xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb/subr.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*****************************************************************************
2  *                                                                           *
3  * File: subr.c                                                              *
4  * $Revision: 1.27 $                                                         *
5  * $Date: 2005/06/22 01:08:36 $                                              *
6  * Description:                                                              *
7  *  Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, see <http://www.gnu.org/licenses/>.            *
16  *                                                                           *
17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
20  *                                                                           *
21  * http://www.chelsio.com                                                    *
22  *                                                                           *
23  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
24  * All rights reserved.                                                      *
25  *                                                                           *
26  * Maintainers: maintainers@chelsio.com                                      *
27  *                                                                           *
28  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
29  *          Tina Yang               <tainay@chelsio.com>                     *
30  *          Felix Marti             <felix@chelsio.com>                      *
31  *          Scott Bardone           <sbardone@chelsio.com>                   *
32  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
33  *          Frank DiMambro          <frank@chelsio.com>                      *
34  *                                                                           *
35  * History:                                                                  *
36  *                                                                           *
37  ****************************************************************************/
38 
39 #include "common.h"
40 #include "elmer0.h"
41 #include "regs.h"
42 #include "gmac.h"
43 #include "cphy.h"
44 #include "sge.h"
45 #include "tp.h"
46 #include "espi.h"
47 
48 /**
49  *	t1_wait_op_done - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *      @delay: delay in usecs between iterations
56  *
57  *	Wait until an operation is completed by checking a bit in a register
58  *	up to @attempts times.  Returns %0 if the operation completes and %1
59  *	otherwise.
60  */
61 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity,
62 			   int attempts, int delay)
63 {
64 	while (1) {
65 		u32 val = readl(adapter->regs + reg) & mask;
66 
67 		if (!!val == polarity)
68 			return 0;
69 		if (--attempts == 0)
70 			return 1;
71 		if (delay)
72 			udelay(delay);
73 	}
74 }
75 
76 #define TPI_ATTEMPTS 50
77 
78 /*
79  * Write a register over the TPI interface (unlocked and locked versions).
80  */
81 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
82 {
83 	int tpi_busy;
84 
85 	writel(addr, adapter->regs + A_TPI_ADDR);
86 	writel(value, adapter->regs + A_TPI_WR_DATA);
87 	writel(F_TPIWR, adapter->regs + A_TPI_CSR);
88 
89 	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
90 				   TPI_ATTEMPTS, 3);
91 	if (tpi_busy)
92 		pr_alert("%s: TPI write to 0x%x failed\n",
93 			 adapter->name, addr);
94 	return tpi_busy;
95 }
96 
97 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value)
98 {
99 	int ret;
100 
101 	spin_lock(&adapter->tpi_lock);
102 	ret = __t1_tpi_write(adapter, addr, value);
103 	spin_unlock(&adapter->tpi_lock);
104 	return ret;
105 }
106 
107 /*
108  * Read a register over the TPI interface (unlocked and locked versions).
109  */
110 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
111 {
112 	int tpi_busy;
113 
114 	writel(addr, adapter->regs + A_TPI_ADDR);
115 	writel(0, adapter->regs + A_TPI_CSR);
116 
117 	tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1,
118 				   TPI_ATTEMPTS, 3);
119 	if (tpi_busy)
120 		pr_alert("%s: TPI read from 0x%x failed\n",
121 			 adapter->name, addr);
122 	else
123 		*valp = readl(adapter->regs + A_TPI_RD_DATA);
124 	return tpi_busy;
125 }
126 
127 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp)
128 {
129 	int ret;
130 
131 	spin_lock(&adapter->tpi_lock);
132 	ret = __t1_tpi_read(adapter, addr, valp);
133 	spin_unlock(&adapter->tpi_lock);
134 	return ret;
135 }
136 
137 /*
138  * Set a TPI parameter.
139  */
140 static void t1_tpi_par(adapter_t *adapter, u32 value)
141 {
142 	writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR);
143 }
144 
145 /*
146  * Called when a port's link settings change to propagate the new values to the
147  * associated PHY and MAC.  After performing the common tasks it invokes an
148  * OS-specific handler.
149  */
150 void t1_link_changed(adapter_t *adapter, int port_id)
151 {
152 	int link_ok, speed, duplex, fc;
153 	struct cphy *phy = adapter->port[port_id].phy;
154 	struct link_config *lc = &adapter->port[port_id].link_config;
155 
156 	phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
157 
158 	lc->speed = speed < 0 ? SPEED_INVALID : speed;
159 	lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
160 	if (!(lc->requested_fc & PAUSE_AUTONEG))
161 		fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
162 
163 	if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
164 		/* Set MAC speed, duplex, and flow control to match PHY. */
165 		struct cmac *mac = adapter->port[port_id].mac;
166 
167 		mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc);
168 		lc->fc = (unsigned char)fc;
169 	}
170 	t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc);
171 }
172 
173 static int t1_pci_intr_handler(adapter_t *adapter)
174 {
175 	u32 pcix_cause;
176 
177 	pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause);
178 
179 	if (pcix_cause) {
180 		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE,
181 				       pcix_cause);
182 		t1_fatal_err(adapter);    /* PCI errors are fatal */
183 	}
184 	return 0;
185 }
186 
187 #ifdef CONFIG_CHELSIO_T1_1G
188 #include "fpga_defs.h"
189 
190 /*
191  * PHY interrupt handler for FPGA boards.
192  */
193 static int fpga_phy_intr_handler(adapter_t *adapter)
194 {
195 	int p;
196 	u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
197 
198 	for_each_port(adapter, p)
199 		if (cause & (1 << p)) {
200 			struct cphy *phy = adapter->port[p].phy;
201 			int phy_cause = phy->ops->interrupt_handler(phy);
202 
203 			if (phy_cause & cphy_cause_link_change)
204 				t1_link_changed(adapter, p);
205 		}
206 	writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
207 	return 0;
208 }
209 
210 /*
211  * Slow path interrupt handler for FPGAs.
212  */
213 static int fpga_slow_intr(adapter_t *adapter)
214 {
215 	u32 cause = readl(adapter->regs + A_PL_CAUSE);
216 
217 	cause &= ~F_PL_INTR_SGE_DATA;
218 	if (cause & F_PL_INTR_SGE_ERR)
219 		t1_sge_intr_error_handler(adapter->sge);
220 
221 	if (cause & FPGA_PCIX_INTERRUPT_GMAC)
222 		fpga_phy_intr_handler(adapter);
223 
224 	if (cause & FPGA_PCIX_INTERRUPT_TP) {
225 		/*
226 		 * FPGA doesn't support MC4 interrupts and it requires
227 		 * this odd layer of indirection for MC5.
228 		 */
229 		u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
230 
231 		/* Clear TP interrupt */
232 		writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
233 	}
234 	if (cause & FPGA_PCIX_INTERRUPT_PCIX)
235 		t1_pci_intr_handler(adapter);
236 
237 	/* Clear the interrupts just processed. */
238 	if (cause)
239 		writel(cause, adapter->regs + A_PL_CAUSE);
240 
241 	return cause != 0;
242 }
243 #endif
244 
245 /*
246  * Wait until Elmer's MI1 interface is ready for new operations.
247  */
248 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg)
249 {
250 	int attempts = 100, busy;
251 
252 	do {
253 		u32 val;
254 
255 		__t1_tpi_read(adapter, mi1_reg, &val);
256 		busy = val & F_MI1_OP_BUSY;
257 		if (busy)
258 			udelay(10);
259 	} while (busy && --attempts);
260 	if (busy)
261 		pr_alert("%s: MDIO operation timed out\n", adapter->name);
262 	return busy;
263 }
264 
265 /*
266  * MI1 MDIO initialization.
267  */
268 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
269 {
270 	u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1;
271 	u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) |
272 		V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv);
273 
274 	if (!(bi->caps & SUPPORTED_10000baseT_Full))
275 		val |= V_MI1_SOF(1);
276 	t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
277 }
278 
279 #if defined(CONFIG_CHELSIO_T1_1G)
280 /*
281  * Elmer MI1 MDIO read/write operations.
282  */
283 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr,
284 			 u16 reg_addr)
285 {
286 	struct adapter *adapter = dev->ml_priv;
287 	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
288 	unsigned int val;
289 
290 	spin_lock(&adapter->tpi_lock);
291 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
292 	__t1_tpi_write(adapter,
293 			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
294 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
295 	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
296 	spin_unlock(&adapter->tpi_lock);
297 	return val;
298 }
299 
300 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr,
301 			  u16 reg_addr, u16 val)
302 {
303 	struct adapter *adapter = dev->ml_priv;
304 	u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
305 
306 	spin_lock(&adapter->tpi_lock);
307 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
308 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
309 	__t1_tpi_write(adapter,
310 			A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
311 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
312 	spin_unlock(&adapter->tpi_lock);
313 	return 0;
314 }
315 
316 static const struct mdio_ops mi1_mdio_ops = {
317 	.init = mi1_mdio_init,
318 	.read = mi1_mdio_read,
319 	.write = mi1_mdio_write,
320 	.mode_support = MDIO_SUPPORTS_C22
321 };
322 
323 #endif
324 
325 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
326 			     u16 reg_addr)
327 {
328 	struct adapter *adapter = dev->ml_priv;
329 	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
330 	unsigned int val;
331 
332 	spin_lock(&adapter->tpi_lock);
333 
334 	/* Write the address we want. */
335 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
336 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
337 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
338 		       MI1_OP_INDIRECT_ADDRESS);
339 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
340 
341 	/* Write the operation we want. */
342 	__t1_tpi_write(adapter,
343 			A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ);
344 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
345 
346 	/* Read the data. */
347 	__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val);
348 	spin_unlock(&adapter->tpi_lock);
349 	return val;
350 }
351 
352 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr,
353 			      int mmd_addr, u16 reg_addr, u16 val)
354 {
355 	struct adapter *adapter = dev->ml_priv;
356 	u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr);
357 
358 	spin_lock(&adapter->tpi_lock);
359 
360 	/* Write the address we want. */
361 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
362 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr);
363 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP,
364 		       MI1_OP_INDIRECT_ADDRESS);
365 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
366 
367 	/* Write the data. */
368 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
369 	__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE);
370 	mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
371 	spin_unlock(&adapter->tpi_lock);
372 	return 0;
373 }
374 
375 static const struct mdio_ops mi1_mdio_ext_ops = {
376 	.init = mi1_mdio_init,
377 	.read = mi1_mdio_ext_read,
378 	.write = mi1_mdio_ext_write,
379 	.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
380 };
381 
382 enum {
383 	CH_BRD_T110_1CU,
384 	CH_BRD_N110_1F,
385 	CH_BRD_N210_1F,
386 	CH_BRD_T210_1F,
387 	CH_BRD_T210_1CU,
388 	CH_BRD_N204_4CU,
389 };
390 
391 static const struct board_info t1_board[] = {
392 	{
393 		.board		= CHBT_BOARD_CHT110,
394 		.port_number	= 1,
395 		.caps		= SUPPORTED_10000baseT_Full,
396 		.chip_term	= CHBT_TERM_T1,
397 		.chip_mac	= CHBT_MAC_PM3393,
398 		.chip_phy	= CHBT_PHY_MY3126,
399 		.clock_core	= 125000000,
400 		.clock_mc3	= 150000000,
401 		.clock_mc4	= 125000000,
402 		.espi_nports	= 1,
403 		.clock_elmer0	= 44,
404 		.mdio_mdien	= 1,
405 		.mdio_mdiinv	= 1,
406 		.mdio_mdc	= 1,
407 		.mdio_phybaseaddr = 1,
408 		.gmac		= &t1_pm3393_ops,
409 		.gphy		= &t1_my3126_ops,
410 		.mdio_ops	= &mi1_mdio_ext_ops,
411 		.desc		= "Chelsio T110 1x10GBase-CX4 TOE",
412 	},
413 
414 	{
415 		.board		= CHBT_BOARD_N110,
416 		.port_number	= 1,
417 		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
418 		.chip_term	= CHBT_TERM_T1,
419 		.chip_mac	= CHBT_MAC_PM3393,
420 		.chip_phy	= CHBT_PHY_88X2010,
421 		.clock_core	= 125000000,
422 		.espi_nports	= 1,
423 		.clock_elmer0	= 44,
424 		.mdio_mdien	= 0,
425 		.mdio_mdiinv	= 0,
426 		.mdio_mdc	= 1,
427 		.mdio_phybaseaddr = 0,
428 		.gmac		= &t1_pm3393_ops,
429 		.gphy		= &t1_mv88x201x_ops,
430 		.mdio_ops	= &mi1_mdio_ext_ops,
431 		.desc		= "Chelsio N110 1x10GBaseX NIC",
432 	},
433 
434 	{
435 		.board		= CHBT_BOARD_N210,
436 		.port_number	= 1,
437 		.caps		= SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE,
438 		.chip_term	= CHBT_TERM_T2,
439 		.chip_mac	= CHBT_MAC_PM3393,
440 		.chip_phy	= CHBT_PHY_88X2010,
441 		.clock_core	= 125000000,
442 		.espi_nports	= 1,
443 		.clock_elmer0	= 44,
444 		.mdio_mdien	= 0,
445 		.mdio_mdiinv	= 0,
446 		.mdio_mdc	= 1,
447 		.mdio_phybaseaddr = 0,
448 		.gmac		= &t1_pm3393_ops,
449 		.gphy		= &t1_mv88x201x_ops,
450 		.mdio_ops	= &mi1_mdio_ext_ops,
451 		.desc		= "Chelsio N210 1x10GBaseX NIC",
452 	},
453 
454 	{
455 		.board		= CHBT_BOARD_CHT210,
456 		.port_number	= 1,
457 		.caps		= SUPPORTED_10000baseT_Full,
458 		.chip_term	= CHBT_TERM_T2,
459 		.chip_mac	= CHBT_MAC_PM3393,
460 		.chip_phy	= CHBT_PHY_88X2010,
461 		.clock_core	= 125000000,
462 		.clock_mc3	= 133000000,
463 		.clock_mc4	= 125000000,
464 		.espi_nports	= 1,
465 		.clock_elmer0	= 44,
466 		.mdio_mdien	= 0,
467 		.mdio_mdiinv	= 0,
468 		.mdio_mdc	= 1,
469 		.mdio_phybaseaddr = 0,
470 		.gmac		= &t1_pm3393_ops,
471 		.gphy		= &t1_mv88x201x_ops,
472 		.mdio_ops	= &mi1_mdio_ext_ops,
473 		.desc		= "Chelsio T210 1x10GBaseX TOE",
474 	},
475 
476 	{
477 		.board		= CHBT_BOARD_CHT210,
478 		.port_number	= 1,
479 		.caps		= SUPPORTED_10000baseT_Full,
480 		.chip_term	= CHBT_TERM_T2,
481 		.chip_mac	= CHBT_MAC_PM3393,
482 		.chip_phy	= CHBT_PHY_MY3126,
483 		.clock_core	= 125000000,
484 		.clock_mc3	= 133000000,
485 		.clock_mc4	= 125000000,
486 		.espi_nports	= 1,
487 		.clock_elmer0	= 44,
488 		.mdio_mdien	= 1,
489 		.mdio_mdiinv	= 1,
490 		.mdio_mdc	= 1,
491 		.mdio_phybaseaddr = 1,
492 		.gmac		= &t1_pm3393_ops,
493 		.gphy		= &t1_my3126_ops,
494 		.mdio_ops	= &mi1_mdio_ext_ops,
495 		.desc		= "Chelsio T210 1x10GBase-CX4 TOE",
496 	},
497 
498 #ifdef CONFIG_CHELSIO_T1_1G
499 	{
500 		.board		= CHBT_BOARD_CHN204,
501 		.port_number	= 4,
502 		.caps		= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full
503 				| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full
504 				| SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
505 				  SUPPORTED_PAUSE | SUPPORTED_TP,
506 		.chip_term	= CHBT_TERM_T2,
507 		.chip_mac	= CHBT_MAC_VSC7321,
508 		.chip_phy	= CHBT_PHY_88E1111,
509 		.clock_core	= 100000000,
510 		.espi_nports	= 4,
511 		.clock_elmer0	= 44,
512 		.mdio_mdien	= 0,
513 		.mdio_mdiinv	= 0,
514 		.mdio_mdc	= 0,
515 		.mdio_phybaseaddr = 4,
516 		.gmac		= &t1_vsc7326_ops,
517 		.gphy		= &t1_mv88e1xxx_ops,
518 		.mdio_ops	= &mi1_mdio_ops,
519 		.desc		= "Chelsio N204 4x100/1000BaseT NIC",
520 	},
521 #endif
522 
523 };
524 
525 const struct pci_device_id t1_pci_tbl[] = {
526 	CH_DEVICE(8, 0, CH_BRD_T110_1CU),
527 	CH_DEVICE(8, 1, CH_BRD_T110_1CU),
528 	CH_DEVICE(7, 0, CH_BRD_N110_1F),
529 	CH_DEVICE(10, 1, CH_BRD_N210_1F),
530 	CH_DEVICE(11, 1, CH_BRD_T210_1F),
531 	CH_DEVICE(14, 1, CH_BRD_T210_1CU),
532 	CH_DEVICE(16, 1, CH_BRD_N204_4CU),
533 	{ 0 }
534 };
535 
536 MODULE_DEVICE_TABLE(pci, t1_pci_tbl);
537 
538 /*
539  * Return the board_info structure with a given index.  Out-of-range indices
540  * return NULL.
541  */
542 const struct board_info *t1_get_board_info(unsigned int board_id)
543 {
544 	return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL;
545 }
546 
547 struct chelsio_vpd_t {
548 	u32 format_version;
549 	u8 serial_number[16];
550 	u8 mac_base_address[6];
551 	u8 pad[2];           /* make multiple-of-4 size requirement explicit */
552 };
553 
554 #define EEPROMSIZE        (8 * 1024)
555 #define EEPROM_MAX_POLL   4
556 
557 /*
558  * Read SEEPROM. A zero is written to the flag register when the address is
559  * written to the Control register. The hardware device will set the flag to a
560  * one when 4B have been transferred to the Data register.
561  */
562 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data)
563 {
564 	int i = EEPROM_MAX_POLL;
565 	u16 val;
566 	u32 v;
567 
568 	if (addr >= EEPROMSIZE || (addr & 3))
569 		return -EINVAL;
570 
571 	pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr);
572 	do {
573 		udelay(50);
574 		pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val);
575 	} while (!(val & F_VPD_OP_FLAG) && --i);
576 
577 	if (!(val & F_VPD_OP_FLAG)) {
578 		pr_err("%s: reading EEPROM address 0x%x failed\n",
579 		       adapter->name, addr);
580 		return -EIO;
581 	}
582 	pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v);
583 	*data = cpu_to_le32(v);
584 	return 0;
585 }
586 
587 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd)
588 {
589 	int addr, ret = 0;
590 
591 	for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32))
592 		ret = t1_seeprom_read(adapter, addr,
593 				      (__le32 *)((u8 *)vpd + addr));
594 
595 	return ret;
596 }
597 
598 /*
599  * Read a port's MAC address from the VPD ROM.
600  */
601 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[])
602 {
603 	struct chelsio_vpd_t vpd;
604 
605 	if (t1_eeprom_vpd_get(adapter, &vpd))
606 		return 1;
607 	memcpy(mac_addr, vpd.mac_base_address, 5);
608 	mac_addr[5] = vpd.mac_base_address[5] + index;
609 	return 0;
610 }
611 
612 /*
613  * Set up the MAC/PHY according to the requested link settings.
614  *
615  * If the PHY can auto-negotiate first decide what to advertise, then
616  * enable/disable auto-negotiation as desired and reset.
617  *
618  * If the PHY does not auto-negotiate we just reset it.
619  *
620  * If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
621  * otherwise do it later based on the outcome of auto-negotiation.
622  */
623 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
624 {
625 	unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
626 
627 	if (lc->supported & SUPPORTED_Autoneg) {
628 		lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE);
629 		if (fc) {
630 			if (fc == ((PAUSE_RX | PAUSE_TX) &
631 				   (mac->adapter->params.nports < 2)))
632 				lc->advertising |= ADVERTISED_PAUSE;
633 			else {
634 				lc->advertising |= ADVERTISED_ASYM_PAUSE;
635 				if (fc == PAUSE_RX)
636 					lc->advertising |= ADVERTISED_PAUSE;
637 			}
638 		}
639 		phy->ops->advertise(phy, lc->advertising);
640 
641 		if (lc->autoneg == AUTONEG_DISABLE) {
642 			lc->speed = lc->requested_speed;
643 			lc->duplex = lc->requested_duplex;
644 			lc->fc = (unsigned char)fc;
645 			mac->ops->set_speed_duplex_fc(mac, lc->speed,
646 						      lc->duplex, fc);
647 			/* Also disables autoneg */
648 			phy->state = PHY_AUTONEG_RDY;
649 			phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
650 			phy->ops->reset(phy, 0);
651 		} else {
652 			phy->state = PHY_AUTONEG_EN;
653 			phy->ops->autoneg_enable(phy); /* also resets PHY */
654 		}
655 	} else {
656 		phy->state = PHY_AUTONEG_RDY;
657 		mac->ops->set_speed_duplex_fc(mac, -1, -1, fc);
658 		lc->fc = (unsigned char)fc;
659 		phy->ops->reset(phy, 0);
660 	}
661 	return 0;
662 }
663 
664 /*
665  * External interrupt handler for boards using elmer0.
666  */
667 int t1_elmer0_ext_intr_handler(adapter_t *adapter)
668 {
669 	struct cphy *phy;
670 	int phy_cause;
671 	u32 cause;
672 
673 	t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
674 
675 	switch (board_info(adapter)->board) {
676 #ifdef CONFIG_CHELSIO_T1_1G
677 	case CHBT_BOARD_CHT204:
678 	case CHBT_BOARD_CHT204E:
679 	case CHBT_BOARD_CHN204:
680 	case CHBT_BOARD_CHT204V: {
681 		int i, port_bit;
682 		for_each_port(adapter, i) {
683 			port_bit = i + 1;
684 			if (!(cause & (1 << port_bit)))
685 				continue;
686 
687 			phy = adapter->port[i].phy;
688 			phy_cause = phy->ops->interrupt_handler(phy);
689 			if (phy_cause & cphy_cause_link_change)
690 				t1_link_changed(adapter, i);
691 		}
692 		break;
693 	}
694 	case CHBT_BOARD_CHT101:
695 		if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
696 			phy = adapter->port[0].phy;
697 			phy_cause = phy->ops->interrupt_handler(phy);
698 			if (phy_cause & cphy_cause_link_change)
699 				t1_link_changed(adapter, 0);
700 		}
701 		break;
702 	case CHBT_BOARD_7500: {
703 		int p;
704 		/*
705 		 * Elmer0's interrupt cause isn't useful here because there is
706 		 * only one bit that can be set for all 4 ports.  This means
707 		 * we are forced to check every PHY's interrupt status
708 		 * register to see who initiated the interrupt.
709 		 */
710 		for_each_port(adapter, p) {
711 			phy = adapter->port[p].phy;
712 			phy_cause = phy->ops->interrupt_handler(phy);
713 			if (phy_cause & cphy_cause_link_change)
714 			    t1_link_changed(adapter, p);
715 		}
716 		break;
717 	}
718 #endif
719 	case CHBT_BOARD_CHT210:
720 	case CHBT_BOARD_N210:
721 	case CHBT_BOARD_N110:
722 		if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */
723 			phy = adapter->port[0].phy;
724 			phy_cause = phy->ops->interrupt_handler(phy);
725 			if (phy_cause & cphy_cause_link_change)
726 				t1_link_changed(adapter, 0);
727 		}
728 		break;
729 	case CHBT_BOARD_8000:
730 	case CHBT_BOARD_CHT110:
731 		if (netif_msg_intr(adapter))
732 			dev_dbg(&adapter->pdev->dev,
733 				"External interrupt cause 0x%x\n", cause);
734 		if (cause & ELMER0_GP_BIT1) {        /* PMC3393 INTB */
735 			struct cmac *mac = adapter->port[0].mac;
736 
737 			mac->ops->interrupt_handler(mac);
738 		}
739 		if (cause & ELMER0_GP_BIT5) {        /* XPAK MOD_DETECT */
740 			u32 mod_detect;
741 
742 			t1_tpi_read(adapter,
743 					A_ELMER0_GPI_STAT, &mod_detect);
744 			if (netif_msg_link(adapter))
745 				dev_info(&adapter->pdev->dev, "XPAK %s\n",
746 					 mod_detect ? "removed" : "inserted");
747 		}
748 		break;
749 	}
750 	t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
751 	return 0;
752 }
753 
754 /* Enables all interrupts. */
755 void t1_interrupts_enable(adapter_t *adapter)
756 {
757 	unsigned int i;
758 
759 	adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP;
760 
761 	t1_sge_intr_enable(adapter->sge);
762 	t1_tp_intr_enable(adapter->tp);
763 	if (adapter->espi) {
764 		adapter->slow_intr_mask |= F_PL_INTR_ESPI;
765 		t1_espi_intr_enable(adapter->espi);
766 	}
767 
768 	/* Enable MAC/PHY interrupts for each port. */
769 	for_each_port(adapter, i) {
770 		adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac);
771 		adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy);
772 	}
773 
774 	/* Enable PCIX & external chip interrupts on ASIC boards. */
775 	if (t1_is_asic(adapter)) {
776 		u32 pl_intr = readl(adapter->regs + A_PL_ENABLE);
777 
778 		/* PCI-X interrupts */
779 		pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE,
780 				       0xffffffff);
781 
782 		adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
783 		pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX;
784 		writel(pl_intr, adapter->regs + A_PL_ENABLE);
785 	}
786 }
787 
788 /* Disables all interrupts. */
789 void t1_interrupts_disable(adapter_t* adapter)
790 {
791 	unsigned int i;
792 
793 	t1_sge_intr_disable(adapter->sge);
794 	t1_tp_intr_disable(adapter->tp);
795 	if (adapter->espi)
796 		t1_espi_intr_disable(adapter->espi);
797 
798 	/* Disable MAC/PHY interrupts for each port. */
799 	for_each_port(adapter, i) {
800 		adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac);
801 		adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy);
802 	}
803 
804 	/* Disable PCIX & external chip interrupts. */
805 	if (t1_is_asic(adapter))
806 		writel(0, adapter->regs + A_PL_ENABLE);
807 
808 	/* PCI-X interrupts */
809 	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0);
810 
811 	adapter->slow_intr_mask = 0;
812 }
813 
814 /* Clears all interrupts */
815 void t1_interrupts_clear(adapter_t* adapter)
816 {
817 	unsigned int i;
818 
819 	t1_sge_intr_clear(adapter->sge);
820 	t1_tp_intr_clear(adapter->tp);
821 	if (adapter->espi)
822 		t1_espi_intr_clear(adapter->espi);
823 
824 	/* Clear MAC/PHY interrupts for each port. */
825 	for_each_port(adapter, i) {
826 		adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac);
827 		adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy);
828 	}
829 
830 	/* Enable interrupts for external devices. */
831 	if (t1_is_asic(adapter)) {
832 		u32 pl_intr = readl(adapter->regs + A_PL_CAUSE);
833 
834 		writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX,
835 		       adapter->regs + A_PL_CAUSE);
836 	}
837 
838 	/* PCI-X interrupts */
839 	pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff);
840 }
841 
842 /*
843  * Slow path interrupt handler for ASICs.
844  */
845 static int asic_slow_intr(adapter_t *adapter)
846 {
847 	u32 cause = readl(adapter->regs + A_PL_CAUSE);
848 
849 	cause &= adapter->slow_intr_mask;
850 	if (!cause)
851 		return 0;
852 	if (cause & F_PL_INTR_SGE_ERR)
853 		t1_sge_intr_error_handler(adapter->sge);
854 	if (cause & F_PL_INTR_TP)
855 		t1_tp_intr_handler(adapter->tp);
856 	if (cause & F_PL_INTR_ESPI)
857 		t1_espi_intr_handler(adapter->espi);
858 	if (cause & F_PL_INTR_PCIX)
859 		t1_pci_intr_handler(adapter);
860 	if (cause & F_PL_INTR_EXT)
861 		t1_elmer0_ext_intr(adapter);
862 
863 	/* Clear the interrupts just processed. */
864 	writel(cause, adapter->regs + A_PL_CAUSE);
865 	readl(adapter->regs + A_PL_CAUSE); /* flush writes */
866 	return 1;
867 }
868 
869 int t1_slow_intr_handler(adapter_t *adapter)
870 {
871 #ifdef CONFIG_CHELSIO_T1_1G
872 	if (!t1_is_asic(adapter))
873 		return fpga_slow_intr(adapter);
874 #endif
875 	return asic_slow_intr(adapter);
876 }
877 
878 /* Power sequencing is a work-around for Intel's XPAKs. */
879 static void power_sequence_xpak(adapter_t* adapter)
880 {
881 	u32 mod_detect;
882 	u32 gpo;
883 
884 	/* Check for XPAK */
885 	t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect);
886 	if (!(ELMER0_GP_BIT5 & mod_detect)) {
887 		/* XPAK is present */
888 		t1_tpi_read(adapter, A_ELMER0_GPO, &gpo);
889 		gpo |= ELMER0_GP_BIT18;
890 		t1_tpi_write(adapter, A_ELMER0_GPO, gpo);
891 	}
892 }
893 
894 int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi,
895 		     struct adapter_params *p)
896 {
897 	p->chip_version = bi->chip_term;
898 	p->is_asic = (p->chip_version != CHBT_TERM_FPGA);
899 	if (p->chip_version == CHBT_TERM_T1 ||
900 	    p->chip_version == CHBT_TERM_T2 ||
901 	    p->chip_version == CHBT_TERM_FPGA) {
902 		u32 val = readl(adapter->regs + A_TP_PC_CONFIG);
903 
904 		val = G_TP_PC_REV(val);
905 		if (val == 2)
906 			p->chip_revision = TERM_T1B;
907 		else if (val == 3)
908 			p->chip_revision = TERM_T2;
909 		else
910 			return -1;
911 	} else
912 		return -1;
913 	return 0;
914 }
915 
916 /*
917  * Enable board components other than the Chelsio chip, such as external MAC
918  * and PHY.
919  */
920 static int board_init(adapter_t *adapter, const struct board_info *bi)
921 {
922 	switch (bi->board) {
923 	case CHBT_BOARD_8000:
924 	case CHBT_BOARD_N110:
925 	case CHBT_BOARD_N210:
926 	case CHBT_BOARD_CHT210:
927 		t1_tpi_par(adapter, 0xf);
928 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x800);
929 		break;
930 	case CHBT_BOARD_CHT110:
931 		t1_tpi_par(adapter, 0xf);
932 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800);
933 
934 		/* TBD XXX Might not need.  This fixes a problem
935 		 *         described in the Intel SR XPAK errata.
936 		 */
937 		power_sequence_xpak(adapter);
938 		break;
939 #ifdef CONFIG_CHELSIO_T1_1G
940 	case CHBT_BOARD_CHT204E:
941 		/* add config space write here */
942 	case CHBT_BOARD_CHT204:
943 	case CHBT_BOARD_CHT204V:
944 	case CHBT_BOARD_CHN204:
945 		t1_tpi_par(adapter, 0xf);
946 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
947 		break;
948 	case CHBT_BOARD_CHT101:
949 	case CHBT_BOARD_7500:
950 		t1_tpi_par(adapter, 0xf);
951 		t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
952 		break;
953 #endif
954 	}
955 	return 0;
956 }
957 
958 /*
959  * Initialize and configure the Terminator HW modules.  Note that external
960  * MAC and PHYs are initialized separately.
961  */
962 int t1_init_hw_modules(adapter_t *adapter)
963 {
964 	int err = -EIO;
965 	const struct board_info *bi = board_info(adapter);
966 
967 	if (!bi->clock_mc4) {
968 		u32 val = readl(adapter->regs + A_MC4_CFG);
969 
970 		writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG);
971 		writel(F_M_BUS_ENABLE | F_TCAM_RESET,
972 		       adapter->regs + A_MC5_CONFIG);
973 	}
974 
975 	if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
976 					  bi->espi_nports))
977 		goto out_err;
978 
979 	if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core))
980 		goto out_err;
981 
982 	err = t1_sge_configure(adapter->sge, &adapter->params.sge);
983 	if (err)
984 		goto out_err;
985 
986 	err = 0;
987 out_err:
988 	return err;
989 }
990 
991 /*
992  * Determine a card's PCI mode.
993  */
994 static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p)
995 {
996 	static const unsigned short speed_map[] = { 33, 66, 100, 133 };
997 	u32 pci_mode;
998 
999 	pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode);
1000 	p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)];
1001 	p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32;
1002 	p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0;
1003 }
1004 
1005 /*
1006  * Release the structures holding the SW per-Terminator-HW-module state.
1007  */
1008 void t1_free_sw_modules(adapter_t *adapter)
1009 {
1010 	unsigned int i;
1011 
1012 	for_each_port(adapter, i) {
1013 		struct cmac *mac = adapter->port[i].mac;
1014 		struct cphy *phy = adapter->port[i].phy;
1015 
1016 		if (mac)
1017 			mac->ops->destroy(mac);
1018 		if (phy)
1019 			phy->ops->destroy(phy);
1020 	}
1021 
1022 	if (adapter->sge)
1023 		t1_sge_destroy(adapter->sge);
1024 	if (adapter->tp)
1025 		t1_tp_destroy(adapter->tp);
1026 	if (adapter->espi)
1027 		t1_espi_destroy(adapter->espi);
1028 }
1029 
1030 static void init_link_config(struct link_config *lc,
1031 			     const struct board_info *bi)
1032 {
1033 	lc->supported = bi->caps;
1034 	lc->requested_speed = lc->speed = SPEED_INVALID;
1035 	lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
1036 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
1037 	if (lc->supported & SUPPORTED_Autoneg) {
1038 		lc->advertising = lc->supported;
1039 		lc->autoneg = AUTONEG_ENABLE;
1040 		lc->requested_fc |= PAUSE_AUTONEG;
1041 	} else {
1042 		lc->advertising = 0;
1043 		lc->autoneg = AUTONEG_DISABLE;
1044 	}
1045 }
1046 
1047 /*
1048  * Allocate and initialize the data structures that hold the SW state of
1049  * the Terminator HW modules.
1050  */
1051 int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi)
1052 {
1053 	unsigned int i;
1054 
1055 	adapter->params.brd_info = bi;
1056 	adapter->params.nports = bi->port_number;
1057 	adapter->params.stats_update_period = bi->gmac->stats_update_period;
1058 
1059 	adapter->sge = t1_sge_create(adapter, &adapter->params.sge);
1060 	if (!adapter->sge) {
1061 		pr_err("%s: SGE initialization failed\n",
1062 		       adapter->name);
1063 		goto error;
1064 	}
1065 
1066 	if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) {
1067 		pr_err("%s: ESPI initialization failed\n",
1068 		       adapter->name);
1069 		goto error;
1070 	}
1071 
1072 	adapter->tp = t1_tp_create(adapter, &adapter->params.tp);
1073 	if (!adapter->tp) {
1074 		pr_err("%s: TP initialization failed\n",
1075 		       adapter->name);
1076 		goto error;
1077 	}
1078 
1079 	board_init(adapter, bi);
1080 	bi->mdio_ops->init(adapter, bi);
1081 	if (bi->gphy->reset)
1082 		bi->gphy->reset(adapter);
1083 	if (bi->gmac->reset)
1084 		bi->gmac->reset(adapter);
1085 
1086 	for_each_port(adapter, i) {
1087 		u8 hw_addr[6];
1088 		struct cmac *mac;
1089 		int phy_addr = bi->mdio_phybaseaddr + i;
1090 
1091 		adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev,
1092 							phy_addr, bi->mdio_ops);
1093 		if (!adapter->port[i].phy) {
1094 			pr_err("%s: PHY %d initialization failed\n",
1095 			       adapter->name, i);
1096 			goto error;
1097 		}
1098 
1099 		adapter->port[i].mac = mac = bi->gmac->create(adapter, i);
1100 		if (!mac) {
1101 			pr_err("%s: MAC %d initialization failed\n",
1102 			       adapter->name, i);
1103 			goto error;
1104 		}
1105 
1106 		/*
1107 		 * Get the port's MAC addresses either from the EEPROM if one
1108 		 * exists or the one hardcoded in the MAC.
1109 		 */
1110 		if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY)
1111 			mac->ops->macaddress_get(mac, hw_addr);
1112 		else if (vpd_macaddress_get(adapter, i, hw_addr)) {
1113 			pr_err("%s: could not read MAC address from VPD ROM\n",
1114 			       adapter->port[i].dev->name);
1115 			goto error;
1116 		}
1117 		memcpy(adapter->port[i].dev->dev_addr, hw_addr, ETH_ALEN);
1118 		init_link_config(&adapter->port[i].link_config, bi);
1119 	}
1120 
1121 	get_pci_mode(adapter, &adapter->params.pci);
1122 	t1_interrupts_clear(adapter);
1123 	return 0;
1124 
1125 error:
1126 	t1_free_sw_modules(adapter);
1127 	return -1;
1128 }
1129