1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/pci.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/if_vlan.h> 42 #include <linux/mdio.h> 43 #include <linux/sockios.h> 44 #include <linux/workqueue.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/firmware.h> 48 #include <linux/log2.h> 49 #include <linux/stringify.h> 50 #include <linux/sched.h> 51 #include <linux/slab.h> 52 #include <linux/uaccess.h> 53 #include <linux/nospec.h> 54 55 #include "common.h" 56 #include "cxgb3_ioctl.h" 57 #include "regs.h" 58 #include "cxgb3_offload.h" 59 #include "version.h" 60 61 #include "cxgb3_ctl_defs.h" 62 #include "t3_cpl.h" 63 #include "firmware_exports.h" 64 65 enum { 66 MAX_TXQ_ENTRIES = 16384, 67 MAX_CTRL_TXQ_ENTRIES = 1024, 68 MAX_RSPQ_ENTRIES = 16384, 69 MAX_RX_BUFFERS = 16384, 70 MAX_RX_JUMBO_BUFFERS = 16384, 71 MIN_TXQ_ENTRIES = 4, 72 MIN_CTRL_TXQ_ENTRIES = 4, 73 MIN_RSPQ_ENTRIES = 32, 74 MIN_FL_ENTRIES = 32 75 }; 76 77 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 78 79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 82 83 #define EEPROM_MAGIC 0x38E2F10C 84 85 #define CH_DEVICE(devid, idx) \ 86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 87 88 static const struct pci_device_id cxgb3_pci_tbl[] = { 89 CH_DEVICE(0x20, 0), /* PE9000 */ 90 CH_DEVICE(0x21, 1), /* T302E */ 91 CH_DEVICE(0x22, 2), /* T310E */ 92 CH_DEVICE(0x23, 3), /* T320X */ 93 CH_DEVICE(0x24, 1), /* T302X */ 94 CH_DEVICE(0x25, 3), /* T320E */ 95 CH_DEVICE(0x26, 2), /* T310X */ 96 CH_DEVICE(0x30, 2), /* T3B10 */ 97 CH_DEVICE(0x31, 3), /* T3B20 */ 98 CH_DEVICE(0x32, 1), /* T3B02 */ 99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 100 CH_DEVICE(0x36, 3), /* S320E-CR */ 101 CH_DEVICE(0x37, 7), /* N320E-G2 */ 102 {0,} 103 }; 104 105 MODULE_DESCRIPTION(DRV_DESC); 106 MODULE_AUTHOR("Chelsio Communications"); 107 MODULE_LICENSE("Dual BSD/GPL"); 108 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 109 110 static int dflt_msg_enable = DFLT_MSG_ENABLE; 111 112 module_param(dflt_msg_enable, int, 0644); 113 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 114 115 /* 116 * The driver uses the best interrupt scheme available on a platform in the 117 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 118 * of these schemes the driver may consider as follows: 119 * 120 * msi = 2: choose from among all three options 121 * msi = 1: only consider MSI and pin interrupts 122 * msi = 0: force pin interrupts 123 */ 124 static int msi = 2; 125 126 module_param(msi, int, 0644); 127 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 128 129 /* 130 * The driver enables offload as a default. 131 * To disable it, use ofld_disable = 1. 132 */ 133 134 static int ofld_disable = 0; 135 136 module_param(ofld_disable, int, 0644); 137 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 138 139 /* 140 * We have work elements that we need to cancel when an interface is taken 141 * down. Normally the work elements would be executed by keventd but that 142 * can deadlock because of linkwatch. If our close method takes the rtnl 143 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 144 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 145 * for our work to complete. Get our own work queue to solve this. 146 */ 147 struct workqueue_struct *cxgb3_wq; 148 149 /** 150 * link_report - show link status and link speed/duplex 151 * @p: the port whose settings are to be reported 152 * 153 * Shows the link status, speed, and duplex of a port. 154 */ 155 static void link_report(struct net_device *dev) 156 { 157 if (!netif_carrier_ok(dev)) 158 netdev_info(dev, "link down\n"); 159 else { 160 const char *s = "10Mbps"; 161 const struct port_info *p = netdev_priv(dev); 162 163 switch (p->link_config.speed) { 164 case SPEED_10000: 165 s = "10Gbps"; 166 break; 167 case SPEED_1000: 168 s = "1000Mbps"; 169 break; 170 case SPEED_100: 171 s = "100Mbps"; 172 break; 173 } 174 175 netdev_info(dev, "link up, %s, %s-duplex\n", 176 s, p->link_config.duplex == DUPLEX_FULL 177 ? "full" : "half"); 178 } 179 } 180 181 static void enable_tx_fifo_drain(struct adapter *adapter, 182 struct port_info *pi) 183 { 184 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 185 F_ENDROPPKT); 186 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 187 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 188 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 189 } 190 191 static void disable_tx_fifo_drain(struct adapter *adapter, 192 struct port_info *pi) 193 { 194 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 195 F_ENDROPPKT, 0); 196 } 197 198 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 199 { 200 struct net_device *dev = adap->port[port_id]; 201 struct port_info *pi = netdev_priv(dev); 202 203 if (state == netif_carrier_ok(dev)) 204 return; 205 206 if (state) { 207 struct cmac *mac = &pi->mac; 208 209 netif_carrier_on(dev); 210 211 disable_tx_fifo_drain(adap, pi); 212 213 /* Clear local faults */ 214 t3_xgm_intr_disable(adap, pi->port_id); 215 t3_read_reg(adap, A_XGM_INT_STATUS + 216 pi->mac.offset); 217 t3_write_reg(adap, 218 A_XGM_INT_CAUSE + pi->mac.offset, 219 F_XGM_INT); 220 221 t3_set_reg_field(adap, 222 A_XGM_INT_ENABLE + 223 pi->mac.offset, 224 F_XGM_INT, F_XGM_INT); 225 t3_xgm_intr_enable(adap, pi->port_id); 226 227 t3_mac_enable(mac, MAC_DIRECTION_TX); 228 } else { 229 netif_carrier_off(dev); 230 231 /* Flush TX FIFO */ 232 enable_tx_fifo_drain(adap, pi); 233 } 234 link_report(dev); 235 } 236 237 /** 238 * t3_os_link_changed - handle link status changes 239 * @adapter: the adapter associated with the link change 240 * @port_id: the port index whose limk status has changed 241 * @link_stat: the new status of the link 242 * @speed: the new speed setting 243 * @duplex: the new duplex setting 244 * @pause: the new flow-control setting 245 * 246 * This is the OS-dependent handler for link status changes. The OS 247 * neutral handler takes care of most of the processing for these events, 248 * then calls this handler for any OS-specific processing. 249 */ 250 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 251 int speed, int duplex, int pause) 252 { 253 struct net_device *dev = adapter->port[port_id]; 254 struct port_info *pi = netdev_priv(dev); 255 struct cmac *mac = &pi->mac; 256 257 /* Skip changes from disabled ports. */ 258 if (!netif_running(dev)) 259 return; 260 261 if (link_stat != netif_carrier_ok(dev)) { 262 if (link_stat) { 263 disable_tx_fifo_drain(adapter, pi); 264 265 t3_mac_enable(mac, MAC_DIRECTION_RX); 266 267 /* Clear local faults */ 268 t3_xgm_intr_disable(adapter, pi->port_id); 269 t3_read_reg(adapter, A_XGM_INT_STATUS + 270 pi->mac.offset); 271 t3_write_reg(adapter, 272 A_XGM_INT_CAUSE + pi->mac.offset, 273 F_XGM_INT); 274 275 t3_set_reg_field(adapter, 276 A_XGM_INT_ENABLE + pi->mac.offset, 277 F_XGM_INT, F_XGM_INT); 278 t3_xgm_intr_enable(adapter, pi->port_id); 279 280 netif_carrier_on(dev); 281 } else { 282 netif_carrier_off(dev); 283 284 t3_xgm_intr_disable(adapter, pi->port_id); 285 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 286 t3_set_reg_field(adapter, 287 A_XGM_INT_ENABLE + pi->mac.offset, 288 F_XGM_INT, 0); 289 290 if (is_10G(adapter)) 291 pi->phy.ops->power_down(&pi->phy, 1); 292 293 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 294 t3_mac_disable(mac, MAC_DIRECTION_RX); 295 t3_link_start(&pi->phy, mac, &pi->link_config); 296 297 /* Flush TX FIFO */ 298 enable_tx_fifo_drain(adapter, pi); 299 } 300 301 link_report(dev); 302 } 303 } 304 305 /** 306 * t3_os_phymod_changed - handle PHY module changes 307 * @phy: the PHY reporting the module change 308 * @mod_type: new module type 309 * 310 * This is the OS-dependent handler for PHY module changes. It is 311 * invoked when a PHY module is removed or inserted for any OS-specific 312 * processing. 313 */ 314 void t3_os_phymod_changed(struct adapter *adap, int port_id) 315 { 316 static const char *mod_str[] = { 317 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 318 }; 319 320 const struct net_device *dev = adap->port[port_id]; 321 const struct port_info *pi = netdev_priv(dev); 322 323 if (pi->phy.modtype == phy_modtype_none) 324 netdev_info(dev, "PHY module unplugged\n"); 325 else 326 netdev_info(dev, "%s PHY module inserted\n", 327 mod_str[pi->phy.modtype]); 328 } 329 330 static void cxgb_set_rxmode(struct net_device *dev) 331 { 332 struct port_info *pi = netdev_priv(dev); 333 334 t3_mac_set_rx_mode(&pi->mac, dev); 335 } 336 337 /** 338 * link_start - enable a port 339 * @dev: the device to enable 340 * 341 * Performs the MAC and PHY actions needed to enable a port. 342 */ 343 static void link_start(struct net_device *dev) 344 { 345 struct port_info *pi = netdev_priv(dev); 346 struct cmac *mac = &pi->mac; 347 348 t3_mac_reset(mac); 349 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 350 t3_mac_set_mtu(mac, dev->mtu); 351 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 352 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 353 t3_mac_set_rx_mode(mac, dev); 354 t3_link_start(&pi->phy, mac, &pi->link_config); 355 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 356 } 357 358 static inline void cxgb_disable_msi(struct adapter *adapter) 359 { 360 if (adapter->flags & USING_MSIX) { 361 pci_disable_msix(adapter->pdev); 362 adapter->flags &= ~USING_MSIX; 363 } else if (adapter->flags & USING_MSI) { 364 pci_disable_msi(adapter->pdev); 365 adapter->flags &= ~USING_MSI; 366 } 367 } 368 369 /* 370 * Interrupt handler for asynchronous events used with MSI-X. 371 */ 372 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 373 { 374 t3_slow_intr_handler(cookie); 375 return IRQ_HANDLED; 376 } 377 378 /* 379 * Name the MSI-X interrupts. 380 */ 381 static void name_msix_vecs(struct adapter *adap) 382 { 383 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; 384 385 snprintf(adap->msix_info[0].desc, n, "%s", adap->name); 386 adap->msix_info[0].desc[n] = 0; 387 388 for_each_port(adap, j) { 389 struct net_device *d = adap->port[j]; 390 const struct port_info *pi = netdev_priv(d); 391 392 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 393 snprintf(adap->msix_info[msi_idx].desc, n, 394 "%s-%d", d->name, pi->first_qset + i); 395 adap->msix_info[msi_idx].desc[n] = 0; 396 } 397 } 398 } 399 400 static int request_msix_data_irqs(struct adapter *adap) 401 { 402 int i, j, err, qidx = 0; 403 404 for_each_port(adap, i) { 405 int nqsets = adap2pinfo(adap, i)->nqsets; 406 407 for (j = 0; j < nqsets; ++j) { 408 err = request_irq(adap->msix_info[qidx + 1].vec, 409 t3_intr_handler(adap, 410 adap->sge.qs[qidx]. 411 rspq.polling), 0, 412 adap->msix_info[qidx + 1].desc, 413 &adap->sge.qs[qidx]); 414 if (err) { 415 while (--qidx >= 0) 416 free_irq(adap->msix_info[qidx + 1].vec, 417 &adap->sge.qs[qidx]); 418 return err; 419 } 420 qidx++; 421 } 422 } 423 return 0; 424 } 425 426 static void free_irq_resources(struct adapter *adapter) 427 { 428 if (adapter->flags & USING_MSIX) { 429 int i, n = 0; 430 431 free_irq(adapter->msix_info[0].vec, adapter); 432 for_each_port(adapter, i) 433 n += adap2pinfo(adapter, i)->nqsets; 434 435 for (i = 0; i < n; ++i) 436 free_irq(adapter->msix_info[i + 1].vec, 437 &adapter->sge.qs[i]); 438 } else 439 free_irq(adapter->pdev->irq, adapter); 440 } 441 442 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 443 unsigned long n) 444 { 445 int attempts = 10; 446 447 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 448 if (!--attempts) 449 return -ETIMEDOUT; 450 msleep(10); 451 } 452 return 0; 453 } 454 455 static int init_tp_parity(struct adapter *adap) 456 { 457 int i; 458 struct sk_buff *skb; 459 struct cpl_set_tcb_field *greq; 460 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 461 462 t3_tp_set_offload_mode(adap, 1); 463 464 for (i = 0; i < 16; i++) { 465 struct cpl_smt_write_req *req; 466 467 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 468 if (!skb) 469 skb = adap->nofail_skb; 470 if (!skb) 471 goto alloc_skb_fail; 472 473 req = __skb_put_zero(skb, sizeof(*req)); 474 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 475 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 476 req->mtu_idx = NMTUS - 1; 477 req->iff = i; 478 t3_mgmt_tx(adap, skb); 479 if (skb == adap->nofail_skb) { 480 await_mgmt_replies(adap, cnt, i + 1); 481 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 482 if (!adap->nofail_skb) 483 goto alloc_skb_fail; 484 } 485 } 486 487 for (i = 0; i < 2048; i++) { 488 struct cpl_l2t_write_req *req; 489 490 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 491 if (!skb) 492 skb = adap->nofail_skb; 493 if (!skb) 494 goto alloc_skb_fail; 495 496 req = __skb_put_zero(skb, sizeof(*req)); 497 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 498 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 499 req->params = htonl(V_L2T_W_IDX(i)); 500 t3_mgmt_tx(adap, skb); 501 if (skb == adap->nofail_skb) { 502 await_mgmt_replies(adap, cnt, 16 + i + 1); 503 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 504 if (!adap->nofail_skb) 505 goto alloc_skb_fail; 506 } 507 } 508 509 for (i = 0; i < 2048; i++) { 510 struct cpl_rte_write_req *req; 511 512 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 513 if (!skb) 514 skb = adap->nofail_skb; 515 if (!skb) 516 goto alloc_skb_fail; 517 518 req = __skb_put_zero(skb, sizeof(*req)); 519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 521 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 522 t3_mgmt_tx(adap, skb); 523 if (skb == adap->nofail_skb) { 524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 526 if (!adap->nofail_skb) 527 goto alloc_skb_fail; 528 } 529 } 530 531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 532 if (!skb) 533 skb = adap->nofail_skb; 534 if (!skb) 535 goto alloc_skb_fail; 536 537 greq = __skb_put_zero(skb, sizeof(*greq)); 538 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 539 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 540 greq->mask = cpu_to_be64(1); 541 t3_mgmt_tx(adap, skb); 542 543 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 544 if (skb == adap->nofail_skb) { 545 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 546 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 547 } 548 549 t3_tp_set_offload_mode(adap, 0); 550 return i; 551 552 alloc_skb_fail: 553 t3_tp_set_offload_mode(adap, 0); 554 return -ENOMEM; 555 } 556 557 /** 558 * setup_rss - configure RSS 559 * @adap: the adapter 560 * 561 * Sets up RSS to distribute packets to multiple receive queues. We 562 * configure the RSS CPU lookup table to distribute to the number of HW 563 * receive queues, and the response queue lookup table to narrow that 564 * down to the response queues actually configured for each port. 565 * We always configure the RSS mapping for two ports since the mapping 566 * table has plenty of entries. 567 */ 568 static void setup_rss(struct adapter *adap) 569 { 570 int i; 571 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 572 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 573 u8 cpus[SGE_QSETS + 1]; 574 u16 rspq_map[RSS_TABLE_SIZE + 1]; 575 576 for (i = 0; i < SGE_QSETS; ++i) 577 cpus[i] = i; 578 cpus[SGE_QSETS] = 0xff; /* terminator */ 579 580 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 581 rspq_map[i] = i % nq0; 582 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 583 } 584 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */ 585 586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 589 } 590 591 static void ring_dbs(struct adapter *adap) 592 { 593 int i, j; 594 595 for (i = 0; i < SGE_QSETS; i++) { 596 struct sge_qset *qs = &adap->sge.qs[i]; 597 598 if (qs->adap) 599 for (j = 0; j < SGE_TXQ_PER_SET; j++) 600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 601 } 602 } 603 604 static void init_napi(struct adapter *adap) 605 { 606 int i; 607 608 for (i = 0; i < SGE_QSETS; i++) { 609 struct sge_qset *qs = &adap->sge.qs[i]; 610 611 if (qs->adap) 612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll, 613 64); 614 } 615 616 /* 617 * netif_napi_add() can be called only once per napi_struct because it 618 * adds each new napi_struct to a list. Be careful not to call it a 619 * second time, e.g., during EEH recovery, by making a note of it. 620 */ 621 adap->flags |= NAPI_INIT; 622 } 623 624 /* 625 * Wait until all NAPI handlers are descheduled. This includes the handlers of 626 * both netdevices representing interfaces and the dummy ones for the extra 627 * queues. 628 */ 629 static void quiesce_rx(struct adapter *adap) 630 { 631 int i; 632 633 for (i = 0; i < SGE_QSETS; i++) 634 if (adap->sge.qs[i].adap) 635 napi_disable(&adap->sge.qs[i].napi); 636 } 637 638 static void enable_all_napi(struct adapter *adap) 639 { 640 int i; 641 for (i = 0; i < SGE_QSETS; i++) 642 if (adap->sge.qs[i].adap) 643 napi_enable(&adap->sge.qs[i].napi); 644 } 645 646 /** 647 * setup_sge_qsets - configure SGE Tx/Rx/response queues 648 * @adap: the adapter 649 * 650 * Determines how many sets of SGE queues to use and initializes them. 651 * We support multiple queue sets per port if we have MSI-X, otherwise 652 * just one queue set per port. 653 */ 654 static int setup_sge_qsets(struct adapter *adap) 655 { 656 int i, j, err, irq_idx = 0, qset_idx = 0; 657 unsigned int ntxq = SGE_TXQ_PER_SET; 658 659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 660 irq_idx = -1; 661 662 for_each_port(adap, i) { 663 struct net_device *dev = adap->port[i]; 664 struct port_info *pi = netdev_priv(dev); 665 666 pi->qs = &adap->sge.qs[pi->first_qset]; 667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 668 err = t3_sge_alloc_qset(adap, qset_idx, 1, 669 (adap->flags & USING_MSIX) ? qset_idx + 1 : 670 irq_idx, 671 &adap->params.sge.qset[qset_idx], ntxq, dev, 672 netdev_get_tx_queue(dev, j)); 673 if (err) { 674 t3_free_sge_resources(adap); 675 return err; 676 } 677 } 678 } 679 680 return 0; 681 } 682 683 static ssize_t attr_show(struct device *d, char *buf, 684 ssize_t(*format) (struct net_device *, char *)) 685 { 686 ssize_t len; 687 688 /* Synchronize with ioctls that may shut down the device */ 689 rtnl_lock(); 690 len = (*format) (to_net_dev(d), buf); 691 rtnl_unlock(); 692 return len; 693 } 694 695 static ssize_t attr_store(struct device *d, 696 const char *buf, size_t len, 697 ssize_t(*set) (struct net_device *, unsigned int), 698 unsigned int min_val, unsigned int max_val) 699 { 700 ssize_t ret; 701 unsigned int val; 702 703 if (!capable(CAP_NET_ADMIN)) 704 return -EPERM; 705 706 ret = kstrtouint(buf, 0, &val); 707 if (ret) 708 return ret; 709 if (val < min_val || val > max_val) 710 return -EINVAL; 711 712 rtnl_lock(); 713 ret = (*set) (to_net_dev(d), val); 714 if (!ret) 715 ret = len; 716 rtnl_unlock(); 717 return ret; 718 } 719 720 #define CXGB3_SHOW(name, val_expr) \ 721 static ssize_t format_##name(struct net_device *dev, char *buf) \ 722 { \ 723 struct port_info *pi = netdev_priv(dev); \ 724 struct adapter *adap = pi->adapter; \ 725 return sprintf(buf, "%u\n", val_expr); \ 726 } \ 727 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 728 char *buf) \ 729 { \ 730 return attr_show(d, buf, format_##name); \ 731 } 732 733 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 734 { 735 struct port_info *pi = netdev_priv(dev); 736 struct adapter *adap = pi->adapter; 737 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 738 739 if (adap->flags & FULL_INIT_DONE) 740 return -EBUSY; 741 if (val && adap->params.rev == 0) 742 return -EINVAL; 743 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 744 min_tids) 745 return -EINVAL; 746 adap->params.mc5.nfilters = val; 747 return 0; 748 } 749 750 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 751 const char *buf, size_t len) 752 { 753 return attr_store(d, buf, len, set_nfilters, 0, ~0); 754 } 755 756 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 757 { 758 struct port_info *pi = netdev_priv(dev); 759 struct adapter *adap = pi->adapter; 760 761 if (adap->flags & FULL_INIT_DONE) 762 return -EBUSY; 763 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 764 MC5_MIN_TIDS) 765 return -EINVAL; 766 adap->params.mc5.nservers = val; 767 return 0; 768 } 769 770 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 771 const char *buf, size_t len) 772 { 773 return attr_store(d, buf, len, set_nservers, 0, ~0); 774 } 775 776 #define CXGB3_ATTR_R(name, val_expr) \ 777 CXGB3_SHOW(name, val_expr) \ 778 static DEVICE_ATTR(name, 0444, show_##name, NULL) 779 780 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 781 CXGB3_SHOW(name, val_expr) \ 782 static DEVICE_ATTR(name, 0644, show_##name, store_method) 783 784 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 785 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 786 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 787 788 static struct attribute *cxgb3_attrs[] = { 789 &dev_attr_cam_size.attr, 790 &dev_attr_nfilters.attr, 791 &dev_attr_nservers.attr, 792 NULL 793 }; 794 795 static const struct attribute_group cxgb3_attr_group = { 796 .attrs = cxgb3_attrs, 797 }; 798 799 static ssize_t tm_attr_show(struct device *d, 800 char *buf, int sched) 801 { 802 struct port_info *pi = netdev_priv(to_net_dev(d)); 803 struct adapter *adap = pi->adapter; 804 unsigned int v, addr, bpt, cpt; 805 ssize_t len; 806 807 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 808 rtnl_lock(); 809 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 810 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 811 if (sched & 1) 812 v >>= 16; 813 bpt = (v >> 8) & 0xff; 814 cpt = v & 0xff; 815 if (!cpt) 816 len = sprintf(buf, "disabled\n"); 817 else { 818 v = (adap->params.vpd.cclk * 1000) / cpt; 819 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 820 } 821 rtnl_unlock(); 822 return len; 823 } 824 825 static ssize_t tm_attr_store(struct device *d, 826 const char *buf, size_t len, int sched) 827 { 828 struct port_info *pi = netdev_priv(to_net_dev(d)); 829 struct adapter *adap = pi->adapter; 830 unsigned int val; 831 ssize_t ret; 832 833 if (!capable(CAP_NET_ADMIN)) 834 return -EPERM; 835 836 ret = kstrtouint(buf, 0, &val); 837 if (ret) 838 return ret; 839 if (val > 10000000) 840 return -EINVAL; 841 842 rtnl_lock(); 843 ret = t3_config_sched(adap, val, sched); 844 if (!ret) 845 ret = len; 846 rtnl_unlock(); 847 return ret; 848 } 849 850 #define TM_ATTR(name, sched) \ 851 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 852 char *buf) \ 853 { \ 854 return tm_attr_show(d, buf, sched); \ 855 } \ 856 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 857 const char *buf, size_t len) \ 858 { \ 859 return tm_attr_store(d, buf, len, sched); \ 860 } \ 861 static DEVICE_ATTR(name, 0644, show_##name, store_##name) 862 863 TM_ATTR(sched0, 0); 864 TM_ATTR(sched1, 1); 865 TM_ATTR(sched2, 2); 866 TM_ATTR(sched3, 3); 867 TM_ATTR(sched4, 4); 868 TM_ATTR(sched5, 5); 869 TM_ATTR(sched6, 6); 870 TM_ATTR(sched7, 7); 871 872 static struct attribute *offload_attrs[] = { 873 &dev_attr_sched0.attr, 874 &dev_attr_sched1.attr, 875 &dev_attr_sched2.attr, 876 &dev_attr_sched3.attr, 877 &dev_attr_sched4.attr, 878 &dev_attr_sched5.attr, 879 &dev_attr_sched6.attr, 880 &dev_attr_sched7.attr, 881 NULL 882 }; 883 884 static const struct attribute_group offload_attr_group = { 885 .attrs = offload_attrs, 886 }; 887 888 /* 889 * Sends an sk_buff to an offload queue driver 890 * after dealing with any active network taps. 891 */ 892 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 893 { 894 int ret; 895 896 local_bh_disable(); 897 ret = t3_offload_tx(tdev, skb); 898 local_bh_enable(); 899 return ret; 900 } 901 902 static int write_smt_entry(struct adapter *adapter, int idx) 903 { 904 struct cpl_smt_write_req *req; 905 struct port_info *pi = netdev_priv(adapter->port[idx]); 906 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 907 908 if (!skb) 909 return -ENOMEM; 910 911 req = __skb_put(skb, sizeof(*req)); 912 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 913 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 914 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 915 req->iff = idx; 916 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 917 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 918 skb->priority = 1; 919 offload_tx(&adapter->tdev, skb); 920 return 0; 921 } 922 923 static int init_smt(struct adapter *adapter) 924 { 925 int i; 926 927 for_each_port(adapter, i) 928 write_smt_entry(adapter, i); 929 return 0; 930 } 931 932 static void init_port_mtus(struct adapter *adapter) 933 { 934 unsigned int mtus = adapter->port[0]->mtu; 935 936 if (adapter->port[1]) 937 mtus |= adapter->port[1]->mtu << 16; 938 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 939 } 940 941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 942 int hi, int port) 943 { 944 struct sk_buff *skb; 945 struct mngt_pktsched_wr *req; 946 int ret; 947 948 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 949 if (!skb) 950 skb = adap->nofail_skb; 951 if (!skb) 952 return -ENOMEM; 953 954 req = skb_put(skb, sizeof(*req)); 955 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 956 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 957 req->sched = sched; 958 req->idx = qidx; 959 req->min = lo; 960 req->max = hi; 961 req->binding = port; 962 ret = t3_mgmt_tx(adap, skb); 963 if (skb == adap->nofail_skb) { 964 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 965 GFP_KERNEL); 966 if (!adap->nofail_skb) 967 ret = -ENOMEM; 968 } 969 970 return ret; 971 } 972 973 static int bind_qsets(struct adapter *adap) 974 { 975 int i, j, err = 0; 976 977 for_each_port(adap, i) { 978 const struct port_info *pi = adap2pinfo(adap, i); 979 980 for (j = 0; j < pi->nqsets; ++j) { 981 int ret = send_pktsched_cmd(adap, 1, 982 pi->first_qset + j, -1, 983 -1, i); 984 if (ret) 985 err = ret; 986 } 987 } 988 989 return err; 990 } 991 992 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 993 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 994 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 995 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 996 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 997 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 998 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 999 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 1000 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 1001 MODULE_FIRMWARE(FW_FNAME); 1002 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 1003 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 1004 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 1005 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1006 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1007 1008 static inline const char *get_edc_fw_name(int edc_idx) 1009 { 1010 const char *fw_name = NULL; 1011 1012 switch (edc_idx) { 1013 case EDC_OPT_AEL2005: 1014 fw_name = AEL2005_OPT_EDC_NAME; 1015 break; 1016 case EDC_TWX_AEL2005: 1017 fw_name = AEL2005_TWX_EDC_NAME; 1018 break; 1019 case EDC_TWX_AEL2020: 1020 fw_name = AEL2020_TWX_EDC_NAME; 1021 break; 1022 } 1023 return fw_name; 1024 } 1025 1026 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1027 { 1028 struct adapter *adapter = phy->adapter; 1029 const struct firmware *fw; 1030 const char *fw_name; 1031 u32 csum; 1032 const __be32 *p; 1033 u16 *cache = phy->phy_cache; 1034 int i, ret = -EINVAL; 1035 1036 fw_name = get_edc_fw_name(edc_idx); 1037 if (fw_name) 1038 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev); 1039 if (ret < 0) { 1040 dev_err(&adapter->pdev->dev, 1041 "could not upgrade firmware: unable to load %s\n", 1042 fw_name); 1043 return ret; 1044 } 1045 1046 /* check size, take checksum in account */ 1047 if (fw->size > size + 4) { 1048 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1049 (unsigned int)fw->size, size + 4); 1050 ret = -EINVAL; 1051 } 1052 1053 /* compute checksum */ 1054 p = (const __be32 *)fw->data; 1055 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1056 csum += ntohl(p[i]); 1057 1058 if (csum != 0xffffffff) { 1059 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1060 csum); 1061 ret = -EINVAL; 1062 } 1063 1064 for (i = 0; i < size / 4 ; i++) { 1065 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1066 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1067 } 1068 1069 release_firmware(fw); 1070 1071 return ret; 1072 } 1073 1074 static int upgrade_fw(struct adapter *adap) 1075 { 1076 int ret; 1077 const struct firmware *fw; 1078 struct device *dev = &adap->pdev->dev; 1079 1080 ret = request_firmware(&fw, FW_FNAME, dev); 1081 if (ret < 0) { 1082 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1083 FW_FNAME); 1084 return ret; 1085 } 1086 ret = t3_load_fw(adap, fw->data, fw->size); 1087 release_firmware(fw); 1088 1089 if (ret == 0) 1090 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1091 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1092 else 1093 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1094 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1095 1096 return ret; 1097 } 1098 1099 static inline char t3rev2char(struct adapter *adapter) 1100 { 1101 char rev = 0; 1102 1103 switch(adapter->params.rev) { 1104 case T3_REV_B: 1105 case T3_REV_B2: 1106 rev = 'b'; 1107 break; 1108 case T3_REV_C: 1109 rev = 'c'; 1110 break; 1111 } 1112 return rev; 1113 } 1114 1115 static int update_tpsram(struct adapter *adap) 1116 { 1117 const struct firmware *tpsram; 1118 char buf[64]; 1119 struct device *dev = &adap->pdev->dev; 1120 int ret; 1121 char rev; 1122 1123 rev = t3rev2char(adap); 1124 if (!rev) 1125 return 0; 1126 1127 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1128 1129 ret = request_firmware(&tpsram, buf, dev); 1130 if (ret < 0) { 1131 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1132 buf); 1133 return ret; 1134 } 1135 1136 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1137 if (ret) 1138 goto release_tpsram; 1139 1140 ret = t3_set_proto_sram(adap, tpsram->data); 1141 if (ret == 0) 1142 dev_info(dev, 1143 "successful update of protocol engine " 1144 "to %d.%d.%d\n", 1145 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1146 else 1147 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1148 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1149 if (ret) 1150 dev_err(dev, "loading protocol SRAM failed\n"); 1151 1152 release_tpsram: 1153 release_firmware(tpsram); 1154 1155 return ret; 1156 } 1157 1158 /** 1159 * t3_synchronize_rx - wait for current Rx processing on a port to complete 1160 * @adap: the adapter 1161 * @p: the port 1162 * 1163 * Ensures that current Rx processing on any of the queues associated with 1164 * the given port completes before returning. We do this by acquiring and 1165 * releasing the locks of the response queues associated with the port. 1166 */ 1167 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 1168 { 1169 int i; 1170 1171 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 1172 struct sge_rspq *q = &adap->sge.qs[i].rspq; 1173 1174 spin_lock_irq(&q->lock); 1175 spin_unlock_irq(&q->lock); 1176 } 1177 } 1178 1179 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features) 1180 { 1181 struct port_info *pi = netdev_priv(dev); 1182 struct adapter *adapter = pi->adapter; 1183 1184 if (adapter->params.rev > 0) { 1185 t3_set_vlan_accel(adapter, 1 << pi->port_id, 1186 features & NETIF_F_HW_VLAN_CTAG_RX); 1187 } else { 1188 /* single control for all ports */ 1189 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX; 1190 1191 for_each_port(adapter, i) 1192 have_vlans |= 1193 adapter->port[i]->features & 1194 NETIF_F_HW_VLAN_CTAG_RX; 1195 1196 t3_set_vlan_accel(adapter, 1, have_vlans); 1197 } 1198 t3_synchronize_rx(adapter, pi); 1199 } 1200 1201 /** 1202 * cxgb_up - enable the adapter 1203 * @adapter: adapter being enabled 1204 * 1205 * Called when the first port is enabled, this function performs the 1206 * actions necessary to make an adapter operational, such as completing 1207 * the initialization of HW modules, and enabling interrupts. 1208 * 1209 * Must be called with the rtnl lock held. 1210 */ 1211 static int cxgb_up(struct adapter *adap) 1212 { 1213 int i, err; 1214 1215 if (!(adap->flags & FULL_INIT_DONE)) { 1216 err = t3_check_fw_version(adap); 1217 if (err == -EINVAL) { 1218 err = upgrade_fw(adap); 1219 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1220 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1221 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1222 } 1223 1224 err = t3_check_tpsram_version(adap); 1225 if (err == -EINVAL) { 1226 err = update_tpsram(adap); 1227 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1228 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1229 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1230 } 1231 1232 /* 1233 * Clear interrupts now to catch errors if t3_init_hw fails. 1234 * We clear them again later as initialization may trigger 1235 * conditions that can interrupt. 1236 */ 1237 t3_intr_clear(adap); 1238 1239 err = t3_init_hw(adap, 0); 1240 if (err) 1241 goto out; 1242 1243 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1244 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1245 1246 err = setup_sge_qsets(adap); 1247 if (err) 1248 goto out; 1249 1250 for_each_port(adap, i) 1251 cxgb_vlan_mode(adap->port[i], adap->port[i]->features); 1252 1253 setup_rss(adap); 1254 if (!(adap->flags & NAPI_INIT)) 1255 init_napi(adap); 1256 1257 t3_start_sge_timers(adap); 1258 adap->flags |= FULL_INIT_DONE; 1259 } 1260 1261 t3_intr_clear(adap); 1262 1263 if (adap->flags & USING_MSIX) { 1264 name_msix_vecs(adap); 1265 err = request_irq(adap->msix_info[0].vec, 1266 t3_async_intr_handler, 0, 1267 adap->msix_info[0].desc, adap); 1268 if (err) 1269 goto irq_err; 1270 1271 err = request_msix_data_irqs(adap); 1272 if (err) { 1273 free_irq(adap->msix_info[0].vec, adap); 1274 goto irq_err; 1275 } 1276 } else if ((err = request_irq(adap->pdev->irq, 1277 t3_intr_handler(adap, 1278 adap->sge.qs[0].rspq. 1279 polling), 1280 (adap->flags & USING_MSI) ? 1281 0 : IRQF_SHARED, 1282 adap->name, adap))) 1283 goto irq_err; 1284 1285 enable_all_napi(adap); 1286 t3_sge_start(adap); 1287 t3_intr_enable(adap); 1288 1289 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1290 is_offload(adap) && init_tp_parity(adap) == 0) 1291 adap->flags |= TP_PARITY_INIT; 1292 1293 if (adap->flags & TP_PARITY_INIT) { 1294 t3_write_reg(adap, A_TP_INT_CAUSE, 1295 F_CMCACHEPERR | F_ARPLUTPERR); 1296 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1297 } 1298 1299 if (!(adap->flags & QUEUES_BOUND)) { 1300 int ret = bind_qsets(adap); 1301 1302 if (ret < 0) { 1303 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1304 t3_intr_disable(adap); 1305 free_irq_resources(adap); 1306 err = ret; 1307 goto out; 1308 } 1309 adap->flags |= QUEUES_BOUND; 1310 } 1311 1312 out: 1313 return err; 1314 irq_err: 1315 CH_ERR(adap, "request_irq failed, err %d\n", err); 1316 goto out; 1317 } 1318 1319 /* 1320 * Release resources when all the ports and offloading have been stopped. 1321 */ 1322 static void cxgb_down(struct adapter *adapter, int on_wq) 1323 { 1324 t3_sge_stop(adapter); 1325 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1326 t3_intr_disable(adapter); 1327 spin_unlock_irq(&adapter->work_lock); 1328 1329 free_irq_resources(adapter); 1330 quiesce_rx(adapter); 1331 t3_sge_stop(adapter); 1332 if (!on_wq) 1333 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1334 } 1335 1336 static void schedule_chk_task(struct adapter *adap) 1337 { 1338 unsigned int timeo; 1339 1340 timeo = adap->params.linkpoll_period ? 1341 (HZ * adap->params.linkpoll_period) / 10 : 1342 adap->params.stats_update_period * HZ; 1343 if (timeo) 1344 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1345 } 1346 1347 static int offload_open(struct net_device *dev) 1348 { 1349 struct port_info *pi = netdev_priv(dev); 1350 struct adapter *adapter = pi->adapter; 1351 struct t3cdev *tdev = dev2t3cdev(dev); 1352 int adap_up = adapter->open_device_map & PORT_MASK; 1353 int err; 1354 1355 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1356 return 0; 1357 1358 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1359 goto out; 1360 1361 t3_tp_set_offload_mode(adapter, 1); 1362 tdev->lldev = adapter->port[0]; 1363 err = cxgb3_offload_activate(adapter); 1364 if (err) 1365 goto out; 1366 1367 init_port_mtus(adapter); 1368 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1369 adapter->params.b_wnd, 1370 adapter->params.rev == 0 ? 1371 adapter->port[0]->mtu : 0xffff); 1372 init_smt(adapter); 1373 1374 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1375 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1376 1377 /* Call back all registered clients */ 1378 cxgb3_add_clients(tdev); 1379 1380 out: 1381 /* restore them in case the offload module has changed them */ 1382 if (err) { 1383 t3_tp_set_offload_mode(adapter, 0); 1384 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1385 cxgb3_set_dummy_ops(tdev); 1386 } 1387 return err; 1388 } 1389 1390 static int offload_close(struct t3cdev *tdev) 1391 { 1392 struct adapter *adapter = tdev2adap(tdev); 1393 struct t3c_data *td = T3C_DATA(tdev); 1394 1395 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1396 return 0; 1397 1398 /* Call back all registered clients */ 1399 cxgb3_remove_clients(tdev); 1400 1401 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1402 1403 /* Flush work scheduled while releasing TIDs */ 1404 flush_work(&td->tid_release_task); 1405 1406 tdev->lldev = NULL; 1407 cxgb3_set_dummy_ops(tdev); 1408 t3_tp_set_offload_mode(adapter, 0); 1409 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1410 1411 if (!adapter->open_device_map) 1412 cxgb_down(adapter, 0); 1413 1414 cxgb3_offload_deactivate(adapter); 1415 return 0; 1416 } 1417 1418 static int cxgb_open(struct net_device *dev) 1419 { 1420 struct port_info *pi = netdev_priv(dev); 1421 struct adapter *adapter = pi->adapter; 1422 int other_ports = adapter->open_device_map & PORT_MASK; 1423 int err; 1424 1425 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1426 return err; 1427 1428 set_bit(pi->port_id, &adapter->open_device_map); 1429 if (is_offload(adapter) && !ofld_disable) { 1430 err = offload_open(dev); 1431 if (err) 1432 pr_warn("Could not initialize offload capabilities\n"); 1433 } 1434 1435 netif_set_real_num_tx_queues(dev, pi->nqsets); 1436 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1437 if (err) 1438 return err; 1439 link_start(dev); 1440 t3_port_intr_enable(adapter, pi->port_id); 1441 netif_tx_start_all_queues(dev); 1442 if (!other_ports) 1443 schedule_chk_task(adapter); 1444 1445 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1446 return 0; 1447 } 1448 1449 static int __cxgb_close(struct net_device *dev, int on_wq) 1450 { 1451 struct port_info *pi = netdev_priv(dev); 1452 struct adapter *adapter = pi->adapter; 1453 1454 1455 if (!adapter->open_device_map) 1456 return 0; 1457 1458 /* Stop link fault interrupts */ 1459 t3_xgm_intr_disable(adapter, pi->port_id); 1460 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1461 1462 t3_port_intr_disable(adapter, pi->port_id); 1463 netif_tx_stop_all_queues(dev); 1464 pi->phy.ops->power_down(&pi->phy, 1); 1465 netif_carrier_off(dev); 1466 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1467 1468 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1469 clear_bit(pi->port_id, &adapter->open_device_map); 1470 spin_unlock_irq(&adapter->work_lock); 1471 1472 if (!(adapter->open_device_map & PORT_MASK)) 1473 cancel_delayed_work_sync(&adapter->adap_check_task); 1474 1475 if (!adapter->open_device_map) 1476 cxgb_down(adapter, on_wq); 1477 1478 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1479 return 0; 1480 } 1481 1482 static int cxgb_close(struct net_device *dev) 1483 { 1484 return __cxgb_close(dev, 0); 1485 } 1486 1487 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1488 { 1489 struct port_info *pi = netdev_priv(dev); 1490 struct adapter *adapter = pi->adapter; 1491 struct net_device_stats *ns = &dev->stats; 1492 const struct mac_stats *pstats; 1493 1494 spin_lock(&adapter->stats_lock); 1495 pstats = t3_mac_update_stats(&pi->mac); 1496 spin_unlock(&adapter->stats_lock); 1497 1498 ns->tx_bytes = pstats->tx_octets; 1499 ns->tx_packets = pstats->tx_frames; 1500 ns->rx_bytes = pstats->rx_octets; 1501 ns->rx_packets = pstats->rx_frames; 1502 ns->multicast = pstats->rx_mcast_frames; 1503 1504 ns->tx_errors = pstats->tx_underrun; 1505 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1506 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1507 pstats->rx_fifo_ovfl; 1508 1509 /* detailed rx_errors */ 1510 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1511 ns->rx_over_errors = 0; 1512 ns->rx_crc_errors = pstats->rx_fcs_errs; 1513 ns->rx_frame_errors = pstats->rx_symbol_errs; 1514 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1515 ns->rx_missed_errors = pstats->rx_cong_drops; 1516 1517 /* detailed tx_errors */ 1518 ns->tx_aborted_errors = 0; 1519 ns->tx_carrier_errors = 0; 1520 ns->tx_fifo_errors = pstats->tx_underrun; 1521 ns->tx_heartbeat_errors = 0; 1522 ns->tx_window_errors = 0; 1523 return ns; 1524 } 1525 1526 static u32 get_msglevel(struct net_device *dev) 1527 { 1528 struct port_info *pi = netdev_priv(dev); 1529 struct adapter *adapter = pi->adapter; 1530 1531 return adapter->msg_enable; 1532 } 1533 1534 static void set_msglevel(struct net_device *dev, u32 val) 1535 { 1536 struct port_info *pi = netdev_priv(dev); 1537 struct adapter *adapter = pi->adapter; 1538 1539 adapter->msg_enable = val; 1540 } 1541 1542 static const char stats_strings[][ETH_GSTRING_LEN] = { 1543 "TxOctetsOK ", 1544 "TxFramesOK ", 1545 "TxMulticastFramesOK", 1546 "TxBroadcastFramesOK", 1547 "TxPauseFrames ", 1548 "TxUnderrun ", 1549 "TxExtUnderrun ", 1550 1551 "TxFrames64 ", 1552 "TxFrames65To127 ", 1553 "TxFrames128To255 ", 1554 "TxFrames256To511 ", 1555 "TxFrames512To1023 ", 1556 "TxFrames1024To1518 ", 1557 "TxFrames1519ToMax ", 1558 1559 "RxOctetsOK ", 1560 "RxFramesOK ", 1561 "RxMulticastFramesOK", 1562 "RxBroadcastFramesOK", 1563 "RxPauseFrames ", 1564 "RxFCSErrors ", 1565 "RxSymbolErrors ", 1566 "RxShortErrors ", 1567 "RxJabberErrors ", 1568 "RxLengthErrors ", 1569 "RxFIFOoverflow ", 1570 1571 "RxFrames64 ", 1572 "RxFrames65To127 ", 1573 "RxFrames128To255 ", 1574 "RxFrames256To511 ", 1575 "RxFrames512To1023 ", 1576 "RxFrames1024To1518 ", 1577 "RxFrames1519ToMax ", 1578 1579 "PhyFIFOErrors ", 1580 "TSO ", 1581 "VLANextractions ", 1582 "VLANinsertions ", 1583 "TxCsumOffload ", 1584 "RxCsumGood ", 1585 "LroAggregated ", 1586 "LroFlushed ", 1587 "LroNoDesc ", 1588 "RxDrops ", 1589 1590 "CheckTXEnToggled ", 1591 "CheckResets ", 1592 1593 "LinkFaults ", 1594 }; 1595 1596 static int get_sset_count(struct net_device *dev, int sset) 1597 { 1598 switch (sset) { 1599 case ETH_SS_STATS: 1600 return ARRAY_SIZE(stats_strings); 1601 default: 1602 return -EOPNOTSUPP; 1603 } 1604 } 1605 1606 #define T3_REGMAP_SIZE (3 * 1024) 1607 1608 static int get_regs_len(struct net_device *dev) 1609 { 1610 return T3_REGMAP_SIZE; 1611 } 1612 1613 static int get_eeprom_len(struct net_device *dev) 1614 { 1615 return EEPROMSIZE; 1616 } 1617 1618 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1619 { 1620 struct port_info *pi = netdev_priv(dev); 1621 struct adapter *adapter = pi->adapter; 1622 u32 fw_vers = 0; 1623 u32 tp_vers = 0; 1624 1625 spin_lock(&adapter->stats_lock); 1626 t3_get_fw_version(adapter, &fw_vers); 1627 t3_get_tp_version(adapter, &tp_vers); 1628 spin_unlock(&adapter->stats_lock); 1629 1630 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1631 strlcpy(info->bus_info, pci_name(adapter->pdev), 1632 sizeof(info->bus_info)); 1633 if (fw_vers) 1634 snprintf(info->fw_version, sizeof(info->fw_version), 1635 "%s %u.%u.%u TP %u.%u.%u", 1636 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1637 G_FW_VERSION_MAJOR(fw_vers), 1638 G_FW_VERSION_MINOR(fw_vers), 1639 G_FW_VERSION_MICRO(fw_vers), 1640 G_TP_VERSION_MAJOR(tp_vers), 1641 G_TP_VERSION_MINOR(tp_vers), 1642 G_TP_VERSION_MICRO(tp_vers)); 1643 } 1644 1645 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1646 { 1647 if (stringset == ETH_SS_STATS) 1648 memcpy(data, stats_strings, sizeof(stats_strings)); 1649 } 1650 1651 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1652 struct port_info *p, int idx) 1653 { 1654 int i; 1655 unsigned long tot = 0; 1656 1657 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1658 tot += adapter->sge.qs[i].port_stats[idx]; 1659 return tot; 1660 } 1661 1662 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1663 u64 *data) 1664 { 1665 struct port_info *pi = netdev_priv(dev); 1666 struct adapter *adapter = pi->adapter; 1667 const struct mac_stats *s; 1668 1669 spin_lock(&adapter->stats_lock); 1670 s = t3_mac_update_stats(&pi->mac); 1671 spin_unlock(&adapter->stats_lock); 1672 1673 *data++ = s->tx_octets; 1674 *data++ = s->tx_frames; 1675 *data++ = s->tx_mcast_frames; 1676 *data++ = s->tx_bcast_frames; 1677 *data++ = s->tx_pause; 1678 *data++ = s->tx_underrun; 1679 *data++ = s->tx_fifo_urun; 1680 1681 *data++ = s->tx_frames_64; 1682 *data++ = s->tx_frames_65_127; 1683 *data++ = s->tx_frames_128_255; 1684 *data++ = s->tx_frames_256_511; 1685 *data++ = s->tx_frames_512_1023; 1686 *data++ = s->tx_frames_1024_1518; 1687 *data++ = s->tx_frames_1519_max; 1688 1689 *data++ = s->rx_octets; 1690 *data++ = s->rx_frames; 1691 *data++ = s->rx_mcast_frames; 1692 *data++ = s->rx_bcast_frames; 1693 *data++ = s->rx_pause; 1694 *data++ = s->rx_fcs_errs; 1695 *data++ = s->rx_symbol_errs; 1696 *data++ = s->rx_short; 1697 *data++ = s->rx_jabber; 1698 *data++ = s->rx_too_long; 1699 *data++ = s->rx_fifo_ovfl; 1700 1701 *data++ = s->rx_frames_64; 1702 *data++ = s->rx_frames_65_127; 1703 *data++ = s->rx_frames_128_255; 1704 *data++ = s->rx_frames_256_511; 1705 *data++ = s->rx_frames_512_1023; 1706 *data++ = s->rx_frames_1024_1518; 1707 *data++ = s->rx_frames_1519_max; 1708 1709 *data++ = pi->phy.fifo_errors; 1710 1711 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1715 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1716 *data++ = 0; 1717 *data++ = 0; 1718 *data++ = 0; 1719 *data++ = s->rx_cong_drops; 1720 1721 *data++ = s->num_toggled; 1722 *data++ = s->num_resets; 1723 1724 *data++ = s->link_faults; 1725 } 1726 1727 static inline void reg_block_dump(struct adapter *ap, void *buf, 1728 unsigned int start, unsigned int end) 1729 { 1730 u32 *p = buf + start; 1731 1732 for (; start <= end; start += sizeof(u32)) 1733 *p++ = t3_read_reg(ap, start); 1734 } 1735 1736 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1737 void *buf) 1738 { 1739 struct port_info *pi = netdev_priv(dev); 1740 struct adapter *ap = pi->adapter; 1741 1742 /* 1743 * Version scheme: 1744 * bits 0..9: chip version 1745 * bits 10..15: chip revision 1746 * bit 31: set for PCIe cards 1747 */ 1748 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1749 1750 /* 1751 * We skip the MAC statistics registers because they are clear-on-read. 1752 * Also reading multi-register stats would need to synchronize with the 1753 * periodic mac stats accumulation. Hard to justify the complexity. 1754 */ 1755 memset(buf, 0, T3_REGMAP_SIZE); 1756 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1757 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1758 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1759 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1760 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1761 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1762 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1763 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1764 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1765 } 1766 1767 static int restart_autoneg(struct net_device *dev) 1768 { 1769 struct port_info *p = netdev_priv(dev); 1770 1771 if (!netif_running(dev)) 1772 return -EAGAIN; 1773 if (p->link_config.autoneg != AUTONEG_ENABLE) 1774 return -EINVAL; 1775 p->phy.ops->autoneg_restart(&p->phy); 1776 return 0; 1777 } 1778 1779 static int set_phys_id(struct net_device *dev, 1780 enum ethtool_phys_id_state state) 1781 { 1782 struct port_info *pi = netdev_priv(dev); 1783 struct adapter *adapter = pi->adapter; 1784 1785 switch (state) { 1786 case ETHTOOL_ID_ACTIVE: 1787 return 1; /* cycle on/off once per second */ 1788 1789 case ETHTOOL_ID_OFF: 1790 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1791 break; 1792 1793 case ETHTOOL_ID_ON: 1794 case ETHTOOL_ID_INACTIVE: 1795 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1796 F_GPIO0_OUT_VAL); 1797 } 1798 1799 return 0; 1800 } 1801 1802 static int get_link_ksettings(struct net_device *dev, 1803 struct ethtool_link_ksettings *cmd) 1804 { 1805 struct port_info *p = netdev_priv(dev); 1806 u32 supported; 1807 1808 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1809 p->link_config.supported); 1810 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 1811 p->link_config.advertising); 1812 1813 if (netif_carrier_ok(dev)) { 1814 cmd->base.speed = p->link_config.speed; 1815 cmd->base.duplex = p->link_config.duplex; 1816 } else { 1817 cmd->base.speed = SPEED_UNKNOWN; 1818 cmd->base.duplex = DUPLEX_UNKNOWN; 1819 } 1820 1821 ethtool_convert_link_mode_to_legacy_u32(&supported, 1822 cmd->link_modes.supported); 1823 1824 cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1825 cmd->base.phy_address = p->phy.mdio.prtad; 1826 cmd->base.autoneg = p->link_config.autoneg; 1827 return 0; 1828 } 1829 1830 static int speed_duplex_to_caps(int speed, int duplex) 1831 { 1832 int cap = 0; 1833 1834 switch (speed) { 1835 case SPEED_10: 1836 if (duplex == DUPLEX_FULL) 1837 cap = SUPPORTED_10baseT_Full; 1838 else 1839 cap = SUPPORTED_10baseT_Half; 1840 break; 1841 case SPEED_100: 1842 if (duplex == DUPLEX_FULL) 1843 cap = SUPPORTED_100baseT_Full; 1844 else 1845 cap = SUPPORTED_100baseT_Half; 1846 break; 1847 case SPEED_1000: 1848 if (duplex == DUPLEX_FULL) 1849 cap = SUPPORTED_1000baseT_Full; 1850 else 1851 cap = SUPPORTED_1000baseT_Half; 1852 break; 1853 case SPEED_10000: 1854 if (duplex == DUPLEX_FULL) 1855 cap = SUPPORTED_10000baseT_Full; 1856 } 1857 return cap; 1858 } 1859 1860 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1861 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1862 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1863 ADVERTISED_10000baseT_Full) 1864 1865 static int set_link_ksettings(struct net_device *dev, 1866 const struct ethtool_link_ksettings *cmd) 1867 { 1868 struct port_info *p = netdev_priv(dev); 1869 struct link_config *lc = &p->link_config; 1870 u32 advertising; 1871 1872 ethtool_convert_link_mode_to_legacy_u32(&advertising, 1873 cmd->link_modes.advertising); 1874 1875 if (!(lc->supported & SUPPORTED_Autoneg)) { 1876 /* 1877 * PHY offers a single speed/duplex. See if that's what's 1878 * being requested. 1879 */ 1880 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1881 u32 speed = cmd->base.speed; 1882 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1883 if (lc->supported & cap) 1884 return 0; 1885 } 1886 return -EINVAL; 1887 } 1888 1889 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1890 u32 speed = cmd->base.speed; 1891 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1892 1893 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1894 return -EINVAL; 1895 lc->requested_speed = speed; 1896 lc->requested_duplex = cmd->base.duplex; 1897 lc->advertising = 0; 1898 } else { 1899 advertising &= ADVERTISED_MASK; 1900 advertising &= lc->supported; 1901 if (!advertising) 1902 return -EINVAL; 1903 lc->requested_speed = SPEED_INVALID; 1904 lc->requested_duplex = DUPLEX_INVALID; 1905 lc->advertising = advertising | ADVERTISED_Autoneg; 1906 } 1907 lc->autoneg = cmd->base.autoneg; 1908 if (netif_running(dev)) 1909 t3_link_start(&p->phy, &p->mac, lc); 1910 return 0; 1911 } 1912 1913 static void get_pauseparam(struct net_device *dev, 1914 struct ethtool_pauseparam *epause) 1915 { 1916 struct port_info *p = netdev_priv(dev); 1917 1918 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1919 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1920 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1921 } 1922 1923 static int set_pauseparam(struct net_device *dev, 1924 struct ethtool_pauseparam *epause) 1925 { 1926 struct port_info *p = netdev_priv(dev); 1927 struct link_config *lc = &p->link_config; 1928 1929 if (epause->autoneg == AUTONEG_DISABLE) 1930 lc->requested_fc = 0; 1931 else if (lc->supported & SUPPORTED_Autoneg) 1932 lc->requested_fc = PAUSE_AUTONEG; 1933 else 1934 return -EINVAL; 1935 1936 if (epause->rx_pause) 1937 lc->requested_fc |= PAUSE_RX; 1938 if (epause->tx_pause) 1939 lc->requested_fc |= PAUSE_TX; 1940 if (lc->autoneg == AUTONEG_ENABLE) { 1941 if (netif_running(dev)) 1942 t3_link_start(&p->phy, &p->mac, lc); 1943 } else { 1944 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1945 if (netif_running(dev)) 1946 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1947 } 1948 return 0; 1949 } 1950 1951 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1952 { 1953 struct port_info *pi = netdev_priv(dev); 1954 struct adapter *adapter = pi->adapter; 1955 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1956 1957 e->rx_max_pending = MAX_RX_BUFFERS; 1958 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1959 e->tx_max_pending = MAX_TXQ_ENTRIES; 1960 1961 e->rx_pending = q->fl_size; 1962 e->rx_mini_pending = q->rspq_size; 1963 e->rx_jumbo_pending = q->jumbo_size; 1964 e->tx_pending = q->txq_size[0]; 1965 } 1966 1967 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1968 { 1969 struct port_info *pi = netdev_priv(dev); 1970 struct adapter *adapter = pi->adapter; 1971 struct qset_params *q; 1972 int i; 1973 1974 if (e->rx_pending > MAX_RX_BUFFERS || 1975 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1976 e->tx_pending > MAX_TXQ_ENTRIES || 1977 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1978 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1979 e->rx_pending < MIN_FL_ENTRIES || 1980 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1981 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1982 return -EINVAL; 1983 1984 if (adapter->flags & FULL_INIT_DONE) 1985 return -EBUSY; 1986 1987 q = &adapter->params.sge.qset[pi->first_qset]; 1988 for (i = 0; i < pi->nqsets; ++i, ++q) { 1989 q->rspq_size = e->rx_mini_pending; 1990 q->fl_size = e->rx_pending; 1991 q->jumbo_size = e->rx_jumbo_pending; 1992 q->txq_size[0] = e->tx_pending; 1993 q->txq_size[1] = e->tx_pending; 1994 q->txq_size[2] = e->tx_pending; 1995 } 1996 return 0; 1997 } 1998 1999 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2000 { 2001 struct port_info *pi = netdev_priv(dev); 2002 struct adapter *adapter = pi->adapter; 2003 struct qset_params *qsp; 2004 struct sge_qset *qs; 2005 int i; 2006 2007 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 2008 return -EINVAL; 2009 2010 for (i = 0; i < pi->nqsets; i++) { 2011 qsp = &adapter->params.sge.qset[i]; 2012 qs = &adapter->sge.qs[i]; 2013 qsp->coalesce_usecs = c->rx_coalesce_usecs; 2014 t3_update_qset_coalesce(qs, qsp); 2015 } 2016 2017 return 0; 2018 } 2019 2020 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2021 { 2022 struct port_info *pi = netdev_priv(dev); 2023 struct adapter *adapter = pi->adapter; 2024 struct qset_params *q = adapter->params.sge.qset; 2025 2026 c->rx_coalesce_usecs = q->coalesce_usecs; 2027 return 0; 2028 } 2029 2030 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2031 u8 * data) 2032 { 2033 struct port_info *pi = netdev_priv(dev); 2034 struct adapter *adapter = pi->adapter; 2035 int i, err = 0; 2036 2037 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2038 if (!buf) 2039 return -ENOMEM; 2040 2041 e->magic = EEPROM_MAGIC; 2042 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2043 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]); 2044 2045 if (!err) 2046 memcpy(data, buf + e->offset, e->len); 2047 kfree(buf); 2048 return err; 2049 } 2050 2051 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2052 u8 * data) 2053 { 2054 struct port_info *pi = netdev_priv(dev); 2055 struct adapter *adapter = pi->adapter; 2056 u32 aligned_offset, aligned_len; 2057 __le32 *p; 2058 u8 *buf; 2059 int err; 2060 2061 if (eeprom->magic != EEPROM_MAGIC) 2062 return -EINVAL; 2063 2064 aligned_offset = eeprom->offset & ~3; 2065 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2066 2067 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2068 buf = kmalloc(aligned_len, GFP_KERNEL); 2069 if (!buf) 2070 return -ENOMEM; 2071 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf); 2072 if (!err && aligned_len > 4) 2073 err = t3_seeprom_read(adapter, 2074 aligned_offset + aligned_len - 4, 2075 (__le32 *) & buf[aligned_len - 4]); 2076 if (err) 2077 goto out; 2078 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2079 } else 2080 buf = data; 2081 2082 err = t3_seeprom_wp(adapter, 0); 2083 if (err) 2084 goto out; 2085 2086 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) { 2087 err = t3_seeprom_write(adapter, aligned_offset, *p); 2088 aligned_offset += 4; 2089 } 2090 2091 if (!err) 2092 err = t3_seeprom_wp(adapter, 1); 2093 out: 2094 if (buf != data) 2095 kfree(buf); 2096 return err; 2097 } 2098 2099 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2100 { 2101 wol->supported = 0; 2102 wol->wolopts = 0; 2103 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2104 } 2105 2106 static const struct ethtool_ops cxgb_ethtool_ops = { 2107 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2108 .get_drvinfo = get_drvinfo, 2109 .get_msglevel = get_msglevel, 2110 .set_msglevel = set_msglevel, 2111 .get_ringparam = get_sge_param, 2112 .set_ringparam = set_sge_param, 2113 .get_coalesce = get_coalesce, 2114 .set_coalesce = set_coalesce, 2115 .get_eeprom_len = get_eeprom_len, 2116 .get_eeprom = get_eeprom, 2117 .set_eeprom = set_eeprom, 2118 .get_pauseparam = get_pauseparam, 2119 .set_pauseparam = set_pauseparam, 2120 .get_link = ethtool_op_get_link, 2121 .get_strings = get_strings, 2122 .set_phys_id = set_phys_id, 2123 .nway_reset = restart_autoneg, 2124 .get_sset_count = get_sset_count, 2125 .get_ethtool_stats = get_stats, 2126 .get_regs_len = get_regs_len, 2127 .get_regs = get_regs, 2128 .get_wol = get_wol, 2129 .get_link_ksettings = get_link_ksettings, 2130 .set_link_ksettings = set_link_ksettings, 2131 }; 2132 2133 static int in_range(int val, int lo, int hi) 2134 { 2135 return val < 0 || (val <= hi && val >= lo); 2136 } 2137 2138 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr) 2139 { 2140 struct port_info *pi = netdev_priv(dev); 2141 struct adapter *adapter = pi->adapter; 2142 u32 cmd; 2143 int ret; 2144 2145 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2146 return -EFAULT; 2147 2148 switch (cmd) { 2149 case CHELSIO_SET_QSET_PARAMS:{ 2150 int i; 2151 struct qset_params *q; 2152 struct ch_qset_params t; 2153 int q1 = pi->first_qset; 2154 int nqsets = pi->nqsets; 2155 2156 if (!capable(CAP_NET_ADMIN)) 2157 return -EPERM; 2158 if (copy_from_user(&t, useraddr, sizeof(t))) 2159 return -EFAULT; 2160 if (t.cmd != CHELSIO_SET_QSET_PARAMS) 2161 return -EINVAL; 2162 if (t.qset_idx >= SGE_QSETS) 2163 return -EINVAL; 2164 if (!in_range(t.intr_lat, 0, M_NEWTIMER) || 2165 !in_range(t.cong_thres, 0, 255) || 2166 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2167 MAX_TXQ_ENTRIES) || 2168 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2169 MAX_TXQ_ENTRIES) || 2170 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2171 MAX_CTRL_TXQ_ENTRIES) || 2172 !in_range(t.fl_size[0], MIN_FL_ENTRIES, 2173 MAX_RX_BUFFERS) || 2174 !in_range(t.fl_size[1], MIN_FL_ENTRIES, 2175 MAX_RX_JUMBO_BUFFERS) || 2176 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2177 MAX_RSPQ_ENTRIES)) 2178 return -EINVAL; 2179 2180 if ((adapter->flags & FULL_INIT_DONE) && 2181 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2182 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2183 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2184 t.polling >= 0 || t.cong_thres >= 0)) 2185 return -EBUSY; 2186 2187 /* Allow setting of any available qset when offload enabled */ 2188 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2189 q1 = 0; 2190 for_each_port(adapter, i) { 2191 pi = adap2pinfo(adapter, i); 2192 nqsets += pi->first_qset + pi->nqsets; 2193 } 2194 } 2195 2196 if (t.qset_idx < q1) 2197 return -EINVAL; 2198 if (t.qset_idx > q1 + nqsets - 1) 2199 return -EINVAL; 2200 2201 q = &adapter->params.sge.qset[t.qset_idx]; 2202 2203 if (t.rspq_size >= 0) 2204 q->rspq_size = t.rspq_size; 2205 if (t.fl_size[0] >= 0) 2206 q->fl_size = t.fl_size[0]; 2207 if (t.fl_size[1] >= 0) 2208 q->jumbo_size = t.fl_size[1]; 2209 if (t.txq_size[0] >= 0) 2210 q->txq_size[0] = t.txq_size[0]; 2211 if (t.txq_size[1] >= 0) 2212 q->txq_size[1] = t.txq_size[1]; 2213 if (t.txq_size[2] >= 0) 2214 q->txq_size[2] = t.txq_size[2]; 2215 if (t.cong_thres >= 0) 2216 q->cong_thres = t.cong_thres; 2217 if (t.intr_lat >= 0) { 2218 struct sge_qset *qs = 2219 &adapter->sge.qs[t.qset_idx]; 2220 2221 q->coalesce_usecs = t.intr_lat; 2222 t3_update_qset_coalesce(qs, q); 2223 } 2224 if (t.polling >= 0) { 2225 if (adapter->flags & USING_MSIX) 2226 q->polling = t.polling; 2227 else { 2228 /* No polling with INTx for T3A */ 2229 if (adapter->params.rev == 0 && 2230 !(adapter->flags & USING_MSI)) 2231 t.polling = 0; 2232 2233 for (i = 0; i < SGE_QSETS; i++) { 2234 q = &adapter->params.sge. 2235 qset[i]; 2236 q->polling = t.polling; 2237 } 2238 } 2239 } 2240 2241 if (t.lro >= 0) { 2242 if (t.lro) 2243 dev->wanted_features |= NETIF_F_GRO; 2244 else 2245 dev->wanted_features &= ~NETIF_F_GRO; 2246 netdev_update_features(dev); 2247 } 2248 2249 break; 2250 } 2251 case CHELSIO_GET_QSET_PARAMS:{ 2252 struct qset_params *q; 2253 struct ch_qset_params t; 2254 int q1 = pi->first_qset; 2255 int nqsets = pi->nqsets; 2256 int i; 2257 2258 if (copy_from_user(&t, useraddr, sizeof(t))) 2259 return -EFAULT; 2260 2261 if (t.cmd != CHELSIO_GET_QSET_PARAMS) 2262 return -EINVAL; 2263 2264 /* Display qsets for all ports when offload enabled */ 2265 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2266 q1 = 0; 2267 for_each_port(adapter, i) { 2268 pi = adap2pinfo(adapter, i); 2269 nqsets = pi->first_qset + pi->nqsets; 2270 } 2271 } 2272 2273 if (t.qset_idx >= nqsets) 2274 return -EINVAL; 2275 t.qset_idx = array_index_nospec(t.qset_idx, nqsets); 2276 2277 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2278 t.rspq_size = q->rspq_size; 2279 t.txq_size[0] = q->txq_size[0]; 2280 t.txq_size[1] = q->txq_size[1]; 2281 t.txq_size[2] = q->txq_size[2]; 2282 t.fl_size[0] = q->fl_size; 2283 t.fl_size[1] = q->jumbo_size; 2284 t.polling = q->polling; 2285 t.lro = !!(dev->features & NETIF_F_GRO); 2286 t.intr_lat = q->coalesce_usecs; 2287 t.cong_thres = q->cong_thres; 2288 t.qnum = q1; 2289 2290 if (adapter->flags & USING_MSIX) 2291 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2292 else 2293 t.vector = adapter->pdev->irq; 2294 2295 if (copy_to_user(useraddr, &t, sizeof(t))) 2296 return -EFAULT; 2297 break; 2298 } 2299 case CHELSIO_SET_QSET_NUM:{ 2300 struct ch_reg edata; 2301 unsigned int i, first_qset = 0, other_qsets = 0; 2302 2303 if (!capable(CAP_NET_ADMIN)) 2304 return -EPERM; 2305 if (adapter->flags & FULL_INIT_DONE) 2306 return -EBUSY; 2307 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2308 return -EFAULT; 2309 if (edata.cmd != CHELSIO_SET_QSET_NUM) 2310 return -EINVAL; 2311 if (edata.val < 1 || 2312 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2313 return -EINVAL; 2314 2315 for_each_port(adapter, i) 2316 if (adapter->port[i] && adapter->port[i] != dev) 2317 other_qsets += adap2pinfo(adapter, i)->nqsets; 2318 2319 if (edata.val + other_qsets > SGE_QSETS) 2320 return -EINVAL; 2321 2322 pi->nqsets = edata.val; 2323 2324 for_each_port(adapter, i) 2325 if (adapter->port[i]) { 2326 pi = adap2pinfo(adapter, i); 2327 pi->first_qset = first_qset; 2328 first_qset += pi->nqsets; 2329 } 2330 break; 2331 } 2332 case CHELSIO_GET_QSET_NUM:{ 2333 struct ch_reg edata; 2334 2335 memset(&edata, 0, sizeof(struct ch_reg)); 2336 2337 edata.cmd = CHELSIO_GET_QSET_NUM; 2338 edata.val = pi->nqsets; 2339 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2340 return -EFAULT; 2341 break; 2342 } 2343 case CHELSIO_LOAD_FW:{ 2344 u8 *fw_data; 2345 struct ch_mem_range t; 2346 2347 if (!capable(CAP_SYS_RAWIO)) 2348 return -EPERM; 2349 if (copy_from_user(&t, useraddr, sizeof(t))) 2350 return -EFAULT; 2351 if (t.cmd != CHELSIO_LOAD_FW) 2352 return -EINVAL; 2353 /* Check t.len sanity ? */ 2354 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2355 if (IS_ERR(fw_data)) 2356 return PTR_ERR(fw_data); 2357 2358 ret = t3_load_fw(adapter, fw_data, t.len); 2359 kfree(fw_data); 2360 if (ret) 2361 return ret; 2362 break; 2363 } 2364 case CHELSIO_SETMTUTAB:{ 2365 struct ch_mtus m; 2366 int i; 2367 2368 if (!is_offload(adapter)) 2369 return -EOPNOTSUPP; 2370 if (!capable(CAP_NET_ADMIN)) 2371 return -EPERM; 2372 if (offload_running(adapter)) 2373 return -EBUSY; 2374 if (copy_from_user(&m, useraddr, sizeof(m))) 2375 return -EFAULT; 2376 if (m.cmd != CHELSIO_SETMTUTAB) 2377 return -EINVAL; 2378 if (m.nmtus != NMTUS) 2379 return -EINVAL; 2380 if (m.mtus[0] < 81) /* accommodate SACK */ 2381 return -EINVAL; 2382 2383 /* MTUs must be in ascending order */ 2384 for (i = 1; i < NMTUS; ++i) 2385 if (m.mtus[i] < m.mtus[i - 1]) 2386 return -EINVAL; 2387 2388 memcpy(adapter->params.mtus, m.mtus, 2389 sizeof(adapter->params.mtus)); 2390 break; 2391 } 2392 case CHELSIO_GET_PM:{ 2393 struct tp_params *p = &adapter->params.tp; 2394 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2395 2396 if (!is_offload(adapter)) 2397 return -EOPNOTSUPP; 2398 m.tx_pg_sz = p->tx_pg_size; 2399 m.tx_num_pg = p->tx_num_pgs; 2400 m.rx_pg_sz = p->rx_pg_size; 2401 m.rx_num_pg = p->rx_num_pgs; 2402 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2403 if (copy_to_user(useraddr, &m, sizeof(m))) 2404 return -EFAULT; 2405 break; 2406 } 2407 case CHELSIO_SET_PM:{ 2408 struct ch_pm m; 2409 struct tp_params *p = &adapter->params.tp; 2410 2411 if (!is_offload(adapter)) 2412 return -EOPNOTSUPP; 2413 if (!capable(CAP_NET_ADMIN)) 2414 return -EPERM; 2415 if (adapter->flags & FULL_INIT_DONE) 2416 return -EBUSY; 2417 if (copy_from_user(&m, useraddr, sizeof(m))) 2418 return -EFAULT; 2419 if (m.cmd != CHELSIO_SET_PM) 2420 return -EINVAL; 2421 if (!is_power_of_2(m.rx_pg_sz) || 2422 !is_power_of_2(m.tx_pg_sz)) 2423 return -EINVAL; /* not power of 2 */ 2424 if (!(m.rx_pg_sz & 0x14000)) 2425 return -EINVAL; /* not 16KB or 64KB */ 2426 if (!(m.tx_pg_sz & 0x1554000)) 2427 return -EINVAL; 2428 if (m.tx_num_pg == -1) 2429 m.tx_num_pg = p->tx_num_pgs; 2430 if (m.rx_num_pg == -1) 2431 m.rx_num_pg = p->rx_num_pgs; 2432 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2433 return -EINVAL; 2434 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2435 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2436 return -EINVAL; 2437 p->rx_pg_size = m.rx_pg_sz; 2438 p->tx_pg_size = m.tx_pg_sz; 2439 p->rx_num_pgs = m.rx_num_pg; 2440 p->tx_num_pgs = m.tx_num_pg; 2441 break; 2442 } 2443 case CHELSIO_GET_MEM:{ 2444 struct ch_mem_range t; 2445 struct mc7 *mem; 2446 u64 buf[32]; 2447 2448 if (!is_offload(adapter)) 2449 return -EOPNOTSUPP; 2450 if (!capable(CAP_NET_ADMIN)) 2451 return -EPERM; 2452 if (!(adapter->flags & FULL_INIT_DONE)) 2453 return -EIO; /* need the memory controllers */ 2454 if (copy_from_user(&t, useraddr, sizeof(t))) 2455 return -EFAULT; 2456 if (t.cmd != CHELSIO_GET_MEM) 2457 return -EINVAL; 2458 if ((t.addr & 7) || (t.len & 7)) 2459 return -EINVAL; 2460 if (t.mem_id == MEM_CM) 2461 mem = &adapter->cm; 2462 else if (t.mem_id == MEM_PMRX) 2463 mem = &adapter->pmrx; 2464 else if (t.mem_id == MEM_PMTX) 2465 mem = &adapter->pmtx; 2466 else 2467 return -EINVAL; 2468 2469 /* 2470 * Version scheme: 2471 * bits 0..9: chip version 2472 * bits 10..15: chip revision 2473 */ 2474 t.version = 3 | (adapter->params.rev << 10); 2475 if (copy_to_user(useraddr, &t, sizeof(t))) 2476 return -EFAULT; 2477 2478 /* 2479 * Read 256 bytes at a time as len can be large and we don't 2480 * want to use huge intermediate buffers. 2481 */ 2482 useraddr += sizeof(t); /* advance to start of buffer */ 2483 while (t.len) { 2484 unsigned int chunk = 2485 min_t(unsigned int, t.len, sizeof(buf)); 2486 2487 ret = 2488 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2489 buf); 2490 if (ret) 2491 return ret; 2492 if (copy_to_user(useraddr, buf, chunk)) 2493 return -EFAULT; 2494 useraddr += chunk; 2495 t.addr += chunk; 2496 t.len -= chunk; 2497 } 2498 break; 2499 } 2500 case CHELSIO_SET_TRACE_FILTER:{ 2501 struct ch_trace t; 2502 const struct trace_params *tp; 2503 2504 if (!capable(CAP_NET_ADMIN)) 2505 return -EPERM; 2506 if (!offload_running(adapter)) 2507 return -EAGAIN; 2508 if (copy_from_user(&t, useraddr, sizeof(t))) 2509 return -EFAULT; 2510 if (t.cmd != CHELSIO_SET_TRACE_FILTER) 2511 return -EINVAL; 2512 2513 tp = (const struct trace_params *)&t.sip; 2514 if (t.config_tx) 2515 t3_config_trace_filter(adapter, tp, 0, 2516 t.invert_match, 2517 t.trace_tx); 2518 if (t.config_rx) 2519 t3_config_trace_filter(adapter, tp, 1, 2520 t.invert_match, 2521 t.trace_rx); 2522 break; 2523 } 2524 default: 2525 return -EOPNOTSUPP; 2526 } 2527 return 0; 2528 } 2529 2530 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2531 { 2532 struct mii_ioctl_data *data = if_mii(req); 2533 struct port_info *pi = netdev_priv(dev); 2534 struct adapter *adapter = pi->adapter; 2535 2536 switch (cmd) { 2537 case SIOCGMIIREG: 2538 case SIOCSMIIREG: 2539 /* Convert phy_id from older PRTAD/DEVAD format */ 2540 if (is_10G(adapter) && 2541 !mdio_phy_id_is_c45(data->phy_id) && 2542 (data->phy_id & 0x1f00) && 2543 !(data->phy_id & 0xe0e0)) 2544 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2545 data->phy_id & 0x1f); 2546 /* FALLTHRU */ 2547 case SIOCGMIIPHY: 2548 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2549 case SIOCCHIOCTL: 2550 return cxgb_extension_ioctl(dev, req->ifr_data); 2551 default: 2552 return -EOPNOTSUPP; 2553 } 2554 } 2555 2556 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2557 { 2558 struct port_info *pi = netdev_priv(dev); 2559 struct adapter *adapter = pi->adapter; 2560 int ret; 2561 2562 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2563 return ret; 2564 dev->mtu = new_mtu; 2565 init_port_mtus(adapter); 2566 if (adapter->params.rev == 0 && offload_running(adapter)) 2567 t3_load_mtus(adapter, adapter->params.mtus, 2568 adapter->params.a_wnd, adapter->params.b_wnd, 2569 adapter->port[0]->mtu); 2570 return 0; 2571 } 2572 2573 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2574 { 2575 struct port_info *pi = netdev_priv(dev); 2576 struct adapter *adapter = pi->adapter; 2577 struct sockaddr *addr = p; 2578 2579 if (!is_valid_ether_addr(addr->sa_data)) 2580 return -EADDRNOTAVAIL; 2581 2582 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2583 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2584 if (offload_running(adapter)) 2585 write_smt_entry(adapter, pi->port_id); 2586 return 0; 2587 } 2588 2589 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2590 netdev_features_t features) 2591 { 2592 /* 2593 * Since there is no support for separate rx/tx vlan accel 2594 * enable/disable make sure tx flag is always in same state as rx. 2595 */ 2596 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2597 features |= NETIF_F_HW_VLAN_CTAG_TX; 2598 else 2599 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2600 2601 return features; 2602 } 2603 2604 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2605 { 2606 netdev_features_t changed = dev->features ^ features; 2607 2608 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2609 cxgb_vlan_mode(dev, features); 2610 2611 return 0; 2612 } 2613 2614 #ifdef CONFIG_NET_POLL_CONTROLLER 2615 static void cxgb_netpoll(struct net_device *dev) 2616 { 2617 struct port_info *pi = netdev_priv(dev); 2618 struct adapter *adapter = pi->adapter; 2619 int qidx; 2620 2621 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2622 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2623 void *source; 2624 2625 if (adapter->flags & USING_MSIX) 2626 source = qs; 2627 else 2628 source = adapter; 2629 2630 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2631 } 2632 } 2633 #endif 2634 2635 /* 2636 * Periodic accumulation of MAC statistics. 2637 */ 2638 static void mac_stats_update(struct adapter *adapter) 2639 { 2640 int i; 2641 2642 for_each_port(adapter, i) { 2643 struct net_device *dev = adapter->port[i]; 2644 struct port_info *p = netdev_priv(dev); 2645 2646 if (netif_running(dev)) { 2647 spin_lock(&adapter->stats_lock); 2648 t3_mac_update_stats(&p->mac); 2649 spin_unlock(&adapter->stats_lock); 2650 } 2651 } 2652 } 2653 2654 static void check_link_status(struct adapter *adapter) 2655 { 2656 int i; 2657 2658 for_each_port(adapter, i) { 2659 struct net_device *dev = adapter->port[i]; 2660 struct port_info *p = netdev_priv(dev); 2661 int link_fault; 2662 2663 spin_lock_irq(&adapter->work_lock); 2664 link_fault = p->link_fault; 2665 spin_unlock_irq(&adapter->work_lock); 2666 2667 if (link_fault) { 2668 t3_link_fault(adapter, i); 2669 continue; 2670 } 2671 2672 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2673 t3_xgm_intr_disable(adapter, i); 2674 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2675 2676 t3_link_changed(adapter, i); 2677 t3_xgm_intr_enable(adapter, i); 2678 } 2679 } 2680 } 2681 2682 static void check_t3b2_mac(struct adapter *adapter) 2683 { 2684 int i; 2685 2686 if (!rtnl_trylock()) /* synchronize with ifdown */ 2687 return; 2688 2689 for_each_port(adapter, i) { 2690 struct net_device *dev = adapter->port[i]; 2691 struct port_info *p = netdev_priv(dev); 2692 int status; 2693 2694 if (!netif_running(dev)) 2695 continue; 2696 2697 status = 0; 2698 if (netif_running(dev) && netif_carrier_ok(dev)) 2699 status = t3b2_mac_watchdog_task(&p->mac); 2700 if (status == 1) 2701 p->mac.stats.num_toggled++; 2702 else if (status == 2) { 2703 struct cmac *mac = &p->mac; 2704 2705 t3_mac_set_mtu(mac, dev->mtu); 2706 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2707 cxgb_set_rxmode(dev); 2708 t3_link_start(&p->phy, mac, &p->link_config); 2709 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2710 t3_port_intr_enable(adapter, p->port_id); 2711 p->mac.stats.num_resets++; 2712 } 2713 } 2714 rtnl_unlock(); 2715 } 2716 2717 2718 static void t3_adap_check_task(struct work_struct *work) 2719 { 2720 struct adapter *adapter = container_of(work, struct adapter, 2721 adap_check_task.work); 2722 const struct adapter_params *p = &adapter->params; 2723 int port; 2724 unsigned int v, status, reset; 2725 2726 adapter->check_task_cnt++; 2727 2728 check_link_status(adapter); 2729 2730 /* Accumulate MAC stats if needed */ 2731 if (!p->linkpoll_period || 2732 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2733 p->stats_update_period) { 2734 mac_stats_update(adapter); 2735 adapter->check_task_cnt = 0; 2736 } 2737 2738 if (p->rev == T3_REV_B2) 2739 check_t3b2_mac(adapter); 2740 2741 /* 2742 * Scan the XGMAC's to check for various conditions which we want to 2743 * monitor in a periodic polling manner rather than via an interrupt 2744 * condition. This is used for conditions which would otherwise flood 2745 * the system with interrupts and we only really need to know that the 2746 * conditions are "happening" ... For each condition we count the 2747 * detection of the condition and reset it for the next polling loop. 2748 */ 2749 for_each_port(adapter, port) { 2750 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2751 u32 cause; 2752 2753 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2754 reset = 0; 2755 if (cause & F_RXFIFO_OVERFLOW) { 2756 mac->stats.rx_fifo_ovfl++; 2757 reset |= F_RXFIFO_OVERFLOW; 2758 } 2759 2760 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2761 } 2762 2763 /* 2764 * We do the same as above for FL_EMPTY interrupts. 2765 */ 2766 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2767 reset = 0; 2768 2769 if (status & F_FLEMPTY) { 2770 struct sge_qset *qs = &adapter->sge.qs[0]; 2771 int i = 0; 2772 2773 reset |= F_FLEMPTY; 2774 2775 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2776 0xffff; 2777 2778 while (v) { 2779 qs->fl[i].empty += (v & 1); 2780 if (i) 2781 qs++; 2782 i ^= 1; 2783 v >>= 1; 2784 } 2785 } 2786 2787 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2788 2789 /* Schedule the next check update if any port is active. */ 2790 spin_lock_irq(&adapter->work_lock); 2791 if (adapter->open_device_map & PORT_MASK) 2792 schedule_chk_task(adapter); 2793 spin_unlock_irq(&adapter->work_lock); 2794 } 2795 2796 static void db_full_task(struct work_struct *work) 2797 { 2798 struct adapter *adapter = container_of(work, struct adapter, 2799 db_full_task); 2800 2801 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2802 } 2803 2804 static void db_empty_task(struct work_struct *work) 2805 { 2806 struct adapter *adapter = container_of(work, struct adapter, 2807 db_empty_task); 2808 2809 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2810 } 2811 2812 static void db_drop_task(struct work_struct *work) 2813 { 2814 struct adapter *adapter = container_of(work, struct adapter, 2815 db_drop_task); 2816 unsigned long delay = 1000; 2817 unsigned short r; 2818 2819 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2820 2821 /* 2822 * Sleep a while before ringing the driver qset dbs. 2823 * The delay is between 1000-2023 usecs. 2824 */ 2825 get_random_bytes(&r, 2); 2826 delay += r & 1023; 2827 set_current_state(TASK_UNINTERRUPTIBLE); 2828 schedule_timeout(usecs_to_jiffies(delay)); 2829 ring_dbs(adapter); 2830 } 2831 2832 /* 2833 * Processes external (PHY) interrupts in process context. 2834 */ 2835 static void ext_intr_task(struct work_struct *work) 2836 { 2837 struct adapter *adapter = container_of(work, struct adapter, 2838 ext_intr_handler_task); 2839 int i; 2840 2841 /* Disable link fault interrupts */ 2842 for_each_port(adapter, i) { 2843 struct net_device *dev = adapter->port[i]; 2844 struct port_info *p = netdev_priv(dev); 2845 2846 t3_xgm_intr_disable(adapter, i); 2847 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2848 } 2849 2850 /* Re-enable link fault interrupts */ 2851 t3_phy_intr_handler(adapter); 2852 2853 for_each_port(adapter, i) 2854 t3_xgm_intr_enable(adapter, i); 2855 2856 /* Now reenable external interrupts */ 2857 spin_lock_irq(&adapter->work_lock); 2858 if (adapter->slow_intr_mask) { 2859 adapter->slow_intr_mask |= F_T3DBG; 2860 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2861 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2862 adapter->slow_intr_mask); 2863 } 2864 spin_unlock_irq(&adapter->work_lock); 2865 } 2866 2867 /* 2868 * Interrupt-context handler for external (PHY) interrupts. 2869 */ 2870 void t3_os_ext_intr_handler(struct adapter *adapter) 2871 { 2872 /* 2873 * Schedule a task to handle external interrupts as they may be slow 2874 * and we use a mutex to protect MDIO registers. We disable PHY 2875 * interrupts in the meantime and let the task reenable them when 2876 * it's done. 2877 */ 2878 spin_lock(&adapter->work_lock); 2879 if (adapter->slow_intr_mask) { 2880 adapter->slow_intr_mask &= ~F_T3DBG; 2881 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2882 adapter->slow_intr_mask); 2883 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2884 } 2885 spin_unlock(&adapter->work_lock); 2886 } 2887 2888 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2889 { 2890 struct net_device *netdev = adapter->port[port_id]; 2891 struct port_info *pi = netdev_priv(netdev); 2892 2893 spin_lock(&adapter->work_lock); 2894 pi->link_fault = 1; 2895 spin_unlock(&adapter->work_lock); 2896 } 2897 2898 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2899 { 2900 int i, ret = 0; 2901 2902 if (is_offload(adapter) && 2903 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2904 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2905 offload_close(&adapter->tdev); 2906 } 2907 2908 /* Stop all ports */ 2909 for_each_port(adapter, i) { 2910 struct net_device *netdev = adapter->port[i]; 2911 2912 if (netif_running(netdev)) 2913 __cxgb_close(netdev, on_wq); 2914 } 2915 2916 /* Stop SGE timers */ 2917 t3_stop_sge_timers(adapter); 2918 2919 adapter->flags &= ~FULL_INIT_DONE; 2920 2921 if (reset) 2922 ret = t3_reset_adapter(adapter); 2923 2924 pci_disable_device(adapter->pdev); 2925 2926 return ret; 2927 } 2928 2929 static int t3_reenable_adapter(struct adapter *adapter) 2930 { 2931 if (pci_enable_device(adapter->pdev)) { 2932 dev_err(&adapter->pdev->dev, 2933 "Cannot re-enable PCI device after reset.\n"); 2934 goto err; 2935 } 2936 pci_set_master(adapter->pdev); 2937 pci_restore_state(adapter->pdev); 2938 pci_save_state(adapter->pdev); 2939 2940 /* Free sge resources */ 2941 t3_free_sge_resources(adapter); 2942 2943 if (t3_replay_prep_adapter(adapter)) 2944 goto err; 2945 2946 return 0; 2947 err: 2948 return -1; 2949 } 2950 2951 static void t3_resume_ports(struct adapter *adapter) 2952 { 2953 int i; 2954 2955 /* Restart the ports */ 2956 for_each_port(adapter, i) { 2957 struct net_device *netdev = adapter->port[i]; 2958 2959 if (netif_running(netdev)) { 2960 if (cxgb_open(netdev)) { 2961 dev_err(&adapter->pdev->dev, 2962 "can't bring device back up" 2963 " after reset\n"); 2964 continue; 2965 } 2966 } 2967 } 2968 2969 if (is_offload(adapter) && !ofld_disable) 2970 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2971 } 2972 2973 /* 2974 * processes a fatal error. 2975 * Bring the ports down, reset the chip, bring the ports back up. 2976 */ 2977 static void fatal_error_task(struct work_struct *work) 2978 { 2979 struct adapter *adapter = container_of(work, struct adapter, 2980 fatal_error_handler_task); 2981 int err = 0; 2982 2983 rtnl_lock(); 2984 err = t3_adapter_error(adapter, 1, 1); 2985 if (!err) 2986 err = t3_reenable_adapter(adapter); 2987 if (!err) 2988 t3_resume_ports(adapter); 2989 2990 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2991 rtnl_unlock(); 2992 } 2993 2994 void t3_fatal_err(struct adapter *adapter) 2995 { 2996 unsigned int fw_status[4]; 2997 2998 if (adapter->flags & FULL_INIT_DONE) { 2999 t3_sge_stop(adapter); 3000 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 3001 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 3002 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 3003 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 3004 3005 spin_lock(&adapter->work_lock); 3006 t3_intr_disable(adapter); 3007 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 3008 spin_unlock(&adapter->work_lock); 3009 } 3010 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 3011 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 3012 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 3013 fw_status[0], fw_status[1], 3014 fw_status[2], fw_status[3]); 3015 } 3016 3017 /** 3018 * t3_io_error_detected - called when PCI error is detected 3019 * @pdev: Pointer to PCI device 3020 * @state: The current pci connection state 3021 * 3022 * This function is called after a PCI bus error affecting 3023 * this device has been detected. 3024 */ 3025 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 3026 pci_channel_state_t state) 3027 { 3028 struct adapter *adapter = pci_get_drvdata(pdev); 3029 3030 if (state == pci_channel_io_perm_failure) 3031 return PCI_ERS_RESULT_DISCONNECT; 3032 3033 t3_adapter_error(adapter, 0, 0); 3034 3035 /* Request a slot reset. */ 3036 return PCI_ERS_RESULT_NEED_RESET; 3037 } 3038 3039 /** 3040 * t3_io_slot_reset - called after the pci bus has been reset. 3041 * @pdev: Pointer to PCI device 3042 * 3043 * Restart the card from scratch, as if from a cold-boot. 3044 */ 3045 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3046 { 3047 struct adapter *adapter = pci_get_drvdata(pdev); 3048 3049 if (!t3_reenable_adapter(adapter)) 3050 return PCI_ERS_RESULT_RECOVERED; 3051 3052 return PCI_ERS_RESULT_DISCONNECT; 3053 } 3054 3055 /** 3056 * t3_io_resume - called when traffic can start flowing again. 3057 * @pdev: Pointer to PCI device 3058 * 3059 * This callback is called when the error recovery driver tells us that 3060 * its OK to resume normal operation. 3061 */ 3062 static void t3_io_resume(struct pci_dev *pdev) 3063 { 3064 struct adapter *adapter = pci_get_drvdata(pdev); 3065 3066 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3067 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3068 3069 rtnl_lock(); 3070 t3_resume_ports(adapter); 3071 rtnl_unlock(); 3072 } 3073 3074 static const struct pci_error_handlers t3_err_handler = { 3075 .error_detected = t3_io_error_detected, 3076 .slot_reset = t3_io_slot_reset, 3077 .resume = t3_io_resume, 3078 }; 3079 3080 /* 3081 * Set the number of qsets based on the number of CPUs and the number of ports, 3082 * not to exceed the number of available qsets, assuming there are enough qsets 3083 * per port in HW. 3084 */ 3085 static void set_nqsets(struct adapter *adap) 3086 { 3087 int i, j = 0; 3088 int num_cpus = netif_get_num_default_rss_queues(); 3089 int hwports = adap->params.nports; 3090 int nqsets = adap->msix_nvectors - 1; 3091 3092 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3093 if (hwports == 2 && 3094 (hwports * nqsets > SGE_QSETS || 3095 num_cpus >= nqsets / hwports)) 3096 nqsets /= hwports; 3097 if (nqsets > num_cpus) 3098 nqsets = num_cpus; 3099 if (nqsets < 1 || hwports == 4) 3100 nqsets = 1; 3101 } else 3102 nqsets = 1; 3103 3104 for_each_port(adap, i) { 3105 struct port_info *pi = adap2pinfo(adap, i); 3106 3107 pi->first_qset = j; 3108 pi->nqsets = nqsets; 3109 j = pi->first_qset + nqsets; 3110 3111 dev_info(&adap->pdev->dev, 3112 "Port %d using %d queue sets.\n", i, nqsets); 3113 } 3114 } 3115 3116 static int cxgb_enable_msix(struct adapter *adap) 3117 { 3118 struct msix_entry entries[SGE_QSETS + 1]; 3119 int vectors; 3120 int i; 3121 3122 vectors = ARRAY_SIZE(entries); 3123 for (i = 0; i < vectors; ++i) 3124 entries[i].entry = i; 3125 3126 vectors = pci_enable_msix_range(adap->pdev, entries, 3127 adap->params.nports + 1, vectors); 3128 if (vectors < 0) 3129 return vectors; 3130 3131 for (i = 0; i < vectors; ++i) 3132 adap->msix_info[i].vec = entries[i].vector; 3133 adap->msix_nvectors = vectors; 3134 3135 return 0; 3136 } 3137 3138 static void print_port_info(struct adapter *adap, const struct adapter_info *ai) 3139 { 3140 static const char *pci_variant[] = { 3141 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3142 }; 3143 3144 int i; 3145 char buf[80]; 3146 3147 if (is_pcie(adap)) 3148 snprintf(buf, sizeof(buf), "%s x%d", 3149 pci_variant[adap->params.pci.variant], 3150 adap->params.pci.width); 3151 else 3152 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3153 pci_variant[adap->params.pci.variant], 3154 adap->params.pci.speed, adap->params.pci.width); 3155 3156 for_each_port(adap, i) { 3157 struct net_device *dev = adap->port[i]; 3158 const struct port_info *pi = netdev_priv(dev); 3159 3160 if (!test_bit(i, &adap->registered_device_map)) 3161 continue; 3162 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n", 3163 ai->desc, pi->phy.desc, 3164 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3165 (adap->flags & USING_MSIX) ? " MSI-X" : 3166 (adap->flags & USING_MSI) ? " MSI" : ""); 3167 if (adap->name == dev->name && adap->params.vpd.mclk) 3168 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3169 adap->name, t3_mc7_size(&adap->cm) >> 20, 3170 t3_mc7_size(&adap->pmtx) >> 20, 3171 t3_mc7_size(&adap->pmrx) >> 20, 3172 adap->params.vpd.sn); 3173 } 3174 } 3175 3176 static const struct net_device_ops cxgb_netdev_ops = { 3177 .ndo_open = cxgb_open, 3178 .ndo_stop = cxgb_close, 3179 .ndo_start_xmit = t3_eth_xmit, 3180 .ndo_get_stats = cxgb_get_stats, 3181 .ndo_validate_addr = eth_validate_addr, 3182 .ndo_set_rx_mode = cxgb_set_rxmode, 3183 .ndo_do_ioctl = cxgb_ioctl, 3184 .ndo_change_mtu = cxgb_change_mtu, 3185 .ndo_set_mac_address = cxgb_set_mac_addr, 3186 .ndo_fix_features = cxgb_fix_features, 3187 .ndo_set_features = cxgb_set_features, 3188 #ifdef CONFIG_NET_POLL_CONTROLLER 3189 .ndo_poll_controller = cxgb_netpoll, 3190 #endif 3191 }; 3192 3193 static void cxgb3_init_iscsi_mac(struct net_device *dev) 3194 { 3195 struct port_info *pi = netdev_priv(dev); 3196 3197 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3198 pi->iscsic.mac_addr[3] |= 0x80; 3199 } 3200 3201 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 3202 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 3203 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 3204 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 3205 { 3206 int i, err, pci_using_dac = 0; 3207 resource_size_t mmio_start, mmio_len; 3208 const struct adapter_info *ai; 3209 struct adapter *adapter = NULL; 3210 struct port_info *pi; 3211 3212 if (!cxgb3_wq) { 3213 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3214 if (!cxgb3_wq) { 3215 pr_err("cannot initialize work queue\n"); 3216 return -ENOMEM; 3217 } 3218 } 3219 3220 err = pci_enable_device(pdev); 3221 if (err) { 3222 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3223 goto out; 3224 } 3225 3226 err = pci_request_regions(pdev, DRV_NAME); 3227 if (err) { 3228 /* Just info, some other driver may have claimed the device. */ 3229 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3230 goto out_disable_device; 3231 } 3232 3233 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3234 pci_using_dac = 1; 3235 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3236 if (err) { 3237 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 3238 "coherent allocations\n"); 3239 goto out_release_regions; 3240 } 3241 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) { 3242 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3243 goto out_release_regions; 3244 } 3245 3246 pci_set_master(pdev); 3247 pci_save_state(pdev); 3248 3249 mmio_start = pci_resource_start(pdev, 0); 3250 mmio_len = pci_resource_len(pdev, 0); 3251 ai = t3_get_adapter_info(ent->driver_data); 3252 3253 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3254 if (!adapter) { 3255 err = -ENOMEM; 3256 goto out_release_regions; 3257 } 3258 3259 adapter->nofail_skb = 3260 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3261 if (!adapter->nofail_skb) { 3262 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3263 err = -ENOMEM; 3264 goto out_free_adapter; 3265 } 3266 3267 adapter->regs = ioremap(mmio_start, mmio_len); 3268 if (!adapter->regs) { 3269 dev_err(&pdev->dev, "cannot map device registers\n"); 3270 err = -ENOMEM; 3271 goto out_free_adapter_nofail; 3272 } 3273 3274 adapter->pdev = pdev; 3275 adapter->name = pci_name(pdev); 3276 adapter->msg_enable = dflt_msg_enable; 3277 adapter->mmio_len = mmio_len; 3278 3279 mutex_init(&adapter->mdio_lock); 3280 spin_lock_init(&adapter->work_lock); 3281 spin_lock_init(&adapter->stats_lock); 3282 3283 INIT_LIST_HEAD(&adapter->adapter_list); 3284 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3285 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3286 3287 INIT_WORK(&adapter->db_full_task, db_full_task); 3288 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3289 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3290 3291 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3292 3293 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3294 struct net_device *netdev; 3295 3296 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3297 if (!netdev) { 3298 err = -ENOMEM; 3299 goto out_free_dev; 3300 } 3301 3302 SET_NETDEV_DEV(netdev, &pdev->dev); 3303 3304 adapter->port[i] = netdev; 3305 pi = netdev_priv(netdev); 3306 pi->adapter = adapter; 3307 pi->port_id = i; 3308 netif_carrier_off(netdev); 3309 netdev->irq = pdev->irq; 3310 netdev->mem_start = mmio_start; 3311 netdev->mem_end = mmio_start + mmio_len - 1; 3312 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3313 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX; 3314 netdev->features |= netdev->hw_features | 3315 NETIF_F_HW_VLAN_CTAG_TX; 3316 netdev->vlan_features |= netdev->features & VLAN_FEAT; 3317 if (pci_using_dac) 3318 netdev->features |= NETIF_F_HIGHDMA; 3319 3320 netdev->netdev_ops = &cxgb_netdev_ops; 3321 netdev->ethtool_ops = &cxgb_ethtool_ops; 3322 netdev->min_mtu = 81; 3323 netdev->max_mtu = ETH_MAX_MTU; 3324 netdev->dev_port = pi->port_id; 3325 } 3326 3327 pci_set_drvdata(pdev, adapter); 3328 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3329 err = -ENODEV; 3330 goto out_free_dev; 3331 } 3332 3333 /* 3334 * The card is now ready to go. If any errors occur during device 3335 * registration we do not fail the whole card but rather proceed only 3336 * with the ports we manage to register successfully. However we must 3337 * register at least one net device. 3338 */ 3339 for_each_port(adapter, i) { 3340 err = register_netdev(adapter->port[i]); 3341 if (err) 3342 dev_warn(&pdev->dev, 3343 "cannot register net device %s, skipping\n", 3344 adapter->port[i]->name); 3345 else { 3346 /* 3347 * Change the name we use for messages to the name of 3348 * the first successfully registered interface. 3349 */ 3350 if (!adapter->registered_device_map) 3351 adapter->name = adapter->port[i]->name; 3352 3353 __set_bit(i, &adapter->registered_device_map); 3354 } 3355 } 3356 if (!adapter->registered_device_map) { 3357 dev_err(&pdev->dev, "could not register any net devices\n"); 3358 goto out_free_dev; 3359 } 3360 3361 for_each_port(adapter, i) 3362 cxgb3_init_iscsi_mac(adapter->port[i]); 3363 3364 /* Driver's ready. Reflect it on LEDs */ 3365 t3_led_ready(adapter); 3366 3367 if (is_offload(adapter)) { 3368 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3369 cxgb3_adapter_ofld(adapter); 3370 } 3371 3372 /* See what interrupts we'll be using */ 3373 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3374 adapter->flags |= USING_MSIX; 3375 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3376 adapter->flags |= USING_MSI; 3377 3378 set_nqsets(adapter); 3379 3380 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3381 &cxgb3_attr_group); 3382 if (err) { 3383 dev_err(&pdev->dev, "cannot create sysfs group\n"); 3384 goto out_close_led; 3385 } 3386 3387 print_port_info(adapter, ai); 3388 return 0; 3389 3390 out_close_led: 3391 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 3392 3393 out_free_dev: 3394 iounmap(adapter->regs); 3395 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3396 if (adapter->port[i]) 3397 free_netdev(adapter->port[i]); 3398 3399 out_free_adapter_nofail: 3400 kfree_skb(adapter->nofail_skb); 3401 3402 out_free_adapter: 3403 kfree(adapter); 3404 3405 out_release_regions: 3406 pci_release_regions(pdev); 3407 out_disable_device: 3408 pci_disable_device(pdev); 3409 out: 3410 return err; 3411 } 3412 3413 static void remove_one(struct pci_dev *pdev) 3414 { 3415 struct adapter *adapter = pci_get_drvdata(pdev); 3416 3417 if (adapter) { 3418 int i; 3419 3420 t3_sge_stop(adapter); 3421 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3422 &cxgb3_attr_group); 3423 3424 if (is_offload(adapter)) { 3425 cxgb3_adapter_unofld(adapter); 3426 if (test_bit(OFFLOAD_DEVMAP_BIT, 3427 &adapter->open_device_map)) 3428 offload_close(&adapter->tdev); 3429 } 3430 3431 for_each_port(adapter, i) 3432 if (test_bit(i, &adapter->registered_device_map)) 3433 unregister_netdev(adapter->port[i]); 3434 3435 t3_stop_sge_timers(adapter); 3436 t3_free_sge_resources(adapter); 3437 cxgb_disable_msi(adapter); 3438 3439 for_each_port(adapter, i) 3440 if (adapter->port[i]) 3441 free_netdev(adapter->port[i]); 3442 3443 iounmap(adapter->regs); 3444 kfree_skb(adapter->nofail_skb); 3445 kfree(adapter); 3446 pci_release_regions(pdev); 3447 pci_disable_device(pdev); 3448 } 3449 } 3450 3451 static struct pci_driver driver = { 3452 .name = DRV_NAME, 3453 .id_table = cxgb3_pci_tbl, 3454 .probe = init_one, 3455 .remove = remove_one, 3456 .err_handler = &t3_err_handler, 3457 }; 3458 3459 static int __init cxgb3_init_module(void) 3460 { 3461 int ret; 3462 3463 cxgb3_offload_init(); 3464 3465 ret = pci_register_driver(&driver); 3466 return ret; 3467 } 3468 3469 static void __exit cxgb3_cleanup_module(void) 3470 { 3471 pci_unregister_driver(&driver); 3472 if (cxgb3_wq) 3473 destroy_workqueue(cxgb3_wq); 3474 } 3475 3476 module_init(cxgb3_init_module); 3477 module_exit(cxgb3_cleanup_module); 3478