1 /*****************************************************************************
2  *                                                                           *
3  * File: subr.c                                                              *
4  * $Revision: 1.27 $                                                         *
5  * $Date: 2005/06/22 01:08:36 $                                              *
6  * Description:                                                              *
7  *  Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, write to the Free Software Foundation, Inc.,   *
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17  *                                                                           *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21  *                                                                           *
22  * http://www.chelsio.com                                                    *
23  *                                                                           *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25  * All rights reserved.                                                      *
26  *                                                                           *
27  * Maintainers: maintainers@chelsio.com                                      *
28  *                                                                           *
29  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30  *          Tina Yang               <tainay@chelsio.com>                     *
31  *          Felix Marti             <felix@chelsio.com>                      *
32  *          Scott Bardone           <sbardone@chelsio.com>                   *
33  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34  *          Frank DiMambro          <frank@chelsio.com>                      *
35  *                                                                           *
36  * History:                                                                  *
37  *                                                                           *
38  ****************************************************************************/
39 
40 #include "common.h"
41 #include "elmer0.h"
42 #include "regs.h"
43 #include "gmac.h"
44 #include "cphy.h"
45 #include "sge.h"
46 #include "tp.h"
47 #include "espi.h"
48 
49 /**
50  *	t1_wait_op_done - wait until an operation is completed
51  *	@adapter: the adapter performing the operation
52  *	@reg: the register to check for completion
53  *	@mask: a single-bit field within @reg that indicates completion
54  *	@polarity: the value of the field when the operation is completed
55  *	@attempts: number of check iterations
56  *      @delay: delay in usecs between iterations
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  Returns %0 if the operation completes and %1
60  *	otherwise.
61  */
62 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
63 			   int attempts, int delay)
64 {
65 	while (1) {
66 		u32 val = readl(adapter->regs + reg) & mask;
67 
68 		if (!!val == polarity)
69 			return 0;
70 		if (--attempts == 0)
71 			return 1;
72 		if (delay)
73 			udelay(delay);
74 	}
75 }
76 
77 #define TPI_ATTEMPTS 50
78 
79 /*
80  * Write a register over the TPI interface (unlocked and locked versions).
81  */
82 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
83 {
84 	int tpi_busy;
85 
86 	writel(addr, adapter->regs + A_TPI_ADDR);
87 	writel(value, adapter->regs + A_TPI_WR_DATA);
88 	writel(F_TPIWR, adapter->regs + A_TPI_CSR);
89 
90 	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
91 				   TPI_ATTEMPTS, 3);
92 	if (tpi_busy)
93 		pr_alert("%s: TPI write to 0x%x failed\n",
94 			 adapter->name, addr);
95 	return tpi_busy;
96 }
97 
98 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
99 {
100 	int ret;
101 
102 	spin_lock(&adapter->tpi_lock);
103 	ret = __t1_tpi_write(adapter, addr, value);
104 	spin_unlock(&adapter->tpi_lock);
105 	return ret;
106 }
107 
108 /*
109  * Read a register over the TPI interface (unlocked and locked versions).
110  */
111 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
112 {
113 	int tpi_busy;
114 
115 	writel(addr, adapter->regs + A_TPI_ADDR);
116 	writel(0, adapter->regs + A_TPI_CSR);
117 
118 	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
119 				   TPI_ATTEMPTS, 3);
120 	if (tpi_busy)
121 		pr_alert("%s: TPI read from 0x%x failed\n",
122 			 adapter->name, addr);
123 	else
124 		*valp = readl(adapter->regs + A_TPI_RD_DATA);
125 	return tpi_busy;
126 }
127 
128 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
129 {
130 	int ret;
131 
132 	spin_lock(&adapter->tpi_lock);
133 	ret = __t1_tpi_read(adapter, addr, valp);
134 	spin_unlock(&adapter->tpi_lock);
135 	return ret;
136 }
137 
138 /*
139  * Set a TPI parameter.
140  */
141 static void t1_tpi_par(adapter_t *adapter, u32 value)
142 {
143 	writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
144 }
145 
146 /*
147  * Called when a port's link settings change to propagate the new values to the
148  * associated PHY and MAC.  After performing the common tasks it invokes an
149  * OS-specific handler.
150  */
151 void t1_link_changed(adapter_t *adapter, int port_id)
152 {
153 	int link_ok, speed, duplex, fc;
154 	struct cphy *phy = adapter->port[port_id].phy;
155 	struct link_config *lc = &adapter->port[port_id].link_config;
156 
157 	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
158 
159 	lc->speed = speed < 0 ? SPEED_INVALID : speed;
160 	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
161 	if (!(lc->requested_fc & PAUSE_AUTONEG))
162 		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
163 
164 	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
165 		/* Set MAC speed, duplex, and flow control to match PHY. */
166 		struct cmac *mac = adapter->port[port_id].mac;
167 
168 		mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
169 		lc->fc = (unsigned char)fc;
170 	}
171 	t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
172 }
173 
174 static int t1_pci_intr_handler(adapter_t *adapter)
175 {
176 	u32 pcix_cause;
177 
178 	pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
179 
180 	if (pcix_cause) {
181 		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
182 				       pcix_cause);
183 		t1_fatal_err(adapter);    /* PCI errors are fatal */
184 	}
185 	return 0;
186 }
187 
188 #ifdef CONFIG_CHELSIO_T1_1G
189 #include "fpga_defs.h"
190 
191 /*
192  * PHY interrupt handler for FPGA boards.
193  */
194 static int fpga_phy_intr_handler(adapter_t *adapter)
195 {
196 	int p;
197 	u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
198 
199 	for_each_port(adapter, p)
200 		if (cause & (1 << p)) {
201 			struct cphy *phy = adapter->port[p].phy;
202 			int phy_cause = phy->ops->interrupt_handler(phy);
203 
204 			if (phy_cause & cphy_cause_link_change)
205 				t1_link_changed(adapter, p);
206 		}
207 	writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
208 	return 0;
209 }
210 
211 /*
212  * Slow path interrupt handler for FPGAs.
213  */
214 static int fpga_slow_intr(adapter_t *adapter)
215 {
216 	u32 cause = readl(adapter->regs + A_PL_CAUSE);
217 
218 	cause &= ~F_PL_INTR_SGE_DATA;
219 	if (cause & F_PL_INTR_SGE_ERR)
220 		t1_sge_intr_error_handler(adapter->sge);
221 
222 	if (cause & FPGA_PCIX_INTERRUPT_GMAC)
223 		fpga_phy_intr_handler(adapter);
224 
225 	if (cause & FPGA_PCIX_INTERRUPT_TP) {
226 		/*
227 		 * FPGA doesn't support MC4 interrupts and it requires
228 		 * this odd layer of indirection for MC5.
229 		 */
230 		u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
231 
232 		/* Clear TP interrupt */
233 		writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
234 	}
235 	if (cause & FPGA_PCIX_INTERRUPT_PCIX)
236 		t1_pci_intr_handler(adapter);
237 
238 	/* Clear the interrupts just processed. */
239 	if (cause)
240 		writel(cause, adapter->regs + A_PL_CAUSE);
241 
242 	return cause != 0;
243 }
244 #endif
245 
246 /*
247  * Wait until Elmer's MI1 interface is ready for new operations.
248  */
249 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
250 {
251 	int attempts = 100, busy;
252 
253 	do {
254 		u32 val;
255 
256 		__t1_tpi_read(adapter, mi1_reg, &val);
257 		busy = val & F_MI1_OP_BUSY;
258 		if (busy)
259 			udelay(10);
260 	} while (busy && --attempts);
261 	if (busy)
262 		pr_alert("%s: MDIO operation timed out\n", adapter->name);
263 	return busy;
264 }
265 
266 /*
267  * MI1 MDIO initialization.
268  */
269 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
270 {
271 	u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
272 	u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
273 		V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
274 
275 	if (!(bi->caps & SUPPORTED_10000baseT_Full))
276 		val |= V_MI1_SOF(1);
277 	t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
278 }
279 
280 #if defined(CONFIG_CHELSIO_T1_1G)
281 /*
282  * Elmer MI1 MDIO read/write operations.
283  */
284 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
285 			 u16 reg_addr)
286 {
287 	struct adapter *adapter = dev->ml_priv;
288 	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
289 	unsigned int val;
290 
291 	spin_lock(&adapter->tpi_lock);
292 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
293 	__t1_tpi_write(adapter,
294 			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
295 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
296 	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
297 	spin_unlock(&adapter->tpi_lock);
298 	return val;
299 }
300 
301 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
302 			  u16 reg_addr, u16 val)
303 {
304 	struct adapter *adapter = dev->ml_priv;
305 	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
306 
307 	spin_lock(&adapter->tpi_lock);
308 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
309 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
310 	__t1_tpi_write(adapter,
311 			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
312 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
313 	spin_unlock(&adapter->tpi_lock);
314 	return 0;
315 }
316 
317 static const struct mdio_ops mi1_mdio_ops = {
318 	.init = mi1_mdio_init,
319 	.read = mi1_mdio_read,
320 	.write = mi1_mdio_write,
321 	.mode_support = MDIO_SUPPORTS_C22
322 };
323 
324 #endif
325 
326 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
327 			     u16 reg_addr)
328 {
329 	struct adapter *adapter = dev->ml_priv;
330 	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
331 	unsigned int val;
332 
333 	spin_lock(&adapter->tpi_lock);
334 
335 	/* Write the address we want. */
336 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
337 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
338 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
339 		       MI1_OP_INDIRECT_ADDRESS);
340 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
341 
342 	/* Write the operation we want. */
343 	__t1_tpi_write(adapter,
344 			A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
345 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
346 
347 	/* Read the data. */
348 	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
349 	spin_unlock(&adapter->tpi_lock);
350 	return val;
351 }
352 
353 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
354 			      int mmd_addr, u16 reg_addr, u16 val)
355 {
356 	struct adapter *adapter = dev->ml_priv;
357 	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
358 
359 	spin_lock(&adapter->tpi_lock);
360 
361 	/* Write the address we want. */
362 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
363 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
364 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
365 		       MI1_OP_INDIRECT_ADDRESS);
366 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
367 
368 	/* Write the data. */
369 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
370 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
371 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
372 	spin_unlock(&adapter->tpi_lock);
373 	return 0;
374 }
375 
376 static const struct mdio_ops mi1_mdio_ext_ops = {
377 	.init = mi1_mdio_init,
378 	.read = mi1_mdio_ext_read,
379 	.write = mi1_mdio_ext_write,
380 	.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
381 };
382 
383 enum {
384 	CH_BRD_T110_1CU,
385 	CH_BRD_N110_1F,
386 	CH_BRD_N210_1F,
387 	CH_BRD_T210_1F,
388 	CH_BRD_T210_1CU,
389 	CH_BRD_N204_4CU,
390 };
391 
392 static const struct board_info t1_board[] = {
393 	{
394 		.board		= CHBT_BOARD_CHT110,
395 		.port_number	= 1,
396 		.caps		= SUPPORTED_10000baseT_Full,
397 		.chip_term	= CHBT_TERM_T1,
398 		.chip_mac	= CHBT_MAC_PM3393,
399 		.chip_phy	= CHBT_PHY_MY3126,
400 		.clock_core	= 125000000,
401 		.clock_mc3	= 150000000,
402 		.clock_mc4	= 125000000,
403 		.espi_nports	= 1,
404 		.clock_elmer0	= 44,
405 		.mdio_mdien	= 1,
406 		.mdio_mdiinv	= 1,
407 		.mdio_mdc	= 1,
408 		.mdio_phybaseaddr = 1,
409 		.gmac		= &t1_pm3393_ops,
410 		.gphy		= &t1_my3126_ops,
411 		.mdio_ops	= &mi1_mdio_ext_ops,
412 		.desc		= "Chelsio T110 1x10GBase-CX4 TOE",
413 	},
414 
415 	{
416 		.board		= CHBT_BOARD_N110,
417 		.port_number	= 1,
418 		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
419 		.chip_term	= CHBT_TERM_T1,
420 		.chip_mac	= CHBT_MAC_PM3393,
421 		.chip_phy	= CHBT_PHY_88X2010,
422 		.clock_core	= 125000000,
423 		.espi_nports	= 1,
424 		.clock_elmer0	= 44,
425 		.mdio_mdien	= 0,
426 		.mdio_mdiinv	= 0,
427 		.mdio_mdc	= 1,
428 		.mdio_phybaseaddr = 0,
429 		.gmac		= &t1_pm3393_ops,
430 		.gphy		= &t1_mv88x201x_ops,
431 		.mdio_ops	= &mi1_mdio_ext_ops,
432 		.desc		= "Chelsio N110 1x10GBaseX NIC",
433 	},
434 
435 	{
436 		.board		= CHBT_BOARD_N210,
437 		.port_number	= 1,
438 		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
439 		.chip_term	= CHBT_TERM_T2,
440 		.chip_mac	= CHBT_MAC_PM3393,
441 		.chip_phy	= CHBT_PHY_88X2010,
442 		.clock_core	= 125000000,
443 		.espi_nports	= 1,
444 		.clock_elmer0	= 44,
445 		.mdio_mdien	= 0,
446 		.mdio_mdiinv	= 0,
447 		.mdio_mdc	= 1,
448 		.mdio_phybaseaddr = 0,
449 		.gmac		= &t1_pm3393_ops,
450 		.gphy		= &t1_mv88x201x_ops,
451 		.mdio_ops	= &mi1_mdio_ext_ops,
452 		.desc		= "Chelsio N210 1x10GBaseX NIC",
453 	},
454 
455 	{
456 		.board		= CHBT_BOARD_CHT210,
457 		.port_number	= 1,
458 		.caps		= SUPPORTED_10000baseT_Full,
459 		.chip_term	= CHBT_TERM_T2,
460 		.chip_mac	= CHBT_MAC_PM3393,
461 		.chip_phy	= CHBT_PHY_88X2010,
462 		.clock_core	= 125000000,
463 		.clock_mc3	= 133000000,
464 		.clock_mc4	= 125000000,
465 		.espi_nports	= 1,
466 		.clock_elmer0	= 44,
467 		.mdio_mdien	= 0,
468 		.mdio_mdiinv	= 0,
469 		.mdio_mdc	= 1,
470 		.mdio_phybaseaddr = 0,
471 		.gmac		= &t1_pm3393_ops,
472 		.gphy		= &t1_mv88x201x_ops,
473 		.mdio_ops	= &mi1_mdio_ext_ops,
474 		.desc		= "Chelsio T210 1x10GBaseX TOE",
475 	},
476 
477 	{
478 		.board		= CHBT_BOARD_CHT210,
479 		.port_number	= 1,
480 		.caps		= SUPPORTED_10000baseT_Full,
481 		.chip_term	= CHBT_TERM_T2,
482 		.chip_mac	= CHBT_MAC_PM3393,
483 		.chip_phy	= CHBT_PHY_MY3126,
484 		.clock_core	= 125000000,
485 		.clock_mc3	= 133000000,
486 		.clock_mc4	= 125000000,
487 		.espi_nports	= 1,
488 		.clock_elmer0	= 44,
489 		.mdio_mdien	= 1,
490 		.mdio_mdiinv	= 1,
491 		.mdio_mdc	= 1,
492 		.mdio_phybaseaddr = 1,
493 		.gmac		= &t1_pm3393_ops,
494 		.gphy		= &t1_my3126_ops,
495 		.mdio_ops	= &mi1_mdio_ext_ops,
496 		.desc		= "Chelsio T210 1x10GBase-CX4 TOE",
497 	},
498 
499 #ifdef CONFIG_CHELSIO_T1_1G
500 	{
501 		.board		= CHBT_BOARD_CHN204,
502 		.port_number	= 4,
503 		.caps		= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
504 				| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
505 				| SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
506 				  SUPPORTED_PAUSE | SUPPORTED_TP,
507 		.chip_term	= CHBT_TERM_T2,
508 		.chip_mac	= CHBT_MAC_VSC7321,
509 		.chip_phy	= CHBT_PHY_88E1111,
510 		.clock_core	= 100000000,
511 		.espi_nports	= 4,
512 		.clock_elmer0	= 44,
513 		.mdio_mdien	= 0,
514 		.mdio_mdiinv	= 0,
515 		.mdio_mdc	= 0,
516 		.mdio_phybaseaddr = 4,
517 		.gmac		= &t1_vsc7326_ops,
518 		.gphy		= &t1_mv88e1xxx_ops,
519 		.mdio_ops	= &mi1_mdio_ops,
520 		.desc		= "Chelsio N204 4x100/1000BaseT NIC",
521 	},
522 #endif
523 
524 };
525 
526 DEFINE_PCI_DEVICE_TABLE(t1_pci_tbl) = {
527 	CH_DEVICE(8, 0, CH_BRD_T110_1CU),
528 	CH_DEVICE(8, 1, CH_BRD_T110_1CU),
529 	CH_DEVICE(7, 0, CH_BRD_N110_1F),
530 	CH_DEVICE(10, 1, CH_BRD_N210_1F),
531 	CH_DEVICE(11, 1, CH_BRD_T210_1F),
532 	CH_DEVICE(14, 1, CH_BRD_T210_1CU),
533 	CH_DEVICE(16, 1, CH_BRD_N204_4CU),
534 	{ 0 }
535 };
536 
537 MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
538 
539 /*
540  * Return the board_info structure with a given index.  Out-of-range indices
541  * return NULL.
542  */
543 const struct board_info *t1_get_board_info(unsigned int board_id)
544 {
545 	return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
546 }
547 
548 struct chelsio_vpd_t {
549 	u32 format_version;
550 	u8 serial_number[16];
551 	u8 mac_base_address[6];
552 	u8 pad[2];           /* make multiple-of-4 size requirement explicit */
553 };
554 
555 #define EEPROMSIZE        (8 * 1024)
556 #define EEPROM_MAX_POLL   4
557 
558 /*
559  * Read SEEPROM. A zero is written to the flag register when the address is
560  * written to the Control register. The hardware device will set the flag to a
561  * one when 4B have been transferred to the Data register.
562  */
563 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
564 {
565 	int i = EEPROM_MAX_POLL;
566 	u16 val;
567 	u32 v;
568 
569 	if (addr >= EEPROMSIZE || (addr & 3))
570 		return -EINVAL;
571 
572 	pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
573 	do {
574 		udelay(50);
575 		pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
576 	} while (!(val & F_VPD_OP_FLAG) && --i);
577 
578 	if (!(val & F_VPD_OP_FLAG)) {
579 		pr_err("%s: reading EEPROM address 0x%x failed\n",
580 		       adapter->name, addr);
581 		return -EIO;
582 	}
583 	pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
584 	*data = cpu_to_le32(v);
585 	return 0;
586 }
587 
588 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
589 {
590 	int addr, ret = 0;
591 
592 	for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
593 		ret = t1_seeprom_read(adapter, addr,
594 				      (__le32 *)((u8 *)vpd + addr));
595 
596 	return ret;
597 }
598 
599 /*
600  * Read a port's MAC address from the VPD ROM.
601  */
602 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
603 {
604 	struct chelsio_vpd_t vpd;
605 
606 	if (t1_eeprom_vpd_get(adapter, &vpd))
607 		return 1;
608 	memcpy(mac_addr, vpd.mac_base_address, 5);
609 	mac_addr[5] = vpd.mac_base_address[5] + index;
610 	return 0;
611 }
612 
613 /*
614  * Set up the MAC/PHY according to the requested link settings.
615  *
616  * If the PHY can auto-negotiate first decide what to advertise, then
617  * enable/disable auto-negotiation as desired and reset.
618  *
619  * If the PHY does not auto-negotiate we just reset it.
620  *
621  * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
622  * otherwise do it later based on the outcome of auto-negotiation.
623  */
624 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
625 {
626 	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
627 
628 	if (lc->supported & SUPPORTED_Autoneg) {
629 		lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
630 		if (fc) {
631 			if (fc == ((PAUSE_RX | PAUSE_TX) &
632 				   (mac->adapter->params.nports < 2)))
633 				lc->advertising |= ADVERTISED_PAUSE;
634 			else {
635 				lc->advertising |= ADVERTISED_ASYM_PAUSE;
636 				if (fc == PAUSE_RX)
637 					lc->advertising |= ADVERTISED_PAUSE;
638 			}
639 		}
640 		phy->ops->advertise(phy, lc->advertising);
641 
642 		if (lc->autoneg == AUTONEG_DISABLE) {
643 			lc->speed = lc->requested_speed;
644 			lc->duplex = lc->requested_duplex;
645 			lc->fc = (unsigned char)fc;
646 			mac->ops->set_speed_duplex_fc(mac, lc->speed,
647 						      lc->duplex, fc);
648 			/* Also disables autoneg */
649 			phy->state = PHY_AUTONEG_RDY;
650 			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
651 			phy->ops->reset(phy, 0);
652 		} else {
653 			phy->state = PHY_AUTONEG_EN;
654 			phy->ops->autoneg_enable(phy); /* also resets PHY */
655 		}
656 	} else {
657 		phy->state = PHY_AUTONEG_RDY;
658 		mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
659 		lc->fc = (unsigned char)fc;
660 		phy->ops->reset(phy, 0);
661 	}
662 	return 0;
663 }
664 
665 /*
666  * External interrupt handler for boards using elmer0.
667  */
668 int t1_elmer0_ext_intr_handler(adapter_t *adapter)
669 {
670 	struct cphy *phy;
671 	int phy_cause;
672 	u32 cause;
673 
674 	t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
675 
676 	switch (board_info(adapter)->board) {
677 #ifdef CONFIG_CHELSIO_T1_1G
678 	case CHBT_BOARD_CHT204:
679 	case CHBT_BOARD_CHT204E:
680 	case CHBT_BOARD_CHN204:
681 	case CHBT_BOARD_CHT204V: {
682 		int i, port_bit;
683 		for_each_port(adapter, i) {
684 			port_bit = i + 1;
685 			if (!(cause & (1 << port_bit)))
686 				continue;
687 
688 			phy = adapter->port[i].phy;
689 			phy_cause = phy->ops->interrupt_handler(phy);
690 			if (phy_cause & cphy_cause_link_change)
691 				t1_link_changed(adapter, i);
692 		}
693 		break;
694 	}
695 	case CHBT_BOARD_CHT101:
696 		if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
697 			phy = adapter->port[0].phy;
698 			phy_cause = phy->ops->interrupt_handler(phy);
699 			if (phy_cause & cphy_cause_link_change)
700 				t1_link_changed(adapter, 0);
701 		}
702 		break;
703 	case CHBT_BOARD_7500: {
704 		int p;
705 		/*
706 		 * Elmer0's interrupt cause isn't useful here because there is
707 		 * only one bit that can be set for all 4 ports.  This means
708 		 * we are forced to check every PHY's interrupt status
709 		 * register to see who initiated the interrupt.
710 		 */
711 		for_each_port(adapter, p) {
712 			phy = adapter->port[p].phy;
713 			phy_cause = phy->ops->interrupt_handler(phy);
714 			if (phy_cause & cphy_cause_link_change)
715 			    t1_link_changed(adapter, p);
716 		}
717 		break;
718 	}
719 #endif
720 	case CHBT_BOARD_CHT210:
721 	case CHBT_BOARD_N210:
722 	case CHBT_BOARD_N110:
723 		if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
724 			phy = adapter->port[0].phy;
725 			phy_cause = phy->ops->interrupt_handler(phy);
726 			if (phy_cause & cphy_cause_link_change)
727 				t1_link_changed(adapter, 0);
728 		}
729 		break;
730 	case CHBT_BOARD_8000:
731 	case CHBT_BOARD_CHT110:
732 		if (netif_msg_intr(adapter))
733 			dev_dbg(&adapter->pdev->dev,
734 				"External interrupt cause 0x%x\n", cause);
735 		if (cause & ELMER0_GP_BIT1) {        /* PMC3393 INTB */
736 			struct cmac *mac = adapter->port[0].mac;
737 
738 			mac->ops->interrupt_handler(mac);
739 		}
740 		if (cause & ELMER0_GP_BIT5) {        /* XPAK MOD_DETECT */
741 			u32 mod_detect;
742 
743 			t1_tpi_read(adapter,
744 					A_ELMER0_GPI_STAT, &mod_detect);
745 			if (netif_msg_link(adapter))
746 				dev_info(&adapter->pdev->dev, "XPAK %s\n",
747 					 mod_detect ? "removed" : "inserted");
748 		}
749 		break;
750 	}
751 	t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
752 	return 0;
753 }
754 
755 /* Enables all interrupts. */
756 void t1_interrupts_enable(adapter_t *adapter)
757 {
758 	unsigned int i;
759 
760 	adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
761 
762 	t1_sge_intr_enable(adapter->sge);
763 	t1_tp_intr_enable(adapter->tp);
764 	if (adapter->espi) {
765 		adapter->slow_intr_mask |= F_PL_INTR_ESPI;
766 		t1_espi_intr_enable(adapter->espi);
767 	}
768 
769 	/* Enable MAC/PHY interrupts for each port. */
770 	for_each_port(adapter, i) {
771 		adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
772 		adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
773 	}
774 
775 	/* Enable PCIX & external chip interrupts on ASIC boards. */
776 	if (t1_is_asic(adapter)) {
777 		u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
778 
779 		/* PCI-X interrupts */
780 		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
781 				       0xffffffff);
782 
783 		adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
784 		pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
785 		writel(pl_intr, adapter->regs + A_PL_ENABLE);
786 	}
787 }
788 
789 /* Disables all interrupts. */
790 void t1_interrupts_disable(adapter_t* adapter)
791 {
792 	unsigned int i;
793 
794 	t1_sge_intr_disable(adapter->sge);
795 	t1_tp_intr_disable(adapter->tp);
796 	if (adapter->espi)
797 		t1_espi_intr_disable(adapter->espi);
798 
799 	/* Disable MAC/PHY interrupts for each port. */
800 	for_each_port(adapter, i) {
801 		adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
802 		adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
803 	}
804 
805 	/* Disable PCIX & external chip interrupts. */
806 	if (t1_is_asic(adapter))
807 		writel(0, adapter->regs + A_PL_ENABLE);
808 
809 	/* PCI-X interrupts */
810 	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
811 
812 	adapter->slow_intr_mask = 0;
813 }
814 
815 /* Clears all interrupts */
816 void t1_interrupts_clear(adapter_t* adapter)
817 {
818 	unsigned int i;
819 
820 	t1_sge_intr_clear(adapter->sge);
821 	t1_tp_intr_clear(adapter->tp);
822 	if (adapter->espi)
823 		t1_espi_intr_clear(adapter->espi);
824 
825 	/* Clear MAC/PHY interrupts for each port. */
826 	for_each_port(adapter, i) {
827 		adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
828 		adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
829 	}
830 
831 	/* Enable interrupts for external devices. */
832 	if (t1_is_asic(adapter)) {
833 		u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
834 
835 		writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
836 		       adapter->regs + A_PL_CAUSE);
837 	}
838 
839 	/* PCI-X interrupts */
840 	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
841 }
842 
843 /*
844  * Slow path interrupt handler for ASICs.
845  */
846 static int asic_slow_intr(adapter_t *adapter)
847 {
848 	u32 cause = readl(adapter->regs + A_PL_CAUSE);
849 
850 	cause &= adapter->slow_intr_mask;
851 	if (!cause)
852 		return 0;
853 	if (cause & F_PL_INTR_SGE_ERR)
854 		t1_sge_intr_error_handler(adapter->sge);
855 	if (cause & F_PL_INTR_TP)
856 		t1_tp_intr_handler(adapter->tp);
857 	if (cause & F_PL_INTR_ESPI)
858 		t1_espi_intr_handler(adapter->espi);
859 	if (cause & F_PL_INTR_PCIX)
860 		t1_pci_intr_handler(adapter);
861 	if (cause & F_PL_INTR_EXT)
862 		t1_elmer0_ext_intr(adapter);
863 
864 	/* Clear the interrupts just processed. */
865 	writel(cause, adapter->regs + A_PL_CAUSE);
866 	readl(adapter->regs + A_PL_CAUSE); /* flush writes */
867 	return 1;
868 }
869 
870 int t1_slow_intr_handler(adapter_t *adapter)
871 {
872 #ifdef CONFIG_CHELSIO_T1_1G
873 	if (!t1_is_asic(adapter))
874 		return fpga_slow_intr(adapter);
875 #endif
876 	return asic_slow_intr(adapter);
877 }
878 
879 /* Power sequencing is a work-around for Intel's XPAKs. */
880 static void power_sequence_xpak(adapter_t* adapter)
881 {
882 	u32 mod_detect;
883 	u32 gpo;
884 
885 	/* Check for XPAK */
886 	t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
887 	if (!(ELMER0_GP_BIT5 & mod_detect)) {
888 		/* XPAK is present */
889 		t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
890 		gpo |= ELMER0_GP_BIT18;
891 		t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
892 	}
893 }
894 
895 int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
896 		     struct adapter_params *p)
897 {
898 	p->chip_version = bi->chip_term;
899 	p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
900 	if (p->chip_version == CHBT_TERM_T1 ||
901 	    p->chip_version == CHBT_TERM_T2 ||
902 	    p->chip_version == CHBT_TERM_FPGA) {
903 		u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
904 
905 		val = G_TP_PC_REV(val);
906 		if (val == 2)
907 			p->chip_revision = TERM_T1B;
908 		else if (val == 3)
909 			p->chip_revision = TERM_T2;
910 		else
911 			return -1;
912 	} else
913 		return -1;
914 	return 0;
915 }
916 
917 /*
918  * Enable board components other than the Chelsio chip, such as external MAC
919  * and PHY.
920  */
921 static int board_init(adapter_t *adapter, const struct board_info *bi)
922 {
923 	switch (bi->board) {
924 	case CHBT_BOARD_8000:
925 	case CHBT_BOARD_N110:
926 	case CHBT_BOARD_N210:
927 	case CHBT_BOARD_CHT210:
928 		t1_tpi_par(adapter, 0xf);
929 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
930 		break;
931 	case CHBT_BOARD_CHT110:
932 		t1_tpi_par(adapter, 0xf);
933 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
934 
935 		/* TBD XXX Might not need.  This fixes a problem
936 		 *         described in the Intel SR XPAK errata.
937 		 */
938 		power_sequence_xpak(adapter);
939 		break;
940 #ifdef CONFIG_CHELSIO_T1_1G
941 	case CHBT_BOARD_CHT204E:
942 		/* add config space write here */
943 	case CHBT_BOARD_CHT204:
944 	case CHBT_BOARD_CHT204V:
945 	case CHBT_BOARD_CHN204:
946 		t1_tpi_par(adapter, 0xf);
947 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
948 		break;
949 	case CHBT_BOARD_CHT101:
950 	case CHBT_BOARD_7500:
951 		t1_tpi_par(adapter, 0xf);
952 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
953 		break;
954 #endif
955 	}
956 	return 0;
957 }
958 
959 /*
960  * Initialize and configure the Terminator HW modules.  Note that external
961  * MAC and PHYs are initialized separately.
962  */
963 int t1_init_hw_modules(adapter_t *adapter)
964 {
965 	int err = -EIO;
966 	const struct board_info *bi = board_info(adapter);
967 
968 	if (!bi->clock_mc4) {
969 		u32 val = readl(adapter->regs + A_MC4_CFG);
970 
971 		writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
972 		writel(F_M_BUS_ENABLE | F_TCAM_RESET,
973 		       adapter->regs + A_MC5_CONFIG);
974 	}
975 
976 	if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
977 					  bi->espi_nports))
978 		goto out_err;
979 
980 	if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
981 		goto out_err;
982 
983 	err = t1_sge_configure(adapter->sge, &adapter->params.sge);
984 	if (err)
985 		goto out_err;
986 
987 	err = 0;
988 out_err:
989 	return err;
990 }
991 
992 /*
993  * Determine a card's PCI mode.
994  */
995 static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
996 {
997 	static const unsigned short speed_map[] = { 33, 66, 100, 133 };
998 	u32 pci_mode;
999 
1000 	pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1001 	p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1002 	p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1003 	p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1004 }
1005 
1006 /*
1007  * Release the structures holding the SW per-Terminator-HW-module state.
1008  */
1009 void t1_free_sw_modules(adapter_t *adapter)
1010 {
1011 	unsigned int i;
1012 
1013 	for_each_port(adapter, i) {
1014 		struct cmac *mac = adapter->port[i].mac;
1015 		struct cphy *phy = adapter->port[i].phy;
1016 
1017 		if (mac)
1018 			mac->ops->destroy(mac);
1019 		if (phy)
1020 			phy->ops->destroy(phy);
1021 	}
1022 
1023 	if (adapter->sge)
1024 		t1_sge_destroy(adapter->sge);
1025 	if (adapter->tp)
1026 		t1_tp_destroy(adapter->tp);
1027 	if (adapter->espi)
1028 		t1_espi_destroy(adapter->espi);
1029 }
1030 
1031 static void init_link_config(struct link_config *lc,
1032 			     const struct board_info *bi)
1033 {
1034 	lc->supported = bi->caps;
1035 	lc->requested_speed = lc->speed = SPEED_INVALID;
1036 	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1037 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1038 	if (lc->supported & SUPPORTED_Autoneg) {
1039 		lc->advertising = lc->supported;
1040 		lc->autoneg = AUTONEG_ENABLE;
1041 		lc->requested_fc |= PAUSE_AUTONEG;
1042 	} else {
1043 		lc->advertising = 0;
1044 		lc->autoneg = AUTONEG_DISABLE;
1045 	}
1046 }
1047 
1048 /*
1049  * Allocate and initialize the data structures that hold the SW state of
1050  * the Terminator HW modules.
1051  */
1052 int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
1053 {
1054 	unsigned int i;
1055 
1056 	adapter->params.brd_info = bi;
1057 	adapter->params.nports = bi->port_number;
1058 	adapter->params.stats_update_period = bi->gmac->stats_update_period;
1059 
1060 	adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1061 	if (!adapter->sge) {
1062 		pr_err("%s: SGE initialization failed\n",
1063 		       adapter->name);
1064 		goto error;
1065 	}
1066 
1067 	if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1068 		pr_err("%s: ESPI initialization failed\n",
1069 		       adapter->name);
1070 		goto error;
1071 	}
1072 
1073 	adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1074 	if (!adapter->tp) {
1075 		pr_err("%s: TP initialization failed\n",
1076 		       adapter->name);
1077 		goto error;
1078 	}
1079 
1080 	board_init(adapter, bi);
1081 	bi->mdio_ops->init(adapter, bi);
1082 	if (bi->gphy->reset)
1083 		bi->gphy->reset(adapter);
1084 	if (bi->gmac->reset)
1085 		bi->gmac->reset(adapter);
1086 
1087 	for_each_port(adapter, i) {
1088 		u8 hw_addr[6];
1089 		struct cmac *mac;
1090 		int phy_addr = bi->mdio_phybaseaddr + i;
1091 
1092 		adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
1093 							phy_addr, bi->mdio_ops);
1094 		if (!adapter->port[i].phy) {
1095 			pr_err("%s: PHY %d initialization failed\n",
1096 			       adapter->name, i);
1097 			goto error;
1098 		}
1099 
1100 		adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1101 		if (!mac) {
1102 			pr_err("%s: MAC %d initialization failed\n",
1103 			       adapter->name, i);
1104 			goto error;
1105 		}
1106 
1107 		/*
1108 		 * Get the port's MAC addresses either from the EEPROM if one
1109 		 * exists or the one hardcoded in the MAC.
1110 		 */
1111 		if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1112 			mac->ops->macaddress_get(mac, hw_addr);
1113 		else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1114 			pr_err("%s: could not read MAC address from VPD ROM\n",
1115 			       adapter->port[i].dev->name);
1116 			goto error;
1117 		}
1118 		memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN);
1119 		init_link_config(&adapter->port[i].link_config, bi);
1120 	}
1121 
1122 	get_pci_mode(adapter, &adapter->params.pci);
1123 	t1_interrupts_clear(adapter);
1124 	return 0;
1125 
1126 error:
1127 	t1_free_sw_modules(adapter);
1128 	return -1;
1129 }
1130