1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/if_vlan.h>
42 #include <linux/mdio.h>
43 #include <linux/sockios.h>
44 #include <linux/workqueue.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/stringify.h>
50 #include <linux/sched.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/nospec.h>
54 
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60 
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64 
65 enum {
66 	MAX_TXQ_ENTRIES = 16384,
67 	MAX_CTRL_TXQ_ENTRIES = 1024,
68 	MAX_RSPQ_ENTRIES = 16384,
69 	MAX_RX_BUFFERS = 16384,
70 	MAX_RX_JUMBO_BUFFERS = 16384,
71 	MIN_TXQ_ENTRIES = 4,
72 	MIN_CTRL_TXQ_ENTRIES = 4,
73 	MIN_RSPQ_ENTRIES = 32,
74 	MIN_FL_ENTRIES = 32
75 };
76 
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78 
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82 
83 #define EEPROM_MAGIC 0x38E2F10C
84 
85 #define CH_DEVICE(devid, idx) \
86 	{ PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87 
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 	CH_DEVICE(0x20, 0),	/* PE9000 */
90 	CH_DEVICE(0x21, 1),	/* T302E */
91 	CH_DEVICE(0x22, 2),	/* T310E */
92 	CH_DEVICE(0x23, 3),	/* T320X */
93 	CH_DEVICE(0x24, 1),	/* T302X */
94 	CH_DEVICE(0x25, 3),	/* T320E */
95 	CH_DEVICE(0x26, 2),	/* T310X */
96 	CH_DEVICE(0x30, 2),	/* T3B10 */
97 	CH_DEVICE(0x31, 3),	/* T3B20 */
98 	CH_DEVICE(0x32, 1),	/* T3B02 */
99 	CH_DEVICE(0x35, 6),	/* T3C20-derived T3C10 */
100 	CH_DEVICE(0x36, 3),	/* S320E-CR */
101 	CH_DEVICE(0x37, 7),	/* N320E-G2 */
102 	{0,}
103 };
104 
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
109 
110 static int dflt_msg_enable = DFLT_MSG_ENABLE;
111 
112 module_param(dflt_msg_enable, int, 0644);
113 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
114 
115 /*
116  * The driver uses the best interrupt scheme available on a platform in the
117  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
118  * of these schemes the driver may consider as follows:
119  *
120  * msi = 2: choose from among all three options
121  * msi = 1: only consider MSI and pin interrupts
122  * msi = 0: force pin interrupts
123  */
124 static int msi = 2;
125 
126 module_param(msi, int, 0644);
127 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
128 
129 /*
130  * The driver enables offload as a default.
131  * To disable it, use ofld_disable = 1.
132  */
133 
134 static int ofld_disable = 0;
135 
136 module_param(ofld_disable, int, 0644);
137 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
138 
139 /*
140  * We have work elements that we need to cancel when an interface is taken
141  * down.  Normally the work elements would be executed by keventd but that
142  * can deadlock because of linkwatch.  If our close method takes the rtnl
143  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
144  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
145  * for our work to complete.  Get our own work queue to solve this.
146  */
147 struct workqueue_struct *cxgb3_wq;
148 
149 /**
150  *	link_report - show link status and link speed/duplex
151  *	@dev: the port whose settings are to be reported
152  *
153  *	Shows the link status, speed, and duplex of a port.
154  */
155 static void link_report(struct net_device *dev)
156 {
157 	if (!netif_carrier_ok(dev))
158 		netdev_info(dev, "link down\n");
159 	else {
160 		const char *s = "10Mbps";
161 		const struct port_info *p = netdev_priv(dev);
162 
163 		switch (p->link_config.speed) {
164 		case SPEED_10000:
165 			s = "10Gbps";
166 			break;
167 		case SPEED_1000:
168 			s = "1000Mbps";
169 			break;
170 		case SPEED_100:
171 			s = "100Mbps";
172 			break;
173 		}
174 
175 		netdev_info(dev, "link up, %s, %s-duplex\n",
176 			    s, p->link_config.duplex == DUPLEX_FULL
177 			    ? "full" : "half");
178 	}
179 }
180 
181 static void enable_tx_fifo_drain(struct adapter *adapter,
182 				 struct port_info *pi)
183 {
184 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
185 			 F_ENDROPPKT);
186 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
187 	t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
188 	t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
189 }
190 
191 static void disable_tx_fifo_drain(struct adapter *adapter,
192 				  struct port_info *pi)
193 {
194 	t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
195 			 F_ENDROPPKT, 0);
196 }
197 
198 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
199 {
200 	struct net_device *dev = adap->port[port_id];
201 	struct port_info *pi = netdev_priv(dev);
202 
203 	if (state == netif_carrier_ok(dev))
204 		return;
205 
206 	if (state) {
207 		struct cmac *mac = &pi->mac;
208 
209 		netif_carrier_on(dev);
210 
211 		disable_tx_fifo_drain(adap, pi);
212 
213 		/* Clear local faults */
214 		t3_xgm_intr_disable(adap, pi->port_id);
215 		t3_read_reg(adap, A_XGM_INT_STATUS +
216 				    pi->mac.offset);
217 		t3_write_reg(adap,
218 			     A_XGM_INT_CAUSE + pi->mac.offset,
219 			     F_XGM_INT);
220 
221 		t3_set_reg_field(adap,
222 				 A_XGM_INT_ENABLE +
223 				 pi->mac.offset,
224 				 F_XGM_INT, F_XGM_INT);
225 		t3_xgm_intr_enable(adap, pi->port_id);
226 
227 		t3_mac_enable(mac, MAC_DIRECTION_TX);
228 	} else {
229 		netif_carrier_off(dev);
230 
231 		/* Flush TX FIFO */
232 		enable_tx_fifo_drain(adap, pi);
233 	}
234 	link_report(dev);
235 }
236 
237 /**
238  *	t3_os_link_changed - handle link status changes
239  *	@adapter: the adapter associated with the link change
240  *	@port_id: the port index whose limk status has changed
241  *	@link_stat: the new status of the link
242  *	@speed: the new speed setting
243  *	@duplex: the new duplex setting
244  *	@pause: the new flow-control setting
245  *
246  *	This is the OS-dependent handler for link status changes.  The OS
247  *	neutral handler takes care of most of the processing for these events,
248  *	then calls this handler for any OS-specific processing.
249  */
250 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
251 			int speed, int duplex, int pause)
252 {
253 	struct net_device *dev = adapter->port[port_id];
254 	struct port_info *pi = netdev_priv(dev);
255 	struct cmac *mac = &pi->mac;
256 
257 	/* Skip changes from disabled ports. */
258 	if (!netif_running(dev))
259 		return;
260 
261 	if (link_stat != netif_carrier_ok(dev)) {
262 		if (link_stat) {
263 			disable_tx_fifo_drain(adapter, pi);
264 
265 			t3_mac_enable(mac, MAC_DIRECTION_RX);
266 
267 			/* Clear local faults */
268 			t3_xgm_intr_disable(adapter, pi->port_id);
269 			t3_read_reg(adapter, A_XGM_INT_STATUS +
270 				    pi->mac.offset);
271 			t3_write_reg(adapter,
272 				     A_XGM_INT_CAUSE + pi->mac.offset,
273 				     F_XGM_INT);
274 
275 			t3_set_reg_field(adapter,
276 					 A_XGM_INT_ENABLE + pi->mac.offset,
277 					 F_XGM_INT, F_XGM_INT);
278 			t3_xgm_intr_enable(adapter, pi->port_id);
279 
280 			netif_carrier_on(dev);
281 		} else {
282 			netif_carrier_off(dev);
283 
284 			t3_xgm_intr_disable(adapter, pi->port_id);
285 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
286 			t3_set_reg_field(adapter,
287 					 A_XGM_INT_ENABLE + pi->mac.offset,
288 					 F_XGM_INT, 0);
289 
290 			if (is_10G(adapter))
291 				pi->phy.ops->power_down(&pi->phy, 1);
292 
293 			t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
294 			t3_mac_disable(mac, MAC_DIRECTION_RX);
295 			t3_link_start(&pi->phy, mac, &pi->link_config);
296 
297 			/* Flush TX FIFO */
298 			enable_tx_fifo_drain(adapter, pi);
299 		}
300 
301 		link_report(dev);
302 	}
303 }
304 
305 /**
306  *	t3_os_phymod_changed - handle PHY module changes
307  *	@adap: the adapter associated with the link change
308  *	@port_id: the port index whose limk status has changed
309  *
310  *	This is the OS-dependent handler for PHY module changes.  It is
311  *	invoked when a PHY module is removed or inserted for any OS-specific
312  *	processing.
313  */
314 void t3_os_phymod_changed(struct adapter *adap, int port_id)
315 {
316 	static const char *mod_str[] = {
317 		NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
318 	};
319 
320 	const struct net_device *dev = adap->port[port_id];
321 	const struct port_info *pi = netdev_priv(dev);
322 
323 	if (pi->phy.modtype == phy_modtype_none)
324 		netdev_info(dev, "PHY module unplugged\n");
325 	else
326 		netdev_info(dev, "%s PHY module inserted\n",
327 			    mod_str[pi->phy.modtype]);
328 }
329 
330 static void cxgb_set_rxmode(struct net_device *dev)
331 {
332 	struct port_info *pi = netdev_priv(dev);
333 
334 	t3_mac_set_rx_mode(&pi->mac, dev);
335 }
336 
337 /**
338  *	link_start - enable a port
339  *	@dev: the device to enable
340  *
341  *	Performs the MAC and PHY actions needed to enable a port.
342  */
343 static void link_start(struct net_device *dev)
344 {
345 	struct port_info *pi = netdev_priv(dev);
346 	struct cmac *mac = &pi->mac;
347 
348 	t3_mac_reset(mac);
349 	t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
350 	t3_mac_set_mtu(mac, dev->mtu);
351 	t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
352 	t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
353 	t3_mac_set_rx_mode(mac, dev);
354 	t3_link_start(&pi->phy, mac, &pi->link_config);
355 	t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
356 }
357 
358 static inline void cxgb_disable_msi(struct adapter *adapter)
359 {
360 	if (adapter->flags & USING_MSIX) {
361 		pci_disable_msix(adapter->pdev);
362 		adapter->flags &= ~USING_MSIX;
363 	} else if (adapter->flags & USING_MSI) {
364 		pci_disable_msi(adapter->pdev);
365 		adapter->flags &= ~USING_MSI;
366 	}
367 }
368 
369 /*
370  * Interrupt handler for asynchronous events used with MSI-X.
371  */
372 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
373 {
374 	t3_slow_intr_handler(cookie);
375 	return IRQ_HANDLED;
376 }
377 
378 /*
379  * Name the MSI-X interrupts.
380  */
381 static void name_msix_vecs(struct adapter *adap)
382 {
383 	int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
384 
385 	snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
386 	adap->msix_info[0].desc[n] = 0;
387 
388 	for_each_port(adap, j) {
389 		struct net_device *d = adap->port[j];
390 		const struct port_info *pi = netdev_priv(d);
391 
392 		for (i = 0; i < pi->nqsets; i++, msi_idx++) {
393 			snprintf(adap->msix_info[msi_idx].desc, n,
394 				 "%s-%d", d->name, pi->first_qset + i);
395 			adap->msix_info[msi_idx].desc[n] = 0;
396 		}
397 	}
398 }
399 
400 static int request_msix_data_irqs(struct adapter *adap)
401 {
402 	int i, j, err, qidx = 0;
403 
404 	for_each_port(adap, i) {
405 		int nqsets = adap2pinfo(adap, i)->nqsets;
406 
407 		for (j = 0; j < nqsets; ++j) {
408 			err = request_irq(adap->msix_info[qidx + 1].vec,
409 					  t3_intr_handler(adap,
410 							  adap->sge.qs[qidx].
411 							  rspq.polling), 0,
412 					  adap->msix_info[qidx + 1].desc,
413 					  &adap->sge.qs[qidx]);
414 			if (err) {
415 				while (--qidx >= 0)
416 					free_irq(adap->msix_info[qidx + 1].vec,
417 						 &adap->sge.qs[qidx]);
418 				return err;
419 			}
420 			qidx++;
421 		}
422 	}
423 	return 0;
424 }
425 
426 static void free_irq_resources(struct adapter *adapter)
427 {
428 	if (adapter->flags & USING_MSIX) {
429 		int i, n = 0;
430 
431 		free_irq(adapter->msix_info[0].vec, adapter);
432 		for_each_port(adapter, i)
433 			n += adap2pinfo(adapter, i)->nqsets;
434 
435 		for (i = 0; i < n; ++i)
436 			free_irq(adapter->msix_info[i + 1].vec,
437 				 &adapter->sge.qs[i]);
438 	} else
439 		free_irq(adapter->pdev->irq, adapter);
440 }
441 
442 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
443 			      unsigned long n)
444 {
445 	int attempts = 10;
446 
447 	while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
448 		if (!--attempts)
449 			return -ETIMEDOUT;
450 		msleep(10);
451 	}
452 	return 0;
453 }
454 
455 static int init_tp_parity(struct adapter *adap)
456 {
457 	int i;
458 	struct sk_buff *skb;
459 	struct cpl_set_tcb_field *greq;
460 	unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
461 
462 	t3_tp_set_offload_mode(adap, 1);
463 
464 	for (i = 0; i < 16; i++) {
465 		struct cpl_smt_write_req *req;
466 
467 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
468 		if (!skb)
469 			skb = adap->nofail_skb;
470 		if (!skb)
471 			goto alloc_skb_fail;
472 
473 		req = __skb_put_zero(skb, sizeof(*req));
474 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
475 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
476 		req->mtu_idx = NMTUS - 1;
477 		req->iff = i;
478 		t3_mgmt_tx(adap, skb);
479 		if (skb == adap->nofail_skb) {
480 			await_mgmt_replies(adap, cnt, i + 1);
481 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
482 			if (!adap->nofail_skb)
483 				goto alloc_skb_fail;
484 		}
485 	}
486 
487 	for (i = 0; i < 2048; i++) {
488 		struct cpl_l2t_write_req *req;
489 
490 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
491 		if (!skb)
492 			skb = adap->nofail_skb;
493 		if (!skb)
494 			goto alloc_skb_fail;
495 
496 		req = __skb_put_zero(skb, sizeof(*req));
497 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
498 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
499 		req->params = htonl(V_L2T_W_IDX(i));
500 		t3_mgmt_tx(adap, skb);
501 		if (skb == adap->nofail_skb) {
502 			await_mgmt_replies(adap, cnt, 16 + i + 1);
503 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
504 			if (!adap->nofail_skb)
505 				goto alloc_skb_fail;
506 		}
507 	}
508 
509 	for (i = 0; i < 2048; i++) {
510 		struct cpl_rte_write_req *req;
511 
512 		skb = alloc_skb(sizeof(*req), GFP_KERNEL);
513 		if (!skb)
514 			skb = adap->nofail_skb;
515 		if (!skb)
516 			goto alloc_skb_fail;
517 
518 		req = __skb_put_zero(skb, sizeof(*req));
519 		req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 		OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 		req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 		t3_mgmt_tx(adap, skb);
523 		if (skb == adap->nofail_skb) {
524 			await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 			adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 			if (!adap->nofail_skb)
527 				goto alloc_skb_fail;
528 		}
529 	}
530 
531 	skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 	if (!skb)
533 		skb = adap->nofail_skb;
534 	if (!skb)
535 		goto alloc_skb_fail;
536 
537 	greq = __skb_put_zero(skb, sizeof(*greq));
538 	greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539 	OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540 	greq->mask = cpu_to_be64(1);
541 	t3_mgmt_tx(adap, skb);
542 
543 	i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544 	if (skb == adap->nofail_skb) {
545 		i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546 		adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
547 	}
548 
549 	t3_tp_set_offload_mode(adap, 0);
550 	return i;
551 
552 alloc_skb_fail:
553 	t3_tp_set_offload_mode(adap, 0);
554 	return -ENOMEM;
555 }
556 
557 /**
558  *	setup_rss - configure RSS
559  *	@adap: the adapter
560  *
561  *	Sets up RSS to distribute packets to multiple receive queues.  We
562  *	configure the RSS CPU lookup table to distribute to the number of HW
563  *	receive queues, and the response queue lookup table to narrow that
564  *	down to the response queues actually configured for each port.
565  *	We always configure the RSS mapping for two ports since the mapping
566  *	table has plenty of entries.
567  */
568 static void setup_rss(struct adapter *adap)
569 {
570 	int i;
571 	unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572 	unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573 	u8 cpus[SGE_QSETS + 1];
574 	u16 rspq_map[RSS_TABLE_SIZE + 1];
575 
576 	for (i = 0; i < SGE_QSETS; ++i)
577 		cpus[i] = i;
578 	cpus[SGE_QSETS] = 0xff;	/* terminator */
579 
580 	for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581 		rspq_map[i] = i % nq0;
582 		rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
583 	}
584 	rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
585 
586 	t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 		      F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 		      V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590 
591 static void ring_dbs(struct adapter *adap)
592 {
593 	int i, j;
594 
595 	for (i = 0; i < SGE_QSETS; i++) {
596 		struct sge_qset *qs = &adap->sge.qs[i];
597 
598 		if (qs->adap)
599 			for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 				t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 	}
602 }
603 
604 static void init_napi(struct adapter *adap)
605 {
606 	int i;
607 
608 	for (i = 0; i < SGE_QSETS; i++) {
609 		struct sge_qset *qs = &adap->sge.qs[i];
610 
611 		if (qs->adap)
612 			netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 				       64);
614 	}
615 
616 	/*
617 	 * netif_napi_add() can be called only once per napi_struct because it
618 	 * adds each new napi_struct to a list.  Be careful not to call it a
619 	 * second time, e.g., during EEH recovery, by making a note of it.
620 	 */
621 	adap->flags |= NAPI_INIT;
622 }
623 
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631 	int i;
632 
633 	for (i = 0; i < SGE_QSETS; i++)
634 		if (adap->sge.qs[i].adap)
635 			napi_disable(&adap->sge.qs[i].napi);
636 }
637 
638 static void enable_all_napi(struct adapter *adap)
639 {
640 	int i;
641 	for (i = 0; i < SGE_QSETS; i++)
642 		if (adap->sge.qs[i].adap)
643 			napi_enable(&adap->sge.qs[i].napi);
644 }
645 
646 /**
647  *	setup_sge_qsets - configure SGE Tx/Rx/response queues
648  *	@adap: the adapter
649  *
650  *	Determines how many sets of SGE queues to use and initializes them.
651  *	We support multiple queue sets per port if we have MSI-X, otherwise
652  *	just one queue set per port.
653  */
654 static int setup_sge_qsets(struct adapter *adap)
655 {
656 	int i, j, err, irq_idx = 0, qset_idx = 0;
657 	unsigned int ntxq = SGE_TXQ_PER_SET;
658 
659 	if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 		irq_idx = -1;
661 
662 	for_each_port(adap, i) {
663 		struct net_device *dev = adap->port[i];
664 		struct port_info *pi = netdev_priv(dev);
665 
666 		pi->qs = &adap->sge.qs[pi->first_qset];
667 		for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 			err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 				(adap->flags & USING_MSIX) ? qset_idx + 1 :
670 							     irq_idx,
671 				&adap->params.sge.qset[qset_idx], ntxq, dev,
672 				netdev_get_tx_queue(dev, j));
673 			if (err) {
674 				t3_free_sge_resources(adap);
675 				return err;
676 			}
677 		}
678 	}
679 
680 	return 0;
681 }
682 
683 static ssize_t attr_show(struct device *d, char *buf,
684 			 ssize_t(*format) (struct net_device *, char *))
685 {
686 	ssize_t len;
687 
688 	/* Synchronize with ioctls that may shut down the device */
689 	rtnl_lock();
690 	len = (*format) (to_net_dev(d), buf);
691 	rtnl_unlock();
692 	return len;
693 }
694 
695 static ssize_t attr_store(struct device *d,
696 			  const char *buf, size_t len,
697 			  ssize_t(*set) (struct net_device *, unsigned int),
698 			  unsigned int min_val, unsigned int max_val)
699 {
700 	ssize_t ret;
701 	unsigned int val;
702 
703 	if (!capable(CAP_NET_ADMIN))
704 		return -EPERM;
705 
706 	ret = kstrtouint(buf, 0, &val);
707 	if (ret)
708 		return ret;
709 	if (val < min_val || val > max_val)
710 		return -EINVAL;
711 
712 	rtnl_lock();
713 	ret = (*set) (to_net_dev(d), val);
714 	if (!ret)
715 		ret = len;
716 	rtnl_unlock();
717 	return ret;
718 }
719 
720 #define CXGB3_SHOW(name, val_expr) \
721 static ssize_t format_##name(struct net_device *dev, char *buf) \
722 { \
723 	struct port_info *pi = netdev_priv(dev); \
724 	struct adapter *adap = pi->adapter; \
725 	return sprintf(buf, "%u\n", val_expr); \
726 } \
727 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
728 			   char *buf) \
729 { \
730 	return attr_show(d, buf, format_##name); \
731 }
732 
733 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
734 {
735 	struct port_info *pi = netdev_priv(dev);
736 	struct adapter *adap = pi->adapter;
737 	int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
738 
739 	if (adap->flags & FULL_INIT_DONE)
740 		return -EBUSY;
741 	if (val && adap->params.rev == 0)
742 		return -EINVAL;
743 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
744 	    min_tids)
745 		return -EINVAL;
746 	adap->params.mc5.nfilters = val;
747 	return 0;
748 }
749 
750 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
751 			      const char *buf, size_t len)
752 {
753 	return attr_store(d, buf, len, set_nfilters, 0, ~0);
754 }
755 
756 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
757 {
758 	struct port_info *pi = netdev_priv(dev);
759 	struct adapter *adap = pi->adapter;
760 
761 	if (adap->flags & FULL_INIT_DONE)
762 		return -EBUSY;
763 	if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
764 	    MC5_MIN_TIDS)
765 		return -EINVAL;
766 	adap->params.mc5.nservers = val;
767 	return 0;
768 }
769 
770 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
771 			      const char *buf, size_t len)
772 {
773 	return attr_store(d, buf, len, set_nservers, 0, ~0);
774 }
775 
776 #define CXGB3_ATTR_R(name, val_expr) \
777 CXGB3_SHOW(name, val_expr) \
778 static DEVICE_ATTR(name, 0444, show_##name, NULL)
779 
780 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
781 CXGB3_SHOW(name, val_expr) \
782 static DEVICE_ATTR(name, 0644, show_##name, store_method)
783 
784 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
785 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
786 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
787 
788 static struct attribute *cxgb3_attrs[] = {
789 	&dev_attr_cam_size.attr,
790 	&dev_attr_nfilters.attr,
791 	&dev_attr_nservers.attr,
792 	NULL
793 };
794 
795 static const struct attribute_group cxgb3_attr_group = {
796 	.attrs = cxgb3_attrs,
797 };
798 
799 static ssize_t tm_attr_show(struct device *d,
800 			    char *buf, int sched)
801 {
802 	struct port_info *pi = netdev_priv(to_net_dev(d));
803 	struct adapter *adap = pi->adapter;
804 	unsigned int v, addr, bpt, cpt;
805 	ssize_t len;
806 
807 	addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
808 	rtnl_lock();
809 	t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
810 	v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
811 	if (sched & 1)
812 		v >>= 16;
813 	bpt = (v >> 8) & 0xff;
814 	cpt = v & 0xff;
815 	if (!cpt)
816 		len = sprintf(buf, "disabled\n");
817 	else {
818 		v = (adap->params.vpd.cclk * 1000) / cpt;
819 		len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
820 	}
821 	rtnl_unlock();
822 	return len;
823 }
824 
825 static ssize_t tm_attr_store(struct device *d,
826 			     const char *buf, size_t len, int sched)
827 {
828 	struct port_info *pi = netdev_priv(to_net_dev(d));
829 	struct adapter *adap = pi->adapter;
830 	unsigned int val;
831 	ssize_t ret;
832 
833 	if (!capable(CAP_NET_ADMIN))
834 		return -EPERM;
835 
836 	ret = kstrtouint(buf, 0, &val);
837 	if (ret)
838 		return ret;
839 	if (val > 10000000)
840 		return -EINVAL;
841 
842 	rtnl_lock();
843 	ret = t3_config_sched(adap, val, sched);
844 	if (!ret)
845 		ret = len;
846 	rtnl_unlock();
847 	return ret;
848 }
849 
850 #define TM_ATTR(name, sched) \
851 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
852 			   char *buf) \
853 { \
854 	return tm_attr_show(d, buf, sched); \
855 } \
856 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
857 			    const char *buf, size_t len) \
858 { \
859 	return tm_attr_store(d, buf, len, sched); \
860 } \
861 static DEVICE_ATTR(name, 0644, show_##name, store_##name)
862 
863 TM_ATTR(sched0, 0);
864 TM_ATTR(sched1, 1);
865 TM_ATTR(sched2, 2);
866 TM_ATTR(sched3, 3);
867 TM_ATTR(sched4, 4);
868 TM_ATTR(sched5, 5);
869 TM_ATTR(sched6, 6);
870 TM_ATTR(sched7, 7);
871 
872 static struct attribute *offload_attrs[] = {
873 	&dev_attr_sched0.attr,
874 	&dev_attr_sched1.attr,
875 	&dev_attr_sched2.attr,
876 	&dev_attr_sched3.attr,
877 	&dev_attr_sched4.attr,
878 	&dev_attr_sched5.attr,
879 	&dev_attr_sched6.attr,
880 	&dev_attr_sched7.attr,
881 	NULL
882 };
883 
884 static const struct attribute_group offload_attr_group = {
885 	.attrs = offload_attrs,
886 };
887 
888 /*
889  * Sends an sk_buff to an offload queue driver
890  * after dealing with any active network taps.
891  */
892 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
893 {
894 	int ret;
895 
896 	local_bh_disable();
897 	ret = t3_offload_tx(tdev, skb);
898 	local_bh_enable();
899 	return ret;
900 }
901 
902 static int write_smt_entry(struct adapter *adapter, int idx)
903 {
904 	struct cpl_smt_write_req *req;
905 	struct port_info *pi = netdev_priv(adapter->port[idx]);
906 	struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907 
908 	if (!skb)
909 		return -ENOMEM;
910 
911 	req = __skb_put(skb, sizeof(*req));
912 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 	req->mtu_idx = NMTUS - 1;	/* should be 0 but there's a T3 bug */
915 	req->iff = idx;
916 	memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
917 	memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
918 	skb->priority = 1;
919 	offload_tx(&adapter->tdev, skb);
920 	return 0;
921 }
922 
923 static int init_smt(struct adapter *adapter)
924 {
925 	int i;
926 
927 	for_each_port(adapter, i)
928 	    write_smt_entry(adapter, i);
929 	return 0;
930 }
931 
932 static void init_port_mtus(struct adapter *adapter)
933 {
934 	unsigned int mtus = adapter->port[0]->mtu;
935 
936 	if (adapter->port[1])
937 		mtus |= adapter->port[1]->mtu << 16;
938 	t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940 
941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 			      int hi, int port)
943 {
944 	struct sk_buff *skb;
945 	struct mngt_pktsched_wr *req;
946 	int ret;
947 
948 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 	if (!skb)
950 		skb = adap->nofail_skb;
951 	if (!skb)
952 		return -ENOMEM;
953 
954 	req = skb_put(skb, sizeof(*req));
955 	req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 	req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 	req->sched = sched;
958 	req->idx = qidx;
959 	req->min = lo;
960 	req->max = hi;
961 	req->binding = port;
962 	ret = t3_mgmt_tx(adap, skb);
963 	if (skb == adap->nofail_skb) {
964 		adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 					     GFP_KERNEL);
966 		if (!adap->nofail_skb)
967 			ret = -ENOMEM;
968 	}
969 
970 	return ret;
971 }
972 
973 static int bind_qsets(struct adapter *adap)
974 {
975 	int i, j, err = 0;
976 
977 	for_each_port(adap, i) {
978 		const struct port_info *pi = adap2pinfo(adap, i);
979 
980 		for (j = 0; j < pi->nqsets; ++j) {
981 			int ret = send_pktsched_cmd(adap, 1,
982 						    pi->first_qset + j, -1,
983 						    -1, i);
984 			if (ret)
985 				err = ret;
986 		}
987 	}
988 
989 	return err;
990 }
991 
992 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."			\
993 	__stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
994 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
995 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."		\
996 	__stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
997 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
998 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
999 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1000 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1001 MODULE_FIRMWARE(FW_FNAME);
1002 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1003 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1005 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1007 
1008 static inline const char *get_edc_fw_name(int edc_idx)
1009 {
1010 	const char *fw_name = NULL;
1011 
1012 	switch (edc_idx) {
1013 	case EDC_OPT_AEL2005:
1014 		fw_name = AEL2005_OPT_EDC_NAME;
1015 		break;
1016 	case EDC_TWX_AEL2005:
1017 		fw_name = AEL2005_TWX_EDC_NAME;
1018 		break;
1019 	case EDC_TWX_AEL2020:
1020 		fw_name = AEL2020_TWX_EDC_NAME;
1021 		break;
1022 	}
1023 	return fw_name;
1024 }
1025 
1026 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1027 {
1028 	struct adapter *adapter = phy->adapter;
1029 	const struct firmware *fw;
1030 	const char *fw_name;
1031 	u32 csum;
1032 	const __be32 *p;
1033 	u16 *cache = phy->phy_cache;
1034 	int i, ret = -EINVAL;
1035 
1036 	fw_name = get_edc_fw_name(edc_idx);
1037 	if (fw_name)
1038 		ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1039 	if (ret < 0) {
1040 		dev_err(&adapter->pdev->dev,
1041 			"could not upgrade firmware: unable to load %s\n",
1042 			fw_name);
1043 		return ret;
1044 	}
1045 
1046 	/* check size, take checksum in account */
1047 	if (fw->size > size + 4) {
1048 		CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1049 		       (unsigned int)fw->size, size + 4);
1050 		ret = -EINVAL;
1051 	}
1052 
1053 	/* compute checksum */
1054 	p = (const __be32 *)fw->data;
1055 	for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1056 		csum += ntohl(p[i]);
1057 
1058 	if (csum != 0xffffffff) {
1059 		CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1060 		       csum);
1061 		ret = -EINVAL;
1062 	}
1063 
1064 	for (i = 0; i < size / 4 ; i++) {
1065 		*cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1066 		*cache++ = be32_to_cpu(p[i]) & 0xffff;
1067 	}
1068 
1069 	release_firmware(fw);
1070 
1071 	return ret;
1072 }
1073 
1074 static int upgrade_fw(struct adapter *adap)
1075 {
1076 	int ret;
1077 	const struct firmware *fw;
1078 	struct device *dev = &adap->pdev->dev;
1079 
1080 	ret = request_firmware(&fw, FW_FNAME, dev);
1081 	if (ret < 0) {
1082 		dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1083 			FW_FNAME);
1084 		return ret;
1085 	}
1086 	ret = t3_load_fw(adap, fw->data, fw->size);
1087 	release_firmware(fw);
1088 
1089 	if (ret == 0)
1090 		dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1091 			 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1092 	else
1093 		dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1094 			FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1095 
1096 	return ret;
1097 }
1098 
1099 static inline char t3rev2char(struct adapter *adapter)
1100 {
1101 	char rev = 0;
1102 
1103 	switch(adapter->params.rev) {
1104 	case T3_REV_B:
1105 	case T3_REV_B2:
1106 		rev = 'b';
1107 		break;
1108 	case T3_REV_C:
1109 		rev = 'c';
1110 		break;
1111 	}
1112 	return rev;
1113 }
1114 
1115 static int update_tpsram(struct adapter *adap)
1116 {
1117 	const struct firmware *tpsram;
1118 	char buf[64];
1119 	struct device *dev = &adap->pdev->dev;
1120 	int ret;
1121 	char rev;
1122 
1123 	rev = t3rev2char(adap);
1124 	if (!rev)
1125 		return 0;
1126 
1127 	snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1128 
1129 	ret = request_firmware(&tpsram, buf, dev);
1130 	if (ret < 0) {
1131 		dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1132 			buf);
1133 		return ret;
1134 	}
1135 
1136 	ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1137 	if (ret)
1138 		goto release_tpsram;
1139 
1140 	ret = t3_set_proto_sram(adap, tpsram->data);
1141 	if (ret == 0)
1142 		dev_info(dev,
1143 			 "successful update of protocol engine "
1144 			 "to %d.%d.%d\n",
1145 			 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1146 	else
1147 		dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1148 			TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1149 	if (ret)
1150 		dev_err(dev, "loading protocol SRAM failed\n");
1151 
1152 release_tpsram:
1153 	release_firmware(tpsram);
1154 
1155 	return ret;
1156 }
1157 
1158 /**
1159  * t3_synchronize_rx - wait for current Rx processing on a port to complete
1160  * @adap: the adapter
1161  * @p: the port
1162  *
1163  * Ensures that current Rx processing on any of the queues associated with
1164  * the given port completes before returning.  We do this by acquiring and
1165  * releasing the locks of the response queues associated with the port.
1166  */
1167 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1168 {
1169 	int i;
1170 
1171 	for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1172 		struct sge_rspq *q = &adap->sge.qs[i].rspq;
1173 
1174 		spin_lock_irq(&q->lock);
1175 		spin_unlock_irq(&q->lock);
1176 	}
1177 }
1178 
1179 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1180 {
1181 	struct port_info *pi = netdev_priv(dev);
1182 	struct adapter *adapter = pi->adapter;
1183 
1184 	if (adapter->params.rev > 0) {
1185 		t3_set_vlan_accel(adapter, 1 << pi->port_id,
1186 				  features & NETIF_F_HW_VLAN_CTAG_RX);
1187 	} else {
1188 		/* single control for all ports */
1189 		unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1190 
1191 		for_each_port(adapter, i)
1192 			have_vlans |=
1193 				adapter->port[i]->features &
1194 				NETIF_F_HW_VLAN_CTAG_RX;
1195 
1196 		t3_set_vlan_accel(adapter, 1, have_vlans);
1197 	}
1198 	t3_synchronize_rx(adapter, pi);
1199 }
1200 
1201 /**
1202  *	cxgb_up - enable the adapter
1203  *	@adap: adapter being enabled
1204  *
1205  *	Called when the first port is enabled, this function performs the
1206  *	actions necessary to make an adapter operational, such as completing
1207  *	the initialization of HW modules, and enabling interrupts.
1208  *
1209  *	Must be called with the rtnl lock held.
1210  */
1211 static int cxgb_up(struct adapter *adap)
1212 {
1213 	int i, err;
1214 
1215 	if (!(adap->flags & FULL_INIT_DONE)) {
1216 		err = t3_check_fw_version(adap);
1217 		if (err == -EINVAL) {
1218 			err = upgrade_fw(adap);
1219 			CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1220 				FW_VERSION_MAJOR, FW_VERSION_MINOR,
1221 				FW_VERSION_MICRO, err ? "failed" : "succeeded");
1222 		}
1223 
1224 		err = t3_check_tpsram_version(adap);
1225 		if (err == -EINVAL) {
1226 			err = update_tpsram(adap);
1227 			CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1228 				TP_VERSION_MAJOR, TP_VERSION_MINOR,
1229 				TP_VERSION_MICRO, err ? "failed" : "succeeded");
1230 		}
1231 
1232 		/*
1233 		 * Clear interrupts now to catch errors if t3_init_hw fails.
1234 		 * We clear them again later as initialization may trigger
1235 		 * conditions that can interrupt.
1236 		 */
1237 		t3_intr_clear(adap);
1238 
1239 		err = t3_init_hw(adap, 0);
1240 		if (err)
1241 			goto out;
1242 
1243 		t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1244 		t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1245 
1246 		err = setup_sge_qsets(adap);
1247 		if (err)
1248 			goto out;
1249 
1250 		for_each_port(adap, i)
1251 			cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1252 
1253 		setup_rss(adap);
1254 		if (!(adap->flags & NAPI_INIT))
1255 			init_napi(adap);
1256 
1257 		t3_start_sge_timers(adap);
1258 		adap->flags |= FULL_INIT_DONE;
1259 	}
1260 
1261 	t3_intr_clear(adap);
1262 
1263 	if (adap->flags & USING_MSIX) {
1264 		name_msix_vecs(adap);
1265 		err = request_irq(adap->msix_info[0].vec,
1266 				  t3_async_intr_handler, 0,
1267 				  adap->msix_info[0].desc, adap);
1268 		if (err)
1269 			goto irq_err;
1270 
1271 		err = request_msix_data_irqs(adap);
1272 		if (err) {
1273 			free_irq(adap->msix_info[0].vec, adap);
1274 			goto irq_err;
1275 		}
1276 	} else {
1277 		err = request_irq(adap->pdev->irq,
1278 				  t3_intr_handler(adap, adap->sge.qs[0].rspq.polling),
1279 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
1280 				  adap->name, adap);
1281 		if (err)
1282 			goto irq_err;
1283 	}
1284 
1285 	enable_all_napi(adap);
1286 	t3_sge_start(adap);
1287 	t3_intr_enable(adap);
1288 
1289 	if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1290 	    is_offload(adap) && init_tp_parity(adap) == 0)
1291 		adap->flags |= TP_PARITY_INIT;
1292 
1293 	if (adap->flags & TP_PARITY_INIT) {
1294 		t3_write_reg(adap, A_TP_INT_CAUSE,
1295 			     F_CMCACHEPERR | F_ARPLUTPERR);
1296 		t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1297 	}
1298 
1299 	if (!(adap->flags & QUEUES_BOUND)) {
1300 		int ret = bind_qsets(adap);
1301 
1302 		if (ret < 0) {
1303 			CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1304 			t3_intr_disable(adap);
1305 			free_irq_resources(adap);
1306 			err = ret;
1307 			goto out;
1308 		}
1309 		adap->flags |= QUEUES_BOUND;
1310 	}
1311 
1312 out:
1313 	return err;
1314 irq_err:
1315 	CH_ERR(adap, "request_irq failed, err %d\n", err);
1316 	goto out;
1317 }
1318 
1319 /*
1320  * Release resources when all the ports and offloading have been stopped.
1321  */
1322 static void cxgb_down(struct adapter *adapter, int on_wq)
1323 {
1324 	t3_sge_stop(adapter);
1325 	spin_lock_irq(&adapter->work_lock);	/* sync with PHY intr task */
1326 	t3_intr_disable(adapter);
1327 	spin_unlock_irq(&adapter->work_lock);
1328 
1329 	free_irq_resources(adapter);
1330 	quiesce_rx(adapter);
1331 	t3_sge_stop(adapter);
1332 	if (!on_wq)
1333 		flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1334 }
1335 
1336 static void schedule_chk_task(struct adapter *adap)
1337 {
1338 	unsigned int timeo;
1339 
1340 	timeo = adap->params.linkpoll_period ?
1341 	    (HZ * adap->params.linkpoll_period) / 10 :
1342 	    adap->params.stats_update_period * HZ;
1343 	if (timeo)
1344 		queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1345 }
1346 
1347 static int offload_open(struct net_device *dev)
1348 {
1349 	struct port_info *pi = netdev_priv(dev);
1350 	struct adapter *adapter = pi->adapter;
1351 	struct t3cdev *tdev = dev2t3cdev(dev);
1352 	int adap_up = adapter->open_device_map & PORT_MASK;
1353 	int err;
1354 
1355 	if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1356 		return 0;
1357 
1358 	if (!adap_up && (err = cxgb_up(adapter)) < 0)
1359 		goto out;
1360 
1361 	t3_tp_set_offload_mode(adapter, 1);
1362 	tdev->lldev = adapter->port[0];
1363 	err = cxgb3_offload_activate(adapter);
1364 	if (err)
1365 		goto out;
1366 
1367 	init_port_mtus(adapter);
1368 	t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1369 		     adapter->params.b_wnd,
1370 		     adapter->params.rev == 0 ?
1371 		     adapter->port[0]->mtu : 0xffff);
1372 	init_smt(adapter);
1373 
1374 	if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1375 		dev_dbg(&dev->dev, "cannot create sysfs group\n");
1376 
1377 	/* Call back all registered clients */
1378 	cxgb3_add_clients(tdev);
1379 
1380 out:
1381 	/* restore them in case the offload module has changed them */
1382 	if (err) {
1383 		t3_tp_set_offload_mode(adapter, 0);
1384 		clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1385 		cxgb3_set_dummy_ops(tdev);
1386 	}
1387 	return err;
1388 }
1389 
1390 static int offload_close(struct t3cdev *tdev)
1391 {
1392 	struct adapter *adapter = tdev2adap(tdev);
1393 	struct t3c_data *td = T3C_DATA(tdev);
1394 
1395 	if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1396 		return 0;
1397 
1398 	/* Call back all registered clients */
1399 	cxgb3_remove_clients(tdev);
1400 
1401 	sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1402 
1403 	/* Flush work scheduled while releasing TIDs */
1404 	flush_work(&td->tid_release_task);
1405 
1406 	tdev->lldev = NULL;
1407 	cxgb3_set_dummy_ops(tdev);
1408 	t3_tp_set_offload_mode(adapter, 0);
1409 	clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1410 
1411 	if (!adapter->open_device_map)
1412 		cxgb_down(adapter, 0);
1413 
1414 	cxgb3_offload_deactivate(adapter);
1415 	return 0;
1416 }
1417 
1418 static int cxgb_open(struct net_device *dev)
1419 {
1420 	struct port_info *pi = netdev_priv(dev);
1421 	struct adapter *adapter = pi->adapter;
1422 	int other_ports = adapter->open_device_map & PORT_MASK;
1423 	int err;
1424 
1425 	if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1426 		return err;
1427 
1428 	set_bit(pi->port_id, &adapter->open_device_map);
1429 	if (is_offload(adapter) && !ofld_disable) {
1430 		err = offload_open(dev);
1431 		if (err)
1432 			pr_warn("Could not initialize offload capabilities\n");
1433 	}
1434 
1435 	netif_set_real_num_tx_queues(dev, pi->nqsets);
1436 	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1437 	if (err)
1438 		return err;
1439 	link_start(dev);
1440 	t3_port_intr_enable(adapter, pi->port_id);
1441 	netif_tx_start_all_queues(dev);
1442 	if (!other_ports)
1443 		schedule_chk_task(adapter);
1444 
1445 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1446 	return 0;
1447 }
1448 
1449 static int __cxgb_close(struct net_device *dev, int on_wq)
1450 {
1451 	struct port_info *pi = netdev_priv(dev);
1452 	struct adapter *adapter = pi->adapter;
1453 
1454 
1455 	if (!adapter->open_device_map)
1456 		return 0;
1457 
1458 	/* Stop link fault interrupts */
1459 	t3_xgm_intr_disable(adapter, pi->port_id);
1460 	t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1461 
1462 	t3_port_intr_disable(adapter, pi->port_id);
1463 	netif_tx_stop_all_queues(dev);
1464 	pi->phy.ops->power_down(&pi->phy, 1);
1465 	netif_carrier_off(dev);
1466 	t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1467 
1468 	spin_lock_irq(&adapter->work_lock);	/* sync with update task */
1469 	clear_bit(pi->port_id, &adapter->open_device_map);
1470 	spin_unlock_irq(&adapter->work_lock);
1471 
1472 	if (!(adapter->open_device_map & PORT_MASK))
1473 		cancel_delayed_work_sync(&adapter->adap_check_task);
1474 
1475 	if (!adapter->open_device_map)
1476 		cxgb_down(adapter, on_wq);
1477 
1478 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1479 	return 0;
1480 }
1481 
1482 static int cxgb_close(struct net_device *dev)
1483 {
1484 	return __cxgb_close(dev, 0);
1485 }
1486 
1487 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1488 {
1489 	struct port_info *pi = netdev_priv(dev);
1490 	struct adapter *adapter = pi->adapter;
1491 	struct net_device_stats *ns = &dev->stats;
1492 	const struct mac_stats *pstats;
1493 
1494 	spin_lock(&adapter->stats_lock);
1495 	pstats = t3_mac_update_stats(&pi->mac);
1496 	spin_unlock(&adapter->stats_lock);
1497 
1498 	ns->tx_bytes = pstats->tx_octets;
1499 	ns->tx_packets = pstats->tx_frames;
1500 	ns->rx_bytes = pstats->rx_octets;
1501 	ns->rx_packets = pstats->rx_frames;
1502 	ns->multicast = pstats->rx_mcast_frames;
1503 
1504 	ns->tx_errors = pstats->tx_underrun;
1505 	ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1506 	    pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1507 	    pstats->rx_fifo_ovfl;
1508 
1509 	/* detailed rx_errors */
1510 	ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1511 	ns->rx_over_errors = 0;
1512 	ns->rx_crc_errors = pstats->rx_fcs_errs;
1513 	ns->rx_frame_errors = pstats->rx_symbol_errs;
1514 	ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1515 	ns->rx_missed_errors = pstats->rx_cong_drops;
1516 
1517 	/* detailed tx_errors */
1518 	ns->tx_aborted_errors = 0;
1519 	ns->tx_carrier_errors = 0;
1520 	ns->tx_fifo_errors = pstats->tx_underrun;
1521 	ns->tx_heartbeat_errors = 0;
1522 	ns->tx_window_errors = 0;
1523 	return ns;
1524 }
1525 
1526 static u32 get_msglevel(struct net_device *dev)
1527 {
1528 	struct port_info *pi = netdev_priv(dev);
1529 	struct adapter *adapter = pi->adapter;
1530 
1531 	return adapter->msg_enable;
1532 }
1533 
1534 static void set_msglevel(struct net_device *dev, u32 val)
1535 {
1536 	struct port_info *pi = netdev_priv(dev);
1537 	struct adapter *adapter = pi->adapter;
1538 
1539 	adapter->msg_enable = val;
1540 }
1541 
1542 static const char stats_strings[][ETH_GSTRING_LEN] = {
1543 	"TxOctetsOK         ",
1544 	"TxFramesOK         ",
1545 	"TxMulticastFramesOK",
1546 	"TxBroadcastFramesOK",
1547 	"TxPauseFrames      ",
1548 	"TxUnderrun         ",
1549 	"TxExtUnderrun      ",
1550 
1551 	"TxFrames64         ",
1552 	"TxFrames65To127    ",
1553 	"TxFrames128To255   ",
1554 	"TxFrames256To511   ",
1555 	"TxFrames512To1023  ",
1556 	"TxFrames1024To1518 ",
1557 	"TxFrames1519ToMax  ",
1558 
1559 	"RxOctetsOK         ",
1560 	"RxFramesOK         ",
1561 	"RxMulticastFramesOK",
1562 	"RxBroadcastFramesOK",
1563 	"RxPauseFrames      ",
1564 	"RxFCSErrors        ",
1565 	"RxSymbolErrors     ",
1566 	"RxShortErrors      ",
1567 	"RxJabberErrors     ",
1568 	"RxLengthErrors     ",
1569 	"RxFIFOoverflow     ",
1570 
1571 	"RxFrames64         ",
1572 	"RxFrames65To127    ",
1573 	"RxFrames128To255   ",
1574 	"RxFrames256To511   ",
1575 	"RxFrames512To1023  ",
1576 	"RxFrames1024To1518 ",
1577 	"RxFrames1519ToMax  ",
1578 
1579 	"PhyFIFOErrors      ",
1580 	"TSO                ",
1581 	"VLANextractions    ",
1582 	"VLANinsertions     ",
1583 	"TxCsumOffload      ",
1584 	"RxCsumGood         ",
1585 	"LroAggregated      ",
1586 	"LroFlushed         ",
1587 	"LroNoDesc          ",
1588 	"RxDrops            ",
1589 
1590 	"CheckTXEnToggled   ",
1591 	"CheckResets        ",
1592 
1593 	"LinkFaults         ",
1594 };
1595 
1596 static int get_sset_count(struct net_device *dev, int sset)
1597 {
1598 	switch (sset) {
1599 	case ETH_SS_STATS:
1600 		return ARRAY_SIZE(stats_strings);
1601 	default:
1602 		return -EOPNOTSUPP;
1603 	}
1604 }
1605 
1606 #define T3_REGMAP_SIZE (3 * 1024)
1607 
1608 static int get_regs_len(struct net_device *dev)
1609 {
1610 	return T3_REGMAP_SIZE;
1611 }
1612 
1613 static int get_eeprom_len(struct net_device *dev)
1614 {
1615 	return EEPROMSIZE;
1616 }
1617 
1618 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1619 {
1620 	struct port_info *pi = netdev_priv(dev);
1621 	struct adapter *adapter = pi->adapter;
1622 	u32 fw_vers = 0;
1623 	u32 tp_vers = 0;
1624 
1625 	spin_lock(&adapter->stats_lock);
1626 	t3_get_fw_version(adapter, &fw_vers);
1627 	t3_get_tp_version(adapter, &tp_vers);
1628 	spin_unlock(&adapter->stats_lock);
1629 
1630 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1631 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1632 		sizeof(info->bus_info));
1633 	if (fw_vers)
1634 		snprintf(info->fw_version, sizeof(info->fw_version),
1635 			 "%s %u.%u.%u TP %u.%u.%u",
1636 			 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1637 			 G_FW_VERSION_MAJOR(fw_vers),
1638 			 G_FW_VERSION_MINOR(fw_vers),
1639 			 G_FW_VERSION_MICRO(fw_vers),
1640 			 G_TP_VERSION_MAJOR(tp_vers),
1641 			 G_TP_VERSION_MINOR(tp_vers),
1642 			 G_TP_VERSION_MICRO(tp_vers));
1643 }
1644 
1645 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1646 {
1647 	if (stringset == ETH_SS_STATS)
1648 		memcpy(data, stats_strings, sizeof(stats_strings));
1649 }
1650 
1651 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1652 					    struct port_info *p, int idx)
1653 {
1654 	int i;
1655 	unsigned long tot = 0;
1656 
1657 	for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1658 		tot += adapter->sge.qs[i].port_stats[idx];
1659 	return tot;
1660 }
1661 
1662 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1663 		      u64 *data)
1664 {
1665 	struct port_info *pi = netdev_priv(dev);
1666 	struct adapter *adapter = pi->adapter;
1667 	const struct mac_stats *s;
1668 
1669 	spin_lock(&adapter->stats_lock);
1670 	s = t3_mac_update_stats(&pi->mac);
1671 	spin_unlock(&adapter->stats_lock);
1672 
1673 	*data++ = s->tx_octets;
1674 	*data++ = s->tx_frames;
1675 	*data++ = s->tx_mcast_frames;
1676 	*data++ = s->tx_bcast_frames;
1677 	*data++ = s->tx_pause;
1678 	*data++ = s->tx_underrun;
1679 	*data++ = s->tx_fifo_urun;
1680 
1681 	*data++ = s->tx_frames_64;
1682 	*data++ = s->tx_frames_65_127;
1683 	*data++ = s->tx_frames_128_255;
1684 	*data++ = s->tx_frames_256_511;
1685 	*data++ = s->tx_frames_512_1023;
1686 	*data++ = s->tx_frames_1024_1518;
1687 	*data++ = s->tx_frames_1519_max;
1688 
1689 	*data++ = s->rx_octets;
1690 	*data++ = s->rx_frames;
1691 	*data++ = s->rx_mcast_frames;
1692 	*data++ = s->rx_bcast_frames;
1693 	*data++ = s->rx_pause;
1694 	*data++ = s->rx_fcs_errs;
1695 	*data++ = s->rx_symbol_errs;
1696 	*data++ = s->rx_short;
1697 	*data++ = s->rx_jabber;
1698 	*data++ = s->rx_too_long;
1699 	*data++ = s->rx_fifo_ovfl;
1700 
1701 	*data++ = s->rx_frames_64;
1702 	*data++ = s->rx_frames_65_127;
1703 	*data++ = s->rx_frames_128_255;
1704 	*data++ = s->rx_frames_256_511;
1705 	*data++ = s->rx_frames_512_1023;
1706 	*data++ = s->rx_frames_1024_1518;
1707 	*data++ = s->rx_frames_1519_max;
1708 
1709 	*data++ = pi->phy.fifo_errors;
1710 
1711 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1712 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1713 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1714 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1715 	*data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1716 	*data++ = 0;
1717 	*data++ = 0;
1718 	*data++ = 0;
1719 	*data++ = s->rx_cong_drops;
1720 
1721 	*data++ = s->num_toggled;
1722 	*data++ = s->num_resets;
1723 
1724 	*data++ = s->link_faults;
1725 }
1726 
1727 static inline void reg_block_dump(struct adapter *ap, void *buf,
1728 				  unsigned int start, unsigned int end)
1729 {
1730 	u32 *p = buf + start;
1731 
1732 	for (; start <= end; start += sizeof(u32))
1733 		*p++ = t3_read_reg(ap, start);
1734 }
1735 
1736 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1737 		     void *buf)
1738 {
1739 	struct port_info *pi = netdev_priv(dev);
1740 	struct adapter *ap = pi->adapter;
1741 
1742 	/*
1743 	 * Version scheme:
1744 	 * bits 0..9: chip version
1745 	 * bits 10..15: chip revision
1746 	 * bit 31: set for PCIe cards
1747 	 */
1748 	regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1749 
1750 	/*
1751 	 * We skip the MAC statistics registers because they are clear-on-read.
1752 	 * Also reading multi-register stats would need to synchronize with the
1753 	 * periodic mac stats accumulation.  Hard to justify the complexity.
1754 	 */
1755 	memset(buf, 0, T3_REGMAP_SIZE);
1756 	reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1757 	reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1758 	reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1759 	reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1760 	reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1761 	reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1762 		       XGM_REG(A_XGM_SERDES_STAT3, 1));
1763 	reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1764 		       XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1765 }
1766 
1767 static int restart_autoneg(struct net_device *dev)
1768 {
1769 	struct port_info *p = netdev_priv(dev);
1770 
1771 	if (!netif_running(dev))
1772 		return -EAGAIN;
1773 	if (p->link_config.autoneg != AUTONEG_ENABLE)
1774 		return -EINVAL;
1775 	p->phy.ops->autoneg_restart(&p->phy);
1776 	return 0;
1777 }
1778 
1779 static int set_phys_id(struct net_device *dev,
1780 		       enum ethtool_phys_id_state state)
1781 {
1782 	struct port_info *pi = netdev_priv(dev);
1783 	struct adapter *adapter = pi->adapter;
1784 
1785 	switch (state) {
1786 	case ETHTOOL_ID_ACTIVE:
1787 		return 1;	/* cycle on/off once per second */
1788 
1789 	case ETHTOOL_ID_OFF:
1790 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1791 		break;
1792 
1793 	case ETHTOOL_ID_ON:
1794 	case ETHTOOL_ID_INACTIVE:
1795 		t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1796 			 F_GPIO0_OUT_VAL);
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static int get_link_ksettings(struct net_device *dev,
1803 			      struct ethtool_link_ksettings *cmd)
1804 {
1805 	struct port_info *p = netdev_priv(dev);
1806 	u32 supported;
1807 
1808 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1809 						p->link_config.supported);
1810 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1811 						p->link_config.advertising);
1812 
1813 	if (netif_carrier_ok(dev)) {
1814 		cmd->base.speed = p->link_config.speed;
1815 		cmd->base.duplex = p->link_config.duplex;
1816 	} else {
1817 		cmd->base.speed = SPEED_UNKNOWN;
1818 		cmd->base.duplex = DUPLEX_UNKNOWN;
1819 	}
1820 
1821 	ethtool_convert_link_mode_to_legacy_u32(&supported,
1822 						cmd->link_modes.supported);
1823 
1824 	cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1825 	cmd->base.phy_address = p->phy.mdio.prtad;
1826 	cmd->base.autoneg = p->link_config.autoneg;
1827 	return 0;
1828 }
1829 
1830 static int speed_duplex_to_caps(int speed, int duplex)
1831 {
1832 	int cap = 0;
1833 
1834 	switch (speed) {
1835 	case SPEED_10:
1836 		if (duplex == DUPLEX_FULL)
1837 			cap = SUPPORTED_10baseT_Full;
1838 		else
1839 			cap = SUPPORTED_10baseT_Half;
1840 		break;
1841 	case SPEED_100:
1842 		if (duplex == DUPLEX_FULL)
1843 			cap = SUPPORTED_100baseT_Full;
1844 		else
1845 			cap = SUPPORTED_100baseT_Half;
1846 		break;
1847 	case SPEED_1000:
1848 		if (duplex == DUPLEX_FULL)
1849 			cap = SUPPORTED_1000baseT_Full;
1850 		else
1851 			cap = SUPPORTED_1000baseT_Half;
1852 		break;
1853 	case SPEED_10000:
1854 		if (duplex == DUPLEX_FULL)
1855 			cap = SUPPORTED_10000baseT_Full;
1856 	}
1857 	return cap;
1858 }
1859 
1860 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1861 		      ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1862 		      ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1863 		      ADVERTISED_10000baseT_Full)
1864 
1865 static int set_link_ksettings(struct net_device *dev,
1866 			      const struct ethtool_link_ksettings *cmd)
1867 {
1868 	struct port_info *p = netdev_priv(dev);
1869 	struct link_config *lc = &p->link_config;
1870 	u32 advertising;
1871 
1872 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
1873 						cmd->link_modes.advertising);
1874 
1875 	if (!(lc->supported & SUPPORTED_Autoneg)) {
1876 		/*
1877 		 * PHY offers a single speed/duplex.  See if that's what's
1878 		 * being requested.
1879 		 */
1880 		if (cmd->base.autoneg == AUTONEG_DISABLE) {
1881 			u32 speed = cmd->base.speed;
1882 			int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1883 			if (lc->supported & cap)
1884 				return 0;
1885 		}
1886 		return -EINVAL;
1887 	}
1888 
1889 	if (cmd->base.autoneg == AUTONEG_DISABLE) {
1890 		u32 speed = cmd->base.speed;
1891 		int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1892 
1893 		if (!(lc->supported & cap) || (speed == SPEED_1000))
1894 			return -EINVAL;
1895 		lc->requested_speed = speed;
1896 		lc->requested_duplex = cmd->base.duplex;
1897 		lc->advertising = 0;
1898 	} else {
1899 		advertising &= ADVERTISED_MASK;
1900 		advertising &= lc->supported;
1901 		if (!advertising)
1902 			return -EINVAL;
1903 		lc->requested_speed = SPEED_INVALID;
1904 		lc->requested_duplex = DUPLEX_INVALID;
1905 		lc->advertising = advertising | ADVERTISED_Autoneg;
1906 	}
1907 	lc->autoneg = cmd->base.autoneg;
1908 	if (netif_running(dev))
1909 		t3_link_start(&p->phy, &p->mac, lc);
1910 	return 0;
1911 }
1912 
1913 static void get_pauseparam(struct net_device *dev,
1914 			   struct ethtool_pauseparam *epause)
1915 {
1916 	struct port_info *p = netdev_priv(dev);
1917 
1918 	epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1919 	epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1920 	epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1921 }
1922 
1923 static int set_pauseparam(struct net_device *dev,
1924 			  struct ethtool_pauseparam *epause)
1925 {
1926 	struct port_info *p = netdev_priv(dev);
1927 	struct link_config *lc = &p->link_config;
1928 
1929 	if (epause->autoneg == AUTONEG_DISABLE)
1930 		lc->requested_fc = 0;
1931 	else if (lc->supported & SUPPORTED_Autoneg)
1932 		lc->requested_fc = PAUSE_AUTONEG;
1933 	else
1934 		return -EINVAL;
1935 
1936 	if (epause->rx_pause)
1937 		lc->requested_fc |= PAUSE_RX;
1938 	if (epause->tx_pause)
1939 		lc->requested_fc |= PAUSE_TX;
1940 	if (lc->autoneg == AUTONEG_ENABLE) {
1941 		if (netif_running(dev))
1942 			t3_link_start(&p->phy, &p->mac, lc);
1943 	} else {
1944 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1945 		if (netif_running(dev))
1946 			t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1947 	}
1948 	return 0;
1949 }
1950 
1951 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1952 {
1953 	struct port_info *pi = netdev_priv(dev);
1954 	struct adapter *adapter = pi->adapter;
1955 	const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1956 
1957 	e->rx_max_pending = MAX_RX_BUFFERS;
1958 	e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1959 	e->tx_max_pending = MAX_TXQ_ENTRIES;
1960 
1961 	e->rx_pending = q->fl_size;
1962 	e->rx_mini_pending = q->rspq_size;
1963 	e->rx_jumbo_pending = q->jumbo_size;
1964 	e->tx_pending = q->txq_size[0];
1965 }
1966 
1967 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1968 {
1969 	struct port_info *pi = netdev_priv(dev);
1970 	struct adapter *adapter = pi->adapter;
1971 	struct qset_params *q;
1972 	int i;
1973 
1974 	if (e->rx_pending > MAX_RX_BUFFERS ||
1975 	    e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1976 	    e->tx_pending > MAX_TXQ_ENTRIES ||
1977 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1978 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1979 	    e->rx_pending < MIN_FL_ENTRIES ||
1980 	    e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1981 	    e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1982 		return -EINVAL;
1983 
1984 	if (adapter->flags & FULL_INIT_DONE)
1985 		return -EBUSY;
1986 
1987 	q = &adapter->params.sge.qset[pi->first_qset];
1988 	for (i = 0; i < pi->nqsets; ++i, ++q) {
1989 		q->rspq_size = e->rx_mini_pending;
1990 		q->fl_size = e->rx_pending;
1991 		q->jumbo_size = e->rx_jumbo_pending;
1992 		q->txq_size[0] = e->tx_pending;
1993 		q->txq_size[1] = e->tx_pending;
1994 		q->txq_size[2] = e->tx_pending;
1995 	}
1996 	return 0;
1997 }
1998 
1999 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c,
2000 			struct kernel_ethtool_coalesce *kernel_coal,
2001 			struct netlink_ext_ack *extack)
2002 {
2003 	struct port_info *pi = netdev_priv(dev);
2004 	struct adapter *adapter = pi->adapter;
2005 	struct qset_params *qsp;
2006 	struct sge_qset *qs;
2007 	int i;
2008 
2009 	if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2010 		return -EINVAL;
2011 
2012 	for (i = 0; i < pi->nqsets; i++) {
2013 		qsp = &adapter->params.sge.qset[i];
2014 		qs = &adapter->sge.qs[i];
2015 		qsp->coalesce_usecs = c->rx_coalesce_usecs;
2016 		t3_update_qset_coalesce(qs, qsp);
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c,
2023 			struct kernel_ethtool_coalesce *kernel_coal,
2024 			struct netlink_ext_ack *extack)
2025 {
2026 	struct port_info *pi = netdev_priv(dev);
2027 	struct adapter *adapter = pi->adapter;
2028 	struct qset_params *q = adapter->params.sge.qset;
2029 
2030 	c->rx_coalesce_usecs = q->coalesce_usecs;
2031 	return 0;
2032 }
2033 
2034 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2035 		      u8 * data)
2036 {
2037 	struct port_info *pi = netdev_priv(dev);
2038 	struct adapter *adapter = pi->adapter;
2039 	int i, err = 0;
2040 
2041 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2042 	if (!buf)
2043 		return -ENOMEM;
2044 
2045 	e->magic = EEPROM_MAGIC;
2046 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2047 		err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2048 
2049 	if (!err)
2050 		memcpy(data, buf + e->offset, e->len);
2051 	kfree(buf);
2052 	return err;
2053 }
2054 
2055 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2056 		      u8 * data)
2057 {
2058 	struct port_info *pi = netdev_priv(dev);
2059 	struct adapter *adapter = pi->adapter;
2060 	u32 aligned_offset, aligned_len;
2061 	__le32 *p;
2062 	u8 *buf;
2063 	int err;
2064 
2065 	if (eeprom->magic != EEPROM_MAGIC)
2066 		return -EINVAL;
2067 
2068 	aligned_offset = eeprom->offset & ~3;
2069 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2070 
2071 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2072 		buf = kmalloc(aligned_len, GFP_KERNEL);
2073 		if (!buf)
2074 			return -ENOMEM;
2075 		err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2076 		if (!err && aligned_len > 4)
2077 			err = t3_seeprom_read(adapter,
2078 					      aligned_offset + aligned_len - 4,
2079 					      (__le32 *) & buf[aligned_len - 4]);
2080 		if (err)
2081 			goto out;
2082 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2083 	} else
2084 		buf = data;
2085 
2086 	err = t3_seeprom_wp(adapter, 0);
2087 	if (err)
2088 		goto out;
2089 
2090 	for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2091 		err = t3_seeprom_write(adapter, aligned_offset, *p);
2092 		aligned_offset += 4;
2093 	}
2094 
2095 	if (!err)
2096 		err = t3_seeprom_wp(adapter, 1);
2097 out:
2098 	if (buf != data)
2099 		kfree(buf);
2100 	return err;
2101 }
2102 
2103 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2104 {
2105 	wol->supported = 0;
2106 	wol->wolopts = 0;
2107 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2108 }
2109 
2110 static const struct ethtool_ops cxgb_ethtool_ops = {
2111 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2112 	.get_drvinfo = get_drvinfo,
2113 	.get_msglevel = get_msglevel,
2114 	.set_msglevel = set_msglevel,
2115 	.get_ringparam = get_sge_param,
2116 	.set_ringparam = set_sge_param,
2117 	.get_coalesce = get_coalesce,
2118 	.set_coalesce = set_coalesce,
2119 	.get_eeprom_len = get_eeprom_len,
2120 	.get_eeprom = get_eeprom,
2121 	.set_eeprom = set_eeprom,
2122 	.get_pauseparam = get_pauseparam,
2123 	.set_pauseparam = set_pauseparam,
2124 	.get_link = ethtool_op_get_link,
2125 	.get_strings = get_strings,
2126 	.set_phys_id = set_phys_id,
2127 	.nway_reset = restart_autoneg,
2128 	.get_sset_count = get_sset_count,
2129 	.get_ethtool_stats = get_stats,
2130 	.get_regs_len = get_regs_len,
2131 	.get_regs = get_regs,
2132 	.get_wol = get_wol,
2133 	.get_link_ksettings = get_link_ksettings,
2134 	.set_link_ksettings = set_link_ksettings,
2135 };
2136 
2137 static int in_range(int val, int lo, int hi)
2138 {
2139 	return val < 0 || (val <= hi && val >= lo);
2140 }
2141 
2142 static int cxgb_siocdevprivate(struct net_device *dev,
2143 			       struct ifreq *ifreq,
2144 			       void __user *useraddr,
2145 			       int cmd)
2146 {
2147 	struct port_info *pi = netdev_priv(dev);
2148 	struct adapter *adapter = pi->adapter;
2149 	int ret;
2150 
2151 	if (cmd != SIOCCHIOCTL)
2152 		return -EOPNOTSUPP;
2153 
2154 	if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2155 		return -EFAULT;
2156 
2157 	switch (cmd) {
2158 	case CHELSIO_SET_QSET_PARAMS:{
2159 		int i;
2160 		struct qset_params *q;
2161 		struct ch_qset_params t;
2162 		int q1 = pi->first_qset;
2163 		int nqsets = pi->nqsets;
2164 
2165 		if (!capable(CAP_NET_ADMIN))
2166 			return -EPERM;
2167 		if (copy_from_user(&t, useraddr, sizeof(t)))
2168 			return -EFAULT;
2169 		if (t.cmd != CHELSIO_SET_QSET_PARAMS)
2170 			return -EINVAL;
2171 		if (t.qset_idx >= SGE_QSETS)
2172 			return -EINVAL;
2173 		if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2174 		    !in_range(t.cong_thres, 0, 255) ||
2175 		    !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2176 			      MAX_TXQ_ENTRIES) ||
2177 		    !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2178 			      MAX_TXQ_ENTRIES) ||
2179 		    !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2180 			      MAX_CTRL_TXQ_ENTRIES) ||
2181 		    !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2182 			      MAX_RX_BUFFERS) ||
2183 		    !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2184 			      MAX_RX_JUMBO_BUFFERS) ||
2185 		    !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2186 			      MAX_RSPQ_ENTRIES))
2187 			return -EINVAL;
2188 
2189 		if ((adapter->flags & FULL_INIT_DONE) &&
2190 			(t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2191 			t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2192 			t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2193 			t.polling >= 0 || t.cong_thres >= 0))
2194 			return -EBUSY;
2195 
2196 		/* Allow setting of any available qset when offload enabled */
2197 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2198 			q1 = 0;
2199 			for_each_port(adapter, i) {
2200 				pi = adap2pinfo(adapter, i);
2201 				nqsets += pi->first_qset + pi->nqsets;
2202 			}
2203 		}
2204 
2205 		if (t.qset_idx < q1)
2206 			return -EINVAL;
2207 		if (t.qset_idx > q1 + nqsets - 1)
2208 			return -EINVAL;
2209 
2210 		q = &adapter->params.sge.qset[t.qset_idx];
2211 
2212 		if (t.rspq_size >= 0)
2213 			q->rspq_size = t.rspq_size;
2214 		if (t.fl_size[0] >= 0)
2215 			q->fl_size = t.fl_size[0];
2216 		if (t.fl_size[1] >= 0)
2217 			q->jumbo_size = t.fl_size[1];
2218 		if (t.txq_size[0] >= 0)
2219 			q->txq_size[0] = t.txq_size[0];
2220 		if (t.txq_size[1] >= 0)
2221 			q->txq_size[1] = t.txq_size[1];
2222 		if (t.txq_size[2] >= 0)
2223 			q->txq_size[2] = t.txq_size[2];
2224 		if (t.cong_thres >= 0)
2225 			q->cong_thres = t.cong_thres;
2226 		if (t.intr_lat >= 0) {
2227 			struct sge_qset *qs =
2228 				&adapter->sge.qs[t.qset_idx];
2229 
2230 			q->coalesce_usecs = t.intr_lat;
2231 			t3_update_qset_coalesce(qs, q);
2232 		}
2233 		if (t.polling >= 0) {
2234 			if (adapter->flags & USING_MSIX)
2235 				q->polling = t.polling;
2236 			else {
2237 				/* No polling with INTx for T3A */
2238 				if (adapter->params.rev == 0 &&
2239 					!(adapter->flags & USING_MSI))
2240 					t.polling = 0;
2241 
2242 				for (i = 0; i < SGE_QSETS; i++) {
2243 					q = &adapter->params.sge.
2244 						qset[i];
2245 					q->polling = t.polling;
2246 				}
2247 			}
2248 		}
2249 
2250 		if (t.lro >= 0) {
2251 			if (t.lro)
2252 				dev->wanted_features |= NETIF_F_GRO;
2253 			else
2254 				dev->wanted_features &= ~NETIF_F_GRO;
2255 			netdev_update_features(dev);
2256 		}
2257 
2258 		break;
2259 	}
2260 	case CHELSIO_GET_QSET_PARAMS:{
2261 		struct qset_params *q;
2262 		struct ch_qset_params t;
2263 		int q1 = pi->first_qset;
2264 		int nqsets = pi->nqsets;
2265 		int i;
2266 
2267 		if (copy_from_user(&t, useraddr, sizeof(t)))
2268 			return -EFAULT;
2269 
2270 		if (t.cmd != CHELSIO_GET_QSET_PARAMS)
2271 			return -EINVAL;
2272 
2273 		/* Display qsets for all ports when offload enabled */
2274 		if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2275 			q1 = 0;
2276 			for_each_port(adapter, i) {
2277 				pi = adap2pinfo(adapter, i);
2278 				nqsets = pi->first_qset + pi->nqsets;
2279 			}
2280 		}
2281 
2282 		if (t.qset_idx >= nqsets)
2283 			return -EINVAL;
2284 		t.qset_idx = array_index_nospec(t.qset_idx, nqsets);
2285 
2286 		q = &adapter->params.sge.qset[q1 + t.qset_idx];
2287 		t.rspq_size = q->rspq_size;
2288 		t.txq_size[0] = q->txq_size[0];
2289 		t.txq_size[1] = q->txq_size[1];
2290 		t.txq_size[2] = q->txq_size[2];
2291 		t.fl_size[0] = q->fl_size;
2292 		t.fl_size[1] = q->jumbo_size;
2293 		t.polling = q->polling;
2294 		t.lro = !!(dev->features & NETIF_F_GRO);
2295 		t.intr_lat = q->coalesce_usecs;
2296 		t.cong_thres = q->cong_thres;
2297 		t.qnum = q1;
2298 
2299 		if (adapter->flags & USING_MSIX)
2300 			t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2301 		else
2302 			t.vector = adapter->pdev->irq;
2303 
2304 		if (copy_to_user(useraddr, &t, sizeof(t)))
2305 			return -EFAULT;
2306 		break;
2307 	}
2308 	case CHELSIO_SET_QSET_NUM:{
2309 		struct ch_reg edata;
2310 		unsigned int i, first_qset = 0, other_qsets = 0;
2311 
2312 		if (!capable(CAP_NET_ADMIN))
2313 			return -EPERM;
2314 		if (adapter->flags & FULL_INIT_DONE)
2315 			return -EBUSY;
2316 		if (copy_from_user(&edata, useraddr, sizeof(edata)))
2317 			return -EFAULT;
2318 		if (edata.cmd != CHELSIO_SET_QSET_NUM)
2319 			return -EINVAL;
2320 		if (edata.val < 1 ||
2321 			(edata.val > 1 && !(adapter->flags & USING_MSIX)))
2322 			return -EINVAL;
2323 
2324 		for_each_port(adapter, i)
2325 			if (adapter->port[i] && adapter->port[i] != dev)
2326 				other_qsets += adap2pinfo(adapter, i)->nqsets;
2327 
2328 		if (edata.val + other_qsets > SGE_QSETS)
2329 			return -EINVAL;
2330 
2331 		pi->nqsets = edata.val;
2332 
2333 		for_each_port(adapter, i)
2334 			if (adapter->port[i]) {
2335 				pi = adap2pinfo(adapter, i);
2336 				pi->first_qset = first_qset;
2337 				first_qset += pi->nqsets;
2338 			}
2339 		break;
2340 	}
2341 	case CHELSIO_GET_QSET_NUM:{
2342 		struct ch_reg edata;
2343 
2344 		memset(&edata, 0, sizeof(struct ch_reg));
2345 
2346 		edata.cmd = CHELSIO_GET_QSET_NUM;
2347 		edata.val = pi->nqsets;
2348 		if (copy_to_user(useraddr, &edata, sizeof(edata)))
2349 			return -EFAULT;
2350 		break;
2351 	}
2352 	case CHELSIO_LOAD_FW:{
2353 		u8 *fw_data;
2354 		struct ch_mem_range t;
2355 
2356 		if (!capable(CAP_SYS_RAWIO))
2357 			return -EPERM;
2358 		if (copy_from_user(&t, useraddr, sizeof(t)))
2359 			return -EFAULT;
2360 		if (t.cmd != CHELSIO_LOAD_FW)
2361 			return -EINVAL;
2362 		/* Check t.len sanity ? */
2363 		fw_data = memdup_user(useraddr + sizeof(t), t.len);
2364 		if (IS_ERR(fw_data))
2365 			return PTR_ERR(fw_data);
2366 
2367 		ret = t3_load_fw(adapter, fw_data, t.len);
2368 		kfree(fw_data);
2369 		if (ret)
2370 			return ret;
2371 		break;
2372 	}
2373 	case CHELSIO_SETMTUTAB:{
2374 		struct ch_mtus m;
2375 		int i;
2376 
2377 		if (!is_offload(adapter))
2378 			return -EOPNOTSUPP;
2379 		if (!capable(CAP_NET_ADMIN))
2380 			return -EPERM;
2381 		if (offload_running(adapter))
2382 			return -EBUSY;
2383 		if (copy_from_user(&m, useraddr, sizeof(m)))
2384 			return -EFAULT;
2385 		if (m.cmd != CHELSIO_SETMTUTAB)
2386 			return -EINVAL;
2387 		if (m.nmtus != NMTUS)
2388 			return -EINVAL;
2389 		if (m.mtus[0] < 81)	/* accommodate SACK */
2390 			return -EINVAL;
2391 
2392 		/* MTUs must be in ascending order */
2393 		for (i = 1; i < NMTUS; ++i)
2394 			if (m.mtus[i] < m.mtus[i - 1])
2395 				return -EINVAL;
2396 
2397 		memcpy(adapter->params.mtus, m.mtus,
2398 			sizeof(adapter->params.mtus));
2399 		break;
2400 	}
2401 	case CHELSIO_GET_PM:{
2402 		struct tp_params *p = &adapter->params.tp;
2403 		struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2404 
2405 		if (!is_offload(adapter))
2406 			return -EOPNOTSUPP;
2407 		m.tx_pg_sz = p->tx_pg_size;
2408 		m.tx_num_pg = p->tx_num_pgs;
2409 		m.rx_pg_sz = p->rx_pg_size;
2410 		m.rx_num_pg = p->rx_num_pgs;
2411 		m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2412 		if (copy_to_user(useraddr, &m, sizeof(m)))
2413 			return -EFAULT;
2414 		break;
2415 	}
2416 	case CHELSIO_SET_PM:{
2417 		struct ch_pm m;
2418 		struct tp_params *p = &adapter->params.tp;
2419 
2420 		if (!is_offload(adapter))
2421 			return -EOPNOTSUPP;
2422 		if (!capable(CAP_NET_ADMIN))
2423 			return -EPERM;
2424 		if (adapter->flags & FULL_INIT_DONE)
2425 			return -EBUSY;
2426 		if (copy_from_user(&m, useraddr, sizeof(m)))
2427 			return -EFAULT;
2428 		if (m.cmd != CHELSIO_SET_PM)
2429 			return -EINVAL;
2430 		if (!is_power_of_2(m.rx_pg_sz) ||
2431 			!is_power_of_2(m.tx_pg_sz))
2432 			return -EINVAL;	/* not power of 2 */
2433 		if (!(m.rx_pg_sz & 0x14000))
2434 			return -EINVAL;	/* not 16KB or 64KB */
2435 		if (!(m.tx_pg_sz & 0x1554000))
2436 			return -EINVAL;
2437 		if (m.tx_num_pg == -1)
2438 			m.tx_num_pg = p->tx_num_pgs;
2439 		if (m.rx_num_pg == -1)
2440 			m.rx_num_pg = p->rx_num_pgs;
2441 		if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2442 			return -EINVAL;
2443 		if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2444 			m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2445 			return -EINVAL;
2446 		p->rx_pg_size = m.rx_pg_sz;
2447 		p->tx_pg_size = m.tx_pg_sz;
2448 		p->rx_num_pgs = m.rx_num_pg;
2449 		p->tx_num_pgs = m.tx_num_pg;
2450 		break;
2451 	}
2452 	case CHELSIO_GET_MEM:{
2453 		struct ch_mem_range t;
2454 		struct mc7 *mem;
2455 		u64 buf[32];
2456 
2457 		if (!is_offload(adapter))
2458 			return -EOPNOTSUPP;
2459 		if (!capable(CAP_NET_ADMIN))
2460 			return -EPERM;
2461 		if (!(adapter->flags & FULL_INIT_DONE))
2462 			return -EIO;	/* need the memory controllers */
2463 		if (copy_from_user(&t, useraddr, sizeof(t)))
2464 			return -EFAULT;
2465 		if (t.cmd != CHELSIO_GET_MEM)
2466 			return -EINVAL;
2467 		if ((t.addr & 7) || (t.len & 7))
2468 			return -EINVAL;
2469 		if (t.mem_id == MEM_CM)
2470 			mem = &adapter->cm;
2471 		else if (t.mem_id == MEM_PMRX)
2472 			mem = &adapter->pmrx;
2473 		else if (t.mem_id == MEM_PMTX)
2474 			mem = &adapter->pmtx;
2475 		else
2476 			return -EINVAL;
2477 
2478 		/*
2479 		 * Version scheme:
2480 		 * bits 0..9: chip version
2481 		 * bits 10..15: chip revision
2482 		 */
2483 		t.version = 3 | (adapter->params.rev << 10);
2484 		if (copy_to_user(useraddr, &t, sizeof(t)))
2485 			return -EFAULT;
2486 
2487 		/*
2488 		 * Read 256 bytes at a time as len can be large and we don't
2489 		 * want to use huge intermediate buffers.
2490 		 */
2491 		useraddr += sizeof(t);	/* advance to start of buffer */
2492 		while (t.len) {
2493 			unsigned int chunk =
2494 				min_t(unsigned int, t.len, sizeof(buf));
2495 
2496 			ret =
2497 				t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2498 						buf);
2499 			if (ret)
2500 				return ret;
2501 			if (copy_to_user(useraddr, buf, chunk))
2502 				return -EFAULT;
2503 			useraddr += chunk;
2504 			t.addr += chunk;
2505 			t.len -= chunk;
2506 		}
2507 		break;
2508 	}
2509 	case CHELSIO_SET_TRACE_FILTER:{
2510 		struct ch_trace t;
2511 		const struct trace_params *tp;
2512 
2513 		if (!capable(CAP_NET_ADMIN))
2514 			return -EPERM;
2515 		if (!offload_running(adapter))
2516 			return -EAGAIN;
2517 		if (copy_from_user(&t, useraddr, sizeof(t)))
2518 			return -EFAULT;
2519 		if (t.cmd != CHELSIO_SET_TRACE_FILTER)
2520 			return -EINVAL;
2521 
2522 		tp = (const struct trace_params *)&t.sip;
2523 		if (t.config_tx)
2524 			t3_config_trace_filter(adapter, tp, 0,
2525 						t.invert_match,
2526 						t.trace_tx);
2527 		if (t.config_rx)
2528 			t3_config_trace_filter(adapter, tp, 1,
2529 						t.invert_match,
2530 						t.trace_rx);
2531 		break;
2532 	}
2533 	default:
2534 		return -EOPNOTSUPP;
2535 	}
2536 	return 0;
2537 }
2538 
2539 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2540 {
2541 	struct mii_ioctl_data *data = if_mii(req);
2542 	struct port_info *pi = netdev_priv(dev);
2543 	struct adapter *adapter = pi->adapter;
2544 
2545 	switch (cmd) {
2546 	case SIOCGMIIREG:
2547 	case SIOCSMIIREG:
2548 		/* Convert phy_id from older PRTAD/DEVAD format */
2549 		if (is_10G(adapter) &&
2550 		    !mdio_phy_id_is_c45(data->phy_id) &&
2551 		    (data->phy_id & 0x1f00) &&
2552 		    !(data->phy_id & 0xe0e0))
2553 			data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2554 						       data->phy_id & 0x1f);
2555 		fallthrough;
2556 	case SIOCGMIIPHY:
2557 		return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2558 	default:
2559 		return -EOPNOTSUPP;
2560 	}
2561 }
2562 
2563 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2564 {
2565 	struct port_info *pi = netdev_priv(dev);
2566 	struct adapter *adapter = pi->adapter;
2567 	int ret;
2568 
2569 	if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2570 		return ret;
2571 	dev->mtu = new_mtu;
2572 	init_port_mtus(adapter);
2573 	if (adapter->params.rev == 0 && offload_running(adapter))
2574 		t3_load_mtus(adapter, adapter->params.mtus,
2575 			     adapter->params.a_wnd, adapter->params.b_wnd,
2576 			     adapter->port[0]->mtu);
2577 	return 0;
2578 }
2579 
2580 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2581 {
2582 	struct port_info *pi = netdev_priv(dev);
2583 	struct adapter *adapter = pi->adapter;
2584 	struct sockaddr *addr = p;
2585 
2586 	if (!is_valid_ether_addr(addr->sa_data))
2587 		return -EADDRNOTAVAIL;
2588 
2589 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2590 	t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2591 	if (offload_running(adapter))
2592 		write_smt_entry(adapter, pi->port_id);
2593 	return 0;
2594 }
2595 
2596 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2597 	netdev_features_t features)
2598 {
2599 	/*
2600 	 * Since there is no support for separate rx/tx vlan accel
2601 	 * enable/disable make sure tx flag is always in same state as rx.
2602 	 */
2603 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2604 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2605 	else
2606 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2607 
2608 	return features;
2609 }
2610 
2611 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2612 {
2613 	netdev_features_t changed = dev->features ^ features;
2614 
2615 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2616 		cxgb_vlan_mode(dev, features);
2617 
2618 	return 0;
2619 }
2620 
2621 #ifdef CONFIG_NET_POLL_CONTROLLER
2622 static void cxgb_netpoll(struct net_device *dev)
2623 {
2624 	struct port_info *pi = netdev_priv(dev);
2625 	struct adapter *adapter = pi->adapter;
2626 	int qidx;
2627 
2628 	for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2629 		struct sge_qset *qs = &adapter->sge.qs[qidx];
2630 		void *source;
2631 
2632 		if (adapter->flags & USING_MSIX)
2633 			source = qs;
2634 		else
2635 			source = adapter;
2636 
2637 		t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2638 	}
2639 }
2640 #endif
2641 
2642 /*
2643  * Periodic accumulation of MAC statistics.
2644  */
2645 static void mac_stats_update(struct adapter *adapter)
2646 {
2647 	int i;
2648 
2649 	for_each_port(adapter, i) {
2650 		struct net_device *dev = adapter->port[i];
2651 		struct port_info *p = netdev_priv(dev);
2652 
2653 		if (netif_running(dev)) {
2654 			spin_lock(&adapter->stats_lock);
2655 			t3_mac_update_stats(&p->mac);
2656 			spin_unlock(&adapter->stats_lock);
2657 		}
2658 	}
2659 }
2660 
2661 static void check_link_status(struct adapter *adapter)
2662 {
2663 	int i;
2664 
2665 	for_each_port(adapter, i) {
2666 		struct net_device *dev = adapter->port[i];
2667 		struct port_info *p = netdev_priv(dev);
2668 		int link_fault;
2669 
2670 		spin_lock_irq(&adapter->work_lock);
2671 		link_fault = p->link_fault;
2672 		spin_unlock_irq(&adapter->work_lock);
2673 
2674 		if (link_fault) {
2675 			t3_link_fault(adapter, i);
2676 			continue;
2677 		}
2678 
2679 		if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2680 			t3_xgm_intr_disable(adapter, i);
2681 			t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2682 
2683 			t3_link_changed(adapter, i);
2684 			t3_xgm_intr_enable(adapter, i);
2685 		}
2686 	}
2687 }
2688 
2689 static void check_t3b2_mac(struct adapter *adapter)
2690 {
2691 	int i;
2692 
2693 	if (!rtnl_trylock())	/* synchronize with ifdown */
2694 		return;
2695 
2696 	for_each_port(adapter, i) {
2697 		struct net_device *dev = adapter->port[i];
2698 		struct port_info *p = netdev_priv(dev);
2699 		int status;
2700 
2701 		if (!netif_running(dev))
2702 			continue;
2703 
2704 		status = 0;
2705 		if (netif_running(dev) && netif_carrier_ok(dev))
2706 			status = t3b2_mac_watchdog_task(&p->mac);
2707 		if (status == 1)
2708 			p->mac.stats.num_toggled++;
2709 		else if (status == 2) {
2710 			struct cmac *mac = &p->mac;
2711 
2712 			t3_mac_set_mtu(mac, dev->mtu);
2713 			t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2714 			cxgb_set_rxmode(dev);
2715 			t3_link_start(&p->phy, mac, &p->link_config);
2716 			t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2717 			t3_port_intr_enable(adapter, p->port_id);
2718 			p->mac.stats.num_resets++;
2719 		}
2720 	}
2721 	rtnl_unlock();
2722 }
2723 
2724 
2725 static void t3_adap_check_task(struct work_struct *work)
2726 {
2727 	struct adapter *adapter = container_of(work, struct adapter,
2728 					       adap_check_task.work);
2729 	const struct adapter_params *p = &adapter->params;
2730 	int port;
2731 	unsigned int v, status, reset;
2732 
2733 	adapter->check_task_cnt++;
2734 
2735 	check_link_status(adapter);
2736 
2737 	/* Accumulate MAC stats if needed */
2738 	if (!p->linkpoll_period ||
2739 	    (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2740 	    p->stats_update_period) {
2741 		mac_stats_update(adapter);
2742 		adapter->check_task_cnt = 0;
2743 	}
2744 
2745 	if (p->rev == T3_REV_B2)
2746 		check_t3b2_mac(adapter);
2747 
2748 	/*
2749 	 * Scan the XGMAC's to check for various conditions which we want to
2750 	 * monitor in a periodic polling manner rather than via an interrupt
2751 	 * condition.  This is used for conditions which would otherwise flood
2752 	 * the system with interrupts and we only really need to know that the
2753 	 * conditions are "happening" ...  For each condition we count the
2754 	 * detection of the condition and reset it for the next polling loop.
2755 	 */
2756 	for_each_port(adapter, port) {
2757 		struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2758 		u32 cause;
2759 
2760 		cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2761 		reset = 0;
2762 		if (cause & F_RXFIFO_OVERFLOW) {
2763 			mac->stats.rx_fifo_ovfl++;
2764 			reset |= F_RXFIFO_OVERFLOW;
2765 		}
2766 
2767 		t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2768 	}
2769 
2770 	/*
2771 	 * We do the same as above for FL_EMPTY interrupts.
2772 	 */
2773 	status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2774 	reset = 0;
2775 
2776 	if (status & F_FLEMPTY) {
2777 		struct sge_qset *qs = &adapter->sge.qs[0];
2778 		int i = 0;
2779 
2780 		reset |= F_FLEMPTY;
2781 
2782 		v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2783 		    0xffff;
2784 
2785 		while (v) {
2786 			qs->fl[i].empty += (v & 1);
2787 			if (i)
2788 				qs++;
2789 			i ^= 1;
2790 			v >>= 1;
2791 		}
2792 	}
2793 
2794 	t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2795 
2796 	/* Schedule the next check update if any port is active. */
2797 	spin_lock_irq(&adapter->work_lock);
2798 	if (adapter->open_device_map & PORT_MASK)
2799 		schedule_chk_task(adapter);
2800 	spin_unlock_irq(&adapter->work_lock);
2801 }
2802 
2803 static void db_full_task(struct work_struct *work)
2804 {
2805 	struct adapter *adapter = container_of(work, struct adapter,
2806 					       db_full_task);
2807 
2808 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2809 }
2810 
2811 static void db_empty_task(struct work_struct *work)
2812 {
2813 	struct adapter *adapter = container_of(work, struct adapter,
2814 					       db_empty_task);
2815 
2816 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2817 }
2818 
2819 static void db_drop_task(struct work_struct *work)
2820 {
2821 	struct adapter *adapter = container_of(work, struct adapter,
2822 					       db_drop_task);
2823 	unsigned long delay = 1000;
2824 	unsigned short r;
2825 
2826 	cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2827 
2828 	/*
2829 	 * Sleep a while before ringing the driver qset dbs.
2830 	 * The delay is between 1000-2023 usecs.
2831 	 */
2832 	get_random_bytes(&r, 2);
2833 	delay += r & 1023;
2834 	set_current_state(TASK_UNINTERRUPTIBLE);
2835 	schedule_timeout(usecs_to_jiffies(delay));
2836 	ring_dbs(adapter);
2837 }
2838 
2839 /*
2840  * Processes external (PHY) interrupts in process context.
2841  */
2842 static void ext_intr_task(struct work_struct *work)
2843 {
2844 	struct adapter *adapter = container_of(work, struct adapter,
2845 					       ext_intr_handler_task);
2846 	int i;
2847 
2848 	/* Disable link fault interrupts */
2849 	for_each_port(adapter, i) {
2850 		struct net_device *dev = adapter->port[i];
2851 		struct port_info *p = netdev_priv(dev);
2852 
2853 		t3_xgm_intr_disable(adapter, i);
2854 		t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2855 	}
2856 
2857 	/* Re-enable link fault interrupts */
2858 	t3_phy_intr_handler(adapter);
2859 
2860 	for_each_port(adapter, i)
2861 		t3_xgm_intr_enable(adapter, i);
2862 
2863 	/* Now reenable external interrupts */
2864 	spin_lock_irq(&adapter->work_lock);
2865 	if (adapter->slow_intr_mask) {
2866 		adapter->slow_intr_mask |= F_T3DBG;
2867 		t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2868 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2869 			     adapter->slow_intr_mask);
2870 	}
2871 	spin_unlock_irq(&adapter->work_lock);
2872 }
2873 
2874 /*
2875  * Interrupt-context handler for external (PHY) interrupts.
2876  */
2877 void t3_os_ext_intr_handler(struct adapter *adapter)
2878 {
2879 	/*
2880 	 * Schedule a task to handle external interrupts as they may be slow
2881 	 * and we use a mutex to protect MDIO registers.  We disable PHY
2882 	 * interrupts in the meantime and let the task reenable them when
2883 	 * it's done.
2884 	 */
2885 	spin_lock(&adapter->work_lock);
2886 	if (adapter->slow_intr_mask) {
2887 		adapter->slow_intr_mask &= ~F_T3DBG;
2888 		t3_write_reg(adapter, A_PL_INT_ENABLE0,
2889 			     adapter->slow_intr_mask);
2890 		queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2891 	}
2892 	spin_unlock(&adapter->work_lock);
2893 }
2894 
2895 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2896 {
2897 	struct net_device *netdev = adapter->port[port_id];
2898 	struct port_info *pi = netdev_priv(netdev);
2899 
2900 	spin_lock(&adapter->work_lock);
2901 	pi->link_fault = 1;
2902 	spin_unlock(&adapter->work_lock);
2903 }
2904 
2905 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2906 {
2907 	int i, ret = 0;
2908 
2909 	if (is_offload(adapter) &&
2910 	    test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2911 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2912 		offload_close(&adapter->tdev);
2913 	}
2914 
2915 	/* Stop all ports */
2916 	for_each_port(adapter, i) {
2917 		struct net_device *netdev = adapter->port[i];
2918 
2919 		if (netif_running(netdev))
2920 			__cxgb_close(netdev, on_wq);
2921 	}
2922 
2923 	/* Stop SGE timers */
2924 	t3_stop_sge_timers(adapter);
2925 
2926 	adapter->flags &= ~FULL_INIT_DONE;
2927 
2928 	if (reset)
2929 		ret = t3_reset_adapter(adapter);
2930 
2931 	pci_disable_device(adapter->pdev);
2932 
2933 	return ret;
2934 }
2935 
2936 static int t3_reenable_adapter(struct adapter *adapter)
2937 {
2938 	if (pci_enable_device(adapter->pdev)) {
2939 		dev_err(&adapter->pdev->dev,
2940 			"Cannot re-enable PCI device after reset.\n");
2941 		goto err;
2942 	}
2943 	pci_set_master(adapter->pdev);
2944 	pci_restore_state(adapter->pdev);
2945 	pci_save_state(adapter->pdev);
2946 
2947 	/* Free sge resources */
2948 	t3_free_sge_resources(adapter);
2949 
2950 	if (t3_replay_prep_adapter(adapter))
2951 		goto err;
2952 
2953 	return 0;
2954 err:
2955 	return -1;
2956 }
2957 
2958 static void t3_resume_ports(struct adapter *adapter)
2959 {
2960 	int i;
2961 
2962 	/* Restart the ports */
2963 	for_each_port(adapter, i) {
2964 		struct net_device *netdev = adapter->port[i];
2965 
2966 		if (netif_running(netdev)) {
2967 			if (cxgb_open(netdev)) {
2968 				dev_err(&adapter->pdev->dev,
2969 					"can't bring device back up"
2970 					" after reset\n");
2971 				continue;
2972 			}
2973 		}
2974 	}
2975 
2976 	if (is_offload(adapter) && !ofld_disable)
2977 		cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2978 }
2979 
2980 /*
2981  * processes a fatal error.
2982  * Bring the ports down, reset the chip, bring the ports back up.
2983  */
2984 static void fatal_error_task(struct work_struct *work)
2985 {
2986 	struct adapter *adapter = container_of(work, struct adapter,
2987 					       fatal_error_handler_task);
2988 	int err = 0;
2989 
2990 	rtnl_lock();
2991 	err = t3_adapter_error(adapter, 1, 1);
2992 	if (!err)
2993 		err = t3_reenable_adapter(adapter);
2994 	if (!err)
2995 		t3_resume_ports(adapter);
2996 
2997 	CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2998 	rtnl_unlock();
2999 }
3000 
3001 void t3_fatal_err(struct adapter *adapter)
3002 {
3003 	unsigned int fw_status[4];
3004 
3005 	if (adapter->flags & FULL_INIT_DONE) {
3006 		t3_sge_stop_dma(adapter);
3007 		t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
3008 		t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
3009 		t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
3010 		t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
3011 
3012 		spin_lock(&adapter->work_lock);
3013 		t3_intr_disable(adapter);
3014 		queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
3015 		spin_unlock(&adapter->work_lock);
3016 	}
3017 	CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
3018 	if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
3019 		CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
3020 			 fw_status[0], fw_status[1],
3021 			 fw_status[2], fw_status[3]);
3022 }
3023 
3024 /**
3025  * t3_io_error_detected - called when PCI error is detected
3026  * @pdev: Pointer to PCI device
3027  * @state: The current pci connection state
3028  *
3029  * This function is called after a PCI bus error affecting
3030  * this device has been detected.
3031  */
3032 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3033 					     pci_channel_state_t state)
3034 {
3035 	struct adapter *adapter = pci_get_drvdata(pdev);
3036 
3037 	if (state == pci_channel_io_perm_failure)
3038 		return PCI_ERS_RESULT_DISCONNECT;
3039 
3040 	t3_adapter_error(adapter, 0, 0);
3041 
3042 	/* Request a slot reset. */
3043 	return PCI_ERS_RESULT_NEED_RESET;
3044 }
3045 
3046 /**
3047  * t3_io_slot_reset - called after the pci bus has been reset.
3048  * @pdev: Pointer to PCI device
3049  *
3050  * Restart the card from scratch, as if from a cold-boot.
3051  */
3052 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3053 {
3054 	struct adapter *adapter = pci_get_drvdata(pdev);
3055 
3056 	if (!t3_reenable_adapter(adapter))
3057 		return PCI_ERS_RESULT_RECOVERED;
3058 
3059 	return PCI_ERS_RESULT_DISCONNECT;
3060 }
3061 
3062 /**
3063  * t3_io_resume - called when traffic can start flowing again.
3064  * @pdev: Pointer to PCI device
3065  *
3066  * This callback is called when the error recovery driver tells us that
3067  * its OK to resume normal operation.
3068  */
3069 static void t3_io_resume(struct pci_dev *pdev)
3070 {
3071 	struct adapter *adapter = pci_get_drvdata(pdev);
3072 
3073 	CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3074 		 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3075 
3076 	rtnl_lock();
3077 	t3_resume_ports(adapter);
3078 	rtnl_unlock();
3079 }
3080 
3081 static const struct pci_error_handlers t3_err_handler = {
3082 	.error_detected = t3_io_error_detected,
3083 	.slot_reset = t3_io_slot_reset,
3084 	.resume = t3_io_resume,
3085 };
3086 
3087 /*
3088  * Set the number of qsets based on the number of CPUs and the number of ports,
3089  * not to exceed the number of available qsets, assuming there are enough qsets
3090  * per port in HW.
3091  */
3092 static void set_nqsets(struct adapter *adap)
3093 {
3094 	int i, j = 0;
3095 	int num_cpus = netif_get_num_default_rss_queues();
3096 	int hwports = adap->params.nports;
3097 	int nqsets = adap->msix_nvectors - 1;
3098 
3099 	if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3100 		if (hwports == 2 &&
3101 		    (hwports * nqsets > SGE_QSETS ||
3102 		     num_cpus >= nqsets / hwports))
3103 			nqsets /= hwports;
3104 		if (nqsets > num_cpus)
3105 			nqsets = num_cpus;
3106 		if (nqsets < 1 || hwports == 4)
3107 			nqsets = 1;
3108 	} else {
3109 		nqsets = 1;
3110 	}
3111 
3112 	for_each_port(adap, i) {
3113 		struct port_info *pi = adap2pinfo(adap, i);
3114 
3115 		pi->first_qset = j;
3116 		pi->nqsets = nqsets;
3117 		j = pi->first_qset + nqsets;
3118 
3119 		dev_info(&adap->pdev->dev,
3120 			 "Port %d using %d queue sets.\n", i, nqsets);
3121 	}
3122 }
3123 
3124 static int cxgb_enable_msix(struct adapter *adap)
3125 {
3126 	struct msix_entry entries[SGE_QSETS + 1];
3127 	int vectors;
3128 	int i;
3129 
3130 	vectors = ARRAY_SIZE(entries);
3131 	for (i = 0; i < vectors; ++i)
3132 		entries[i].entry = i;
3133 
3134 	vectors = pci_enable_msix_range(adap->pdev, entries,
3135 					adap->params.nports + 1, vectors);
3136 	if (vectors < 0)
3137 		return vectors;
3138 
3139 	for (i = 0; i < vectors; ++i)
3140 		adap->msix_info[i].vec = entries[i].vector;
3141 	adap->msix_nvectors = vectors;
3142 
3143 	return 0;
3144 }
3145 
3146 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3147 {
3148 	static const char *pci_variant[] = {
3149 		"PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3150 	};
3151 
3152 	int i;
3153 	char buf[80];
3154 
3155 	if (is_pcie(adap))
3156 		snprintf(buf, sizeof(buf), "%s x%d",
3157 			 pci_variant[adap->params.pci.variant],
3158 			 adap->params.pci.width);
3159 	else
3160 		snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3161 			 pci_variant[adap->params.pci.variant],
3162 			 adap->params.pci.speed, adap->params.pci.width);
3163 
3164 	for_each_port(adap, i) {
3165 		struct net_device *dev = adap->port[i];
3166 		const struct port_info *pi = netdev_priv(dev);
3167 
3168 		if (!test_bit(i, &adap->registered_device_map))
3169 			continue;
3170 		netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3171 			    ai->desc, pi->phy.desc,
3172 			    is_offload(adap) ? "R" : "", adap->params.rev, buf,
3173 			    (adap->flags & USING_MSIX) ? " MSI-X" :
3174 			    (adap->flags & USING_MSI) ? " MSI" : "");
3175 		if (adap->name == dev->name && adap->params.vpd.mclk)
3176 			pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3177 			       adap->name, t3_mc7_size(&adap->cm) >> 20,
3178 			       t3_mc7_size(&adap->pmtx) >> 20,
3179 			       t3_mc7_size(&adap->pmrx) >> 20,
3180 			       adap->params.vpd.sn);
3181 	}
3182 }
3183 
3184 static const struct net_device_ops cxgb_netdev_ops = {
3185 	.ndo_open		= cxgb_open,
3186 	.ndo_stop		= cxgb_close,
3187 	.ndo_start_xmit		= t3_eth_xmit,
3188 	.ndo_get_stats		= cxgb_get_stats,
3189 	.ndo_validate_addr	= eth_validate_addr,
3190 	.ndo_set_rx_mode	= cxgb_set_rxmode,
3191 	.ndo_eth_ioctl		= cxgb_ioctl,
3192 	.ndo_siocdevprivate	= cxgb_siocdevprivate,
3193 	.ndo_change_mtu		= cxgb_change_mtu,
3194 	.ndo_set_mac_address	= cxgb_set_mac_addr,
3195 	.ndo_fix_features	= cxgb_fix_features,
3196 	.ndo_set_features	= cxgb_set_features,
3197 #ifdef CONFIG_NET_POLL_CONTROLLER
3198 	.ndo_poll_controller	= cxgb_netpoll,
3199 #endif
3200 };
3201 
3202 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3203 {
3204 	struct port_info *pi = netdev_priv(dev);
3205 
3206 	memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3207 	pi->iscsic.mac_addr[3] |= 0x80;
3208 }
3209 
3210 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3211 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3212 			NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3213 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3214 {
3215 	int i, err, pci_using_dac = 0;
3216 	resource_size_t mmio_start, mmio_len;
3217 	const struct adapter_info *ai;
3218 	struct adapter *adapter = NULL;
3219 	struct port_info *pi;
3220 
3221 	if (!cxgb3_wq) {
3222 		cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3223 		if (!cxgb3_wq) {
3224 			pr_err("cannot initialize work queue\n");
3225 			return -ENOMEM;
3226 		}
3227 	}
3228 
3229 	err = pci_enable_device(pdev);
3230 	if (err) {
3231 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3232 		goto out;
3233 	}
3234 
3235 	err = pci_request_regions(pdev, DRV_NAME);
3236 	if (err) {
3237 		/* Just info, some other driver may have claimed the device. */
3238 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3239 		goto out_disable_device;
3240 	}
3241 
3242 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3243 		pci_using_dac = 1;
3244 	} else if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) != 0) {
3245 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3246 		goto out_release_regions;
3247 	}
3248 
3249 	pci_set_master(pdev);
3250 	pci_save_state(pdev);
3251 
3252 	mmio_start = pci_resource_start(pdev, 0);
3253 	mmio_len = pci_resource_len(pdev, 0);
3254 	ai = t3_get_adapter_info(ent->driver_data);
3255 
3256 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3257 	if (!adapter) {
3258 		err = -ENOMEM;
3259 		goto out_release_regions;
3260 	}
3261 
3262 	adapter->nofail_skb =
3263 		alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3264 	if (!adapter->nofail_skb) {
3265 		dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3266 		err = -ENOMEM;
3267 		goto out_free_adapter;
3268 	}
3269 
3270 	adapter->regs = ioremap(mmio_start, mmio_len);
3271 	if (!adapter->regs) {
3272 		dev_err(&pdev->dev, "cannot map device registers\n");
3273 		err = -ENOMEM;
3274 		goto out_free_adapter_nofail;
3275 	}
3276 
3277 	adapter->pdev = pdev;
3278 	adapter->name = pci_name(pdev);
3279 	adapter->msg_enable = dflt_msg_enable;
3280 	adapter->mmio_len = mmio_len;
3281 
3282 	mutex_init(&adapter->mdio_lock);
3283 	spin_lock_init(&adapter->work_lock);
3284 	spin_lock_init(&adapter->stats_lock);
3285 
3286 	INIT_LIST_HEAD(&adapter->adapter_list);
3287 	INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3288 	INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3289 
3290 	INIT_WORK(&adapter->db_full_task, db_full_task);
3291 	INIT_WORK(&adapter->db_empty_task, db_empty_task);
3292 	INIT_WORK(&adapter->db_drop_task, db_drop_task);
3293 
3294 	INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3295 
3296 	for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3297 		struct net_device *netdev;
3298 
3299 		netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3300 		if (!netdev) {
3301 			err = -ENOMEM;
3302 			goto out_free_dev;
3303 		}
3304 
3305 		SET_NETDEV_DEV(netdev, &pdev->dev);
3306 
3307 		adapter->port[i] = netdev;
3308 		pi = netdev_priv(netdev);
3309 		pi->adapter = adapter;
3310 		pi->port_id = i;
3311 		netif_carrier_off(netdev);
3312 		netdev->irq = pdev->irq;
3313 		netdev->mem_start = mmio_start;
3314 		netdev->mem_end = mmio_start + mmio_len - 1;
3315 		netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3316 			NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3317 		netdev->features |= netdev->hw_features |
3318 				    NETIF_F_HW_VLAN_CTAG_TX;
3319 		netdev->vlan_features |= netdev->features & VLAN_FEAT;
3320 		if (pci_using_dac)
3321 			netdev->features |= NETIF_F_HIGHDMA;
3322 
3323 		netdev->netdev_ops = &cxgb_netdev_ops;
3324 		netdev->ethtool_ops = &cxgb_ethtool_ops;
3325 		netdev->min_mtu = 81;
3326 		netdev->max_mtu = ETH_MAX_MTU;
3327 		netdev->dev_port = pi->port_id;
3328 	}
3329 
3330 	pci_set_drvdata(pdev, adapter);
3331 	if (t3_prep_adapter(adapter, ai, 1) < 0) {
3332 		err = -ENODEV;
3333 		goto out_free_dev;
3334 	}
3335 
3336 	/*
3337 	 * The card is now ready to go.  If any errors occur during device
3338 	 * registration we do not fail the whole card but rather proceed only
3339 	 * with the ports we manage to register successfully.  However we must
3340 	 * register at least one net device.
3341 	 */
3342 	for_each_port(adapter, i) {
3343 		err = register_netdev(adapter->port[i]);
3344 		if (err)
3345 			dev_warn(&pdev->dev,
3346 				 "cannot register net device %s, skipping\n",
3347 				 adapter->port[i]->name);
3348 		else {
3349 			/*
3350 			 * Change the name we use for messages to the name of
3351 			 * the first successfully registered interface.
3352 			 */
3353 			if (!adapter->registered_device_map)
3354 				adapter->name = adapter->port[i]->name;
3355 
3356 			__set_bit(i, &adapter->registered_device_map);
3357 		}
3358 	}
3359 	if (!adapter->registered_device_map) {
3360 		dev_err(&pdev->dev, "could not register any net devices\n");
3361 		goto out_free_dev;
3362 	}
3363 
3364 	for_each_port(adapter, i)
3365 		cxgb3_init_iscsi_mac(adapter->port[i]);
3366 
3367 	/* Driver's ready. Reflect it on LEDs */
3368 	t3_led_ready(adapter);
3369 
3370 	if (is_offload(adapter)) {
3371 		__set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3372 		cxgb3_adapter_ofld(adapter);
3373 	}
3374 
3375 	/* See what interrupts we'll be using */
3376 	if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3377 		adapter->flags |= USING_MSIX;
3378 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
3379 		adapter->flags |= USING_MSI;
3380 
3381 	set_nqsets(adapter);
3382 
3383 	err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3384 				 &cxgb3_attr_group);
3385 	if (err) {
3386 		dev_err(&pdev->dev, "cannot create sysfs group\n");
3387 		goto out_close_led;
3388 	}
3389 
3390 	print_port_info(adapter, ai);
3391 	return 0;
3392 
3393 out_close_led:
3394 	t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
3395 
3396 out_free_dev:
3397 	iounmap(adapter->regs);
3398 	for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3399 		if (adapter->port[i])
3400 			free_netdev(adapter->port[i]);
3401 
3402 out_free_adapter_nofail:
3403 	kfree_skb(adapter->nofail_skb);
3404 
3405 out_free_adapter:
3406 	kfree(adapter);
3407 
3408 out_release_regions:
3409 	pci_release_regions(pdev);
3410 out_disable_device:
3411 	pci_disable_device(pdev);
3412 out:
3413 	return err;
3414 }
3415 
3416 static void remove_one(struct pci_dev *pdev)
3417 {
3418 	struct adapter *adapter = pci_get_drvdata(pdev);
3419 
3420 	if (adapter) {
3421 		int i;
3422 
3423 		t3_sge_stop(adapter);
3424 		sysfs_remove_group(&adapter->port[0]->dev.kobj,
3425 				   &cxgb3_attr_group);
3426 
3427 		if (is_offload(adapter)) {
3428 			cxgb3_adapter_unofld(adapter);
3429 			if (test_bit(OFFLOAD_DEVMAP_BIT,
3430 				     &adapter->open_device_map))
3431 				offload_close(&adapter->tdev);
3432 		}
3433 
3434 		for_each_port(adapter, i)
3435 		    if (test_bit(i, &adapter->registered_device_map))
3436 			unregister_netdev(adapter->port[i]);
3437 
3438 		t3_stop_sge_timers(adapter);
3439 		t3_free_sge_resources(adapter);
3440 		cxgb_disable_msi(adapter);
3441 
3442 		for_each_port(adapter, i)
3443 			if (adapter->port[i])
3444 				free_netdev(adapter->port[i]);
3445 
3446 		iounmap(adapter->regs);
3447 		kfree_skb(adapter->nofail_skb);
3448 		kfree(adapter);
3449 		pci_release_regions(pdev);
3450 		pci_disable_device(pdev);
3451 	}
3452 }
3453 
3454 static struct pci_driver driver = {
3455 	.name = DRV_NAME,
3456 	.id_table = cxgb3_pci_tbl,
3457 	.probe = init_one,
3458 	.remove = remove_one,
3459 	.err_handler = &t3_err_handler,
3460 };
3461 
3462 static int __init cxgb3_init_module(void)
3463 {
3464 	int ret;
3465 
3466 	cxgb3_offload_init();
3467 
3468 	ret = pci_register_driver(&driver);
3469 	return ret;
3470 }
3471 
3472 static void __exit cxgb3_cleanup_module(void)
3473 {
3474 	pci_unregister_driver(&driver);
3475 	if (cxgb3_wq)
3476 		destroy_workqueue(cxgb3_wq);
3477 }
3478 
3479 module_init(cxgb3_init_module);
3480 module_exit(cxgb3_cleanup_module);
3481