1 /***************************************************************************** 2 * * 3 * File: sge.c * 4 * $Revision: 1.26 $ * 5 * $Date: 2005/06/21 18:29:48 $ * 6 * Description: * 7 * DMA engine. * 8 * part of the Chelsio 10Gb Ethernet Driver. * 9 * * 10 * This program is free software; you can redistribute it and/or modify * 11 * it under the terms of the GNU General Public License, version 2, as * 12 * published by the Free Software Foundation. * 13 * * 14 * You should have received a copy of the GNU General Public License along * 15 * with this program; if not, write to the Free Software Foundation, Inc., * 16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * 17 * * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * 19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * 21 * * 22 * http://www.chelsio.com * 23 * * 24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 25 * All rights reserved. * 26 * * 27 * Maintainers: maintainers@chelsio.com * 28 * * 29 * Authors: Dimitrios Michailidis <dm@chelsio.com> * 30 * Tina Yang <tainay@chelsio.com> * 31 * Felix Marti <felix@chelsio.com> * 32 * Scott Bardone <sbardone@chelsio.com> * 33 * Kurt Ottaway <kottaway@chelsio.com> * 34 * Frank DiMambro <frank@chelsio.com> * 35 * * 36 * History: * 37 * * 38 ****************************************************************************/ 39 40 #include "common.h" 41 42 #include <linux/types.h> 43 #include <linux/errno.h> 44 #include <linux/pci.h> 45 #include <linux/ktime.h> 46 #include <linux/netdevice.h> 47 #include <linux/etherdevice.h> 48 #include <linux/if_vlan.h> 49 #include <linux/skbuff.h> 50 #include <linux/init.h> 51 #include <linux/mm.h> 52 #include <linux/tcp.h> 53 #include <linux/ip.h> 54 #include <linux/in.h> 55 #include <linux/if_arp.h> 56 #include <linux/slab.h> 57 #include <linux/prefetch.h> 58 59 #include "cpl5_cmd.h" 60 #include "sge.h" 61 #include "regs.h" 62 #include "espi.h" 63 64 /* This belongs in if_ether.h */ 65 #define ETH_P_CPL5 0xf 66 67 #define SGE_CMDQ_N 2 68 #define SGE_FREELQ_N 2 69 #define SGE_CMDQ0_E_N 1024 70 #define SGE_CMDQ1_E_N 128 71 #define SGE_FREEL_SIZE 4096 72 #define SGE_JUMBO_FREEL_SIZE 512 73 #define SGE_FREEL_REFILL_THRESH 16 74 #define SGE_RESPQ_E_N 1024 75 #define SGE_INTRTIMER_NRES 1000 76 #define SGE_RX_SM_BUF_SIZE 1536 77 #define SGE_TX_DESC_MAX_PLEN 16384 78 79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) 80 81 /* 82 * Period of the TX buffer reclaim timer. This timer does not need to run 83 * frequently as TX buffers are usually reclaimed by new TX packets. 84 */ 85 #define TX_RECLAIM_PERIOD (HZ / 4) 86 87 #define M_CMD_LEN 0x7fffffff 88 #define V_CMD_LEN(v) (v) 89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN) 90 #define V_CMD_GEN1(v) ((v) << 31) 91 #define V_CMD_GEN2(v) (v) 92 #define F_CMD_DATAVALID (1 << 1) 93 #define F_CMD_SOP (1 << 2) 94 #define V_CMD_EOP(v) ((v) << 3) 95 96 /* 97 * Command queue, receive buffer list, and response queue descriptors. 98 */ 99 #if defined(__BIG_ENDIAN_BITFIELD) 100 struct cmdQ_e { 101 u32 addr_lo; 102 u32 len_gen; 103 u32 flags; 104 u32 addr_hi; 105 }; 106 107 struct freelQ_e { 108 u32 addr_lo; 109 u32 len_gen; 110 u32 gen2; 111 u32 addr_hi; 112 }; 113 114 struct respQ_e { 115 u32 Qsleeping : 4; 116 u32 Cmdq1CreditReturn : 5; 117 u32 Cmdq1DmaComplete : 5; 118 u32 Cmdq0CreditReturn : 5; 119 u32 Cmdq0DmaComplete : 5; 120 u32 FreelistQid : 2; 121 u32 CreditValid : 1; 122 u32 DataValid : 1; 123 u32 Offload : 1; 124 u32 Eop : 1; 125 u32 Sop : 1; 126 u32 GenerationBit : 1; 127 u32 BufferLength; 128 }; 129 #elif defined(__LITTLE_ENDIAN_BITFIELD) 130 struct cmdQ_e { 131 u32 len_gen; 132 u32 addr_lo; 133 u32 addr_hi; 134 u32 flags; 135 }; 136 137 struct freelQ_e { 138 u32 len_gen; 139 u32 addr_lo; 140 u32 addr_hi; 141 u32 gen2; 142 }; 143 144 struct respQ_e { 145 u32 BufferLength; 146 u32 GenerationBit : 1; 147 u32 Sop : 1; 148 u32 Eop : 1; 149 u32 Offload : 1; 150 u32 DataValid : 1; 151 u32 CreditValid : 1; 152 u32 FreelistQid : 2; 153 u32 Cmdq0DmaComplete : 5; 154 u32 Cmdq0CreditReturn : 5; 155 u32 Cmdq1DmaComplete : 5; 156 u32 Cmdq1CreditReturn : 5; 157 u32 Qsleeping : 4; 158 } ; 159 #endif 160 161 /* 162 * SW Context Command and Freelist Queue Descriptors 163 */ 164 struct cmdQ_ce { 165 struct sk_buff *skb; 166 DEFINE_DMA_UNMAP_ADDR(dma_addr); 167 DEFINE_DMA_UNMAP_LEN(dma_len); 168 }; 169 170 struct freelQ_ce { 171 struct sk_buff *skb; 172 DEFINE_DMA_UNMAP_ADDR(dma_addr); 173 DEFINE_DMA_UNMAP_LEN(dma_len); 174 }; 175 176 /* 177 * SW command, freelist and response rings 178 */ 179 struct cmdQ { 180 unsigned long status; /* HW DMA fetch status */ 181 unsigned int in_use; /* # of in-use command descriptors */ 182 unsigned int size; /* # of descriptors */ 183 unsigned int processed; /* total # of descs HW has processed */ 184 unsigned int cleaned; /* total # of descs SW has reclaimed */ 185 unsigned int stop_thres; /* SW TX queue suspend threshold */ 186 u16 pidx; /* producer index (SW) */ 187 u16 cidx; /* consumer index (HW) */ 188 u8 genbit; /* current generation (=valid) bit */ 189 u8 sop; /* is next entry start of packet? */ 190 struct cmdQ_e *entries; /* HW command descriptor Q */ 191 struct cmdQ_ce *centries; /* SW command context descriptor Q */ 192 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ 193 spinlock_t lock; /* Lock to protect cmdQ enqueuing */ 194 }; 195 196 struct freelQ { 197 unsigned int credits; /* # of available RX buffers */ 198 unsigned int size; /* free list capacity */ 199 u16 pidx; /* producer index (SW) */ 200 u16 cidx; /* consumer index (HW) */ 201 u16 rx_buffer_size; /* Buffer size on this free list */ 202 u16 dma_offset; /* DMA offset to align IP headers */ 203 u16 recycleq_idx; /* skb recycle q to use */ 204 u8 genbit; /* current generation (=valid) bit */ 205 struct freelQ_e *entries; /* HW freelist descriptor Q */ 206 struct freelQ_ce *centries; /* SW freelist context descriptor Q */ 207 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ 208 }; 209 210 struct respQ { 211 unsigned int credits; /* credits to be returned to SGE */ 212 unsigned int size; /* # of response Q descriptors */ 213 u16 cidx; /* consumer index (SW) */ 214 u8 genbit; /* current generation(=valid) bit */ 215 struct respQ_e *entries; /* HW response descriptor Q */ 216 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ 217 }; 218 219 /* Bit flags for cmdQ.status */ 220 enum { 221 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */ 222 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */ 223 }; 224 225 /* T204 TX SW scheduler */ 226 227 /* Per T204 TX port */ 228 struct sched_port { 229 unsigned int avail; /* available bits - quota */ 230 unsigned int drain_bits_per_1024ns; /* drain rate */ 231 unsigned int speed; /* drain rate, mbps */ 232 unsigned int mtu; /* mtu size */ 233 struct sk_buff_head skbq; /* pending skbs */ 234 }; 235 236 /* Per T204 device */ 237 struct sched { 238 ktime_t last_updated; /* last time quotas were computed */ 239 unsigned int max_avail; /* max bits to be sent to any port */ 240 unsigned int port; /* port index (round robin ports) */ 241 unsigned int num; /* num skbs in per port queues */ 242 struct sched_port p[MAX_NPORTS]; 243 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */ 244 }; 245 static void restart_sched(unsigned long); 246 247 248 /* 249 * Main SGE data structure 250 * 251 * Interrupts are handled by a single CPU and it is likely that on a MP system 252 * the application is migrated to another CPU. In that scenario, we try to 253 * separate the RX(in irq context) and TX state in order to decrease memory 254 * contention. 255 */ 256 struct sge { 257 struct adapter *adapter; /* adapter backpointer */ 258 struct net_device *netdev; /* netdevice backpointer */ 259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */ 260 struct respQ respQ; /* response Q */ 261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */ 262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */ 263 unsigned int jumbo_fl; /* jumbo freelist Q index */ 264 unsigned int intrtimer_nres; /* no-resource interrupt timer */ 265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */ 266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ 267 struct timer_list espibug_timer; 268 unsigned long espibug_timeout; 269 struct sk_buff *espibug_skb[MAX_NPORTS]; 270 u32 sge_control; /* shadow value of sge control reg */ 271 struct sge_intr_counts stats; 272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS]; 273 struct sched *tx_sched; 274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; 275 }; 276 277 static const u8 ch_mac_addr[ETH_ALEN] = { 278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0 279 }; 280 281 /* 282 * stop tasklet and free all pending skb's 283 */ 284 static void tx_sched_stop(struct sge *sge) 285 { 286 struct sched *s = sge->tx_sched; 287 int i; 288 289 tasklet_kill(&s->sched_tsk); 290 291 for (i = 0; i < MAX_NPORTS; i++) 292 __skb_queue_purge(&s->p[s->port].skbq); 293 } 294 295 /* 296 * t1_sched_update_parms() is called when the MTU or link speed changes. It 297 * re-computes scheduler parameters to scope with the change. 298 */ 299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port, 300 unsigned int mtu, unsigned int speed) 301 { 302 struct sched *s = sge->tx_sched; 303 struct sched_port *p = &s->p[port]; 304 unsigned int max_avail_segs; 305 306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed); 307 if (speed) 308 p->speed = speed; 309 if (mtu) 310 p->mtu = mtu; 311 312 if (speed || mtu) { 313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40); 314 do_div(drain, (p->mtu + 50) * 1000); 315 p->drain_bits_per_1024ns = (unsigned int) drain; 316 317 if (p->speed < 1000) 318 p->drain_bits_per_1024ns = 319 90 * p->drain_bits_per_1024ns / 100; 320 } 321 322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) { 323 p->drain_bits_per_1024ns -= 16; 324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4); 325 max_avail_segs = max(1U, 4096 / (p->mtu - 40)); 326 } else { 327 s->max_avail = 16384; 328 max_avail_segs = max(1U, 9000 / (p->mtu - 40)); 329 } 330 331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u " 332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu, 333 p->speed, s->max_avail, max_avail_segs, 334 p->drain_bits_per_1024ns); 335 336 return max_avail_segs * (p->mtu - 40); 337 } 338 339 #if 0 340 341 /* 342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of 343 * data that can be pushed per port. 344 */ 345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val) 346 { 347 struct sched *s = sge->tx_sched; 348 unsigned int i; 349 350 s->max_avail = val; 351 for (i = 0; i < MAX_NPORTS; i++) 352 t1_sched_update_parms(sge, i, 0, 0); 353 } 354 355 /* 356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port 357 * is draining. 358 */ 359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port, 360 unsigned int val) 361 { 362 struct sched *s = sge->tx_sched; 363 struct sched_port *p = &s->p[port]; 364 p->drain_bits_per_1024ns = val * 1024 / 1000; 365 t1_sched_update_parms(sge, port, 0, 0); 366 } 367 368 #endif /* 0 */ 369 370 371 /* 372 * get_clock() implements a ns clock (see ktime_get) 373 */ 374 static inline ktime_t get_clock(void) 375 { 376 struct timespec ts; 377 378 ktime_get_ts(&ts); 379 return timespec_to_ktime(ts); 380 } 381 382 /* 383 * tx_sched_init() allocates resources and does basic initialization. 384 */ 385 static int tx_sched_init(struct sge *sge) 386 { 387 struct sched *s; 388 int i; 389 390 s = kzalloc(sizeof (struct sched), GFP_KERNEL); 391 if (!s) 392 return -ENOMEM; 393 394 pr_debug("tx_sched_init\n"); 395 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge); 396 sge->tx_sched = s; 397 398 for (i = 0; i < MAX_NPORTS; i++) { 399 skb_queue_head_init(&s->p[i].skbq); 400 t1_sched_update_parms(sge, i, 1500, 1000); 401 } 402 403 return 0; 404 } 405 406 /* 407 * sched_update_avail() computes the delta since the last time it was called 408 * and updates the per port quota (number of bits that can be sent to the any 409 * port). 410 */ 411 static inline int sched_update_avail(struct sge *sge) 412 { 413 struct sched *s = sge->tx_sched; 414 ktime_t now = get_clock(); 415 unsigned int i; 416 long long delta_time_ns; 417 418 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated)); 419 420 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns); 421 if (delta_time_ns < 15000) 422 return 0; 423 424 for (i = 0; i < MAX_NPORTS; i++) { 425 struct sched_port *p = &s->p[i]; 426 unsigned int delta_avail; 427 428 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13; 429 p->avail = min(p->avail + delta_avail, s->max_avail); 430 } 431 432 s->last_updated = now; 433 434 return 1; 435 } 436 437 /* 438 * sched_skb() is called from two different places. In the tx path, any 439 * packet generating load on an output port will call sched_skb() 440 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq 441 * context (skb == NULL). 442 * The scheduler only returns a skb (which will then be sent) if the 443 * length of the skb is <= the current quota of the output port. 444 */ 445 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb, 446 unsigned int credits) 447 { 448 struct sched *s = sge->tx_sched; 449 struct sk_buff_head *skbq; 450 unsigned int i, len, update = 1; 451 452 pr_debug("sched_skb %p\n", skb); 453 if (!skb) { 454 if (!s->num) 455 return NULL; 456 } else { 457 skbq = &s->p[skb->dev->if_port].skbq; 458 __skb_queue_tail(skbq, skb); 459 s->num++; 460 skb = NULL; 461 } 462 463 if (credits < MAX_SKB_FRAGS + 1) 464 goto out; 465 466 again: 467 for (i = 0; i < MAX_NPORTS; i++) { 468 s->port = (s->port + 1) & (MAX_NPORTS - 1); 469 skbq = &s->p[s->port].skbq; 470 471 skb = skb_peek(skbq); 472 473 if (!skb) 474 continue; 475 476 len = skb->len; 477 if (len <= s->p[s->port].avail) { 478 s->p[s->port].avail -= len; 479 s->num--; 480 __skb_unlink(skb, skbq); 481 goto out; 482 } 483 skb = NULL; 484 } 485 486 if (update-- && sched_update_avail(sge)) 487 goto again; 488 489 out: 490 /* If there are more pending skbs, we use the hardware to schedule us 491 * again. 492 */ 493 if (s->num && !skb) { 494 struct cmdQ *q = &sge->cmdQ[0]; 495 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 496 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 497 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 498 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); 499 } 500 } 501 pr_debug("sched_skb ret %p\n", skb); 502 503 return skb; 504 } 505 506 /* 507 * PIO to indicate that memory mapped Q contains valid descriptor(s). 508 */ 509 static inline void doorbell_pio(struct adapter *adapter, u32 val) 510 { 511 wmb(); 512 writel(val, adapter->regs + A_SG_DOORBELL); 513 } 514 515 /* 516 * Frees all RX buffers on the freelist Q. The caller must make sure that 517 * the SGE is turned off before calling this function. 518 */ 519 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) 520 { 521 unsigned int cidx = q->cidx; 522 523 while (q->credits--) { 524 struct freelQ_ce *ce = &q->centries[cidx]; 525 526 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr), 527 dma_unmap_len(ce, dma_len), 528 PCI_DMA_FROMDEVICE); 529 dev_kfree_skb(ce->skb); 530 ce->skb = NULL; 531 if (++cidx == q->size) 532 cidx = 0; 533 } 534 } 535 536 /* 537 * Free RX free list and response queue resources. 538 */ 539 static void free_rx_resources(struct sge *sge) 540 { 541 struct pci_dev *pdev = sge->adapter->pdev; 542 unsigned int size, i; 543 544 if (sge->respQ.entries) { 545 size = sizeof(struct respQ_e) * sge->respQ.size; 546 pci_free_consistent(pdev, size, sge->respQ.entries, 547 sge->respQ.dma_addr); 548 } 549 550 for (i = 0; i < SGE_FREELQ_N; i++) { 551 struct freelQ *q = &sge->freelQ[i]; 552 553 if (q->centries) { 554 free_freelQ_buffers(pdev, q); 555 kfree(q->centries); 556 } 557 if (q->entries) { 558 size = sizeof(struct freelQ_e) * q->size; 559 pci_free_consistent(pdev, size, q->entries, 560 q->dma_addr); 561 } 562 } 563 } 564 565 /* 566 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a 567 * response queue. 568 */ 569 static int alloc_rx_resources(struct sge *sge, struct sge_params *p) 570 { 571 struct pci_dev *pdev = sge->adapter->pdev; 572 unsigned int size, i; 573 574 for (i = 0; i < SGE_FREELQ_N; i++) { 575 struct freelQ *q = &sge->freelQ[i]; 576 577 q->genbit = 1; 578 q->size = p->freelQ_size[i]; 579 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; 580 size = sizeof(struct freelQ_e) * q->size; 581 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); 582 if (!q->entries) 583 goto err_no_mem; 584 585 size = sizeof(struct freelQ_ce) * q->size; 586 q->centries = kzalloc(size, GFP_KERNEL); 587 if (!q->centries) 588 goto err_no_mem; 589 } 590 591 /* 592 * Calculate the buffer sizes for the two free lists. FL0 accommodates 593 * regular sized Ethernet frames, FL1 is sized not to exceed 16K, 594 * including all the sk_buff overhead. 595 * 596 * Note: For T2 FL0 and FL1 are reversed. 597 */ 598 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE + 599 sizeof(struct cpl_rx_data) + 600 sge->freelQ[!sge->jumbo_fl].dma_offset; 601 602 size = (16 * 1024) - 603 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 604 605 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size; 606 607 /* 608 * Setup which skb recycle Q should be used when recycling buffers from 609 * each free list. 610 */ 611 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; 612 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; 613 614 sge->respQ.genbit = 1; 615 sge->respQ.size = SGE_RESPQ_E_N; 616 sge->respQ.credits = 0; 617 size = sizeof(struct respQ_e) * sge->respQ.size; 618 sge->respQ.entries = 619 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); 620 if (!sge->respQ.entries) 621 goto err_no_mem; 622 return 0; 623 624 err_no_mem: 625 free_rx_resources(sge); 626 return -ENOMEM; 627 } 628 629 /* 630 * Reclaims n TX descriptors and frees the buffers associated with them. 631 */ 632 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) 633 { 634 struct cmdQ_ce *ce; 635 struct pci_dev *pdev = sge->adapter->pdev; 636 unsigned int cidx = q->cidx; 637 638 q->in_use -= n; 639 ce = &q->centries[cidx]; 640 while (n--) { 641 if (likely(dma_unmap_len(ce, dma_len))) { 642 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr), 643 dma_unmap_len(ce, dma_len), 644 PCI_DMA_TODEVICE); 645 if (q->sop) 646 q->sop = 0; 647 } 648 if (ce->skb) { 649 dev_kfree_skb_any(ce->skb); 650 q->sop = 1; 651 } 652 ce++; 653 if (++cidx == q->size) { 654 cidx = 0; 655 ce = q->centries; 656 } 657 } 658 q->cidx = cidx; 659 } 660 661 /* 662 * Free TX resources. 663 * 664 * Assumes that SGE is stopped and all interrupts are disabled. 665 */ 666 static void free_tx_resources(struct sge *sge) 667 { 668 struct pci_dev *pdev = sge->adapter->pdev; 669 unsigned int size, i; 670 671 for (i = 0; i < SGE_CMDQ_N; i++) { 672 struct cmdQ *q = &sge->cmdQ[i]; 673 674 if (q->centries) { 675 if (q->in_use) 676 free_cmdQ_buffers(sge, q, q->in_use); 677 kfree(q->centries); 678 } 679 if (q->entries) { 680 size = sizeof(struct cmdQ_e) * q->size; 681 pci_free_consistent(pdev, size, q->entries, 682 q->dma_addr); 683 } 684 } 685 } 686 687 /* 688 * Allocates basic TX resources, consisting of memory mapped command Qs. 689 */ 690 static int alloc_tx_resources(struct sge *sge, struct sge_params *p) 691 { 692 struct pci_dev *pdev = sge->adapter->pdev; 693 unsigned int size, i; 694 695 for (i = 0; i < SGE_CMDQ_N; i++) { 696 struct cmdQ *q = &sge->cmdQ[i]; 697 698 q->genbit = 1; 699 q->sop = 1; 700 q->size = p->cmdQ_size[i]; 701 q->in_use = 0; 702 q->status = 0; 703 q->processed = q->cleaned = 0; 704 q->stop_thres = 0; 705 spin_lock_init(&q->lock); 706 size = sizeof(struct cmdQ_e) * q->size; 707 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr); 708 if (!q->entries) 709 goto err_no_mem; 710 711 size = sizeof(struct cmdQ_ce) * q->size; 712 q->centries = kzalloc(size, GFP_KERNEL); 713 if (!q->centries) 714 goto err_no_mem; 715 } 716 717 /* 718 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE 719 * only. For queue 0 set the stop threshold so we can handle one more 720 * packet from each port, plus reserve an additional 24 entries for 721 * Ethernet packets only. Queue 1 never suspends nor do we reserve 722 * space for Ethernet packets. 723 */ 724 sge->cmdQ[0].stop_thres = sge->adapter->params.nports * 725 (MAX_SKB_FRAGS + 1); 726 return 0; 727 728 err_no_mem: 729 free_tx_resources(sge); 730 return -ENOMEM; 731 } 732 733 static inline void setup_ring_params(struct adapter *adapter, u64 addr, 734 u32 size, int base_reg_lo, 735 int base_reg_hi, int size_reg) 736 { 737 writel((u32)addr, adapter->regs + base_reg_lo); 738 writel(addr >> 32, adapter->regs + base_reg_hi); 739 writel(size, adapter->regs + size_reg); 740 } 741 742 /* 743 * Enable/disable VLAN acceleration. 744 */ 745 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features) 746 { 747 struct sge *sge = adapter->sge; 748 749 if (features & NETIF_F_HW_VLAN_RX) 750 sge->sge_control |= F_VLAN_XTRACT; 751 else 752 sge->sge_control &= ~F_VLAN_XTRACT; 753 if (adapter->open_device_map) { 754 writel(sge->sge_control, adapter->regs + A_SG_CONTROL); 755 readl(adapter->regs + A_SG_CONTROL); /* flush */ 756 } 757 } 758 759 /* 760 * Programs the various SGE registers. However, the engine is not yet enabled, 761 * but sge->sge_control is setup and ready to go. 762 */ 763 static void configure_sge(struct sge *sge, struct sge_params *p) 764 { 765 struct adapter *ap = sge->adapter; 766 767 writel(0, ap->regs + A_SG_CONTROL); 768 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, 769 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); 770 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, 771 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); 772 setup_ring_params(ap, sge->freelQ[0].dma_addr, 773 sge->freelQ[0].size, A_SG_FL0BASELWR, 774 A_SG_FL0BASEUPR, A_SG_FL0SIZE); 775 setup_ring_params(ap, sge->freelQ[1].dma_addr, 776 sge->freelQ[1].size, A_SG_FL1BASELWR, 777 A_SG_FL1BASEUPR, A_SG_FL1SIZE); 778 779 /* The threshold comparison uses <. */ 780 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); 781 782 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, 783 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); 784 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); 785 786 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | 787 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | 788 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | 789 V_RX_PKT_OFFSET(sge->rx_pkt_pad); 790 791 #if defined(__BIG_ENDIAN_BITFIELD) 792 sge->sge_control |= F_ENABLE_BIG_ENDIAN; 793 #endif 794 795 /* Initialize no-resource timer */ 796 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); 797 798 t1_sge_set_coalesce_params(sge, p); 799 } 800 801 /* 802 * Return the payload capacity of the jumbo free-list buffers. 803 */ 804 static inline unsigned int jumbo_payload_capacity(const struct sge *sge) 805 { 806 return sge->freelQ[sge->jumbo_fl].rx_buffer_size - 807 sge->freelQ[sge->jumbo_fl].dma_offset - 808 sizeof(struct cpl_rx_data); 809 } 810 811 /* 812 * Frees all SGE related resources and the sge structure itself 813 */ 814 void t1_sge_destroy(struct sge *sge) 815 { 816 int i; 817 818 for_each_port(sge->adapter, i) 819 free_percpu(sge->port_stats[i]); 820 821 kfree(sge->tx_sched); 822 free_tx_resources(sge); 823 free_rx_resources(sge); 824 kfree(sge); 825 } 826 827 /* 828 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist 829 * context Q) until the Q is full or alloc_skb fails. 830 * 831 * It is possible that the generation bits already match, indicating that the 832 * buffer is already valid and nothing needs to be done. This happens when we 833 * copied a received buffer into a new sk_buff during the interrupt processing. 834 * 835 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad), 836 * we specify a RX_OFFSET in order to make sure that the IP header is 4B 837 * aligned. 838 */ 839 static void refill_free_list(struct sge *sge, struct freelQ *q) 840 { 841 struct pci_dev *pdev = sge->adapter->pdev; 842 struct freelQ_ce *ce = &q->centries[q->pidx]; 843 struct freelQ_e *e = &q->entries[q->pidx]; 844 unsigned int dma_len = q->rx_buffer_size - q->dma_offset; 845 846 while (q->credits < q->size) { 847 struct sk_buff *skb; 848 dma_addr_t mapping; 849 850 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC); 851 if (!skb) 852 break; 853 854 skb_reserve(skb, q->dma_offset); 855 mapping = pci_map_single(pdev, skb->data, dma_len, 856 PCI_DMA_FROMDEVICE); 857 skb_reserve(skb, sge->rx_pkt_pad); 858 859 ce->skb = skb; 860 dma_unmap_addr_set(ce, dma_addr, mapping); 861 dma_unmap_len_set(ce, dma_len, dma_len); 862 e->addr_lo = (u32)mapping; 863 e->addr_hi = (u64)mapping >> 32; 864 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); 865 wmb(); 866 e->gen2 = V_CMD_GEN2(q->genbit); 867 868 e++; 869 ce++; 870 if (++q->pidx == q->size) { 871 q->pidx = 0; 872 q->genbit ^= 1; 873 ce = q->centries; 874 e = q->entries; 875 } 876 q->credits++; 877 } 878 } 879 880 /* 881 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 882 * of both rings, we go into 'few interrupt mode' in order to give the system 883 * time to free up resources. 884 */ 885 static void freelQs_empty(struct sge *sge) 886 { 887 struct adapter *adapter = sge->adapter; 888 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); 889 u32 irqholdoff_reg; 890 891 refill_free_list(sge, &sge->freelQ[0]); 892 refill_free_list(sge, &sge->freelQ[1]); 893 894 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && 895 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { 896 irq_reg |= F_FL_EXHAUSTED; 897 irqholdoff_reg = sge->fixed_intrtimer; 898 } else { 899 /* Clear the F_FL_EXHAUSTED interrupts for now */ 900 irq_reg &= ~F_FL_EXHAUSTED; 901 irqholdoff_reg = sge->intrtimer_nres; 902 } 903 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); 904 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); 905 906 /* We reenable the Qs to force a freelist GTS interrupt later */ 907 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); 908 } 909 910 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) 911 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) 912 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \ 913 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH) 914 915 /* 916 * Disable SGE Interrupts 917 */ 918 void t1_sge_intr_disable(struct sge *sge) 919 { 920 u32 val = readl(sge->adapter->regs + A_PL_ENABLE); 921 922 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); 923 writel(0, sge->adapter->regs + A_SG_INT_ENABLE); 924 } 925 926 /* 927 * Enable SGE interrupts. 928 */ 929 void t1_sge_intr_enable(struct sge *sge) 930 { 931 u32 en = SGE_INT_ENABLE; 932 u32 val = readl(sge->adapter->regs + A_PL_ENABLE); 933 934 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO) 935 en &= ~F_PACKET_TOO_BIG; 936 writel(en, sge->adapter->regs + A_SG_INT_ENABLE); 937 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); 938 } 939 940 /* 941 * Clear SGE interrupts. 942 */ 943 void t1_sge_intr_clear(struct sge *sge) 944 { 945 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); 946 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); 947 } 948 949 /* 950 * SGE 'Error' interrupt handler 951 */ 952 int t1_sge_intr_error_handler(struct sge *sge) 953 { 954 struct adapter *adapter = sge->adapter; 955 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); 956 957 if (adapter->port[0].dev->hw_features & NETIF_F_TSO) 958 cause &= ~F_PACKET_TOO_BIG; 959 if (cause & F_RESPQ_EXHAUSTED) 960 sge->stats.respQ_empty++; 961 if (cause & F_RESPQ_OVERFLOW) { 962 sge->stats.respQ_overflow++; 963 pr_alert("%s: SGE response queue overflow\n", 964 adapter->name); 965 } 966 if (cause & F_FL_EXHAUSTED) { 967 sge->stats.freelistQ_empty++; 968 freelQs_empty(sge); 969 } 970 if (cause & F_PACKET_TOO_BIG) { 971 sge->stats.pkt_too_big++; 972 pr_alert("%s: SGE max packet size exceeded\n", 973 adapter->name); 974 } 975 if (cause & F_PACKET_MISMATCH) { 976 sge->stats.pkt_mismatch++; 977 pr_alert("%s: SGE packet mismatch\n", adapter->name); 978 } 979 if (cause & SGE_INT_FATAL) 980 t1_fatal_err(adapter); 981 982 writel(cause, adapter->regs + A_SG_INT_CAUSE); 983 return 0; 984 } 985 986 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge) 987 { 988 return &sge->stats; 989 } 990 991 void t1_sge_get_port_stats(const struct sge *sge, int port, 992 struct sge_port_stats *ss) 993 { 994 int cpu; 995 996 memset(ss, 0, sizeof(*ss)); 997 for_each_possible_cpu(cpu) { 998 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu); 999 1000 ss->rx_cso_good += st->rx_cso_good; 1001 ss->tx_cso += st->tx_cso; 1002 ss->tx_tso += st->tx_tso; 1003 ss->tx_need_hdrroom += st->tx_need_hdrroom; 1004 ss->vlan_xtract += st->vlan_xtract; 1005 ss->vlan_insert += st->vlan_insert; 1006 } 1007 } 1008 1009 /** 1010 * recycle_fl_buf - recycle a free list buffer 1011 * @fl: the free list 1012 * @idx: index of buffer to recycle 1013 * 1014 * Recycles the specified buffer on the given free list by adding it at 1015 * the next available slot on the list. 1016 */ 1017 static void recycle_fl_buf(struct freelQ *fl, int idx) 1018 { 1019 struct freelQ_e *from = &fl->entries[idx]; 1020 struct freelQ_e *to = &fl->entries[fl->pidx]; 1021 1022 fl->centries[fl->pidx] = fl->centries[idx]; 1023 to->addr_lo = from->addr_lo; 1024 to->addr_hi = from->addr_hi; 1025 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); 1026 wmb(); 1027 to->gen2 = V_CMD_GEN2(fl->genbit); 1028 fl->credits++; 1029 1030 if (++fl->pidx == fl->size) { 1031 fl->pidx = 0; 1032 fl->genbit ^= 1; 1033 } 1034 } 1035 1036 static int copybreak __read_mostly = 256; 1037 module_param(copybreak, int, 0); 1038 MODULE_PARM_DESC(copybreak, "Receive copy threshold"); 1039 1040 /** 1041 * get_packet - return the next ingress packet buffer 1042 * @pdev: the PCI device that received the packet 1043 * @fl: the SGE free list holding the packet 1044 * @len: the actual packet length, excluding any SGE padding 1045 * 1046 * Get the next packet from a free list and complete setup of the 1047 * sk_buff. If the packet is small we make a copy and recycle the 1048 * original buffer, otherwise we use the original buffer itself. If a 1049 * positive drop threshold is supplied packets are dropped and their 1050 * buffers recycled if (a) the number of remaining buffers is under the 1051 * threshold and the packet is too big to copy, or (b) the packet should 1052 * be copied but there is no memory for the copy. 1053 */ 1054 static inline struct sk_buff *get_packet(struct pci_dev *pdev, 1055 struct freelQ *fl, unsigned int len) 1056 { 1057 struct sk_buff *skb; 1058 const struct freelQ_ce *ce = &fl->centries[fl->cidx]; 1059 1060 if (len < copybreak) { 1061 skb = alloc_skb(len + 2, GFP_ATOMIC); 1062 if (!skb) 1063 goto use_orig_buf; 1064 1065 skb_reserve(skb, 2); /* align IP header */ 1066 skb_put(skb, len); 1067 pci_dma_sync_single_for_cpu(pdev, 1068 dma_unmap_addr(ce, dma_addr), 1069 dma_unmap_len(ce, dma_len), 1070 PCI_DMA_FROMDEVICE); 1071 skb_copy_from_linear_data(ce->skb, skb->data, len); 1072 pci_dma_sync_single_for_device(pdev, 1073 dma_unmap_addr(ce, dma_addr), 1074 dma_unmap_len(ce, dma_len), 1075 PCI_DMA_FROMDEVICE); 1076 recycle_fl_buf(fl, fl->cidx); 1077 return skb; 1078 } 1079 1080 use_orig_buf: 1081 if (fl->credits < 2) { 1082 recycle_fl_buf(fl, fl->cidx); 1083 return NULL; 1084 } 1085 1086 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr), 1087 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); 1088 skb = ce->skb; 1089 prefetch(skb->data); 1090 1091 skb_put(skb, len); 1092 return skb; 1093 } 1094 1095 /** 1096 * unexpected_offload - handle an unexpected offload packet 1097 * @adapter: the adapter 1098 * @fl: the free list that received the packet 1099 * 1100 * Called when we receive an unexpected offload packet (e.g., the TOE 1101 * function is disabled or the card is a NIC). Prints a message and 1102 * recycles the buffer. 1103 */ 1104 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl) 1105 { 1106 struct freelQ_ce *ce = &fl->centries[fl->cidx]; 1107 struct sk_buff *skb = ce->skb; 1108 1109 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr), 1110 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); 1111 pr_err("%s: unexpected offload packet, cmd %u\n", 1112 adapter->name, *skb->data); 1113 recycle_fl_buf(fl, fl->cidx); 1114 } 1115 1116 /* 1117 * T1/T2 SGE limits the maximum DMA size per TX descriptor to 1118 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the 1119 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner. 1120 * Note that the *_large_page_tx_descs stuff will be optimized out when 1121 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN. 1122 * 1123 * compute_large_page_descs() computes how many additional descriptors are 1124 * required to break down the stack's request. 1125 */ 1126 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb) 1127 { 1128 unsigned int count = 0; 1129 1130 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { 1131 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 1132 unsigned int i, len = skb_headlen(skb); 1133 while (len > SGE_TX_DESC_MAX_PLEN) { 1134 count++; 1135 len -= SGE_TX_DESC_MAX_PLEN; 1136 } 1137 for (i = 0; nfrags--; i++) { 1138 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1139 len = skb_frag_size(frag); 1140 while (len > SGE_TX_DESC_MAX_PLEN) { 1141 count++; 1142 len -= SGE_TX_DESC_MAX_PLEN; 1143 } 1144 } 1145 } 1146 return count; 1147 } 1148 1149 /* 1150 * Write a cmdQ entry. 1151 * 1152 * Since this function writes the 'flags' field, it must not be used to 1153 * write the first cmdQ entry. 1154 */ 1155 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping, 1156 unsigned int len, unsigned int gen, 1157 unsigned int eop) 1158 { 1159 BUG_ON(len > SGE_TX_DESC_MAX_PLEN); 1160 1161 e->addr_lo = (u32)mapping; 1162 e->addr_hi = (u64)mapping >> 32; 1163 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen); 1164 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen); 1165 } 1166 1167 /* 1168 * See comment for previous function. 1169 * 1170 * write_tx_descs_large_page() writes additional SGE tx descriptors if 1171 * *desc_len exceeds HW's capability. 1172 */ 1173 static inline unsigned int write_large_page_tx_descs(unsigned int pidx, 1174 struct cmdQ_e **e, 1175 struct cmdQ_ce **ce, 1176 unsigned int *gen, 1177 dma_addr_t *desc_mapping, 1178 unsigned int *desc_len, 1179 unsigned int nfrags, 1180 struct cmdQ *q) 1181 { 1182 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) { 1183 struct cmdQ_e *e1 = *e; 1184 struct cmdQ_ce *ce1 = *ce; 1185 1186 while (*desc_len > SGE_TX_DESC_MAX_PLEN) { 1187 *desc_len -= SGE_TX_DESC_MAX_PLEN; 1188 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN, 1189 *gen, nfrags == 0 && *desc_len == 0); 1190 ce1->skb = NULL; 1191 dma_unmap_len_set(ce1, dma_len, 0); 1192 *desc_mapping += SGE_TX_DESC_MAX_PLEN; 1193 if (*desc_len) { 1194 ce1++; 1195 e1++; 1196 if (++pidx == q->size) { 1197 pidx = 0; 1198 *gen ^= 1; 1199 ce1 = q->centries; 1200 e1 = q->entries; 1201 } 1202 } 1203 } 1204 *e = e1; 1205 *ce = ce1; 1206 } 1207 return pidx; 1208 } 1209 1210 /* 1211 * Write the command descriptors to transmit the given skb starting at 1212 * descriptor pidx with the given generation. 1213 */ 1214 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, 1215 unsigned int pidx, unsigned int gen, 1216 struct cmdQ *q) 1217 { 1218 dma_addr_t mapping, desc_mapping; 1219 struct cmdQ_e *e, *e1; 1220 struct cmdQ_ce *ce; 1221 unsigned int i, flags, first_desc_len, desc_len, 1222 nfrags = skb_shinfo(skb)->nr_frags; 1223 1224 e = e1 = &q->entries[pidx]; 1225 ce = &q->centries[pidx]; 1226 1227 mapping = pci_map_single(adapter->pdev, skb->data, 1228 skb_headlen(skb), PCI_DMA_TODEVICE); 1229 1230 desc_mapping = mapping; 1231 desc_len = skb_headlen(skb); 1232 1233 flags = F_CMD_DATAVALID | F_CMD_SOP | 1234 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) | 1235 V_CMD_GEN2(gen); 1236 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ? 1237 desc_len : SGE_TX_DESC_MAX_PLEN; 1238 e->addr_lo = (u32)desc_mapping; 1239 e->addr_hi = (u64)desc_mapping >> 32; 1240 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen); 1241 ce->skb = NULL; 1242 dma_unmap_len_set(ce, dma_len, 0); 1243 1244 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN && 1245 desc_len > SGE_TX_DESC_MAX_PLEN) { 1246 desc_mapping += first_desc_len; 1247 desc_len -= first_desc_len; 1248 e1++; 1249 ce++; 1250 if (++pidx == q->size) { 1251 pidx = 0; 1252 gen ^= 1; 1253 e1 = q->entries; 1254 ce = q->centries; 1255 } 1256 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, 1257 &desc_mapping, &desc_len, 1258 nfrags, q); 1259 1260 if (likely(desc_len)) 1261 write_tx_desc(e1, desc_mapping, desc_len, gen, 1262 nfrags == 0); 1263 } 1264 1265 ce->skb = NULL; 1266 dma_unmap_addr_set(ce, dma_addr, mapping); 1267 dma_unmap_len_set(ce, dma_len, skb_headlen(skb)); 1268 1269 for (i = 0; nfrags--; i++) { 1270 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1271 e1++; 1272 ce++; 1273 if (++pidx == q->size) { 1274 pidx = 0; 1275 gen ^= 1; 1276 e1 = q->entries; 1277 ce = q->centries; 1278 } 1279 1280 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0, 1281 skb_frag_size(frag), DMA_TO_DEVICE); 1282 desc_mapping = mapping; 1283 desc_len = skb_frag_size(frag); 1284 1285 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen, 1286 &desc_mapping, &desc_len, 1287 nfrags, q); 1288 if (likely(desc_len)) 1289 write_tx_desc(e1, desc_mapping, desc_len, gen, 1290 nfrags == 0); 1291 ce->skb = NULL; 1292 dma_unmap_addr_set(ce, dma_addr, mapping); 1293 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag)); 1294 } 1295 ce->skb = skb; 1296 wmb(); 1297 e->flags = flags; 1298 } 1299 1300 /* 1301 * Clean up completed Tx buffers. 1302 */ 1303 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) 1304 { 1305 unsigned int reclaim = q->processed - q->cleaned; 1306 1307 if (reclaim) { 1308 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n", 1309 q->processed, q->cleaned); 1310 free_cmdQ_buffers(sge, q, reclaim); 1311 q->cleaned += reclaim; 1312 } 1313 } 1314 1315 /* 1316 * Called from tasklet. Checks the scheduler for any 1317 * pending skbs that can be sent. 1318 */ 1319 static void restart_sched(unsigned long arg) 1320 { 1321 struct sge *sge = (struct sge *) arg; 1322 struct adapter *adapter = sge->adapter; 1323 struct cmdQ *q = &sge->cmdQ[0]; 1324 struct sk_buff *skb; 1325 unsigned int credits, queued_skb = 0; 1326 1327 spin_lock(&q->lock); 1328 reclaim_completed_tx(sge, q); 1329 1330 credits = q->size - q->in_use; 1331 pr_debug("restart_sched credits=%d\n", credits); 1332 while ((skb = sched_skb(sge, NULL, credits)) != NULL) { 1333 unsigned int genbit, pidx, count; 1334 count = 1 + skb_shinfo(skb)->nr_frags; 1335 count += compute_large_page_tx_descs(skb); 1336 q->in_use += count; 1337 genbit = q->genbit; 1338 pidx = q->pidx; 1339 q->pidx += count; 1340 if (q->pidx >= q->size) { 1341 q->pidx -= q->size; 1342 q->genbit ^= 1; 1343 } 1344 write_tx_descs(adapter, skb, pidx, genbit, q); 1345 credits = q->size - q->in_use; 1346 queued_skb = 1; 1347 } 1348 1349 if (queued_skb) { 1350 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1351 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 1352 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1353 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 1354 } 1355 } 1356 spin_unlock(&q->lock); 1357 } 1358 1359 /** 1360 * sge_rx - process an ingress ethernet packet 1361 * @sge: the sge structure 1362 * @fl: the free list that contains the packet buffer 1363 * @len: the packet length 1364 * 1365 * Process an ingress ethernet pakcet and deliver it to the stack. 1366 */ 1367 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) 1368 { 1369 struct sk_buff *skb; 1370 const struct cpl_rx_pkt *p; 1371 struct adapter *adapter = sge->adapter; 1372 struct sge_port_stats *st; 1373 struct net_device *dev; 1374 1375 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad); 1376 if (unlikely(!skb)) { 1377 sge->stats.rx_drops++; 1378 return; 1379 } 1380 1381 p = (const struct cpl_rx_pkt *) skb->data; 1382 if (p->iff >= adapter->params.nports) { 1383 kfree_skb(skb); 1384 return; 1385 } 1386 __skb_pull(skb, sizeof(*p)); 1387 1388 st = this_cpu_ptr(sge->port_stats[p->iff]); 1389 dev = adapter->port[p->iff].dev; 1390 1391 skb->protocol = eth_type_trans(skb, dev); 1392 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff && 1393 skb->protocol == htons(ETH_P_IP) && 1394 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { 1395 ++st->rx_cso_good; 1396 skb->ip_summed = CHECKSUM_UNNECESSARY; 1397 } else 1398 skb_checksum_none_assert(skb); 1399 1400 if (p->vlan_valid) { 1401 st->vlan_xtract++; 1402 __vlan_hwaccel_put_tag(skb, ntohs(p->vlan)); 1403 } 1404 netif_receive_skb(skb); 1405 } 1406 1407 /* 1408 * Returns true if a command queue has enough available descriptors that 1409 * we can resume Tx operation after temporarily disabling its packet queue. 1410 */ 1411 static inline int enough_free_Tx_descs(const struct cmdQ *q) 1412 { 1413 unsigned int r = q->processed - q->cleaned; 1414 1415 return q->in_use - r < (q->size >> 1); 1416 } 1417 1418 /* 1419 * Called when sufficient space has become available in the SGE command queues 1420 * after the Tx packet schedulers have been suspended to restart the Tx path. 1421 */ 1422 static void restart_tx_queues(struct sge *sge) 1423 { 1424 struct adapter *adap = sge->adapter; 1425 int i; 1426 1427 if (!enough_free_Tx_descs(&sge->cmdQ[0])) 1428 return; 1429 1430 for_each_port(adap, i) { 1431 struct net_device *nd = adap->port[i].dev; 1432 1433 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) && 1434 netif_running(nd)) { 1435 sge->stats.cmdQ_restarted[2]++; 1436 netif_wake_queue(nd); 1437 } 1438 } 1439 } 1440 1441 /* 1442 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 1443 * information. 1444 */ 1445 static unsigned int update_tx_info(struct adapter *adapter, 1446 unsigned int flags, 1447 unsigned int pr0) 1448 { 1449 struct sge *sge = adapter->sge; 1450 struct cmdQ *cmdq = &sge->cmdQ[0]; 1451 1452 cmdq->processed += pr0; 1453 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) { 1454 freelQs_empty(sge); 1455 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE); 1456 } 1457 if (flags & F_CMDQ0_ENABLE) { 1458 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); 1459 1460 if (cmdq->cleaned + cmdq->in_use != cmdq->processed && 1461 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { 1462 set_bit(CMDQ_STAT_RUNNING, &cmdq->status); 1463 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 1464 } 1465 if (sge->tx_sched) 1466 tasklet_hi_schedule(&sge->tx_sched->sched_tsk); 1467 1468 flags &= ~F_CMDQ0_ENABLE; 1469 } 1470 1471 if (unlikely(sge->stopped_tx_queues != 0)) 1472 restart_tx_queues(sge); 1473 1474 return flags; 1475 } 1476 1477 /* 1478 * Process SGE responses, up to the supplied budget. Returns the number of 1479 * responses processed. A negative budget is effectively unlimited. 1480 */ 1481 static int process_responses(struct adapter *adapter, int budget) 1482 { 1483 struct sge *sge = adapter->sge; 1484 struct respQ *q = &sge->respQ; 1485 struct respQ_e *e = &q->entries[q->cidx]; 1486 int done = 0; 1487 unsigned int flags = 0; 1488 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; 1489 1490 while (done < budget && e->GenerationBit == q->genbit) { 1491 flags |= e->Qsleeping; 1492 1493 cmdq_processed[0] += e->Cmdq0CreditReturn; 1494 cmdq_processed[1] += e->Cmdq1CreditReturn; 1495 1496 /* We batch updates to the TX side to avoid cacheline 1497 * ping-pong of TX state information on MP where the sender 1498 * might run on a different CPU than this function... 1499 */ 1500 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) { 1501 flags = update_tx_info(adapter, flags, cmdq_processed[0]); 1502 cmdq_processed[0] = 0; 1503 } 1504 1505 if (unlikely(cmdq_processed[1] > 16)) { 1506 sge->cmdQ[1].processed += cmdq_processed[1]; 1507 cmdq_processed[1] = 0; 1508 } 1509 1510 if (likely(e->DataValid)) { 1511 struct freelQ *fl = &sge->freelQ[e->FreelistQid]; 1512 1513 BUG_ON(!e->Sop || !e->Eop); 1514 if (unlikely(e->Offload)) 1515 unexpected_offload(adapter, fl); 1516 else 1517 sge_rx(sge, fl, e->BufferLength); 1518 1519 ++done; 1520 1521 /* 1522 * Note: this depends on each packet consuming a 1523 * single free-list buffer; cf. the BUG above. 1524 */ 1525 if (++fl->cidx == fl->size) 1526 fl->cidx = 0; 1527 prefetch(fl->centries[fl->cidx].skb); 1528 1529 if (unlikely(--fl->credits < 1530 fl->size - SGE_FREEL_REFILL_THRESH)) 1531 refill_free_list(sge, fl); 1532 } else 1533 sge->stats.pure_rsps++; 1534 1535 e++; 1536 if (unlikely(++q->cidx == q->size)) { 1537 q->cidx = 0; 1538 q->genbit ^= 1; 1539 e = q->entries; 1540 } 1541 prefetch(e); 1542 1543 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { 1544 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); 1545 q->credits = 0; 1546 } 1547 } 1548 1549 flags = update_tx_info(adapter, flags, cmdq_processed[0]); 1550 sge->cmdQ[1].processed += cmdq_processed[1]; 1551 1552 return done; 1553 } 1554 1555 static inline int responses_pending(const struct adapter *adapter) 1556 { 1557 const struct respQ *Q = &adapter->sge->respQ; 1558 const struct respQ_e *e = &Q->entries[Q->cidx]; 1559 1560 return e->GenerationBit == Q->genbit; 1561 } 1562 1563 /* 1564 * A simpler version of process_responses() that handles only pure (i.e., 1565 * non data-carrying) responses. Such respones are too light-weight to justify 1566 * calling a softirq when using NAPI, so we handle them specially in hard 1567 * interrupt context. The function is called with a pointer to a response, 1568 * which the caller must ensure is a valid pure response. Returns 1 if it 1569 * encounters a valid data-carrying response, 0 otherwise. 1570 */ 1571 static int process_pure_responses(struct adapter *adapter) 1572 { 1573 struct sge *sge = adapter->sge; 1574 struct respQ *q = &sge->respQ; 1575 struct respQ_e *e = &q->entries[q->cidx]; 1576 const struct freelQ *fl = &sge->freelQ[e->FreelistQid]; 1577 unsigned int flags = 0; 1578 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; 1579 1580 prefetch(fl->centries[fl->cidx].skb); 1581 if (e->DataValid) 1582 return 1; 1583 1584 do { 1585 flags |= e->Qsleeping; 1586 1587 cmdq_processed[0] += e->Cmdq0CreditReturn; 1588 cmdq_processed[1] += e->Cmdq1CreditReturn; 1589 1590 e++; 1591 if (unlikely(++q->cidx == q->size)) { 1592 q->cidx = 0; 1593 q->genbit ^= 1; 1594 e = q->entries; 1595 } 1596 prefetch(e); 1597 1598 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { 1599 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); 1600 q->credits = 0; 1601 } 1602 sge->stats.pure_rsps++; 1603 } while (e->GenerationBit == q->genbit && !e->DataValid); 1604 1605 flags = update_tx_info(adapter, flags, cmdq_processed[0]); 1606 sge->cmdQ[1].processed += cmdq_processed[1]; 1607 1608 return e->GenerationBit == q->genbit; 1609 } 1610 1611 /* 1612 * Handler for new data events when using NAPI. This does not need any locking 1613 * or protection from interrupts as data interrupts are off at this point and 1614 * other adapter interrupts do not interfere. 1615 */ 1616 int t1_poll(struct napi_struct *napi, int budget) 1617 { 1618 struct adapter *adapter = container_of(napi, struct adapter, napi); 1619 int work_done = process_responses(adapter, budget); 1620 1621 if (likely(work_done < budget)) { 1622 napi_complete(napi); 1623 writel(adapter->sge->respQ.cidx, 1624 adapter->regs + A_SG_SLEEPING); 1625 } 1626 return work_done; 1627 } 1628 1629 irqreturn_t t1_interrupt(int irq, void *data) 1630 { 1631 struct adapter *adapter = data; 1632 struct sge *sge = adapter->sge; 1633 int handled; 1634 1635 if (likely(responses_pending(adapter))) { 1636 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); 1637 1638 if (napi_schedule_prep(&adapter->napi)) { 1639 if (process_pure_responses(adapter)) 1640 __napi_schedule(&adapter->napi); 1641 else { 1642 /* no data, no NAPI needed */ 1643 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); 1644 /* undo schedule_prep */ 1645 napi_enable(&adapter->napi); 1646 } 1647 } 1648 return IRQ_HANDLED; 1649 } 1650 1651 spin_lock(&adapter->async_lock); 1652 handled = t1_slow_intr_handler(adapter); 1653 spin_unlock(&adapter->async_lock); 1654 1655 if (!handled) 1656 sge->stats.unhandled_irqs++; 1657 1658 return IRQ_RETVAL(handled != 0); 1659 } 1660 1661 /* 1662 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. 1663 * 1664 * The code figures out how many entries the sk_buff will require in the 1665 * cmdQ and updates the cmdQ data structure with the state once the enqueue 1666 * has complete. Then, it doesn't access the global structure anymore, but 1667 * uses the corresponding fields on the stack. In conjunction with a spinlock 1668 * around that code, we can make the function reentrant without holding the 1669 * lock when we actually enqueue (which might be expensive, especially on 1670 * architectures with IO MMUs). 1671 * 1672 * This runs with softirqs disabled. 1673 */ 1674 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, 1675 unsigned int qid, struct net_device *dev) 1676 { 1677 struct sge *sge = adapter->sge; 1678 struct cmdQ *q = &sge->cmdQ[qid]; 1679 unsigned int credits, pidx, genbit, count, use_sched_skb = 0; 1680 1681 if (!spin_trylock(&q->lock)) 1682 return NETDEV_TX_LOCKED; 1683 1684 reclaim_completed_tx(sge, q); 1685 1686 pidx = q->pidx; 1687 credits = q->size - q->in_use; 1688 count = 1 + skb_shinfo(skb)->nr_frags; 1689 count += compute_large_page_tx_descs(skb); 1690 1691 /* Ethernet packet */ 1692 if (unlikely(credits < count)) { 1693 if (!netif_queue_stopped(dev)) { 1694 netif_stop_queue(dev); 1695 set_bit(dev->if_port, &sge->stopped_tx_queues); 1696 sge->stats.cmdQ_full[2]++; 1697 pr_err("%s: Tx ring full while queue awake!\n", 1698 adapter->name); 1699 } 1700 spin_unlock(&q->lock); 1701 return NETDEV_TX_BUSY; 1702 } 1703 1704 if (unlikely(credits - count < q->stop_thres)) { 1705 netif_stop_queue(dev); 1706 set_bit(dev->if_port, &sge->stopped_tx_queues); 1707 sge->stats.cmdQ_full[2]++; 1708 } 1709 1710 /* T204 cmdQ0 skbs that are destined for a certain port have to go 1711 * through the scheduler. 1712 */ 1713 if (sge->tx_sched && !qid && skb->dev) { 1714 use_sched: 1715 use_sched_skb = 1; 1716 /* Note that the scheduler might return a different skb than 1717 * the one passed in. 1718 */ 1719 skb = sched_skb(sge, skb, credits); 1720 if (!skb) { 1721 spin_unlock(&q->lock); 1722 return NETDEV_TX_OK; 1723 } 1724 pidx = q->pidx; 1725 count = 1 + skb_shinfo(skb)->nr_frags; 1726 count += compute_large_page_tx_descs(skb); 1727 } 1728 1729 q->in_use += count; 1730 genbit = q->genbit; 1731 pidx = q->pidx; 1732 q->pidx += count; 1733 if (q->pidx >= q->size) { 1734 q->pidx -= q->size; 1735 q->genbit ^= 1; 1736 } 1737 spin_unlock(&q->lock); 1738 1739 write_tx_descs(adapter, skb, pidx, genbit, q); 1740 1741 /* 1742 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring 1743 * the doorbell if the Q is asleep. There is a natural race, where 1744 * the hardware is going to sleep just after we checked, however, 1745 * then the interrupt handler will detect the outstanding TX packet 1746 * and ring the doorbell for us. 1747 */ 1748 if (qid) 1749 doorbell_pio(adapter, F_CMDQ1_ENABLE); 1750 else { 1751 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1752 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { 1753 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); 1754 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); 1755 } 1756 } 1757 1758 if (use_sched_skb) { 1759 if (spin_trylock(&q->lock)) { 1760 credits = q->size - q->in_use; 1761 skb = NULL; 1762 goto use_sched; 1763 } 1764 } 1765 return NETDEV_TX_OK; 1766 } 1767 1768 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) 1769 1770 /* 1771 * eth_hdr_len - return the length of an Ethernet header 1772 * @data: pointer to the start of the Ethernet header 1773 * 1774 * Returns the length of an Ethernet header, including optional VLAN tag. 1775 */ 1776 static inline int eth_hdr_len(const void *data) 1777 { 1778 const struct ethhdr *e = data; 1779 1780 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; 1781 } 1782 1783 /* 1784 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. 1785 */ 1786 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev) 1787 { 1788 struct adapter *adapter = dev->ml_priv; 1789 struct sge *sge = adapter->sge; 1790 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]); 1791 struct cpl_tx_pkt *cpl; 1792 struct sk_buff *orig_skb = skb; 1793 int ret; 1794 1795 if (skb->protocol == htons(ETH_P_CPL5)) 1796 goto send; 1797 1798 /* 1799 * We are using a non-standard hard_header_len. 1800 * Allocate more header room in the rare cases it is not big enough. 1801 */ 1802 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) { 1803 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso)); 1804 ++st->tx_need_hdrroom; 1805 dev_kfree_skb_any(orig_skb); 1806 if (!skb) 1807 return NETDEV_TX_OK; 1808 } 1809 1810 if (skb_shinfo(skb)->gso_size) { 1811 int eth_type; 1812 struct cpl_tx_pkt_lso *hdr; 1813 1814 ++st->tx_tso; 1815 1816 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1817 CPL_ETH_II : CPL_ETH_II_VLAN; 1818 1819 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr)); 1820 hdr->opcode = CPL_TX_PKT_LSO; 1821 hdr->ip_csum_dis = hdr->l4_csum_dis = 0; 1822 hdr->ip_hdr_words = ip_hdr(skb)->ihl; 1823 hdr->tcp_hdr_words = tcp_hdr(skb)->doff; 1824 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type, 1825 skb_shinfo(skb)->gso_size)); 1826 hdr->len = htonl(skb->len - sizeof(*hdr)); 1827 cpl = (struct cpl_tx_pkt *)hdr; 1828 } else { 1829 /* 1830 * Packets shorter than ETH_HLEN can break the MAC, drop them 1831 * early. Also, we may get oversized packets because some 1832 * parts of the kernel don't handle our unusual hard_header_len 1833 * right, drop those too. 1834 */ 1835 if (unlikely(skb->len < ETH_HLEN || 1836 skb->len > dev->mtu + eth_hdr_len(skb->data))) { 1837 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name, 1838 skb->len, eth_hdr_len(skb->data), dev->mtu); 1839 dev_kfree_skb_any(skb); 1840 return NETDEV_TX_OK; 1841 } 1842 1843 if (skb->ip_summed == CHECKSUM_PARTIAL && 1844 ip_hdr(skb)->protocol == IPPROTO_UDP) { 1845 if (unlikely(skb_checksum_help(skb))) { 1846 pr_debug("%s: unable to do udp checksum\n", dev->name); 1847 dev_kfree_skb_any(skb); 1848 return NETDEV_TX_OK; 1849 } 1850 } 1851 1852 /* Hmmm, assuming to catch the gratious arp... and we'll use 1853 * it to flush out stuck espi packets... 1854 */ 1855 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) { 1856 if (skb->protocol == htons(ETH_P_ARP) && 1857 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) { 1858 adapter->sge->espibug_skb[dev->if_port] = skb; 1859 /* We want to re-use this skb later. We 1860 * simply bump the reference count and it 1861 * will not be freed... 1862 */ 1863 skb = skb_get(skb); 1864 } 1865 } 1866 1867 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl)); 1868 cpl->opcode = CPL_TX_PKT; 1869 cpl->ip_csum_dis = 1; /* SW calculates IP csum */ 1870 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1; 1871 /* the length field isn't used so don't bother setting it */ 1872 1873 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL); 1874 } 1875 cpl->iff = dev->if_port; 1876 1877 if (vlan_tx_tag_present(skb)) { 1878 cpl->vlan_valid = 1; 1879 cpl->vlan = htons(vlan_tx_tag_get(skb)); 1880 st->vlan_insert++; 1881 } else 1882 cpl->vlan_valid = 0; 1883 1884 send: 1885 ret = t1_sge_tx(skb, adapter, 0, dev); 1886 1887 /* If transmit busy, and we reallocated skb's due to headroom limit, 1888 * then silently discard to avoid leak. 1889 */ 1890 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) { 1891 dev_kfree_skb_any(skb); 1892 ret = NETDEV_TX_OK; 1893 } 1894 return ret; 1895 } 1896 1897 /* 1898 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled. 1899 */ 1900 static void sge_tx_reclaim_cb(unsigned long data) 1901 { 1902 int i; 1903 struct sge *sge = (struct sge *)data; 1904 1905 for (i = 0; i < SGE_CMDQ_N; ++i) { 1906 struct cmdQ *q = &sge->cmdQ[i]; 1907 1908 if (!spin_trylock(&q->lock)) 1909 continue; 1910 1911 reclaim_completed_tx(sge, q); 1912 if (i == 0 && q->in_use) { /* flush pending credits */ 1913 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL); 1914 } 1915 spin_unlock(&q->lock); 1916 } 1917 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 1918 } 1919 1920 /* 1921 * Propagate changes of the SGE coalescing parameters to the HW. 1922 */ 1923 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) 1924 { 1925 sge->fixed_intrtimer = p->rx_coalesce_usecs * 1926 core_ticks_per_usec(sge->adapter); 1927 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); 1928 return 0; 1929 } 1930 1931 /* 1932 * Allocates both RX and TX resources and configures the SGE. However, 1933 * the hardware is not enabled yet. 1934 */ 1935 int t1_sge_configure(struct sge *sge, struct sge_params *p) 1936 { 1937 if (alloc_rx_resources(sge, p)) 1938 return -ENOMEM; 1939 if (alloc_tx_resources(sge, p)) { 1940 free_rx_resources(sge); 1941 return -ENOMEM; 1942 } 1943 configure_sge(sge, p); 1944 1945 /* 1946 * Now that we have sized the free lists calculate the payload 1947 * capacity of the large buffers. Other parts of the driver use 1948 * this to set the max offload coalescing size so that RX packets 1949 * do not overflow our large buffers. 1950 */ 1951 p->large_buf_capacity = jumbo_payload_capacity(sge); 1952 return 0; 1953 } 1954 1955 /* 1956 * Disables the DMA engine. 1957 */ 1958 void t1_sge_stop(struct sge *sge) 1959 { 1960 int i; 1961 writel(0, sge->adapter->regs + A_SG_CONTROL); 1962 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ 1963 1964 if (is_T2(sge->adapter)) 1965 del_timer_sync(&sge->espibug_timer); 1966 1967 del_timer_sync(&sge->tx_reclaim_timer); 1968 if (sge->tx_sched) 1969 tx_sched_stop(sge); 1970 1971 for (i = 0; i < MAX_NPORTS; i++) 1972 kfree_skb(sge->espibug_skb[i]); 1973 } 1974 1975 /* 1976 * Enables the DMA engine. 1977 */ 1978 void t1_sge_start(struct sge *sge) 1979 { 1980 refill_free_list(sge, &sge->freelQ[0]); 1981 refill_free_list(sge, &sge->freelQ[1]); 1982 1983 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); 1984 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); 1985 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ 1986 1987 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 1988 1989 if (is_T2(sge->adapter)) 1990 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 1991 } 1992 1993 /* 1994 * Callback for the T2 ESPI 'stuck packet feature' workaorund 1995 */ 1996 static void espibug_workaround_t204(unsigned long data) 1997 { 1998 struct adapter *adapter = (struct adapter *)data; 1999 struct sge *sge = adapter->sge; 2000 unsigned int nports = adapter->params.nports; 2001 u32 seop[MAX_NPORTS]; 2002 2003 if (adapter->open_device_map & PORT_MASK) { 2004 int i; 2005 2006 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0) 2007 return; 2008 2009 for (i = 0; i < nports; i++) { 2010 struct sk_buff *skb = sge->espibug_skb[i]; 2011 2012 if (!netif_running(adapter->port[i].dev) || 2013 netif_queue_stopped(adapter->port[i].dev) || 2014 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb) 2015 continue; 2016 2017 if (!skb->cb[0]) { 2018 skb_copy_to_linear_data_offset(skb, 2019 sizeof(struct cpl_tx_pkt), 2020 ch_mac_addr, 2021 ETH_ALEN); 2022 skb_copy_to_linear_data_offset(skb, 2023 skb->len - 10, 2024 ch_mac_addr, 2025 ETH_ALEN); 2026 skb->cb[0] = 0xff; 2027 } 2028 2029 /* bump the reference count to avoid freeing of 2030 * the skb once the DMA has completed. 2031 */ 2032 skb = skb_get(skb); 2033 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev); 2034 } 2035 } 2036 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 2037 } 2038 2039 static void espibug_workaround(unsigned long data) 2040 { 2041 struct adapter *adapter = (struct adapter *)data; 2042 struct sge *sge = adapter->sge; 2043 2044 if (netif_running(adapter->port[0].dev)) { 2045 struct sk_buff *skb = sge->espibug_skb[0]; 2046 u32 seop = t1_espi_get_mon(adapter, 0x930, 0); 2047 2048 if ((seop & 0xfff0fff) == 0xfff && skb) { 2049 if (!skb->cb[0]) { 2050 skb_copy_to_linear_data_offset(skb, 2051 sizeof(struct cpl_tx_pkt), 2052 ch_mac_addr, 2053 ETH_ALEN); 2054 skb_copy_to_linear_data_offset(skb, 2055 skb->len - 10, 2056 ch_mac_addr, 2057 ETH_ALEN); 2058 skb->cb[0] = 0xff; 2059 } 2060 2061 /* bump the reference count to avoid freeing of the 2062 * skb once the DMA has completed. 2063 */ 2064 skb = skb_get(skb); 2065 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); 2066 } 2067 } 2068 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); 2069 } 2070 2071 /* 2072 * Creates a t1_sge structure and returns suggested resource parameters. 2073 */ 2074 struct sge * __devinit t1_sge_create(struct adapter *adapter, 2075 struct sge_params *p) 2076 { 2077 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL); 2078 int i; 2079 2080 if (!sge) 2081 return NULL; 2082 2083 sge->adapter = adapter; 2084 sge->netdev = adapter->port[0].dev; 2085 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; 2086 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; 2087 2088 for_each_port(adapter, i) { 2089 sge->port_stats[i] = alloc_percpu(struct sge_port_stats); 2090 if (!sge->port_stats[i]) 2091 goto nomem_port; 2092 } 2093 2094 init_timer(&sge->tx_reclaim_timer); 2095 sge->tx_reclaim_timer.data = (unsigned long)sge; 2096 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb; 2097 2098 if (is_T2(sge->adapter)) { 2099 init_timer(&sge->espibug_timer); 2100 2101 if (adapter->params.nports > 1) { 2102 tx_sched_init(sge); 2103 sge->espibug_timer.function = espibug_workaround_t204; 2104 } else 2105 sge->espibug_timer.function = espibug_workaround; 2106 sge->espibug_timer.data = (unsigned long)sge->adapter; 2107 2108 sge->espibug_timeout = 1; 2109 /* for T204, every 10ms */ 2110 if (adapter->params.nports > 1) 2111 sge->espibug_timeout = HZ/100; 2112 } 2113 2114 2115 p->cmdQ_size[0] = SGE_CMDQ0_E_N; 2116 p->cmdQ_size[1] = SGE_CMDQ1_E_N; 2117 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; 2118 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; 2119 if (sge->tx_sched) { 2120 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) 2121 p->rx_coalesce_usecs = 15; 2122 else 2123 p->rx_coalesce_usecs = 50; 2124 } else 2125 p->rx_coalesce_usecs = 50; 2126 2127 p->coalesce_enable = 0; 2128 p->sample_interval_usecs = 0; 2129 2130 return sge; 2131 nomem_port: 2132 while (i >= 0) { 2133 free_percpu(sge->port_stats[i]); 2134 --i; 2135 } 2136 kfree(sge); 2137 return NULL; 2138 2139 } 2140