * t3_io_error_detected - called when PCI error is detected 3018 * @pdev: Pointer to PCI device 3019 * @state: The current pci connection state 3020 * 3021 * This function is called after a PCI bus error affecting 3022 * this device has been detected. 3023 */ 3024 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 3025 pci_channel_state_t state) 3026 { 3027 struct adapter *adapter = pci_get_drvdata(pdev); 3028 3029 if (state == pci_channel_io_perm_failure) 3030 return PCI_ERS_RESULT_DISCONNECT; 3031 3032 t3_adapter_error(adapter, 0, 0); 3033 3034 /* Request a slot reset. */ 3035 return PCI_ERS_RESULT_NEED_RESET; 3036 } 3037 3038 /** 3039 * t3_io_slot_reset - called after the pci bus has been reset. 3040 * @pdev: Pointer to PCI device 3041 * 3042 * Restart the card from scratch, as if from a cold-boot. 3043 */ 3044 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3045 { 3046 struct adapter *adapter = pci_get_drvdata(pdev); 3047 3048 if (!t3_reenable_adapter(adapter)) 3049 return PCI_ERS_RESULT_RECOVERED; 3050 3051 return PCI_ERS_RESULT_DISCONNECT; 3052 } 3053 3054 /** 3055 * t3_io_resume - called when traffic can start flowing again. 3056 * @pdev: Pointer to PCI device 3057 * 3058 * This callback is called when the error recovery driver tells us that 3059 * its OK to resume normal operation. 3060 */ 3061 static void t3_io_resume(struct pci_dev *pdev) 3062 { 3063 struct adapter *adapter = pci_get_drvdata(pdev); 3064 3065 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3066 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3067 3068 rtnl_lock(); 3069 t3_resume_ports(adapter); 3070 rtnl_unlock(); 3071 } 3072 3073 static const struct pci_error_handlers t3_err_handler = { 3074 .error_detected = t3_io_error_detected, 3075 .slot_reset = t3_io_slot_reset, 3076 .resume = t3_io_resume, 3077 }; 3078 3079 /* 3080 * Set the number of qsets based on the number of CPUs and the number of ports, 3081 * not to exceed the number of available qsets, assuming there are enough qsets 3082 * per port in HW. 3083 */ 3084 static void set_nqsets(struct adapter *adap) 3085 { 3086 int i, j = 0; 3087 int num_cpus = netif_get_num_default_rss_queues(); 3088 int hwports = adap->params.nports; 3089 int nqsets = adap->msix_nvectors - 1; 3090 3091 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3092 if (hwports == 2 && 3093 (hwports * nqsets > SGE_QSETS || 3094 num_cpus >= nqsets / hwports)) 3095 nqsets /= hwports; 3096 if (nqsets > num_cpus) 3097 nqsets = num_cpus; 3098 if (nqsets < 1 || hwports == 4) 3099 nqsets = 1; 3100 } else { 3101 nqsets = 1; 3102 } 3103 3104 for_each_port(adap, i) { 3105 struct port_info *pi = adap2pinfo(adap, i); 3106 3107 pi->first_qset = j; 3108 pi->nqsets = nqsets; 3109 j = pi->first_qset + nqsets; 3110 3111 dev_info(&adap->pdev->dev, 3112 "Port %d using %d queue sets.\n", i, nqsets); 3113 } 3114 } 3115 3116 static int cxgb_enable_msix(struct adapter *adap) 3117 { 3118 struct msix_entry entries[SGE_QSETS + 1]; 3119 int vectors; 3120 int i; 3121 3122 vectors = ARRAY_SIZE(entries); 3123 for (i = 0; i < vectors; ++i) 3124 entries[i].entry = i; 3125 3126 vectors = pci_enable_msix_range(adap->pdev, entries, 3127 adap->params.nports + 1, vectors); 3128 if (vectors < 0) 3129 return vectors; 3130 3131 for (i = 0; i < vectors; ++i) 3132 adap->msix_info[i].vec = entries[i].vector; 3133 adap->msix_nvectors = vectors; 3134 3135 return 0; 3136 } 3137 3138 static void print_port_info(struct adapter *adap, const struct adapter_info *ai) 3139 { 3140 static const char *pci_variant[] = { 3141 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3142 }; 3143 3144 int i; 3145 char buf[80]; 3146 3147 if (is_pcie(adap)) 3148 snprintf(buf, sizeof(buf), "%s x%d", 3149 pci_variant[adap->params.pci.variant], 3150 adap->params.pci.width); 3151 else 3152 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3153 pci_variant[adap->params.pci.variant], 3154 adap->params.pci.speed, adap->params.pci.width); 3155 3156 for_each_port(adap, i) { 3157 struct net_device *dev = adap->port[i]; 3158 const struct port_info *pi = netdev_priv(dev); 3159 3160 if (!test_bit(i, &adap->registered_device_map)) 3161 continue; 3162 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n", 3163 ai->desc, pi->phy.desc, 3164 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3165 (adap->flags & USING_MSIX) ? " MSI-X" : 3166 (adap->flags & USING_MSI) ? " MSI" : ""); 3167 if (adap->name == dev->name && adap->params.vpd.mclk) 3168 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3169 adap->name, t3_mc7_size(&adap->cm) >> 20, 3170 t3_mc7_size(&adap->pmtx) >> 20, 3171 t3_mc7_size(&adap->pmrx) >> 20, 3172 adap->params.vpd.sn); 3173 } 3174 } 3175 3176 static const struct net_device_ops cxgb_netdev_ops = { 3177 .ndo_open = cxgb_open, 3178 .ndo_stop = cxgb_close, 3179 .ndo_start_xmit = t3_eth_xmit, 3180 .ndo_get_stats = cxgb_get_stats, 3181 .ndo_validate_addr = eth_validate_addr, 3182 .ndo_set_rx_mode = cxgb_set_rxmode, 3183 .ndo_eth_ioctl = cxgb_ioctl, 3184 .ndo_siocdevprivate = cxgb_siocdevprivate, 3185 .ndo_change_mtu = cxgb_change_mtu, 3186 .ndo_set_mac_address = cxgb_set_mac_addr, 3187 .ndo_fix_features = cxgb_fix_features, 3188 .ndo_set_features = cxgb_set_features, 3189 #ifdef CONFIG_NET_POLL_CONTROLLER 3190 .ndo_poll_controller = cxgb_netpoll, 3191 #endif 3192 }; 3193 3194 static void cxgb3_init_iscsi_mac(struct net_device *dev) 3195 { 3196 struct port_info *pi = netdev_priv(dev); 3197 3198 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3199 pi->iscsic.mac_addr[3] |= 0x80; 3200 } 3201 3202 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 3203 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 3204 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 3205 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 3206 { 3207 int i, err; 3208 resource_size_t mmio_start, mmio_len; 3209 const struct adapter_info *ai; 3210 struct adapter *adapter = NULL; 3211 struct port_info *pi; 3212 3213 if (!cxgb3_wq) { 3214 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3215 if (!cxgb3_wq) { 3216 pr_err("cannot initialize work queue\n"); 3217 return -ENOMEM; 3218 } 3219 } 3220 3221 err = pci_enable_device(pdev); 3222 if (err) { 3223 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3224 goto out; 3225 } 3226 3227 err = pci_request_regions(pdev, DRV_NAME); 3228 if (err) { 3229 /* Just info, some other driver may have claimed the device. */ 3230 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3231 goto out_disable_device; 3232 } 3233 3234 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3235 if (err) { 3236 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3237 goto out_release_regions; 3238 } 3239 3240 pci_set_master(pdev); 3241 pci_save_state(pdev); 3242 3243 mmio_start = pci_resource_start(pdev, 0); 3244 mmio_len = pci_resource_len(pdev, 0); 3245 ai = t3_get_adapter_info(ent->driver_data); 3246 3247 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3248 if (!adapter) { 3249 err = -ENOMEM; 3250 goto out_release_regions; 3251 } 3252 3253 adapter->nofail_skb = 3254 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3255 if (!adapter->nofail_skb) { 3256 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3257 err = -ENOMEM; 3258 goto out_free_adapter; 3259 } 3260 3261 adapter->regs = ioremap(mmio_start, mmio_len); 3262 if (!adapter->regs) { 3263 dev_err(&pdev->dev, "cannot map device registers\n"); 3264 err = -ENOMEM; 3265 goto out_free_adapter_nofail; 3266 } 3267 3268 adapter->pdev = pdev; 3269 adapter->name = pci_name(pdev); 3270 adapter->msg_enable = dflt_msg_enable; 3271 adapter->mmio_len = mmio_len; 3272 3273 mutex_init(&adapter->mdio_lock); 3274 spin_lock_init(&adapter->work_lock); 3275 spin_lock_init(&adapter->stats_lock); 3276 3277 INIT_LIST_HEAD(&adapter->adapter_list); 3278 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3279 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3280 3281 INIT_WORK(&adapter->db_full_task, db_full_task); 3282 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3283 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3284 3285 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3286 3287 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3288 struct net_device *netdev; 3289 3290 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3291 if (!netdev) { 3292 err = -ENOMEM; 3293 goto out_free_dev; 3294 } 3295 3296 SET_NETDEV_DEV(netdev, &pdev->dev); 3297 3298 adapter->port[i] = netdev; 3299 pi = netdev_priv(netdev); 3300 pi->adapter = adapter; 3301 pi->port_id = i; 3302 netif_carrier_off(netdev); 3303 netdev->irq = pdev->irq; 3304 netdev->mem_start = mmio_start; 3305 netdev->mem_end = mmio_start + mmio_len - 1; 3306 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3307 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX; 3308 netdev->features |= netdev->hw_features | 3309 NETIF_F_HW_VLAN_CTAG_TX; 3310 netdev->vlan_features |= netdev->features & VLAN_FEAT; 3311 3312 netdev->features |= NETIF_F_HIGHDMA; 3313 3314 netdev->netdev_ops = &cxgb_netdev_ops; 3315 netdev->ethtool_ops = &cxgb_ethtool_ops; 3316 netdev->min_mtu = 81; 3317 netdev->max_mtu = ETH_MAX_MTU; 3318 netdev->dev_port = pi->port_id; 3319 } 3320 3321 pci_set_drvdata(pdev, adapter); 3322 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3323 err = -ENODEV; 3324 goto out_free_dev; 3325 } 3326 3327 /* 3328 * The card is now ready to go. If any errors occur during device 3329 * registration we do not fail the whole card but rather proceed only 3330 * with the ports we manage to register successfully. However we must 3331 * register at least one net device. 3332 */ 3333 for_each_port(adapter, i) { 3334 err = register_netdev(adapter->port[i]); 3335 if (err) 3336 dev_warn(&pdev->dev, 3337 "cannot register net device %s, skipping\n", 3338 adapter->port[i]->name); 3339 else { 3340 /* 3341 * Change the name we use for messages to the name of 3342 * the first successfully registered interface. 3343 */ 3344 if (!adapter->registered_device_map) 3345 adapter->name = adapter->port[i]->name; 3346 3347 __set_bit(i, &adapter->registered_device_map); 3348 } 3349 } 3350 if (!adapter->registered_device_map) { 3351 dev_err(&pdev->dev, "could not register any net devices\n"); 3352 err = -ENODEV; 3353 goto out_free_dev; 3354 } 3355 3356 for_each_port(adapter, i) 3357 cxgb3_init_iscsi_mac(adapter->port[i]); 3358 3359 /* Driver's ready. Reflect it on LEDs */ 3360 t3_led_ready(adapter); 3361 3362 if (is_offload(adapter)) { 3363 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3364 cxgb3_adapter_ofld(adapter); 3365 } 3366 3367 /* See what interrupts we'll be using */ 3368 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3369 adapter->flags |= USING_MSIX; 3370 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3371 adapter->flags |= USING_MSI; 3372 3373 set_nqsets(adapter); 3374 3375 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3376 &cxgb3_attr_group); 3377 if (err) { 3378 dev_err(&pdev->dev, "cannot create sysfs group\n"); 3379 goto out_close_led; 3380 } 3381 3382 print_port_info(adapter, ai); 3383 return 0; 3384 3385 out_close_led: 3386 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 3387 3388 out_free_dev: 3389 iounmap(adapter->regs); 3390 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3391 if (adapter->port[i]) 3392 free_netdev(adapter->port[i]); 3393 3394 out_free_adapter_nofail: 3395 kfree_skb(adapter->nofail_skb); 3396 3397 out_free_adapter: 3398 kfree(adapter); 3399 3400 out_release_regions: 3401 pci_release_regions(pdev); 3402 out_disable_device: 3403 pci_disable_device(pdev); 3404 out: 3405 return err; 3406 } 3407 3408 static void remove_one(struct pci_dev *pdev) 3409 { 3410 struct adapter *adapter = pci_get_drvdata(pdev); 3411 3412 if (adapter) { 3413 int i; 3414 3415 t3_sge_stop(adapter); 3416 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3417 &cxgb3_attr_group); 3418 3419 if (is_offload(adapter)) { 3420 cxgb3_adapter_unofld(adapter); 3421 if (test_bit(OFFLOAD_DEVMAP_BIT, 3422 &adapter->open_device_map)) 3423 offload_close(&adapter->tdev); 3424 } 3425 3426 for_each_port(adapter, i) 3427 if (test_bit(i, &adapter->registered_device_map)) 3428 unregister_netdev(adapter->port[i]); 3429 3430 t3_stop_sge_timers(adapter); 3431 t3_free_sge_resources(adapter); 3432 cxgb_disable_msi(adapter); 3433 3434 for_each_port(adapter, i) 3435 if (adapter->port[i]) 3436 free_netdev(adapter->port[i]); 3437 3438 iounmap(adapter->regs); 3439 kfree_skb(adapter->nofail_skb); 3440 kfree(adapter); 3441 pci_release_regions(pdev); 3442 pci_disable_device(pdev); 3443 } 3444 } 3445 3446 static struct pci_driver driver = { 3447 .name = DRV_NAME, 3448 .id_table = cxgb3_pci_tbl, 3449 .probe = init_one, 3450 .remove = remove_one, 3451 .err_handler = &t3_err_handler, 3452 }; 3453 3454 static int __init cxgb3_init_module(void) 3455 { 3456 int ret; 3457 3458 cxgb3_offload_init(); 3459 3460 ret = pci_register_driver(&driver); 3461 return ret; 3462 } 3463 3464 static void __exit cxgb3_cleanup_module(void) 3465 { 3466 pci_unregister_driver(&driver); 3467 if (cxgb3_wq) 3468 destroy_workqueue(cxgb3_wq); 3469 } 3470 3471 module_init(cxgb3_init_module); 3472 module_exit(cxgb3_cleanup_module); 3473