1 /***************************************************************************** 2 * * 3 * File: subr.c * 4 * $Revision: 1.27 $ * 5 * $Date: 2005/06/22 01:08:36 $ * 6 * Description: * 7 * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. * 8 * part of the Chelsio 10Gb Ethernet Driver. * 9 * * 10 * This program is free software; you can redistribute it and/or modify * 11 * it under the terms of the GNU General Public License, version 2, as * 12 * published by the Free Software Foundation. * 13 * * 14 * You should have received a copy of the GNU General Public License along * 15 * with this program; if not, see <http://www.gnu.org/licenses/>. * 16 * * 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * 20 * * 21 * http://www.chelsio.com * 22 * * 23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 24 * All rights reserved. * 25 * * 26 * Maintainers: maintainers@chelsio.com * 27 * * 28 * Authors: Dimitrios Michailidis <dm@chelsio.com> * 29 * Tina Yang <tainay@chelsio.com> * 30 * Felix Marti <felix@chelsio.com> * 31 * Scott Bardone <sbardone@chelsio.com> * 32 * Kurt Ottaway <kottaway@chelsio.com> * 33 * Frank DiMambro <frank@chelsio.com> * 34 * * 35 * History: * 36 * * 37 ****************************************************************************/ 38 39 #include "common.h" 40 #include "elmer0.h" 41 #include "regs.h" 42 #include "gmac.h" 43 #include "cphy.h" 44 #include "sge.h" 45 #include "tp.h" 46 #include "espi.h" 47 48 /** 49 * t1_wait_op_done - wait until an operation is completed 50 * @adapter: the adapter performing the operation 51 * @reg: the register to check for completion 52 * @mask: a single-bit field within @reg that indicates completion 53 * @polarity: the value of the field when the operation is completed 54 * @attempts: number of check iterations 55 * @delay: delay in usecs between iterations 56 * 57 * Wait until an operation is completed by checking a bit in a register 58 * up to @attempts times. Returns %0 if the operation completes and %1 59 * otherwise. 60 */ 61 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity, 62 int attempts, int delay) 63 { 64 while (1) { 65 u32 val = readl(adapter->regs + reg) & mask; 66 67 if (!!val == polarity) 68 return 0; 69 if (--attempts == 0) 70 return 1; 71 if (delay) 72 udelay(delay); 73 } 74 } 75 76 #define TPI_ATTEMPTS 50 77 78 /* 79 * Write a register over the TPI interface (unlocked and locked versions). 80 */ 81 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) 82 { 83 int tpi_busy; 84 85 writel(addr, adapter->regs + A_TPI_ADDR); 86 writel(value, adapter->regs + A_TPI_WR_DATA); 87 writel(F_TPIWR, adapter->regs + A_TPI_CSR); 88 89 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, 90 TPI_ATTEMPTS, 3); 91 if (tpi_busy) 92 pr_alert("%s: TPI write to 0x%x failed\n", 93 adapter->name, addr); 94 return tpi_busy; 95 } 96 97 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) 98 { 99 int ret; 100 101 spin_lock(&adapter->tpi_lock); 102 ret = __t1_tpi_write(adapter, addr, value); 103 spin_unlock(&adapter->tpi_lock); 104 return ret; 105 } 106 107 /* 108 * Read a register over the TPI interface (unlocked and locked versions). 109 */ 110 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) 111 { 112 int tpi_busy; 113 114 writel(addr, adapter->regs + A_TPI_ADDR); 115 writel(0, adapter->regs + A_TPI_CSR); 116 117 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, 118 TPI_ATTEMPTS, 3); 119 if (tpi_busy) 120 pr_alert("%s: TPI read from 0x%x failed\n", 121 adapter->name, addr); 122 else 123 *valp = readl(adapter->regs + A_TPI_RD_DATA); 124 return tpi_busy; 125 } 126 127 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) 128 { 129 int ret; 130 131 spin_lock(&adapter->tpi_lock); 132 ret = __t1_tpi_read(adapter, addr, valp); 133 spin_unlock(&adapter->tpi_lock); 134 return ret; 135 } 136 137 /* 138 * Set a TPI parameter. 139 */ 140 static void t1_tpi_par(adapter_t *adapter, u32 value) 141 { 142 writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR); 143 } 144 145 /* 146 * Called when a port's link settings change to propagate the new values to the 147 * associated PHY and MAC. After performing the common tasks it invokes an 148 * OS-specific handler. 149 */ 150 void t1_link_changed(adapter_t *adapter, int port_id) 151 { 152 int link_ok, speed, duplex, fc; 153 struct cphy *phy = adapter->port[port_id].phy; 154 struct link_config *lc = &adapter->port[port_id].link_config; 155 156 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 157 158 lc->speed = speed < 0 ? SPEED_INVALID : speed; 159 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 160 if (!(lc->requested_fc & PAUSE_AUTONEG)) 161 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 162 163 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { 164 /* Set MAC speed, duplex, and flow control to match PHY. */ 165 struct cmac *mac = adapter->port[port_id].mac; 166 167 mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc); 168 lc->fc = (unsigned char)fc; 169 } 170 t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc); 171 } 172 173 static bool t1_pci_intr_handler(adapter_t *adapter) 174 { 175 u32 pcix_cause; 176 177 pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause); 178 179 if (pcix_cause) { 180 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 181 pcix_cause); 182 /* PCI errors are fatal */ 183 t1_interrupts_disable(adapter); 184 adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR; 185 pr_alert("%s: PCI error encountered.\n", adapter->name); 186 return true; 187 } 188 return false; 189 } 190 191 #ifdef CONFIG_CHELSIO_T1_1G 192 #include "fpga_defs.h" 193 194 /* 195 * PHY interrupt handler for FPGA boards. 196 */ 197 static int fpga_phy_intr_handler(adapter_t *adapter) 198 { 199 int p; 200 u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE); 201 202 for_each_port(adapter, p) 203 if (cause & (1 << p)) { 204 struct cphy *phy = adapter->port[p].phy; 205 int phy_cause = phy->ops->interrupt_handler(phy); 206 207 if (phy_cause & cphy_cause_link_change) 208 t1_link_changed(adapter, p); 209 } 210 writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE); 211 return 0; 212 } 213 214 /* 215 * Slow path interrupt handler for FPGAs. 216 */ 217 static irqreturn_t fpga_slow_intr(adapter_t *adapter) 218 { 219 u32 cause = readl(adapter->regs + A_PL_CAUSE); 220 irqreturn_t ret = IRQ_NONE; 221 222 cause &= ~F_PL_INTR_SGE_DATA; 223 if (cause & F_PL_INTR_SGE_ERR) { 224 if (t1_sge_intr_error_handler(adapter->sge)) 225 ret = IRQ_WAKE_THREAD; 226 } 227 228 if (cause & FPGA_PCIX_INTERRUPT_GMAC) 229 fpga_phy_intr_handler(adapter); 230 231 if (cause & FPGA_PCIX_INTERRUPT_TP) { 232 /* 233 * FPGA doesn't support MC4 interrupts and it requires 234 * this odd layer of indirection for MC5. 235 */ 236 u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); 237 238 /* Clear TP interrupt */ 239 writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); 240 } 241 if (cause & FPGA_PCIX_INTERRUPT_PCIX) { 242 if (t1_pci_intr_handler(adapter)) 243 ret = IRQ_WAKE_THREAD; 244 } 245 246 /* Clear the interrupts just processed. */ 247 if (cause) 248 writel(cause, adapter->regs + A_PL_CAUSE); 249 250 if (ret != IRQ_NONE) 251 return ret; 252 253 return cause == 0 ? IRQ_NONE : IRQ_HANDLED; 254 } 255 #endif 256 257 /* 258 * Wait until Elmer's MI1 interface is ready for new operations. 259 */ 260 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg) 261 { 262 int attempts = 100, busy; 263 264 do { 265 u32 val; 266 267 __t1_tpi_read(adapter, mi1_reg, &val); 268 busy = val & F_MI1_OP_BUSY; 269 if (busy) 270 udelay(10); 271 } while (busy && --attempts); 272 if (busy) 273 pr_alert("%s: MDIO operation timed out\n", adapter->name); 274 return busy; 275 } 276 277 /* 278 * MI1 MDIO initialization. 279 */ 280 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi) 281 { 282 u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1; 283 u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) | 284 V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv); 285 286 if (!(bi->caps & SUPPORTED_10000baseT_Full)) 287 val |= V_MI1_SOF(1); 288 t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val); 289 } 290 291 #if defined(CONFIG_CHELSIO_T1_1G) 292 /* 293 * Elmer MI1 MDIO read/write operations. 294 */ 295 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr, 296 u16 reg_addr) 297 { 298 struct adapter *adapter = dev->ml_priv; 299 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); 300 unsigned int val; 301 302 spin_lock(&adapter->tpi_lock); 303 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 304 __t1_tpi_write(adapter, 305 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ); 306 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 307 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val); 308 spin_unlock(&adapter->tpi_lock); 309 return val; 310 } 311 312 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr, 313 u16 reg_addr, u16 val) 314 { 315 struct adapter *adapter = dev->ml_priv; 316 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); 317 318 spin_lock(&adapter->tpi_lock); 319 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 320 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); 321 __t1_tpi_write(adapter, 322 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE); 323 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 324 spin_unlock(&adapter->tpi_lock); 325 return 0; 326 } 327 328 static const struct mdio_ops mi1_mdio_ops = { 329 .init = mi1_mdio_init, 330 .read = mi1_mdio_read, 331 .write = mi1_mdio_write, 332 .mode_support = MDIO_SUPPORTS_C22 333 }; 334 335 #endif 336 337 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr, 338 u16 reg_addr) 339 { 340 struct adapter *adapter = dev->ml_priv; 341 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); 342 unsigned int val; 343 344 spin_lock(&adapter->tpi_lock); 345 346 /* Write the address we want. */ 347 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 348 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); 349 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, 350 MI1_OP_INDIRECT_ADDRESS); 351 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 352 353 /* Write the operation we want. */ 354 __t1_tpi_write(adapter, 355 A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ); 356 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 357 358 /* Read the data. */ 359 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val); 360 spin_unlock(&adapter->tpi_lock); 361 return val; 362 } 363 364 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr, 365 int mmd_addr, u16 reg_addr, u16 val) 366 { 367 struct adapter *adapter = dev->ml_priv; 368 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); 369 370 spin_lock(&adapter->tpi_lock); 371 372 /* Write the address we want. */ 373 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 374 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); 375 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, 376 MI1_OP_INDIRECT_ADDRESS); 377 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 378 379 /* Write the data. */ 380 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); 381 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE); 382 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 383 spin_unlock(&adapter->tpi_lock); 384 return 0; 385 } 386 387 static const struct mdio_ops mi1_mdio_ext_ops = { 388 .init = mi1_mdio_init, 389 .read = mi1_mdio_ext_read, 390 .write = mi1_mdio_ext_write, 391 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22 392 }; 393 394 enum { 395 CH_BRD_T110_1CU, 396 CH_BRD_N110_1F, 397 CH_BRD_N210_1F, 398 CH_BRD_T210_1F, 399 CH_BRD_T210_1CU, 400 CH_BRD_N204_4CU, 401 }; 402 403 static const struct board_info t1_board[] = { 404 { 405 .board = CHBT_BOARD_CHT110, 406 .port_number = 1, 407 .caps = SUPPORTED_10000baseT_Full, 408 .chip_term = CHBT_TERM_T1, 409 .chip_mac = CHBT_MAC_PM3393, 410 .chip_phy = CHBT_PHY_MY3126, 411 .clock_core = 125000000, 412 .clock_mc3 = 150000000, 413 .clock_mc4 = 125000000, 414 .espi_nports = 1, 415 .clock_elmer0 = 44, 416 .mdio_mdien = 1, 417 .mdio_mdiinv = 1, 418 .mdio_mdc = 1, 419 .mdio_phybaseaddr = 1, 420 .gmac = &t1_pm3393_ops, 421 .gphy = &t1_my3126_ops, 422 .mdio_ops = &mi1_mdio_ext_ops, 423 .desc = "Chelsio T110 1x10GBase-CX4 TOE", 424 }, 425 426 { 427 .board = CHBT_BOARD_N110, 428 .port_number = 1, 429 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE, 430 .chip_term = CHBT_TERM_T1, 431 .chip_mac = CHBT_MAC_PM3393, 432 .chip_phy = CHBT_PHY_88X2010, 433 .clock_core = 125000000, 434 .espi_nports = 1, 435 .clock_elmer0 = 44, 436 .mdio_mdien = 0, 437 .mdio_mdiinv = 0, 438 .mdio_mdc = 1, 439 .mdio_phybaseaddr = 0, 440 .gmac = &t1_pm3393_ops, 441 .gphy = &t1_mv88x201x_ops, 442 .mdio_ops = &mi1_mdio_ext_ops, 443 .desc = "Chelsio N110 1x10GBaseX NIC", 444 }, 445 446 { 447 .board = CHBT_BOARD_N210, 448 .port_number = 1, 449 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE, 450 .chip_term = CHBT_TERM_T2, 451 .chip_mac = CHBT_MAC_PM3393, 452 .chip_phy = CHBT_PHY_88X2010, 453 .clock_core = 125000000, 454 .espi_nports = 1, 455 .clock_elmer0 = 44, 456 .mdio_mdien = 0, 457 .mdio_mdiinv = 0, 458 .mdio_mdc = 1, 459 .mdio_phybaseaddr = 0, 460 .gmac = &t1_pm3393_ops, 461 .gphy = &t1_mv88x201x_ops, 462 .mdio_ops = &mi1_mdio_ext_ops, 463 .desc = "Chelsio N210 1x10GBaseX NIC", 464 }, 465 466 { 467 .board = CHBT_BOARD_CHT210, 468 .port_number = 1, 469 .caps = SUPPORTED_10000baseT_Full, 470 .chip_term = CHBT_TERM_T2, 471 .chip_mac = CHBT_MAC_PM3393, 472 .chip_phy = CHBT_PHY_88X2010, 473 .clock_core = 125000000, 474 .clock_mc3 = 133000000, 475 .clock_mc4 = 125000000, 476 .espi_nports = 1, 477 .clock_elmer0 = 44, 478 .mdio_mdien = 0, 479 .mdio_mdiinv = 0, 480 .mdio_mdc = 1, 481 .mdio_phybaseaddr = 0, 482 .gmac = &t1_pm3393_ops, 483 .gphy = &t1_mv88x201x_ops, 484 .mdio_ops = &mi1_mdio_ext_ops, 485 .desc = "Chelsio T210 1x10GBaseX TOE", 486 }, 487 488 { 489 .board = CHBT_BOARD_CHT210, 490 .port_number = 1, 491 .caps = SUPPORTED_10000baseT_Full, 492 .chip_term = CHBT_TERM_T2, 493 .chip_mac = CHBT_MAC_PM3393, 494 .chip_phy = CHBT_PHY_MY3126, 495 .clock_core = 125000000, 496 .clock_mc3 = 133000000, 497 .clock_mc4 = 125000000, 498 .espi_nports = 1, 499 .clock_elmer0 = 44, 500 .mdio_mdien = 1, 501 .mdio_mdiinv = 1, 502 .mdio_mdc = 1, 503 .mdio_phybaseaddr = 1, 504 .gmac = &t1_pm3393_ops, 505 .gphy = &t1_my3126_ops, 506 .mdio_ops = &mi1_mdio_ext_ops, 507 .desc = "Chelsio T210 1x10GBase-CX4 TOE", 508 }, 509 510 #ifdef CONFIG_CHELSIO_T1_1G 511 { 512 .board = CHBT_BOARD_CHN204, 513 .port_number = 4, 514 .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full 515 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full 516 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | 517 SUPPORTED_PAUSE | SUPPORTED_TP, 518 .chip_term = CHBT_TERM_T2, 519 .chip_mac = CHBT_MAC_VSC7321, 520 .chip_phy = CHBT_PHY_88E1111, 521 .clock_core = 100000000, 522 .espi_nports = 4, 523 .clock_elmer0 = 44, 524 .mdio_mdien = 0, 525 .mdio_mdiinv = 0, 526 .mdio_mdc = 0, 527 .mdio_phybaseaddr = 4, 528 .gmac = &t1_vsc7326_ops, 529 .gphy = &t1_mv88e1xxx_ops, 530 .mdio_ops = &mi1_mdio_ops, 531 .desc = "Chelsio N204 4x100/1000BaseT NIC", 532 }, 533 #endif 534 535 }; 536 537 const struct pci_device_id t1_pci_tbl[] = { 538 CH_DEVICE(8, 0, CH_BRD_T110_1CU), 539 CH_DEVICE(8, 1, CH_BRD_T110_1CU), 540 CH_DEVICE(7, 0, CH_BRD_N110_1F), 541 CH_DEVICE(10, 1, CH_BRD_N210_1F), 542 CH_DEVICE(11, 1, CH_BRD_T210_1F), 543 CH_DEVICE(14, 1, CH_BRD_T210_1CU), 544 CH_DEVICE(16, 1, CH_BRD_N204_4CU), 545 { 0 } 546 }; 547 548 MODULE_DEVICE_TABLE(pci, t1_pci_tbl); 549 550 /* 551 * Return the board_info structure with a given index. Out-of-range indices 552 * return NULL. 553 */ 554 const struct board_info *t1_get_board_info(unsigned int board_id) 555 { 556 return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL; 557 } 558 559 struct chelsio_vpd_t { 560 u32 format_version; 561 u8 serial_number[16]; 562 u8 mac_base_address[6]; 563 u8 pad[2]; /* make multiple-of-4 size requirement explicit */ 564 }; 565 566 #define EEPROMSIZE (8 * 1024) 567 #define EEPROM_MAX_POLL 4 568 569 /* 570 * Read SEEPROM. A zero is written to the flag register when the address is 571 * written to the Control register. The hardware device will set the flag to a 572 * one when 4B have been transferred to the Data register. 573 */ 574 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data) 575 { 576 int i = EEPROM_MAX_POLL; 577 u16 val; 578 u32 v; 579 580 if (addr >= EEPROMSIZE || (addr & 3)) 581 return -EINVAL; 582 583 pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr); 584 do { 585 udelay(50); 586 pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val); 587 } while (!(val & F_VPD_OP_FLAG) && --i); 588 589 if (!(val & F_VPD_OP_FLAG)) { 590 pr_err("%s: reading EEPROM address 0x%x failed\n", 591 adapter->name, addr); 592 return -EIO; 593 } 594 pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v); 595 *data = cpu_to_le32(v); 596 return 0; 597 } 598 599 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd) 600 { 601 int addr, ret = 0; 602 603 for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32)) 604 ret = t1_seeprom_read(adapter, addr, 605 (__le32 *)((u8 *)vpd + addr)); 606 607 return ret; 608 } 609 610 /* 611 * Read a port's MAC address from the VPD ROM. 612 */ 613 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[]) 614 { 615 struct chelsio_vpd_t vpd; 616 617 if (t1_eeprom_vpd_get(adapter, &vpd)) 618 return 1; 619 memcpy(mac_addr, vpd.mac_base_address, 5); 620 mac_addr[5] = vpd.mac_base_address[5] + index; 621 return 0; 622 } 623 624 /* 625 * Set up the MAC/PHY according to the requested link settings. 626 * 627 * If the PHY can auto-negotiate first decide what to advertise, then 628 * enable/disable auto-negotiation as desired and reset. 629 * 630 * If the PHY does not auto-negotiate we just reset it. 631 * 632 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 633 * otherwise do it later based on the outcome of auto-negotiation. 634 */ 635 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) 636 { 637 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 638 639 if (lc->supported & SUPPORTED_Autoneg) { 640 lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE); 641 if (fc) { 642 if (fc == ((PAUSE_RX | PAUSE_TX) & 643 (mac->adapter->params.nports < 2))) 644 lc->advertising |= ADVERTISED_PAUSE; 645 else { 646 lc->advertising |= ADVERTISED_ASYM_PAUSE; 647 if (fc == PAUSE_RX) 648 lc->advertising |= ADVERTISED_PAUSE; 649 } 650 } 651 phy->ops->advertise(phy, lc->advertising); 652 653 if (lc->autoneg == AUTONEG_DISABLE) { 654 lc->speed = lc->requested_speed; 655 lc->duplex = lc->requested_duplex; 656 lc->fc = (unsigned char)fc; 657 mac->ops->set_speed_duplex_fc(mac, lc->speed, 658 lc->duplex, fc); 659 /* Also disables autoneg */ 660 phy->state = PHY_AUTONEG_RDY; 661 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); 662 phy->ops->reset(phy, 0); 663 } else { 664 phy->state = PHY_AUTONEG_EN; 665 phy->ops->autoneg_enable(phy); /* also resets PHY */ 666 } 667 } else { 668 phy->state = PHY_AUTONEG_RDY; 669 mac->ops->set_speed_duplex_fc(mac, -1, -1, fc); 670 lc->fc = (unsigned char)fc; 671 phy->ops->reset(phy, 0); 672 } 673 return 0; 674 } 675 676 /* 677 * External interrupt handler for boards using elmer0. 678 */ 679 int t1_elmer0_ext_intr_handler(adapter_t *adapter) 680 { 681 struct cphy *phy; 682 int phy_cause; 683 u32 cause; 684 685 t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause); 686 687 switch (board_info(adapter)->board) { 688 #ifdef CONFIG_CHELSIO_T1_1G 689 case CHBT_BOARD_CHT204: 690 case CHBT_BOARD_CHT204E: 691 case CHBT_BOARD_CHN204: 692 case CHBT_BOARD_CHT204V: { 693 int i, port_bit; 694 for_each_port(adapter, i) { 695 port_bit = i + 1; 696 if (!(cause & (1 << port_bit))) 697 continue; 698 699 phy = adapter->port[i].phy; 700 phy_cause = phy->ops->interrupt_handler(phy); 701 if (phy_cause & cphy_cause_link_change) 702 t1_link_changed(adapter, i); 703 } 704 break; 705 } 706 case CHBT_BOARD_CHT101: 707 if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */ 708 phy = adapter->port[0].phy; 709 phy_cause = phy->ops->interrupt_handler(phy); 710 if (phy_cause & cphy_cause_link_change) 711 t1_link_changed(adapter, 0); 712 } 713 break; 714 case CHBT_BOARD_7500: { 715 int p; 716 /* 717 * Elmer0's interrupt cause isn't useful here because there is 718 * only one bit that can be set for all 4 ports. This means 719 * we are forced to check every PHY's interrupt status 720 * register to see who initiated the interrupt. 721 */ 722 for_each_port(adapter, p) { 723 phy = adapter->port[p].phy; 724 phy_cause = phy->ops->interrupt_handler(phy); 725 if (phy_cause & cphy_cause_link_change) 726 t1_link_changed(adapter, p); 727 } 728 break; 729 } 730 #endif 731 case CHBT_BOARD_CHT210: 732 case CHBT_BOARD_N210: 733 case CHBT_BOARD_N110: 734 if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */ 735 phy = adapter->port[0].phy; 736 phy_cause = phy->ops->interrupt_handler(phy); 737 if (phy_cause & cphy_cause_link_change) 738 t1_link_changed(adapter, 0); 739 } 740 break; 741 case CHBT_BOARD_8000: 742 case CHBT_BOARD_CHT110: 743 if (netif_msg_intr(adapter)) 744 dev_dbg(&adapter->pdev->dev, 745 "External interrupt cause 0x%x\n", cause); 746 if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */ 747 struct cmac *mac = adapter->port[0].mac; 748 749 mac->ops->interrupt_handler(mac); 750 } 751 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */ 752 u32 mod_detect; 753 754 t1_tpi_read(adapter, 755 A_ELMER0_GPI_STAT, &mod_detect); 756 if (netif_msg_link(adapter)) 757 dev_info(&adapter->pdev->dev, "XPAK %s\n", 758 mod_detect ? "removed" : "inserted"); 759 } 760 break; 761 } 762 t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause); 763 return 0; 764 } 765 766 /* Enables all interrupts. */ 767 void t1_interrupts_enable(adapter_t *adapter) 768 { 769 unsigned int i; 770 771 adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP; 772 773 t1_sge_intr_enable(adapter->sge); 774 t1_tp_intr_enable(adapter->tp); 775 if (adapter->espi) { 776 adapter->slow_intr_mask |= F_PL_INTR_ESPI; 777 t1_espi_intr_enable(adapter->espi); 778 } 779 780 /* Enable MAC/PHY interrupts for each port. */ 781 for_each_port(adapter, i) { 782 adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac); 783 adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy); 784 } 785 786 /* Enable PCIX & external chip interrupts on ASIC boards. */ 787 if (t1_is_asic(adapter)) { 788 u32 pl_intr = readl(adapter->regs + A_PL_ENABLE); 789 790 /* PCI-X interrupts */ 791 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 792 0xffffffff); 793 794 adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX; 795 pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX; 796 writel(pl_intr, adapter->regs + A_PL_ENABLE); 797 } 798 } 799 800 /* Disables all interrupts. */ 801 void t1_interrupts_disable(adapter_t* adapter) 802 { 803 unsigned int i; 804 805 t1_sge_intr_disable(adapter->sge); 806 t1_tp_intr_disable(adapter->tp); 807 if (adapter->espi) 808 t1_espi_intr_disable(adapter->espi); 809 810 /* Disable MAC/PHY interrupts for each port. */ 811 for_each_port(adapter, i) { 812 adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac); 813 adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy); 814 } 815 816 /* Disable PCIX & external chip interrupts. */ 817 if (t1_is_asic(adapter)) 818 writel(0, adapter->regs + A_PL_ENABLE); 819 820 /* PCI-X interrupts */ 821 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0); 822 823 adapter->slow_intr_mask = 0; 824 } 825 826 /* Clears all interrupts */ 827 void t1_interrupts_clear(adapter_t* adapter) 828 { 829 unsigned int i; 830 831 t1_sge_intr_clear(adapter->sge); 832 t1_tp_intr_clear(adapter->tp); 833 if (adapter->espi) 834 t1_espi_intr_clear(adapter->espi); 835 836 /* Clear MAC/PHY interrupts for each port. */ 837 for_each_port(adapter, i) { 838 adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac); 839 adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy); 840 } 841 842 /* Enable interrupts for external devices. */ 843 if (t1_is_asic(adapter)) { 844 u32 pl_intr = readl(adapter->regs + A_PL_CAUSE); 845 846 writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX, 847 adapter->regs + A_PL_CAUSE); 848 } 849 850 /* PCI-X interrupts */ 851 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff); 852 } 853 854 /* 855 * Slow path interrupt handler for ASICs. 856 */ 857 static irqreturn_t asic_slow_intr(adapter_t *adapter) 858 { 859 u32 cause = readl(adapter->regs + A_PL_CAUSE); 860 irqreturn_t ret = IRQ_HANDLED; 861 862 cause &= adapter->slow_intr_mask; 863 if (!cause) 864 return IRQ_NONE; 865 if (cause & F_PL_INTR_SGE_ERR) { 866 if (t1_sge_intr_error_handler(adapter->sge)) 867 ret = IRQ_WAKE_THREAD; 868 } 869 if (cause & F_PL_INTR_TP) 870 t1_tp_intr_handler(adapter->tp); 871 if (cause & F_PL_INTR_ESPI) 872 t1_espi_intr_handler(adapter->espi); 873 if (cause & F_PL_INTR_PCIX) { 874 if (t1_pci_intr_handler(adapter)) 875 ret = IRQ_WAKE_THREAD; 876 } 877 if (cause & F_PL_INTR_EXT) { 878 /* Wake the threaded interrupt to handle external interrupts as 879 * we require a process context. We disable EXT interrupts in 880 * the interim and let the thread reenable them when it's done. 881 */ 882 adapter->pending_thread_intr |= F_PL_INTR_EXT; 883 adapter->slow_intr_mask &= ~F_PL_INTR_EXT; 884 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, 885 adapter->regs + A_PL_ENABLE); 886 ret = IRQ_WAKE_THREAD; 887 } 888 889 /* Clear the interrupts just processed. */ 890 writel(cause, adapter->regs + A_PL_CAUSE); 891 readl(adapter->regs + A_PL_CAUSE); /* flush writes */ 892 return ret; 893 } 894 895 irqreturn_t t1_slow_intr_handler(adapter_t *adapter) 896 { 897 #ifdef CONFIG_CHELSIO_T1_1G 898 if (!t1_is_asic(adapter)) 899 return fpga_slow_intr(adapter); 900 #endif 901 return asic_slow_intr(adapter); 902 } 903 904 /* Power sequencing is a work-around for Intel's XPAKs. */ 905 static void power_sequence_xpak(adapter_t* adapter) 906 { 907 u32 mod_detect; 908 u32 gpo; 909 910 /* Check for XPAK */ 911 t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect); 912 if (!(ELMER0_GP_BIT5 & mod_detect)) { 913 /* XPAK is present */ 914 t1_tpi_read(adapter, A_ELMER0_GPO, &gpo); 915 gpo |= ELMER0_GP_BIT18; 916 t1_tpi_write(adapter, A_ELMER0_GPO, gpo); 917 } 918 } 919 920 int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi, 921 struct adapter_params *p) 922 { 923 p->chip_version = bi->chip_term; 924 p->is_asic = (p->chip_version != CHBT_TERM_FPGA); 925 if (p->chip_version == CHBT_TERM_T1 || 926 p->chip_version == CHBT_TERM_T2 || 927 p->chip_version == CHBT_TERM_FPGA) { 928 u32 val = readl(adapter->regs + A_TP_PC_CONFIG); 929 930 val = G_TP_PC_REV(val); 931 if (val == 2) 932 p->chip_revision = TERM_T1B; 933 else if (val == 3) 934 p->chip_revision = TERM_T2; 935 else 936 return -1; 937 } else 938 return -1; 939 return 0; 940 } 941 942 /* 943 * Enable board components other than the Chelsio chip, such as external MAC 944 * and PHY. 945 */ 946 static int board_init(adapter_t *adapter, const struct board_info *bi) 947 { 948 switch (bi->board) { 949 case CHBT_BOARD_8000: 950 case CHBT_BOARD_N110: 951 case CHBT_BOARD_N210: 952 case CHBT_BOARD_CHT210: 953 t1_tpi_par(adapter, 0xf); 954 t1_tpi_write(adapter, A_ELMER0_GPO, 0x800); 955 break; 956 case CHBT_BOARD_CHT110: 957 t1_tpi_par(adapter, 0xf); 958 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800); 959 960 /* TBD XXX Might not need. This fixes a problem 961 * described in the Intel SR XPAK errata. 962 */ 963 power_sequence_xpak(adapter); 964 break; 965 #ifdef CONFIG_CHELSIO_T1_1G 966 case CHBT_BOARD_CHT204E: 967 /* add config space write here */ 968 case CHBT_BOARD_CHT204: 969 case CHBT_BOARD_CHT204V: 970 case CHBT_BOARD_CHN204: 971 t1_tpi_par(adapter, 0xf); 972 t1_tpi_write(adapter, A_ELMER0_GPO, 0x804); 973 break; 974 case CHBT_BOARD_CHT101: 975 case CHBT_BOARD_7500: 976 t1_tpi_par(adapter, 0xf); 977 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804); 978 break; 979 #endif 980 } 981 return 0; 982 } 983 984 /* 985 * Initialize and configure the Terminator HW modules. Note that external 986 * MAC and PHYs are initialized separately. 987 */ 988 int t1_init_hw_modules(adapter_t *adapter) 989 { 990 int err = -EIO; 991 const struct board_info *bi = board_info(adapter); 992 993 if (!bi->clock_mc4) { 994 u32 val = readl(adapter->regs + A_MC4_CFG); 995 996 writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG); 997 writel(F_M_BUS_ENABLE | F_TCAM_RESET, 998 adapter->regs + A_MC5_CONFIG); 999 } 1000 1001 if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac, 1002 bi->espi_nports)) 1003 goto out_err; 1004 1005 if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core)) 1006 goto out_err; 1007 1008 err = t1_sge_configure(adapter->sge, &adapter->params.sge); 1009 if (err) 1010 goto out_err; 1011 1012 err = 0; 1013 out_err: 1014 return err; 1015 } 1016 1017 /* 1018 * Determine a card's PCI mode. 1019 */ 1020 static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p) 1021 { 1022 static const unsigned short speed_map[] = { 33, 66, 100, 133 }; 1023 u32 pci_mode; 1024 1025 pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode); 1026 p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)]; 1027 p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32; 1028 p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0; 1029 } 1030 1031 /* 1032 * Release the structures holding the SW per-Terminator-HW-module state. 1033 */ 1034 void t1_free_sw_modules(adapter_t *adapter) 1035 { 1036 unsigned int i; 1037 1038 for_each_port(adapter, i) { 1039 struct cmac *mac = adapter->port[i].mac; 1040 struct cphy *phy = adapter->port[i].phy; 1041 1042 if (mac) 1043 mac->ops->destroy(mac); 1044 if (phy) 1045 phy->ops->destroy(phy); 1046 } 1047 1048 if (adapter->sge) 1049 t1_sge_destroy(adapter->sge); 1050 if (adapter->tp) 1051 t1_tp_destroy(adapter->tp); 1052 if (adapter->espi) 1053 t1_espi_destroy(adapter->espi); 1054 } 1055 1056 static void init_link_config(struct link_config *lc, 1057 const struct board_info *bi) 1058 { 1059 lc->supported = bi->caps; 1060 lc->requested_speed = lc->speed = SPEED_INVALID; 1061 lc->requested_duplex = lc->duplex = DUPLEX_INVALID; 1062 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 1063 if (lc->supported & SUPPORTED_Autoneg) { 1064 lc->advertising = lc->supported; 1065 lc->autoneg = AUTONEG_ENABLE; 1066 lc->requested_fc |= PAUSE_AUTONEG; 1067 } else { 1068 lc->advertising = 0; 1069 lc->autoneg = AUTONEG_DISABLE; 1070 } 1071 } 1072 1073 /* 1074 * Allocate and initialize the data structures that hold the SW state of 1075 * the Terminator HW modules. 1076 */ 1077 int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi) 1078 { 1079 unsigned int i; 1080 1081 adapter->params.brd_info = bi; 1082 adapter->params.nports = bi->port_number; 1083 adapter->params.stats_update_period = bi->gmac->stats_update_period; 1084 1085 adapter->sge = t1_sge_create(adapter, &adapter->params.sge); 1086 if (!adapter->sge) { 1087 pr_err("%s: SGE initialization failed\n", 1088 adapter->name); 1089 goto error; 1090 } 1091 1092 if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) { 1093 pr_err("%s: ESPI initialization failed\n", 1094 adapter->name); 1095 goto error; 1096 } 1097 1098 adapter->tp = t1_tp_create(adapter, &adapter->params.tp); 1099 if (!adapter->tp) { 1100 pr_err("%s: TP initialization failed\n", 1101 adapter->name); 1102 goto error; 1103 } 1104 1105 board_init(adapter, bi); 1106 bi->mdio_ops->init(adapter, bi); 1107 if (bi->gphy->reset) 1108 bi->gphy->reset(adapter); 1109 if (bi->gmac->reset) 1110 bi->gmac->reset(adapter); 1111 1112 for_each_port(adapter, i) { 1113 u8 hw_addr[6]; 1114 struct cmac *mac; 1115 int phy_addr = bi->mdio_phybaseaddr + i; 1116 1117 adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev, 1118 phy_addr, bi->mdio_ops); 1119 if (!adapter->port[i].phy) { 1120 pr_err("%s: PHY %d initialization failed\n", 1121 adapter->name, i); 1122 goto error; 1123 } 1124 1125 adapter->port[i].mac = mac = bi->gmac->create(adapter, i); 1126 if (!mac) { 1127 pr_err("%s: MAC %d initialization failed\n", 1128 adapter->name, i); 1129 goto error; 1130 } 1131 1132 /* 1133 * Get the port's MAC addresses either from the EEPROM if one 1134 * exists or the one hardcoded in the MAC. 1135 */ 1136 if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY) 1137 mac->ops->macaddress_get(mac, hw_addr); 1138 else if (vpd_macaddress_get(adapter, i, hw_addr)) { 1139 pr_err("%s: could not read MAC address from VPD ROM\n", 1140 adapter->port[i].dev->name); 1141 goto error; 1142 } 1143 memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN); 1144 init_link_config(&adapter->port[i].link_config, bi); 1145 } 1146 1147 get_pci_mode(adapter, &adapter->params.pci); 1148 t1_interrupts_clear(adapter); 1149 return 0; 1150 1151 error: 1152 t1_free_sw_modules(adapter); 1153 return -1; 1154 } 1155