1 /***************************************************************************** 2 * * 3 * File: sge.c * 4 * $Revision: 1.26 $ * 5 * $Date: 2005/06/21 18:29:48 $ * 6 * Description: * 7 * DMA engine. * 8 * part of the Chelsio 10Gb Ethernet Driver. * 9 * * 10 * This program is free software; you can redistribute it and/or modify * 11 * it under the terms of the GNU General Public License, version 2, as * 12 * published by the Free Software Foundation. * 13 * * 14 * You should have received a copy of the GNU General Public License along * 15 * with this program; if not, write to the Free Software Foundation, Inc., * 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * 17 * * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * 19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * 21 * * 22 * http://www.chelsio.com * 23 * * 24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 25 * All rights reserved. * 26 * * 27 * Maintainers: maintainers@chelsio.com * 28 * * 29 * Authors: Dimitrios Michailidis <dm@chelsio.com> * 30 * Tina Yang <tainay@chelsio.com> * 31 * Felix Marti <felix@chelsio.com> * 32 * Scott Bardone <sbardone@chelsio.com> * 33 * Kurt Ottaway <kottaway@chelsio.com> * 34 * Frank DiMambro <frank@chelsio.com> * 35 * * 36 * History: * 37 * * 38 ****************************************************************************/ 39 40 #include "common.h" 41 42 #include <linux/types.h> 43 #include <linux/errno.h> 44 #include <linux/pci.h> 45 #include <linux/ktime.h> 46 #include <linux/netdevice.h> 47 #include <linux/etherdevice.h> 48 #include <linux/if_vlan.h> 49 #include <linux/skbuff.h> 50 #include <linux/init.h> 51 #include <linux/mm.h> 52 #include <linux/tcp.h> 53 #include <linux/ip.h> 54 #include <linux/in.h> 55 #include <linux/if_arp.h> 56 #include <linux/slab.h> 57 #include <linux/prefetch.h> 58 59 #include "cpl5_cmd.h" 60 #include "sge.h" 61 #include "regs.h" 62 #include "espi.h" 63 64 /* This belongs in if_ether.h */ 65 #define ETH_P_CPL5 0xf 66 67 #define SGE_CMDQ_N 2 68 #define SGE_FREELQ_N 2 69 #define SGE_CMDQ0_E_N 1024 70 #define SGE_CMDQ1_E_N 128 71 #define SGE_FREEL_SIZE 4096 72 #define SGE_JUMBO_FREEL_SIZE 512 73 #define SGE_FREEL_REFILL_THRESH 16 74 #define SGE_RESPQ_E_N 1024 75 #define SGE_INTRTIMER_NRES 1000 76 #define SGE_RX_SM_BUF_SIZE 1536 77 #define SGE_TX_DESC_MAX_PLEN 16384 78 79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) 80 81 /* 82 * Period of the TX buffer reclaim timer. This timer does not need to run 83 * frequently as TX buffers are usually reclaimed by new TX packets. 84 */ 85 #define TX_RECLAIM_PERIOD (HZ / 4) 86 87 #define M_CMD_LEN 0x7fffffff 88 #define V_CMD_LEN(v) (v) 89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN) 90 #define V_CMD_GEN1(v) ((v) << 31) 91 #define V_CMD_GEN2(v) (v) 92 #define F_CMD_DATAVALID (1 << 1) 93 #define F_CMD_SOP (1 << 2) 94 #define V_CMD_EOP(v) ((v) << 3) 95 96 /* 97 * Command queue, receive buffer list, and response queue descriptors. 98 */ 99 #if defined(__BIG_ENDIAN_BITFIELD) 100 struct cmdQ_e { 101 u32 addr_lo; 102 u32 len_gen; 103 u32 flags; 104 u32 addr_hi; 105 }; 106 107 struct freelQ_e { 108 u32 addr_lo; 109 u32 len_gen; 110 u32 gen2; 111 u32 addr_hi; 112 }; 113 114 struct respQ_e { 115 u32 Qsleeping : 4; 116 u32 Cmdq1CreditReturn : 5; 117 u32 Cmdq1DmaComplete : 5; 118 u32 Cmdq0CreditReturn : 5; 119 u32 Cmdq0DmaComplete : 5; 120 u32 FreelistQid : 2; 121 u32 CreditValid : 1; 122 u32 DataValid : 1; 123 u32 Offload : 1; 124 u32 Eop : 1; 125 u32 Sop : 1; 126 u32 GenerationBit : 1; 127 u32 BufferLength; 128 }; 129 #elif defined(__LITTLE_ENDIAN_BITFIELD) 130 struct cmdQ_e { 131 u32 len_gen; 132 u32 addr_lo; 133 u32 addr_hi; 134 u32 flags; 135 }; 136 137 struct freelQ_e { 138 u32 len_gen; 139 u32 addr_lo; 140 u32 addr_hi; 141 u32 gen2; 142 }; 143 144 struct respQ_e { 145 u32 BufferLength; 146 u32 GenerationBit : 1; 147 u32 Sop : 1; 148 u32 Eop : 1; 149 u32 Offload : 1; 150 u32 DataValid : 1; 151 u32 CreditValid : 1; 152 u32 FreelistQid : 2; 153 u32 Cmdq0DmaComplete : 5; 154 u32 Cmdq0CreditReturn : 5; 155 u32 Cmdq1DmaComplete : 5; 156 u32 Cmdq1CreditReturn : 5; 157 u32 Qsleeping : 4; 158 } ; 159 #endif 160 161 /* 162 * SW Context Command and Freelist Queue Descriptors 163 */ 164 struct cmdQ_ce { 165 struct sk_buff *skb; 166 DEFINE_DMA_UNMAP_ADDR(dma_addr); 167 DEFINE_DMA_UNMAP_LEN(dma_len); 168 }; 169 170 struct freelQ_ce { 171 struct sk_buff *skb; 172 DEFINE_DMA_UNMAP_ADDR(dma_addr); 173 DEFINE_DMA_UNMAP_LEN(dma_len); 174 }; 175 176 /* 177 * SW command, freelist and response rings 178 */ 179 struct cmdQ { 180 unsigned long status; /* HW DMA fetch status */ 181 unsigned int in_use; /* # of in-use command descriptors */ 182 unsigned int size; /* # of descriptors */ 183 unsigned int processed; /* total # of descs HW has processed */ 184 unsigned int cleaned; /* total # of descs SW has reclaimed */ 185 unsigned int stop_thres; /* SW TX queue suspend threshold */ 186 u16 pidx; /* producer index (SW) */ 187 u16 cidx; /* consumer index (HW) */ 188 u8 genbit; /* current generation (=valid) bit */ 189 u8 sop; /* is next entry start of packet? */ 190 struct cmdQ_e *entries; /* HW command descriptor Q */ 191 struct cmdQ_ce *centries; /* SW command context descriptor Q */ 192 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ 193 spinlock_t lock; /* Lock to protect cmdQ enqueuing */ 194 }; 195 196 struct freelQ { 197 unsigned int credits; /* # of available RX buffers */ 198 unsigned int size; /* free list capacity */ 199 u16 pidx; /* producer index (SW) */ 200 u16 cidx; /* consumer index (HW) */ 201 u16 rx_buffer_size; /* Buffer size on this free list */ 202 u16 dma_offset; /* DMA offset to align IP headers */ 203 u16 recycleq_idx; /* skb recycle q to use */ 204 u8 genbit; /* current generation (=valid) bit */ 205 struct freelQ_e *entries; /* HW freelist descriptor Q */ 206 struct freelQ_ce *centries; /* SW freelist context descriptor Q */ 207 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ 208 }; 209 210 struct respQ { 211 unsigned int credits; /* credits to be returned to SGE */ 212 unsigned int size; /* # of response Q descriptors */ 213 u16 cidx; /* consumer index (SW) */ 214 u8 genbit; /* current generation(=valid) bit */ 215 struct respQ_e *entries; /* HW response descriptor Q */ 216 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ 217 }; 218 219 /* Bit flags for cmdQ.status */ 220 enum { 221 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */ 222 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */ 223 }; 224 225 /* T204 TX SW scheduler */ 226 227 /* Per T204 TX port */ 228 struct sched_port { 229 unsigned int avail; /* available bits - quota */ 230 unsigned int drain_bits_per_1024ns; /* drain rate */ 231 unsigned int speed; /* drain rate, mbps */ 232 unsigned int mtu; /* mtu size */ 233 struct sk_buff_head skbq; /* pending skbs */ 234 }; 235 236 /* Per T204 device */ 237 struct sched { 238 ktime_t last_updated; /* last time quotas were computed */ 239 unsigned int max_avail; /* max bits to be sent to any port */ 240 unsigned int port; /* port index (round robin ports) */ 241 unsigned int num; /* num skbs in per port queues */ 242 struct sched_port p[MAX_NPORTS]; 243 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */ 244 }; 245 static void restart_sched(unsigned long); 246 247 248 /* 249 * Main SGE data structure 250 * 251 * Interrupts are handled by a single CPU and it is likely that on a MP system 252 * the application is migrated to another CPU. In that scenario, we try to 253 * separate the RX(in irq context) and TX state in order to decrease memory 254 * contention. 255 */ 256 struct sge { 257 struct adapter *adapter; /* adapter backpointer */ 258 struct net_device *netdev; /* netdevice backpointer */ 259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */ 260 struct respQ respQ; /* response Q */ 261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */ 262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */ 263 unsigned int jumbo_fl; /* jumbo freelist Q index */ 264 unsigned int intrtimer_nres; /* no-resource interrupt timer */ 265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */ 266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ 267 struct timer_list espibug_timer; 268 unsigned long espibug_timeout; 269 struct sk_buff *espibug_skb[MAX_NPORTS]; 270 u32 sge_control; /* shadow value of sge control reg */ 271 struct sge_intr_counts stats; 272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS]; 273 struct sched *tx_sched; 274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; 275 }; 276 277 static const u8 ch_mac_addr[ETH_ALEN] = { 278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0 279 }; 280 281 /* 282 * stop tasklet and free all pending skb's 283 */ 284 static void tx_sched_stop(struct sge *sge) 285 { 286 struct sched *s = sge->tx_sched; 287 int i; 288 289 tasklet_kill(&s->sched_tsk); 290 291 for (i = 0; i < MAX_NPORTS; i++) 292 __skb_queue_purge(&s->p[s->port].skbq); 293 } 294 295 /* 296 * t1_sched_update_parms() is called when the MTU or link speed changes. It 297 * re-computes scheduler parameters to scope with the change. 298 */ 299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port, 300 unsigned int mtu, unsigned int speed) 301 { 302 struct sched *s = sge->tx_sched; 303 struct sched_port *p = &s->p[port]; 304 unsigned int max_avail_segs; 305 306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed); 307 if (speed) 308 p->speed = speed; 309 if (mtu) 310 p->mtu = mtu; 311 312 if (speed || mtu) { 313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40); 314 do_div(drain, (p->mtu + 50) * 1000); 315 p->drain_bits_per_1024ns = (unsigned int) drain; 316 317 if (p->speed < 1000) 318 p->drain_bits_per_1024ns = 319 90 * p->drain_bits_per_1024ns / 100; 320 } 321 322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) { 323 p->drain_bits_per_1024ns -= 16; 324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4); 325 max_avail_segs = max(1U, 4096 / (p->mtu - 40)); 326 } else { 327 s->max_avail = 16384; 328 max_avail_segs = max(1U, 9000 / (p->mtu - 40)); 329 } 330 331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u " 332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu, 333 p->speed, s->max_avail, max_avail_segs, 334 p->drain_bits_per_1024ns); 335 336 return max_avail_segs * (p->mtu - 40); 337 } 338 339 #if 0 340 341 /* 342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of 343 * data that can be pushed per port. 344 */ 345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val) 346 { 347 struct sched *s = sge->tx_sched; 348 unsigned int i; 349 350 s->max_avail = val; 351 for (i = 0; i < MAX_NPORTS; i++) 352 t1_sched_update_parms(sge, i, 0, 0); 353 } 354 355 /* 356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port 357 * is draining. 358 */ 359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port, 360 unsigned int val) 361 { 362 struct sched *s = sge->tx_sched; 363 struct sched_port *p = &s->p[port]; 364 p->drain_bits_per_1024ns = val * 1024 / 1000; 365 t1_sched_update_parms(sge, port, 0, 0); 366 } 367 368 #endif /* 0 */ 369 370 /* 371 * tx_sched_init() allocates resources and does basic initialization. 372 */ 373 static int tx_sched_init(struct sge *sge) 374 { 375 struct sched *s; 376 int i; 377 378 s = kzalloc(sizeof (struct sched), GFP_KERNEL); 379 if (!s) 380 return -ENOMEM; 381 382 pr_debug("tx_sched_init\n"); 383 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge); 384 sge->tx_sched = s; 385 386 for (i = 0; i < MAX_NPORTS; i++) { 387 skb_queue_head_init(&s->p[i].skbq); 388 t1_sched_update_parms(sge, i, 1500, 1000); 389 } 390 391 return 0; 392 } 393 394 /* 395 * sched_update_avail() computes the delta since the last time it was called 396 * and updates the per port quota (number of bits that can be sent to the any 397 * port). 398 */ 399 static inline int sched_update_avail(struct sge *sge) 400 { 401 struct sched *s = sge->tx_sched; 402 ktime_t now = ktime_get(); 403 unsigned int i; 404 long long delta_time_ns; 405 406 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated)); 407 408 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns); 409 if (delta_time_ns < 15000) 410 return 0; 411 412 for (i = 0; i < MAX_NPORTS; i++) { 413 struct sched_port *p = &s->p[i]; 414 unsigned int delta_avail; 415 416 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13; 417 p->avail = min(p->avail + delta_avail, s->max_avail); 418 } 419 420 s->last_updated = now; 421 422 return 1; 423 } 424 425 /* 426 * sched_skb() is called from two different places. In the tx path, any 427 * packet generating load on an output port will call sched_skb() 428 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq 429 * context (skb == NULL). 430 * The scheduler only returns a skb (which will then be sent) if the 431 * length of the skb is <= the current quota of the output port. 432 */ 433 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb, 434 unsigned int credits) 435 { 436 struct sched *s = sge->tx_sched; 437 struct sk_buff_head *skbq; 438 unsigned int i, len, update = 1; 439 440 pr_debug("sched_skb %p\n", skb); 441 if (!skb) { 442 if (!s->num) 443 return NULL; 444 } else { 445 skbq = &s->p[skb->dev->if_port].skbq; 446 __skb_queue_tail(skbq, skb); 447 s->num++; 448 skb = NULL; 449 } 450 451 if (credits < MAX_SKB_FRAGS + 1) 452 goto out; 453 454 again: 455 for (i = 0; i < MAX_NPORTS; i++) { 456 s->port = (s->port + 1) & (MAX_NPORTS - 1); 457 skbq = &s->p[s->port].skbq; 458 459 skb = skb_peek(skbq); 460 461 if (!skb) 462 continue; 463 464 len = skb->len; 465 if (len <= s->p[s->port].avail) { 466 s->p[s->port].avail -= len; 467 s->num--; 468 __skb_unlink(skb, skbq); 469 goto out; 470 } 471 skb = NULL; 472 } 473 474 if (update-- && sched_update_avail(sge)) 475 goto again; 476 477 out: 478 /* If there are more pending skbs, we use the hardware to schedule us 479 * again. 480 */ 481 if (s->num && !skb) { 482 struct cmdQ *q = &sge->cmdQ[0]; 483 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 484 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 485 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 486 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); 487 } 488 } 489 pr_debug("sched_skb ret %p\n", skb); 490 491 return skb; 492 } 493 494 /* 495 * PIO to indicate that memory mapped Q contains valid descriptor(s). 496 */ 497 static inline void doorbell_pio(struct adapter *adapter, u32 val) 498 { 499 wmb(); 500 writel(val, adapter->regs + A_SG_DOORBELL); 501 } 502 503 /* 504 * Frees all RX buffers on the freelist Q. The caller must make sure that 505 * the SGE is turned off before calling this function. 506 */ 507 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) 508 { 509 unsigned int cidx = q->cidx; 510 511 while (q->credits--) { 512 struct freelQ_ce *ce = &q->centries[cidx]; 513 514 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr), 515 dma_unmap_len(ce, dma_len), 516 PCI_DMA_FROMDEVICE); 517 dev_kfree_skb(ce->skb); 518 ce->skb = NULL; 519 if (++cidx == q->size) 520 cidx = 0; 521 } 522 } 523 524 /* 525 * Free RX free list and response queue resources. 526 */ 527 static void free_rx_resources(struct sge *sge) 528 { 529 struct pci_dev *pdev = sge->adapter->pdev; 530 unsigned int size, i; 531 532 if (sge->respQ.entries) { 533 size = sizeof(struct respQ_e) * sge->respQ.size; 534 pci_free_consistent(pdev, size, sge->respQ.entries, 535 sge->respQ.dma_addr); 536 } 537 538 for (i = 0; i < SGE_FREELQ_N; i++) { 539 struct freelQ *q = &sge->freelQ[i]; 540 541 if (q->centries) { 542 free_freelQ_buffers(pdev, q); 543 kfree(q->centries); 544 } 545 if (q->entries) { 546 size = sizeof(struct freelQ_e) * q->size; 547 pci_free_consistent(pdev, size, q->entries, 548 q->dma_addr); 549 } 550 } 551 } 552 553 /* 554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a 555 * response queue. 556 */ 557 static int alloc_rx_resources(struct sge *sge, struct sge_params *p) 558 { 559 struct pci_dev *pdev = sge->adapter->pdev; 560 unsigned int size, i; 561 562 for (i = 0; i < SGE_FREELQ_N; i++) { 563 struct freelQ *q = &sge->freelQ[i]; 564 565 q->genbit = 1; 566 q->size = p->freelQ_size[i]; 567 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; 568 size = sizeof(struct freelQ_e) * q->size; 569 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); 570 if (!q->entries) 571 goto err_no_mem; 572 573 size = sizeof(struct freelQ_ce) * q->size; 574 q->centries = kzalloc(size, GFP_KERNEL); 575 if (!q->centries) 576 goto err_no_mem; 577 } 578 579 /* 580 * Calculate the buffer sizes for the two free lists. FL0 accommodates 581 * regular sized Ethernet frames, FL1 is sized not to exceed 16K, 582 * including all the sk_buff overhead. 583 * 584 * Note: For T2 FL0 and FL1 are reversed. 585 */ 586 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE + 587 sizeof(struct cpl_rx_data) + 588 sge->freelQ[!sge->jumbo_fl].dma_offset; 589 590 size = (16 * 1024) - 591 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 592 593 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size; 594 595 /* 596 * Setup which skb recycle Q should be used when recycling buffers from 597 * each free list. 598 */ 599 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; 600 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; 601 602 sge->respQ.genbit = 1; 603 sge->respQ.size = SGE_RESPQ_E_N; 604 sge->respQ.credits = 0; 605 size = sizeof(struct respQ_e) * sge->respQ.size; 606 sge->respQ.entries = 607 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); 608 if (!sge->respQ.entries) 609 goto err_no_mem; 610 return 0; 611 612 err_no_mem: 613 free_rx_resources(sge); 614 return -ENOMEM; 615 } 616 617 /* 618 * Reclaims n TX descriptors and frees the buffers associated with them. 619 */ 620 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) 621 { 622 struct cmdQ_ce *ce; 623 struct pci_dev *pdev = sge->adapter->pdev; 624 unsigned int cidx = q->cidx; 625 626 q->in_use -= n; 627 ce = &q->centries[cidx]; 628 while (n--) { 629 if (likely(dma_unmap_len(ce, dma_len))) { 630 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr), 631 dma_unmap_len(ce, dma_len), 632 PCI_DMA_TODEVICE); 633 if (q->sop) 634 q->sop = 0; 635 } 636 if (ce->skb) { 637 dev_kfree_skb_any(ce->skb); 638 q->sop = 1; 639 } 640 ce++; 641 if (++cidx == q->size) { 642 cidx = 0; 643 ce = q->centries; 644 } 645 } 646 q->cidx = cidx; 647 } 648 649 /* 650 * Free TX resources. 651 * 652 * Assumes that SGE is stopped and all interrupts are disabled. 653 */ 654 static void free_tx_resources(struct sge *sge) 655 { 656 struct pci_dev *pdev = sge->adapter->pdev; 657 unsigned int size, i; 658 659 for (i = 0; i < SGE_CMDQ_N; i++) { 660 struct cmdQ *q = &sge->cmdQ[i]; 661 662 if (q->centries) { 663 if (q->in_use) 664 free_cmdQ_buffers(sge, q, q->in_use); 665 kfree(q->centries); 666 } 667 if (q->entries) { 668 size = sizeof(struct cmdQ_e) * q->size; 669 pci_free_consistent(pdev, size, q->entries, 670 q->dma_addr); 671 } 672 } 673 } 674 675 /* 676 * Allocates basic TX resources, consisting of memory mapped command Qs. 677 */ 678 static int alloc_tx_resources(struct sge *sge, struct sge_params *p) 679 { 680 struct pci_dev *pdev = sge->adapter->pdev; 681 unsigned int size, i; 682 683 for (i = 0; i < SGE_CMDQ_N; i++) { 684 struct cmdQ *q = &sge->cmdQ[i]; 685 686 q->genbit = 1; 687 q->sop = 1; 688 q->size = p->cmdQ_size[i]; 689 q->in_use = 0; 690 q->status = 0; 691 q->processed = q->cleaned = 0; 692 q->stop_thres = 0; 693 spin_lock_init(&q->lock); 694 size = sizeof(struct cmdQ_e) * q->size; 695 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); 696 if (!q->entries) 697 goto err_no_mem; 698 699 size = sizeof(struct cmdQ_ce) * q->size; 700 q->centries = kzalloc(size, GFP_KERNEL); 701 if (!q->centries) 702 goto err_no_mem; 703 } 704 705 /* 706 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE 707 * only. For queue 0 set the stop threshold so we can handle one more 708 * packet from each port, plus reserve an additional 24 entries for 709 * Ethernet packets only. Queue 1 never suspends nor do we reserve 710 * space for Ethernet packets. 711 */ 712 sge->cmdQ[0].stop_thres = sge->adapter->params.nports * 713 (MAX_SKB_FRAGS + 1); 714 return 0; 715 716 err_no_mem: 717 free_tx_resources(sge); 718 return -ENOMEM; 719 } 720 721 static inline void setup_ring_params(struct adapter *adapter, u64 addr, 722 u32 size, int base_reg_lo, 723 int base_reg_hi, int size_reg) 724 { 725 writel((u32)addr, adapter->regs + base_reg_lo); 726 writel(addr >> 32, adapter->regs + base_reg_hi); 727 writel(size, adapter->regs + size_reg); 728 } 729 730 /* 731 * Enable/disable VLAN acceleration. 732 */ 733 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features) 734 { 735 struct sge *sge = adapter->sge; 736 737 if (features & NETIF_F_HW_VLAN_CTAG_RX) 738 sge->sge_control |= F_VLAN_XTRACT; 739 else 740 sge->sge_control &= ~F_VLAN_XTRACT; 741 if (adapter->open_device_map) { 742 writel(sge->sge_control, adapter->regs + A_SG_CONTROL); 743 readl(adapter->regs + A_SG_CONTROL); /* flush */ 744 } 745 } 746 747 /* 748 * Programs the various SGE registers. However, the engine is not yet enabled, 749 * but sge->sge_control is setup and ready to go. 750 */ 751 static void configure_sge(struct sge *sge, struct sge_params *p) 752 { 753 struct adapter *ap = sge->adapter; 754 755 writel(0, ap->regs + A_SG_CONTROL); 756 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, 757 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); 758 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, 759 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); 760 setup_ring_params(ap, sge->freelQ[0].dma_addr, 761 sge->freelQ[0].size, A_SG_FL0BASELWR, 762 A_SG_FL0BASEUPR, A_SG_FL0SIZE); 763 setup_ring_params(ap, sge->freelQ[1].dma_addr, 764 sge->freelQ[1].size, A_SG_FL1BASELWR, 765 A_SG_FL1BASEUPR, A_SG_FL1SIZE); 766 767 /* The threshold comparison uses <. */ 768 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); 769 770 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, 771 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); 772 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); 773 774 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | 775 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | 776 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | 777 V_RX_PKT_OFFSET(sge->rx_pkt_pad); 778 779 #if defined(__BIG_ENDIAN_BITFIELD) 780 sge->sge_control |= F_ENABLE_BIG_ENDIAN; 781 #endif 782 783 /* Initialize no-resource timer */ 784 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); 785 786 t1_sge_set_coalesce_params(sge, p); 787 } 788 789 /* 790 * Return the payload capacity of the jumbo free-list buffers. 791 */ 792 static inline unsigned int jumbo_payload_capacity(const struct sge *sge) 793 { 794 return sge->freelQ[sge->jumbo_fl].rx_buffer_size - 795 sge->freelQ[sge->jumbo_fl].dma_offset - 796 sizeof(struct cpl_rx_data); 797 } 798 799 /* 800 * Frees all SGE related resources and the sge structure itself 801 */ 802 void t1_sge_destroy(struct sge *sge) 803 { 804 int i; 805 806 for_each_port(sge->adapter, i) 807 free_percpu(sge->port_stats[i]); 808 809 kfree(sge->tx_sched); 810 free_tx_resources(sge); 811 free_rx_resources(sge); 812 kfree(sge); 813 } 814 815 /* 816 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist 817 * context Q) until the Q is full or alloc_skb fails. 818 * 819 * It is possible that the generation bits already match, indicating that the 820 * buffer is already valid and nothing needs to be done. This happens when we 821 * copied a received buffer into a new sk_buff during the interrupt processing. 822 * 823 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad), 824 * we specify a RX_OFFSET in order to make sure that the IP header is 4B 825 * aligned. 826 */ 827 static void refill_free_list(struct sge *sge, struct freelQ *q) 828 { 829 struct pci_dev *pdev = sge->adapter->pdev; 830 struct freelQ_ce *ce = &q->centries[q->pidx]; 831 struct freelQ_e *e = &q->entries[q->pidx]; 832 unsigned int dma_len = q->rx_buffer_size - q->dma_offset; 833 834 while (q->credits < q->size) { 835 struct sk_buff *skb; 836 dma_addr_t mapping; 837 838 skb = dev_alloc_skb(q->rx_buffer_size); 839 if (!skb) 840 break; 841 842 skb_reserve(skb, q->dma_offset); 843 mapping = pci_map_single(pdev, skb->data, dma_len, 844 PCI_DMA_FROMDEVICE); 845 skb_reserve(skb, sge->rx_pkt_pad); 846 847 ce->skb = skb; 848 dma_unmap_addr_set(ce, dma_addr, mapping); 849 dma_unmap_len_set(ce, dma_len, dma_len); 850 e->addr_lo = (u32)mapping; 851 e->addr_hi = (u64)mapping >> 32; 852 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); 853 wmb(); 854 e->gen2 = V_CMD_GEN2(q->genbit); 855 856 e++; 857 ce++; 858 if (++q->pidx == q->size) { 859 q->pidx = 0; 860 q->genbit ^= 1; 861 ce = q->centries; 862 e = q->entries; 863 } 864 q->credits++; 865 } 866 } 867 868 /* 869 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 870 * of both rings, we go into 'few interrupt mode' in order to give the system 871 * time to free up resources. 872 */ 873 static void freelQs_empty(struct sge *sge) 874 { 875 struct adapter *adapter = sge->adapter; 876 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); 877 u32 irqholdoff_reg; 878 879 refill_free_list(sge, &sge->freelQ[0]); 880 refill_free_list(sge, &sge->freelQ[1]); 881 882 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && 883 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { 884 irq_reg |= F_FL_EXHAUSTED; 885 irqholdoff_reg = sge->fixed_intrtimer; 886 } else { 887 /* Clear the F_FL_EXHAUSTED interrupts for now */ 888 irq_reg &= ~F_FL_EXHAUSTED; 889 irqholdoff_reg = sge->intrtimer_nres; 890 } 891 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); 892 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); 893 894 /* We reenable the Qs to force a freelist GTS interrupt later */ 895 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); 896 } 897 898 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) 899 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) 900 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \ 901 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) 902 903 /* 904 * Disable SGE Interrupts 905 */ 906 void t1_sge_intr_disable(struct sge *sge) 907 { 908 u32 val = readl(sge->adapter->regs + A_PL_ENABLE); 909 910 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); 911 writel(0, sge->adapter->regs + A_SG_INT_ENABLE); 912 } 913 914 /* 915 * Enable SGE interrupts. 916 */ 917 void t1_sge_intr_enable(struct sge *sge) 918 { 919 u32 en = SGE_INT_ENABLE; 920 u32 val = readl(sge->adapter->regs + A_PL_ENABLE); 921 922 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO) 923 en &= ~F_PACKET_TOO_BIG; 924 writel(en, sge->adapter->regs + A_SG_INT_ENABLE); 925 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); 926 } 927 928 /* 929 * Clear SGE interrupts. 930 */ 931 void t1_sge_intr_clear(struct sge *sge) 932 { 933 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); 934 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); 935 } 936 937 /* 938 * SGE 'Error' interrupt handler 939 */ 940 int t1_sge_intr_error_handler(struct sge *sge) 941 { 942 struct adapter *adapter = sge->adapter; 943 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); 944 945 if (adapter->port[0].dev->hw_features & NETIF_F_TSO) 946 cause &= ~F_PACKET_TOO_BIG; 947 if (cause & F_RESPQ_EXHAUSTED) 948 sge->stats.respQ_empty++; 949 if (cause & F_RESPQ_OVERFLOW) { 950 sge->stats.respQ_overflow++; 951 pr_alert("%s: SGE response queue overflow\n", 952 adapter->name); 953 } 954 if (cause & F_FL_EXHAUSTED) { 955 sge->stats.freelistQ_empty++; 956 freelQs_empty(sge); 957 } 958 if (cause & F_PACKET_TOO_BIG) { 959 sge->stats.pkt_too_big++; 960 pr_alert("%s: SGE max packet size exceeded\n", 961 adapter->name); 962 } 963 if (cause & F_PACKET_MISMATCH) { 964 sge->stats.pkt_mismatch++; 965 pr_alert("%s: SGE packet mismatch\n", adapter->name); 966 } 967 if (cause & SGE_INT_FATAL) 968 t1_fatal_err(adapter); 969 970 writel(cause, adapter->regs + A_SG_INT_CAUSE); 971 return 0; 972 } 973 974 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge) 975 { 976 return &sge->stats; 977 } 978 979 void t1_sge_get_port_stats(const struct sge *sge, int port, 980 struct sge_port_stats *ss) 981 { 982 int cpu; 983 984 memset(ss, 0, sizeof(*ss)); 985 for_each_possible_cpu(cpu) { 986 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu); 987 988 ss->rx_cso_good += st->rx_cso_good; 989 ss->tx_cso += st->tx_cso; 990 ss->tx_tso += st->tx_tso; 991 ss->tx_need_hdrroom += st->tx_need_hdrroom; 992 ss->vlan_xtract += st->vlan_xtract; 993 ss->vlan_insert += st->vlan_insert; 994 } 995 } 996 997 /** 998 * recycle_fl_buf - recycle a free list buffer 999 * @fl: the free list 1000 * @idx: index of buffer to recycle 1001 * 1002 * Recycles the specified buffer on the given free list by adding it at 1003 * the next available slot on the list. 1004 */ 1005 static void recycle_fl_buf(struct freelQ *fl, int idx) 1006 { 1007 struct freelQ_e *from = &fl->entries[idx]; 1008 struct freelQ_e *to = &fl->entries[fl->pidx]; 1009 1010 fl->centries[fl->pidx] = fl->centries[idx]; 1011 to->addr_lo = from->addr_lo; 1012 to->addr_hi = from->addr_hi; 1013 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); 1014 wmb(); 1015 to->gen2 = V_CMD_GEN2(fl->genbit); 1016 fl->credits++; 1017 1018 if (++fl->pidx == fl->size) { 1019 fl->pidx = 0; 1020 fl->genbit ^= 1; 1021 } 1022 } 1023 1024 static int copybreak __read_mostly = 256; 1025 module_param(copybreak, int, 0); 1026 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 1027 1028 /** 1029 * get_packet - return the next ingress packet buffer 1030 * @pdev: the PCI device that received the packet 1031 * @fl: the SGE free list holding the packet 1032 * @len: the actual packet length, excluding any SGE padding 1033 * 1034 * Get the next packet from a free list and complete setup of the 1035 * sk_buff. If the packet is small we make a copy and recycle the 1036 * original buffer, otherwise we use the original buffer itself. If a 1037 * positive drop threshold is supplied packets are dropped and their 1038 * buffers recycled if (a) the number of remaining buffers is under the 1039 * threshold and the packet is too big to copy, or (b) the packet should 1040 * be copied but there is no memory for the copy. 1041 */ 1042 static inline struct sk_buff *get_packet(struct pci_dev *pdev, 1043 struct freelQ *fl, unsigned int len) 1044 { 1045 struct sk_buff *skb; 1046 const struct freelQ_ce *ce = &fl->centries[fl->cidx]; 1047 1048 if (len < copybreak) { 1049 skb = netdev_alloc_skb_ip_align(NULL, len); 1050 if (!skb) 1051 goto use_orig_buf; 1052 1053 skb_put(skb, len); 1054 pci_dma_sync_single_for_cpu(pdev, 1055 dma_unmap_addr(ce, dma_addr), 1056 dma_unmap_len(ce, dma_len), 1057 PCI_DMA_FROMDEVICE); 1058 skb_copy_from_linear_data(ce->skb, skb->data, len); 1059 pci_dma_sync_single_for_device(pdev, 1060 dma_unmap_addr(ce, dma_addr), 1061 dma_unmap_len(ce, dma_len), 1062 PCI_DMA_FROMDEVICE); 1063 recycle_fl_buf(fl, fl->cidx); 1064 return skb; 1065 } 1066 1067 use_orig_buf: 1068 if (fl->credits < 2) { 1069 recycle_fl_buf(fl, fl->cidx); 1070 return NULL; 1071 } 1072 1073 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr), 1074 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); 1075 skb = ce->skb; 1076 prefetch(skb->data); 1077 1078 skb_put(skb, len); 1079 return skb; 1080 } 1081 1082 /** 1083 * unexpected_offload - handle an unexpected offload packet 1084 * @adapter: the adapter 1085 * @fl: the free list that received the packet 1086 * 1087 * Called when we receive an unexpected offload packet (e.g., the TOE 1088 * function is disabled or the card is a NIC). Prints a message and 1089 * recycles the buffer. 1090 */ 1091 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl) 1092 { 1093 struct freelQ_ce *ce = &fl->centries[fl->cidx]; 1094 struct sk_buff *skb = ce->skb; 1095 1096 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr), 1097 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); 1098 pr_err("%s: unexpected offload packet, cmd %u\n", 1099 adapter->name, *skb->data); 1100 recycle_fl_buf(fl, fl->cidx); 1101 } 1102 1103 /* 1104 * T1/T2 SGE limits the maximum DMA size per TX descriptor to 1105 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the 1106 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner. 1107 * Note that the *_large_page_tx_descs stuff will be optimized out when 1108 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN. 1109 * 1110 * compute_large_page_descs() computes how many additional descriptors are 1111 * required to break down the stack's request. 1112 */ 1113 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb) 1114 { 1115 unsigned int count = 0; 1116 1117 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { 1118 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 1119 unsigned int i, len = skb_headlen(skb); 1120 while (len > SGE_TX_DESC_MAX_PLEN) { 1121 count++; 1122 len -= SGE_TX_DESC_MAX_PLEN; 1123 } 1124 for (i = 0; nfrags--; i++) { 1125 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1126 len = skb_frag_size(frag); 1127 while (len > SGE_TX_DESC_MAX_PLEN) { 1128 count++; 1129 len -= SGE_TX_DESC_MAX_PLEN; 1130 } 1131 } 1132 } 1133 return count; 1134 } 1135 1136 /* 1137 * Write a cmdQ entry. 1138 * 1139 * Since this function writes the 'flags' field, it must not be used to 1140 * write the first cmdQ entry. 1141 */ 1142 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping, 1143 unsigned int len, unsigned int gen, 1144 unsigned int eop) 1145 { 1146 BUG_ON(len > SGE_TX_DESC_MAX_PLEN); 1147 1148 e->addr_lo = (u32)mapping; 1149 e->addr_hi = (u64)mapping >> 32; 1150 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen); 1151 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen); 1152 } 1153 1154 /* 1155 * See comment for previous function. 1156 * 1157 * write_tx_descs_large_page() writes additional SGE tx descriptors if 1158 * *desc_len exceeds HW's capability. 1159 */ 1160 static inline unsigned int write_large_page_tx_descs(unsigned int pidx, 1161 struct cmdQ_e **e, 1162 struct cmdQ_ce **ce, 1163 unsigned int *gen, 1164 dma_addr_t *desc_mapping, 1165 unsigned int *desc_len, 1166 unsigned int nfrags, 1167 struct cmdQ *q) 1168 { 1169 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { 1170 struct cmdQ_e *e1 = *e; 1171 struct cmdQ_ce *ce1 = *ce; 1172 1173 while (*desc_len > SGE_TX_DESC_MAX_PLEN) { 1174 *desc_len -= SGE_TX_DESC_MAX_PLEN; 1175 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN, 1176 *gen, nfrags == 0 && *desc_len == 0); 1177 ce1->skb = NULL; 1178 dma_unmap_len_set(ce1, dma_len, 0); 1179 *desc_mapping += SGE_TX_DESC_MAX_PLEN; 1180 if (*desc_len) { 1181 ce1++; 1182 e1++; 1183 if (++pidx == q->size) { 1184 pidx = 0; 1185 *gen ^= 1; 1186 ce1 = q->centries; 1187 e1 = q->entries; 1188 } 1189 } 1190 } 1191 *e = e1; 1192 *ce = ce1; 1193 } 1194 return pidx; 1195 } 1196 1197 /* 1198 * Write the command descriptors to transmit the given skb starting at 1199 * descriptor pidx with the given generation. 1200 */ 1201 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, 1202 unsigned int pidx, unsigned int gen, 1203 struct cmdQ *q) 1204 { 1205 dma_addr_t mapping, desc_mapping; 1206 struct cmdQ_e *e, *e1; 1207 struct cmdQ_ce *ce; 1208 unsigned int i, flags, first_desc_len, desc_len, 1209 nfrags = skb_shinfo(skb)->nr_frags; 1210 1211 e = e1 = &q->entries[pidx]; 1212 ce = &q->centries[pidx]; 1213 1214 mapping = pci_map_single(adapter->pdev, skb->data, 1215 skb_headlen(skb), PCI_DMA_TODEVICE); 1216 1217 desc_mapping = mapping; 1218 desc_len = skb_headlen(skb); 1219 1220 flags = F_CMD_DATAVALID | F_CMD_SOP | 1221 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) | 1222 V_CMD_GEN2(gen); 1223 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ? 1224 desc_len : SGE_TX_DESC_MAX_PLEN; 1225 e->addr_lo = (u32)desc_mapping; 1226 e->addr_hi = (u64)desc_mapping >> 32; 1227 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen); 1228 ce->skb = NULL; 1229 dma_unmap_len_set(ce, dma_len, 0); 1230 1231 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN && 1232 desc_len > SGE_TX_DESC_MAX_PLEN) { 1233 desc_mapping += first_desc_len; 1234 desc_len -= first_desc_len; 1235 e1++; 1236 ce++; 1237 if (++pidx == q->size) { 1238 pidx = 0; 1239 gen ^= 1; 1240 e1 = q->entries; 1241 ce = q->centries; 1242 } 1243 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, 1244 &desc_mapping, &desc_len, 1245 nfrags, q); 1246 1247 if (likely(desc_len)) 1248 write_tx_desc(e1, desc_mapping, desc_len, gen, 1249 nfrags == 0); 1250 } 1251 1252 ce->skb = NULL; 1253 dma_unmap_addr_set(ce, dma_addr, mapping); 1254 dma_unmap_len_set(ce, dma_len, skb_headlen(skb)); 1255 1256 for (i = 0; nfrags--; i++) { 1257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1258 e1++; 1259 ce++; 1260 if (++pidx == q->size) { 1261 pidx = 0; 1262 gen ^= 1; 1263 e1 = q->entries; 1264 ce = q->centries; 1265 } 1266 1267 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0, 1268 skb_frag_size(frag), DMA_TO_DEVICE); 1269 desc_mapping = mapping; 1270 desc_len = skb_frag_size(frag); 1271 1272 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, 1273 &desc_mapping, &desc_len, 1274 nfrags, q); 1275 if (likely(desc_len)) 1276 write_tx_desc(e1, desc_mapping, desc_len, gen, 1277 nfrags == 0); 1278 ce->skb = NULL; 1279 dma_unmap_addr_set(ce, dma_addr, mapping); 1280 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag)); 1281 } 1282 ce->skb = skb; 1283 wmb(); 1284 e->flags = flags; 1285 } 1286 1287 /* 1288 * Clean up completed Tx buffers. 1289 */ 1290 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) 1291 { 1292 unsigned int reclaim = q->processed - q->cleaned; 1293 1294 if (reclaim) { 1295 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n", 1296 q->processed, q->cleaned); 1297 free_cmdQ_buffers(sge, q, reclaim); 1298 q->cleaned += reclaim; 1299 } 1300 } 1301 1302 /* 1303 * Called from tasklet. Checks the scheduler for any 1304 * pending skbs that can be sent. 1305 */ 1306 static void restart_sched(unsigned long arg) 1307 { 1308 struct sge *sge = (struct sge *) arg; 1309 struct adapter *adapter = sge->adapter; 1310 struct cmdQ *q = &sge->cmdQ[0]; 1311 struct sk_buff *skb; 1312 unsigned int credits, queued_skb = 0; 1313 1314 spin_lock(&q->lock); 1315 reclaim_completed_tx(sge, q); 1316 1317 credits = q->size - q->in_use; 1318 pr_debug("restart_sched credits=%d\n", credits); 1319 while ((skb = sched_skb(sge, NULL, credits)) != NULL) { 1320 unsigned int genbit, pidx, count; 1321 count = 1 + skb_shinfo(skb)->nr_frags; 1322 count += compute_large_page_tx_descs(skb); 1323 q->in_use += count; 1324 genbit = q->genbit; 1325 pidx = q->pidx; 1326 q->pidx += count; 1327 if (q->pidx >= q->size) { 1328 q->pidx -= q->size; 1329 q->genbit ^= 1; 1330 } 1331 write_tx_descs(adapter, skb, pidx, genbit, q); 1332 credits = q->size - q->in_use; 1333 queued_skb = 1; 1334 } 1335 1336 if (queued_skb) { 1337 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1338 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 1339 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1340 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 1341 } 1342 } 1343 spin_unlock(&q->lock); 1344 } 1345 1346 /** 1347 * sge_rx - process an ingress ethernet packet 1348 * @sge: the sge structure 1349 * @fl: the free list that contains the packet buffer 1350 * @len: the packet length 1351 * 1352 * Process an ingress ethernet pakcet and deliver it to the stack. 1353 */ 1354 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) 1355 { 1356 struct sk_buff *skb; 1357 const struct cpl_rx_pkt *p; 1358 struct adapter *adapter = sge->adapter; 1359 struct sge_port_stats *st; 1360 struct net_device *dev; 1361 1362 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad); 1363 if (unlikely(!skb)) { 1364 sge->stats.rx_drops++; 1365 return; 1366 } 1367 1368 p = (const struct cpl_rx_pkt *) skb->data; 1369 if (p->iff >= adapter->params.nports) { 1370 kfree_skb(skb); 1371 return; 1372 } 1373 __skb_pull(skb, sizeof(*p)); 1374 1375 st = this_cpu_ptr(sge->port_stats[p->iff]); 1376 dev = adapter->port[p->iff].dev; 1377 1378 skb->protocol = eth_type_trans(skb, dev); 1379 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff && 1380 skb->protocol == htons(ETH_P_IP) && 1381 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { 1382 ++st->rx_cso_good; 1383 skb->ip_summed = CHECKSUM_UNNECESSARY; 1384 } else 1385 skb_checksum_none_assert(skb); 1386 1387 if (p->vlan_valid) { 1388 st->vlan_xtract++; 1389 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 1390 } 1391 netif_receive_skb(skb); 1392 } 1393 1394 /* 1395 * Returns true if a command queue has enough available descriptors that 1396 * we can resume Tx operation after temporarily disabling its packet queue. 1397 */ 1398 static inline int enough_free_Tx_descs(const struct cmdQ *q) 1399 { 1400 unsigned int r = q->processed - q->cleaned; 1401 1402 return q->in_use - r < (q->size >> 1); 1403 } 1404 1405 /* 1406 * Called when sufficient space has become available in the SGE command queues 1407 * after the Tx packet schedulers have been suspended to restart the Tx path. 1408 */ 1409 static void restart_tx_queues(struct sge *sge) 1410 { 1411 struct adapter *adap = sge->adapter; 1412 int i; 1413 1414 if (!enough_free_Tx_descs(&sge->cmdQ[0])) 1415 return; 1416 1417 for_each_port(adap, i) { 1418 struct net_device *nd = adap->port[i].dev; 1419 1420 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) && 1421 netif_running(nd)) { 1422 sge->stats.cmdQ_restarted[2]++; 1423 netif_wake_queue(nd); 1424 } 1425 } 1426 } 1427 1428 /* 1429 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 1430 * information. 1431 */ 1432 static unsigned int update_tx_info(struct adapter *adapter, 1433 unsigned int flags, 1434 unsigned int pr0) 1435 { 1436 struct sge *sge = adapter->sge; 1437 struct cmdQ *cmdq = &sge->cmdQ[0]; 1438 1439 cmdq->processed += pr0; 1440 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) { 1441 freelQs_empty(sge); 1442 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE); 1443 } 1444 if (flags & F_CMDQ0_ENABLE) { 1445 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); 1446 1447 if (cmdq->cleaned + cmdq->in_use != cmdq->processed && 1448 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { 1449 set_bit(CMDQ_STAT_RUNNING, &cmdq->status); 1450 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 1451 } 1452 if (sge->tx_sched) 1453 tasklet_hi_schedule(&sge->tx_sched->sched_tsk); 1454 1455 flags &= ~F_CMDQ0_ENABLE; 1456 } 1457 1458 if (unlikely(sge->stopped_tx_queues != 0)) 1459 restart_tx_queues(sge); 1460 1461 return flags; 1462 } 1463 1464 /* 1465 * Process SGE responses, up to the supplied budget. Returns the number of 1466 * responses processed. A negative budget is effectively unlimited. 1467 */ 1468 static int process_responses(struct adapter *adapter, int budget) 1469 { 1470 struct sge *sge = adapter->sge; 1471 struct respQ *q = &sge->respQ; 1472 struct respQ_e *e = &q->entries[q->cidx]; 1473 int done = 0; 1474 unsigned int flags = 0; 1475 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; 1476 1477 while (done < budget && e->GenerationBit == q->genbit) { 1478 flags |= e->Qsleeping; 1479 1480 cmdq_processed[0] += e->Cmdq0CreditReturn; 1481 cmdq_processed[1] += e->Cmdq1CreditReturn; 1482 1483 /* We batch updates to the TX side to avoid cacheline 1484 * ping-pong of TX state information on MP where the sender 1485 * might run on a different CPU than this function... 1486 */ 1487 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) { 1488 flags = update_tx_info(adapter, flags, cmdq_processed[0]); 1489 cmdq_processed[0] = 0; 1490 } 1491 1492 if (unlikely(cmdq_processed[1] > 16)) { 1493 sge->cmdQ[1].processed += cmdq_processed[1]; 1494 cmdq_processed[1] = 0; 1495 } 1496 1497 if (likely(e->DataValid)) { 1498 struct freelQ *fl = &sge->freelQ[e->FreelistQid]; 1499 1500 BUG_ON(!e->Sop || !e->Eop); 1501 if (unlikely(e->Offload)) 1502 unexpected_offload(adapter, fl); 1503 else 1504 sge_rx(sge, fl, e->BufferLength); 1505 1506 ++done; 1507 1508 /* 1509 * Note: this depends on each packet consuming a 1510 * single free-list buffer; cf. the BUG above. 1511 */ 1512 if (++fl->cidx == fl->size) 1513 fl->cidx = 0; 1514 prefetch(fl->centries[fl->cidx].skb); 1515 1516 if (unlikely(--fl->credits < 1517 fl->size - SGE_FREEL_REFILL_THRESH)) 1518 refill_free_list(sge, fl); 1519 } else 1520 sge->stats.pure_rsps++; 1521 1522 e++; 1523 if (unlikely(++q->cidx == q->size)) { 1524 q->cidx = 0; 1525 q->genbit ^= 1; 1526 e = q->entries; 1527 } 1528 prefetch(e); 1529 1530 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { 1531 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); 1532 q->credits = 0; 1533 } 1534 } 1535 1536 flags = update_tx_info(adapter, flags, cmdq_processed[0]); 1537 sge->cmdQ[1].processed += cmdq_processed[1]; 1538 1539 return done; 1540 } 1541 1542 static inline int responses_pending(const struct adapter *adapter) 1543 { 1544 const struct respQ *Q = &adapter->sge->respQ; 1545 const struct respQ_e *e = &Q->entries[Q->cidx]; 1546 1547 return e->GenerationBit == Q->genbit; 1548 } 1549 1550 /* 1551 * A simpler version of process_responses() that handles only pure (i.e., 1552 * non data-carrying) responses. Such respones are too light-weight to justify 1553 * calling a softirq when using NAPI, so we handle them specially in hard 1554 * interrupt context. The function is called with a pointer to a response, 1555 * which the caller must ensure is a valid pure response. Returns 1 if it 1556 * encounters a valid data-carrying response, 0 otherwise. 1557 */ 1558 static int process_pure_responses(struct adapter *adapter) 1559 { 1560 struct sge *sge = adapter->sge; 1561 struct respQ *q = &sge->respQ; 1562 struct respQ_e *e = &q->entries[q->cidx]; 1563 const struct freelQ *fl = &sge->freelQ[e->FreelistQid]; 1564 unsigned int flags = 0; 1565 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; 1566 1567 prefetch(fl->centries[fl->cidx].skb); 1568 if (e->DataValid) 1569 return 1; 1570 1571 do { 1572 flags |= e->Qsleeping; 1573 1574 cmdq_processed[0] += e->Cmdq0CreditReturn; 1575 cmdq_processed[1] += e->Cmdq1CreditReturn; 1576 1577 e++; 1578 if (unlikely(++q->cidx == q->size)) { 1579 q->cidx = 0; 1580 q->genbit ^= 1; 1581 e = q->entries; 1582 } 1583 prefetch(e); 1584 1585 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { 1586 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); 1587 q->credits = 0; 1588 } 1589 sge->stats.pure_rsps++; 1590 } while (e->GenerationBit == q->genbit && !e->DataValid); 1591 1592 flags = update_tx_info(adapter, flags, cmdq_processed[0]); 1593 sge->cmdQ[1].processed += cmdq_processed[1]; 1594 1595 return e->GenerationBit == q->genbit; 1596 } 1597 1598 /* 1599 * Handler for new data events when using NAPI. This does not need any locking 1600 * or protection from interrupts as data interrupts are off at this point and 1601 * other adapter interrupts do not interfere. 1602 */ 1603 int t1_poll(struct napi_struct *napi, int budget) 1604 { 1605 struct adapter *adapter = container_of(napi, struct adapter, napi); 1606 int work_done = process_responses(adapter, budget); 1607 1608 if (likely(work_done < budget)) { 1609 napi_complete(napi); 1610 writel(adapter->sge->respQ.cidx, 1611 adapter->regs + A_SG_SLEEPING); 1612 } 1613 return work_done; 1614 } 1615 1616 irqreturn_t t1_interrupt(int irq, void *data) 1617 { 1618 struct adapter *adapter = data; 1619 struct sge *sge = adapter->sge; 1620 int handled; 1621 1622 if (likely(responses_pending(adapter))) { 1623 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); 1624 1625 if (napi_schedule_prep(&adapter->napi)) { 1626 if (process_pure_responses(adapter)) 1627 __napi_schedule(&adapter->napi); 1628 else { 1629 /* no data, no NAPI needed */ 1630 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); 1631 /* undo schedule_prep */ 1632 napi_enable(&adapter->napi); 1633 } 1634 } 1635 return IRQ_HANDLED; 1636 } 1637 1638 spin_lock(&adapter->async_lock); 1639 handled = t1_slow_intr_handler(adapter); 1640 spin_unlock(&adapter->async_lock); 1641 1642 if (!handled) 1643 sge->stats.unhandled_irqs++; 1644 1645 return IRQ_RETVAL(handled != 0); 1646 } 1647 1648 /* 1649 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. 1650 * 1651 * The code figures out how many entries the sk_buff will require in the 1652 * cmdQ and updates the cmdQ data structure with the state once the enqueue 1653 * has complete. Then, it doesn't access the global structure anymore, but 1654 * uses the corresponding fields on the stack. In conjunction with a spinlock 1655 * around that code, we can make the function reentrant without holding the 1656 * lock when we actually enqueue (which might be expensive, especially on 1657 * architectures with IO MMUs). 1658 * 1659 * This runs with softirqs disabled. 1660 */ 1661 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, 1662 unsigned int qid, struct net_device *dev) 1663 { 1664 struct sge *sge = adapter->sge; 1665 struct cmdQ *q = &sge->cmdQ[qid]; 1666 unsigned int credits, pidx, genbit, count, use_sched_skb = 0; 1667 1668 if (!spin_trylock(&q->lock)) 1669 return NETDEV_TX_LOCKED; 1670 1671 reclaim_completed_tx(sge, q); 1672 1673 pidx = q->pidx; 1674 credits = q->size - q->in_use; 1675 count = 1 + skb_shinfo(skb)->nr_frags; 1676 count += compute_large_page_tx_descs(skb); 1677 1678 /* Ethernet packet */ 1679 if (unlikely(credits < count)) { 1680 if (!netif_queue_stopped(dev)) { 1681 netif_stop_queue(dev); 1682 set_bit(dev->if_port, &sge->stopped_tx_queues); 1683 sge->stats.cmdQ_full[2]++; 1684 pr_err("%s: Tx ring full while queue awake!\n", 1685 adapter->name); 1686 } 1687 spin_unlock(&q->lock); 1688 return NETDEV_TX_BUSY; 1689 } 1690 1691 if (unlikely(credits - count < q->stop_thres)) { 1692 netif_stop_queue(dev); 1693 set_bit(dev->if_port, &sge->stopped_tx_queues); 1694 sge->stats.cmdQ_full[2]++; 1695 } 1696 1697 /* T204 cmdQ0 skbs that are destined for a certain port have to go 1698 * through the scheduler. 1699 */ 1700 if (sge->tx_sched && !qid && skb->dev) { 1701 use_sched: 1702 use_sched_skb = 1; 1703 /* Note that the scheduler might return a different skb than 1704 * the one passed in. 1705 */ 1706 skb = sched_skb(sge, skb, credits); 1707 if (!skb) { 1708 spin_unlock(&q->lock); 1709 return NETDEV_TX_OK; 1710 } 1711 pidx = q->pidx; 1712 count = 1 + skb_shinfo(skb)->nr_frags; 1713 count += compute_large_page_tx_descs(skb); 1714 } 1715 1716 q->in_use += count; 1717 genbit = q->genbit; 1718 pidx = q->pidx; 1719 q->pidx += count; 1720 if (q->pidx >= q->size) { 1721 q->pidx -= q->size; 1722 q->genbit ^= 1; 1723 } 1724 spin_unlock(&q->lock); 1725 1726 write_tx_descs(adapter, skb, pidx, genbit, q); 1727 1728 /* 1729 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring 1730 * the doorbell if the Q is asleep. There is a natural race, where 1731 * the hardware is going to sleep just after we checked, however, 1732 * then the interrupt handler will detect the outstanding TX packet 1733 * and ring the doorbell for us. 1734 */ 1735 if (qid) 1736 doorbell_pio(adapter, F_CMDQ1_ENABLE); 1737 else { 1738 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1739 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 1740 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1741 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 1742 } 1743 } 1744 1745 if (use_sched_skb) { 1746 if (spin_trylock(&q->lock)) { 1747 credits = q->size - q->in_use; 1748 skb = NULL; 1749 goto use_sched; 1750 } 1751 } 1752 return NETDEV_TX_OK; 1753 } 1754 1755 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) 1756 1757 /* 1758 * eth_hdr_len - return the length of an Ethernet header 1759 * @data: pointer to the start of the Ethernet header 1760 * 1761 * Returns the length of an Ethernet header, including optional VLAN tag. 1762 */ 1763 static inline int eth_hdr_len(const void *data) 1764 { 1765 const struct ethhdr *e = data; 1766 1767 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; 1768 } 1769 1770 /* 1771 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. 1772 */ 1773 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev) 1774 { 1775 struct adapter *adapter = dev->ml_priv; 1776 struct sge *sge = adapter->sge; 1777 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]); 1778 struct cpl_tx_pkt *cpl; 1779 struct sk_buff *orig_skb = skb; 1780 int ret; 1781 1782 if (skb->protocol == htons(ETH_P_CPL5)) 1783 goto send; 1784 1785 /* 1786 * We are using a non-standard hard_header_len. 1787 * Allocate more header room in the rare cases it is not big enough. 1788 */ 1789 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) { 1790 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso)); 1791 ++st->tx_need_hdrroom; 1792 dev_kfree_skb_any(orig_skb); 1793 if (!skb) 1794 return NETDEV_TX_OK; 1795 } 1796 1797 if (skb_shinfo(skb)->gso_size) { 1798 int eth_type; 1799 struct cpl_tx_pkt_lso *hdr; 1800 1801 ++st->tx_tso; 1802 1803 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1804 CPL_ETH_II : CPL_ETH_II_VLAN; 1805 1806 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr)); 1807 hdr->opcode = CPL_TX_PKT_LSO; 1808 hdr->ip_csum_dis = hdr->l4_csum_dis = 0; 1809 hdr->ip_hdr_words = ip_hdr(skb)->ihl; 1810 hdr->tcp_hdr_words = tcp_hdr(skb)->doff; 1811 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type, 1812 skb_shinfo(skb)->gso_size)); 1813 hdr->len = htonl(skb->len - sizeof(*hdr)); 1814 cpl = (struct cpl_tx_pkt *)hdr; 1815 } else { 1816 /* 1817 * Packets shorter than ETH_HLEN can break the MAC, drop them 1818 * early. Also, we may get oversized packets because some 1819 * parts of the kernel don't handle our unusual hard_header_len 1820 * right, drop those too. 1821 */ 1822 if (unlikely(skb->len < ETH_HLEN || 1823 skb->len > dev->mtu + eth_hdr_len(skb->data))) { 1824 netdev_dbg(dev, "packet size %d hdr %d mtu%d\n", 1825 skb->len, eth_hdr_len(skb->data), dev->mtu); 1826 dev_kfree_skb_any(skb); 1827 return NETDEV_TX_OK; 1828 } 1829 1830 if (skb->ip_summed == CHECKSUM_PARTIAL && 1831 ip_hdr(skb)->protocol == IPPROTO_UDP) { 1832 if (unlikely(skb_checksum_help(skb))) { 1833 netdev_dbg(dev, "unable to do udp checksum\n"); 1834 dev_kfree_skb_any(skb); 1835 return NETDEV_TX_OK; 1836 } 1837 } 1838 1839 /* Hmmm, assuming to catch the gratious arp... and we'll use 1840 * it to flush out stuck espi packets... 1841 */ 1842 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) { 1843 if (skb->protocol == htons(ETH_P_ARP) && 1844 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) { 1845 adapter->sge->espibug_skb[dev->if_port] = skb; 1846 /* We want to re-use this skb later. We 1847 * simply bump the reference count and it 1848 * will not be freed... 1849 */ 1850 skb = skb_get(skb); 1851 } 1852 } 1853 1854 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl)); 1855 cpl->opcode = CPL_TX_PKT; 1856 cpl->ip_csum_dis = 1; /* SW calculates IP csum */ 1857 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1; 1858 /* the length field isn't used so don't bother setting it */ 1859 1860 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL); 1861 } 1862 cpl->iff = dev->if_port; 1863 1864 if (vlan_tx_tag_present(skb)) { 1865 cpl->vlan_valid = 1; 1866 cpl->vlan = htons(vlan_tx_tag_get(skb)); 1867 st->vlan_insert++; 1868 } else 1869 cpl->vlan_valid = 0; 1870 1871 send: 1872 ret = t1_sge_tx(skb, adapter, 0, dev); 1873 1874 /* If transmit busy, and we reallocated skb's due to headroom limit, 1875 * then silently discard to avoid leak. 1876 */ 1877 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) { 1878 dev_kfree_skb_any(skb); 1879 ret = NETDEV_TX_OK; 1880 } 1881 return ret; 1882 } 1883 1884 /* 1885 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled. 1886 */ 1887 static void sge_tx_reclaim_cb(unsigned long data) 1888 { 1889 int i; 1890 struct sge *sge = (struct sge *)data; 1891 1892 for (i = 0; i < SGE_CMDQ_N; ++i) { 1893 struct cmdQ *q = &sge->cmdQ[i]; 1894 1895 if (!spin_trylock(&q->lock)) 1896 continue; 1897 1898 reclaim_completed_tx(sge, q); 1899 if (i == 0 && q->in_use) { /* flush pending credits */ 1900 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); 1901 } 1902 spin_unlock(&q->lock); 1903 } 1904 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 1905 } 1906 1907 /* 1908 * Propagate changes of the SGE coalescing parameters to the HW. 1909 */ 1910 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) 1911 { 1912 sge->fixed_intrtimer = p->rx_coalesce_usecs * 1913 core_ticks_per_usec(sge->adapter); 1914 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); 1915 return 0; 1916 } 1917 1918 /* 1919 * Allocates both RX and TX resources and configures the SGE. However, 1920 * the hardware is not enabled yet. 1921 */ 1922 int t1_sge_configure(struct sge *sge, struct sge_params *p) 1923 { 1924 if (alloc_rx_resources(sge, p)) 1925 return -ENOMEM; 1926 if (alloc_tx_resources(sge, p)) { 1927 free_rx_resources(sge); 1928 return -ENOMEM; 1929 } 1930 configure_sge(sge, p); 1931 1932 /* 1933 * Now that we have sized the free lists calculate the payload 1934 * capacity of the large buffers. Other parts of the driver use 1935 * this to set the max offload coalescing size so that RX packets 1936 * do not overflow our large buffers. 1937 */ 1938 p->large_buf_capacity = jumbo_payload_capacity(sge); 1939 return 0; 1940 } 1941 1942 /* 1943 * Disables the DMA engine. 1944 */ 1945 void t1_sge_stop(struct sge *sge) 1946 { 1947 int i; 1948 writel(0, sge->adapter->regs + A_SG_CONTROL); 1949 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ 1950 1951 if (is_T2(sge->adapter)) 1952 del_timer_sync(&sge->espibug_timer); 1953 1954 del_timer_sync(&sge->tx_reclaim_timer); 1955 if (sge->tx_sched) 1956 tx_sched_stop(sge); 1957 1958 for (i = 0; i < MAX_NPORTS; i++) 1959 kfree_skb(sge->espibug_skb[i]); 1960 } 1961 1962 /* 1963 * Enables the DMA engine. 1964 */ 1965 void t1_sge_start(struct sge *sge) 1966 { 1967 refill_free_list(sge, &sge->freelQ[0]); 1968 refill_free_list(sge, &sge->freelQ[1]); 1969 1970 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); 1971 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); 1972 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ 1973 1974 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 1975 1976 if (is_T2(sge->adapter)) 1977 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 1978 } 1979 1980 /* 1981 * Callback for the T2 ESPI 'stuck packet feature' workaorund 1982 */ 1983 static void espibug_workaround_t204(unsigned long data) 1984 { 1985 struct adapter *adapter = (struct adapter *)data; 1986 struct sge *sge = adapter->sge; 1987 unsigned int nports = adapter->params.nports; 1988 u32 seop[MAX_NPORTS]; 1989 1990 if (adapter->open_device_map & PORT_MASK) { 1991 int i; 1992 1993 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0) 1994 return; 1995 1996 for (i = 0; i < nports; i++) { 1997 struct sk_buff *skb = sge->espibug_skb[i]; 1998 1999 if (!netif_running(adapter->port[i].dev) || 2000 netif_queue_stopped(adapter->port[i].dev) || 2001 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb) 2002 continue; 2003 2004 if (!skb->cb[0]) { 2005 skb_copy_to_linear_data_offset(skb, 2006 sizeof(struct cpl_tx_pkt), 2007 ch_mac_addr, 2008 ETH_ALEN); 2009 skb_copy_to_linear_data_offset(skb, 2010 skb->len - 10, 2011 ch_mac_addr, 2012 ETH_ALEN); 2013 skb->cb[0] = 0xff; 2014 } 2015 2016 /* bump the reference count to avoid freeing of 2017 * the skb once the DMA has completed. 2018 */ 2019 skb = skb_get(skb); 2020 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev); 2021 } 2022 } 2023 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 2024 } 2025 2026 static void espibug_workaround(unsigned long data) 2027 { 2028 struct adapter *adapter = (struct adapter *)data; 2029 struct sge *sge = adapter->sge; 2030 2031 if (netif_running(adapter->port[0].dev)) { 2032 struct sk_buff *skb = sge->espibug_skb[0]; 2033 u32 seop = t1_espi_get_mon(adapter, 0x930, 0); 2034 2035 if ((seop & 0xfff0fff) == 0xfff && skb) { 2036 if (!skb->cb[0]) { 2037 skb_copy_to_linear_data_offset(skb, 2038 sizeof(struct cpl_tx_pkt), 2039 ch_mac_addr, 2040 ETH_ALEN); 2041 skb_copy_to_linear_data_offset(skb, 2042 skb->len - 10, 2043 ch_mac_addr, 2044 ETH_ALEN); 2045 skb->cb[0] = 0xff; 2046 } 2047 2048 /* bump the reference count to avoid freeing of the 2049 * skb once the DMA has completed. 2050 */ 2051 skb = skb_get(skb); 2052 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); 2053 } 2054 } 2055 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 2056 } 2057 2058 /* 2059 * Creates a t1_sge structure and returns suggested resource parameters. 2060 */ 2061 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p) 2062 { 2063 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL); 2064 int i; 2065 2066 if (!sge) 2067 return NULL; 2068 2069 sge->adapter = adapter; 2070 sge->netdev = adapter->port[0].dev; 2071 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; 2072 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; 2073 2074 for_each_port(adapter, i) { 2075 sge->port_stats[i] = alloc_percpu(struct sge_port_stats); 2076 if (!sge->port_stats[i]) 2077 goto nomem_port; 2078 } 2079 2080 init_timer(&sge->tx_reclaim_timer); 2081 sge->tx_reclaim_timer.data = (unsigned long)sge; 2082 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb; 2083 2084 if (is_T2(sge->adapter)) { 2085 init_timer(&sge->espibug_timer); 2086 2087 if (adapter->params.nports > 1) { 2088 tx_sched_init(sge); 2089 sge->espibug_timer.function = espibug_workaround_t204; 2090 } else 2091 sge->espibug_timer.function = espibug_workaround; 2092 sge->espibug_timer.data = (unsigned long)sge->adapter; 2093 2094 sge->espibug_timeout = 1; 2095 /* for T204, every 10ms */ 2096 if (adapter->params.nports > 1) 2097 sge->espibug_timeout = HZ/100; 2098 } 2099 2100 2101 p->cmdQ_size[0] = SGE_CMDQ0_E_N; 2102 p->cmdQ_size[1] = SGE_CMDQ1_E_N; 2103 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; 2104 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; 2105 if (sge->tx_sched) { 2106 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) 2107 p->rx_coalesce_usecs = 15; 2108 else 2109 p->rx_coalesce_usecs = 50; 2110 } else 2111 p->rx_coalesce_usecs = 50; 2112 2113 p->coalesce_enable = 0; 2114 p->sample_interval_usecs = 0; 2115 2116 return sge; 2117 nomem_port: 2118 while (i >= 0) { 2119 free_percpu(sge->port_stats[i]); 2120 --i; 2121 } 2122 kfree(sge); 2123 return NULL; 2124 2125 } 2126