1 /***************************************************************************** 2 * * 3 * File: pm3393.c * 4 * $Revision: 1.16 $ * 5 * $Date: 2005/05/14 00:59:32 $ * 6 * Description: * 7 * PMC/SIERRA (pm3393) MAC-PHY functionality. * 8 * part of the Chelsio 10Gb Ethernet Driver. * 9 * * 10 * This program is free software; you can redistribute it and/or modify * 11 * it under the terms of the GNU General Public License, version 2, as * 12 * published by the Free Software Foundation. * 13 * * 14 * You should have received a copy of the GNU General Public License along * 15 * with this program; if not, see <http://www.gnu.org/licenses/>. * 16 * * 17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * 18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * 19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * 20 * * 21 * http://www.chelsio.com * 22 * * 23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 24 * All rights reserved. * 25 * * 26 * Maintainers: maintainers@chelsio.com * 27 * * 28 * Authors: Dimitrios Michailidis <dm@chelsio.com> * 29 * Tina Yang <tainay@chelsio.com> * 30 * Felix Marti <felix@chelsio.com> * 31 * Scott Bardone <sbardone@chelsio.com> * 32 * Kurt Ottaway <kottaway@chelsio.com> * 33 * Frank DiMambro <frank@chelsio.com> * 34 * * 35 * History: * 36 * * 37 ****************************************************************************/ 38 39 #include "common.h" 40 #include "regs.h" 41 #include "gmac.h" 42 #include "elmer0.h" 43 #include "suni1x10gexp_regs.h" 44 45 #include <linux/crc32.h> 46 #include <linux/slab.h> 47 48 #define OFFSET(REG_ADDR) ((REG_ADDR) << 2) 49 50 #define IPG 12 51 #define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \ 52 SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \ 53 SUNI1x10GEXP_BITMSK_TXXG_PADEN) 54 #define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \ 55 SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP) 56 57 /* Update statistics every 15 minutes */ 58 #define STATS_TICK_SECS (15 * 60) 59 60 enum { /* RMON registers */ 61 RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW, 62 RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW, 63 RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW, 64 RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW, 65 RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW, 66 RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW, 67 RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW, 68 RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW, 69 RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW, 70 RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW, 71 RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW, 72 RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW, 73 RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW, 74 RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW, 75 RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW, 76 77 TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW, 78 TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW, 79 TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW, 80 TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW, 81 TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW, 82 TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW, 83 TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW, 84 TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW, 85 TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW 86 }; 87 88 struct _cmac_instance { 89 u8 enabled; 90 u8 fc; 91 u8 mac_addr[6]; 92 }; 93 94 static int pmread(struct cmac *cmac, u32 reg, u32 * data32) 95 { 96 t1_tpi_read(cmac->adapter, OFFSET(reg), data32); 97 return 0; 98 } 99 100 static int pmwrite(struct cmac *cmac, u32 reg, u32 data32) 101 { 102 t1_tpi_write(cmac->adapter, OFFSET(reg), data32); 103 return 0; 104 } 105 106 /* Port reset. */ 107 static int pm3393_reset(struct cmac *cmac) 108 { 109 return 0; 110 } 111 112 /* 113 * Enable interrupts for the PM3393 114 * 115 * 1. Enable PM3393 BLOCK interrupts. 116 * 2. Enable PM3393 Master Interrupt bit(INTE) 117 * 3. Enable ELMER's PM3393 bit. 118 * 4. Enable Terminator external interrupt. 119 */ 120 static int pm3393_interrupt_enable(struct cmac *cmac) 121 { 122 u32 pl_intr; 123 124 /* PM3393 - Enabling all hardware block interrupts. 125 */ 126 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff); 127 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff); 128 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff); 129 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff); 130 131 /* Don't interrupt on statistics overflow, we are polling */ 132 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0); 133 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0); 134 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0); 135 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0); 136 137 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff); 138 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff); 139 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff); 140 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff); 141 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff); 142 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff); 143 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff); 144 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff); 145 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff); 146 147 /* PM3393 - Global interrupt enable 148 */ 149 /* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */ 150 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 151 0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ ); 152 153 /* TERMINATOR - PL_INTERUPTS_EXT */ 154 pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE); 155 pl_intr |= F_PL_INTR_EXT; 156 writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE); 157 return 0; 158 } 159 160 static int pm3393_interrupt_disable(struct cmac *cmac) 161 { 162 u32 elmer; 163 164 /* PM3393 - Enabling HW interrupt blocks. */ 165 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0); 166 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0); 167 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0); 168 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0); 169 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0); 170 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0); 171 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0); 172 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0); 173 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0); 174 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0); 175 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0); 176 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0); 177 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0); 178 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0); 179 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0); 180 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0); 181 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0); 182 183 /* PM3393 - Global interrupt enable */ 184 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0); 185 186 /* ELMER - External chip interrupts. */ 187 t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer); 188 elmer &= ~ELMER0_GP_BIT1; 189 t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer); 190 191 /* TERMINATOR - PL_INTERUPTS_EXT */ 192 /* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP 193 * COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level. 194 */ 195 196 return 0; 197 } 198 199 static int pm3393_interrupt_clear(struct cmac *cmac) 200 { 201 u32 elmer; 202 u32 pl_intr; 203 u32 val32; 204 205 /* PM3393 - Clearing HW interrupt blocks. Note, this assumes 206 * bit WCIMODE=0 for a clear-on-read. 207 */ 208 pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32); 209 pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32); 210 pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32); 211 pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32); 212 pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32); 213 pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32); 214 pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32); 215 pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32); 216 pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32); 217 pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32); 218 pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32); 219 pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION, 220 &val32); 221 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32); 222 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32); 223 224 /* PM3393 - Global interrupt status 225 */ 226 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32); 227 228 /* ELMER - External chip interrupts. 229 */ 230 t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer); 231 elmer |= ELMER0_GP_BIT1; 232 t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer); 233 234 /* TERMINATOR - PL_INTERUPTS_EXT 235 */ 236 pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE); 237 pl_intr |= F_PL_INTR_EXT; 238 writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE); 239 240 return 0; 241 } 242 243 /* Interrupt handler */ 244 static int pm3393_interrupt_handler(struct cmac *cmac) 245 { 246 u32 master_intr_status; 247 248 /* Read the master interrupt status register. */ 249 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, 250 &master_intr_status); 251 if (netif_msg_intr(cmac->adapter)) 252 dev_dbg(&cmac->adapter->pdev->dev, "PM3393 intr cause 0x%x\n", 253 master_intr_status); 254 255 /* TBD XXX Lets just clear everything for now */ 256 pm3393_interrupt_clear(cmac); 257 258 return 0; 259 } 260 261 static int pm3393_enable(struct cmac *cmac, int which) 262 { 263 if (which & MAC_DIRECTION_RX) 264 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, 265 (RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN)); 266 267 if (which & MAC_DIRECTION_TX) { 268 u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0; 269 270 if (cmac->instance->fc & PAUSE_RX) 271 val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX; 272 if (cmac->instance->fc & PAUSE_TX) 273 val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX; 274 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val); 275 } 276 277 cmac->instance->enabled |= which; 278 return 0; 279 } 280 281 static int pm3393_enable_port(struct cmac *cmac, int which) 282 { 283 /* Clear port statistics */ 284 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL, 285 SUNI1x10GEXP_BITMSK_MSTAT_CLEAR); 286 udelay(2); 287 memset(&cmac->stats, 0, sizeof(struct cmac_statistics)); 288 289 pm3393_enable(cmac, which); 290 291 /* 292 * XXX This should be done by the PHY and preferably not at all. 293 * The PHY doesn't give us link status indication on its own so have 294 * the link management code query it instead. 295 */ 296 t1_link_changed(cmac->adapter, 0); 297 return 0; 298 } 299 300 static int pm3393_disable(struct cmac *cmac, int which) 301 { 302 if (which & MAC_DIRECTION_RX) 303 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL); 304 if (which & MAC_DIRECTION_TX) 305 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL); 306 307 /* 308 * The disable is graceful. Give the PM3393 time. Can't wait very 309 * long here, we may be holding locks. 310 */ 311 udelay(20); 312 313 cmac->instance->enabled &= ~which; 314 return 0; 315 } 316 317 static int pm3393_loopback_enable(struct cmac *cmac) 318 { 319 return 0; 320 } 321 322 static int pm3393_loopback_disable(struct cmac *cmac) 323 { 324 return 0; 325 } 326 327 static int pm3393_set_mtu(struct cmac *cmac, int mtu) 328 { 329 int enabled = cmac->instance->enabled; 330 331 mtu += ETH_HLEN + ETH_FCS_LEN; 332 333 /* Disable Rx/Tx MAC before configuring it. */ 334 if (enabled) 335 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 336 337 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu); 338 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu); 339 340 if (enabled) 341 pm3393_enable(cmac, enabled); 342 return 0; 343 } 344 345 static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm) 346 { 347 int enabled = cmac->instance->enabled & MAC_DIRECTION_RX; 348 u32 rx_mode; 349 350 /* Disable MAC RX before reconfiguring it */ 351 if (enabled) 352 pm3393_disable(cmac, MAC_DIRECTION_RX); 353 354 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode); 355 rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE | 356 SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN); 357 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, 358 (u16)rx_mode); 359 360 if (t1_rx_mode_promisc(rm)) { 361 /* Promiscuous mode. */ 362 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE; 363 } 364 if (t1_rx_mode_allmulti(rm)) { 365 /* Accept all multicast. */ 366 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff); 367 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff); 368 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff); 369 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff); 370 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN; 371 } else if (t1_rx_mode_mc_cnt(rm)) { 372 /* Accept one or more multicast(s). */ 373 struct netdev_hw_addr *ha; 374 int bit; 375 u16 mc_filter[4] = { 0, }; 376 377 netdev_for_each_mc_addr(ha, t1_get_netdev(rm)) { 378 /* bit[23:28] */ 379 bit = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x3f; 380 mc_filter[bit >> 4] |= 1 << (bit & 0xf); 381 } 382 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]); 383 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]); 384 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]); 385 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]); 386 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN; 387 } 388 389 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode); 390 391 if (enabled) 392 pm3393_enable(cmac, MAC_DIRECTION_RX); 393 394 return 0; 395 } 396 397 static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed, 398 int *duplex, int *fc) 399 { 400 if (speed) 401 *speed = SPEED_10000; 402 if (duplex) 403 *duplex = DUPLEX_FULL; 404 if (fc) 405 *fc = cmac->instance->fc; 406 return 0; 407 } 408 409 static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex, 410 int fc) 411 { 412 if (speed >= 0 && speed != SPEED_10000) 413 return -1; 414 if (duplex >= 0 && duplex != DUPLEX_FULL) 415 return -1; 416 if (fc & ~(PAUSE_TX | PAUSE_RX)) 417 return -1; 418 419 if (fc != cmac->instance->fc) { 420 cmac->instance->fc = (u8) fc; 421 if (cmac->instance->enabled & MAC_DIRECTION_TX) 422 pm3393_enable(cmac, MAC_DIRECTION_TX); 423 } 424 return 0; 425 } 426 427 #define RMON_UPDATE(mac, name, stat_name) \ 428 { \ 429 t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \ 430 t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \ 431 t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \ 432 (mac)->stats.stat_name = (u64)(val0 & 0xffff) | \ 433 ((u64)(val1 & 0xffff) << 16) | \ 434 ((u64)(val2 & 0xff) << 32) | \ 435 ((mac)->stats.stat_name & \ 436 0xffffff0000000000ULL); \ 437 if (ro & \ 438 (1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \ 439 (mac)->stats.stat_name += 1ULL << 40; \ 440 } 441 442 static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac, 443 int flag) 444 { 445 u64 ro; 446 u32 val0, val1, val2, val3; 447 448 /* Snap the counters */ 449 pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL, 450 SUNI1x10GEXP_BITMSK_MSTAT_SNAP); 451 452 /* Counter rollover, clear on read */ 453 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0); 454 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1); 455 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2); 456 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3); 457 ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) | 458 (((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48); 459 460 /* Rx stats */ 461 RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK); 462 RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK); 463 RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK); 464 RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK); 465 RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames); 466 RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors); 467 RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors, 468 RxInternalMACRcvError); 469 RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors); 470 RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors); 471 RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors); 472 RMON_UPDATE(mac, RxJabbers, RxJabberErrors); 473 RMON_UPDATE(mac, RxFragments, RxRuntErrors); 474 RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors); 475 RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK); 476 RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK); 477 478 /* Tx stats */ 479 RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK); 480 RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError, 481 TxInternalMACXmitError); 482 RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors); 483 RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK); 484 RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK); 485 RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK); 486 RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames); 487 RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK); 488 RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK); 489 490 return &mac->stats; 491 } 492 493 static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6]) 494 { 495 memcpy(mac_addr, cmac->instance->mac_addr, ETH_ALEN); 496 return 0; 497 } 498 499 static int pm3393_macaddress_set(struct cmac *cmac, const u8 ma[6]) 500 { 501 u32 val, lo, mid, hi, enabled = cmac->instance->enabled; 502 503 /* 504 * MAC addr: 00:07:43:00:13:09 505 * 506 * ma[5] = 0x09 507 * ma[4] = 0x13 508 * ma[3] = 0x00 509 * ma[2] = 0x43 510 * ma[1] = 0x07 511 * ma[0] = 0x00 512 * 513 * The PM3393 requires byte swapping and reverse order entry 514 * when programming MAC addresses: 515 * 516 * low_bits[15:0] = ma[1]:ma[0] 517 * mid_bits[31:16] = ma[3]:ma[2] 518 * high_bits[47:32] = ma[5]:ma[4] 519 */ 520 521 /* Store local copy */ 522 memcpy(cmac->instance->mac_addr, ma, ETH_ALEN); 523 524 lo = ((u32) ma[1] << 8) | (u32) ma[0]; 525 mid = ((u32) ma[3] << 8) | (u32) ma[2]; 526 hi = ((u32) ma[5] << 8) | (u32) ma[4]; 527 528 /* Disable Rx/Tx MAC before configuring it. */ 529 if (enabled) 530 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 531 532 /* Set RXXG Station Address */ 533 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo); 534 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid); 535 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi); 536 537 /* Set TXXG Station Address */ 538 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo); 539 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid); 540 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi); 541 542 /* Setup Exact Match Filter 1 with our MAC address 543 * 544 * Must disable exact match filter before configuring it. 545 */ 546 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val); 547 val &= 0xff0f; 548 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val); 549 550 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo); 551 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid); 552 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi); 553 554 val |= 0x0090; 555 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val); 556 557 if (enabled) 558 pm3393_enable(cmac, enabled); 559 return 0; 560 } 561 562 static void pm3393_destroy(struct cmac *cmac) 563 { 564 kfree(cmac); 565 } 566 567 static const struct cmac_ops pm3393_ops = { 568 .destroy = pm3393_destroy, 569 .reset = pm3393_reset, 570 .interrupt_enable = pm3393_interrupt_enable, 571 .interrupt_disable = pm3393_interrupt_disable, 572 .interrupt_clear = pm3393_interrupt_clear, 573 .interrupt_handler = pm3393_interrupt_handler, 574 .enable = pm3393_enable_port, 575 .disable = pm3393_disable, 576 .loopback_enable = pm3393_loopback_enable, 577 .loopback_disable = pm3393_loopback_disable, 578 .set_mtu = pm3393_set_mtu, 579 .set_rx_mode = pm3393_set_rx_mode, 580 .get_speed_duplex_fc = pm3393_get_speed_duplex_fc, 581 .set_speed_duplex_fc = pm3393_set_speed_duplex_fc, 582 .statistics_update = pm3393_update_statistics, 583 .macaddress_get = pm3393_macaddress_get, 584 .macaddress_set = pm3393_macaddress_set 585 }; 586 587 static struct cmac *pm3393_mac_create(adapter_t *adapter, int index) 588 { 589 struct cmac *cmac; 590 591 cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL); 592 if (!cmac) 593 return NULL; 594 595 cmac->ops = &pm3393_ops; 596 cmac->instance = (cmac_instance *) (cmac + 1); 597 cmac->adapter = adapter; 598 cmac->instance->fc = PAUSE_TX | PAUSE_RX; 599 600 t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000); 601 t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000); 602 t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800); 603 t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */ 604 t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800); 605 t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800); 606 t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800); 607 t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800); 608 t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800); 609 t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800); 610 t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800); 611 t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800); 612 t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800); 613 t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800); 614 t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800); 615 t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800); 616 t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800); 617 t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800); 618 t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800); 619 t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800); 620 t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00); 621 t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */ 622 623 t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */ 624 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */ 625 t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */ 626 t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */ 627 t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */ 628 t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */ 629 t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */ 630 t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */ 631 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */ 632 t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */ 633 t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */ 634 t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */ 635 t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */ 636 637 t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */ 638 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */ 639 t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */ 640 t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */ 641 t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */ 642 t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */ 643 t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */ 644 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */ 645 t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */ 646 t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */ 647 t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */ 648 649 t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */ 650 t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */ 651 t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */ 652 t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */ 653 t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */ 654 t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */ 655 656 t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */ 657 t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */ 658 659 t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */ 660 t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */ 661 662 t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */ 663 /* For T1 use timer based Mac flow control. */ 664 t1_tpi_write(adapter, OFFSET(0x304d), 0x8000); 665 t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */ 666 t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */ 667 t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */ 668 669 /* Setup Exact Match Filter 0 to allow broadcast packets. 670 */ 671 t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */ 672 t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */ 673 t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */ 674 t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */ 675 t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */ 676 677 t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */ 678 t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */ 679 t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */ 680 681 return cmac; 682 } 683 684 static int pm3393_mac_reset(adapter_t * adapter) 685 { 686 u32 val; 687 u32 x; 688 u32 is_pl4_reset_finished; 689 u32 is_pl4_outof_lock; 690 u32 is_xaui_mabc_pll_locked; 691 u32 successful_reset; 692 int i; 693 694 /* The following steps are required to properly reset 695 * the PM3393. This information is provided in the 696 * PM3393 datasheet (Issue 2: November 2002) 697 * section 13.1 -- Device Reset. 698 * 699 * The PM3393 has three types of components that are 700 * individually reset: 701 * 702 * DRESETB - Digital circuitry 703 * PL4_ARESETB - PL4 analog circuitry 704 * XAUI_ARESETB - XAUI bus analog circuitry 705 * 706 * Steps to reset PM3393 using RSTB pin: 707 * 708 * 1. Assert RSTB pin low ( write 0 ) 709 * 2. Wait at least 1ms to initiate a complete initialization of device. 710 * 3. Wait until all external clocks and REFSEL are stable. 711 * 4. Wait minimum of 1ms. (after external clocks and REFEL are stable) 712 * 5. De-assert RSTB ( write 1 ) 713 * 6. Wait until internal timers to expires after ~14ms. 714 * - Allows analog clock synthesizer(PL4CSU) to stabilize to 715 * selected reference frequency before allowing the digital 716 * portion of the device to operate. 717 * 7. Wait at least 200us for XAUI interface to stabilize. 718 * 8. Verify the PM3393 came out of reset successfully. 719 * Set successful reset flag if everything worked else try again 720 * a few more times. 721 */ 722 723 successful_reset = 0; 724 for (i = 0; i < 3 && !successful_reset; i++) { 725 /* 1 */ 726 t1_tpi_read(adapter, A_ELMER0_GPO, &val); 727 val &= ~1; 728 t1_tpi_write(adapter, A_ELMER0_GPO, val); 729 730 /* 2 */ 731 msleep(1); 732 733 /* 3 */ 734 msleep(1); 735 736 /* 4 */ 737 msleep(2 /*1 extra ms for safety */ ); 738 739 /* 5 */ 740 val |= 1; 741 t1_tpi_write(adapter, A_ELMER0_GPO, val); 742 743 /* 6 */ 744 msleep(15 /*1 extra ms for safety */ ); 745 746 /* 7 */ 747 msleep(1); 748 749 /* 8 */ 750 751 /* Has PL4 analog block come out of reset correctly? */ 752 t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val); 753 is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED); 754 755 /* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence 756 * figure out why? */ 757 758 /* Have all PL4 block clocks locked? */ 759 x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL 760 /*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ | 761 SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL | 762 SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL | 763 SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL); 764 is_pl4_outof_lock = (val & x); 765 766 /* ??? If this fails, might be able to software reset the XAUI part 767 * and try to recover... thus saving us from doing another HW reset */ 768 /* Has the XAUI MABC PLL circuitry stablized? */ 769 is_xaui_mabc_pll_locked = 770 (val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED); 771 772 successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock 773 && is_xaui_mabc_pll_locked); 774 775 if (netif_msg_hw(adapter)) 776 dev_dbg(&adapter->pdev->dev, 777 "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, " 778 "is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n", 779 i, is_pl4_reset_finished, val, 780 is_pl4_outof_lock, is_xaui_mabc_pll_locked); 781 } 782 return successful_reset ? 0 : 1; 783 } 784 785 const struct gmac t1_pm3393_ops = { 786 .stats_update_period = STATS_TICK_SECS, 787 .create = pm3393_mac_create, 788 .reset = pm3393_mac_reset, 789 }; 790