1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <linux/iommu.h>
14 #include <net/ip.h>
15 #include <net/tso.h>
16 
17 #include "nic_reg.h"
18 #include "nic.h"
19 #include "q_struct.h"
20 #include "nicvf_queues.h"
21 
22 #define NICVF_PAGE_ORDER ((PAGE_SIZE <= 4096) ?  PAGE_ALLOC_COSTLY_ORDER : 0)
23 
24 static inline u64 nicvf_iova_to_phys(struct nicvf *nic, dma_addr_t dma_addr)
25 {
26 	/* Translation is installed only when IOMMU is present */
27 	if (nic->iommu_domain)
28 		return iommu_iova_to_phys(nic->iommu_domain, dma_addr);
29 	return dma_addr;
30 }
31 
32 static void nicvf_get_page(struct nicvf *nic)
33 {
34 	if (!nic->rb_pageref || !nic->rb_page)
35 		return;
36 
37 	page_ref_add(nic->rb_page, nic->rb_pageref);
38 	nic->rb_pageref = 0;
39 }
40 
41 /* Poll a register for a specific value */
42 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
43 			  u64 reg, int bit_pos, int bits, int val)
44 {
45 	u64 bit_mask;
46 	u64 reg_val;
47 	int timeout = 10;
48 
49 	bit_mask = (1ULL << bits) - 1;
50 	bit_mask = (bit_mask << bit_pos);
51 
52 	while (timeout) {
53 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
54 		if (((reg_val & bit_mask) >> bit_pos) == val)
55 			return 0;
56 		usleep_range(1000, 2000);
57 		timeout--;
58 	}
59 	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
60 	return 1;
61 }
62 
63 /* Allocate memory for a queue's descriptors */
64 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
65 				  int q_len, int desc_size, int align_bytes)
66 {
67 	dmem->q_len = q_len;
68 	dmem->size = (desc_size * q_len) + align_bytes;
69 	/* Save address, need it while freeing */
70 	dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
71 						&dmem->dma, GFP_KERNEL);
72 	if (!dmem->unalign_base)
73 		return -ENOMEM;
74 
75 	/* Align memory address for 'align_bytes' */
76 	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
77 	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
78 	return 0;
79 }
80 
81 /* Free queue's descriptor memory */
82 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
83 {
84 	if (!dmem)
85 		return;
86 
87 	dma_free_coherent(&nic->pdev->dev, dmem->size,
88 			  dmem->unalign_base, dmem->dma);
89 	dmem->unalign_base = NULL;
90 	dmem->base = NULL;
91 }
92 
93 /* Allocate buffer for packet reception
94  * HW returns memory address where packet is DMA'ed but not a pointer
95  * into RBDR ring, so save buffer address at the start of fragment and
96  * align the start address to a cache aligned address
97  */
98 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
99 					 u32 buf_len, u64 **rbuf)
100 {
101 	int order = NICVF_PAGE_ORDER;
102 
103 	/* Check if request can be accomodated in previous allocated page */
104 	if (nic->rb_page &&
105 	    ((nic->rb_page_offset + buf_len) < (PAGE_SIZE << order))) {
106 		nic->rb_pageref++;
107 		goto ret;
108 	}
109 
110 	nicvf_get_page(nic);
111 
112 	/* Allocate a new page */
113 	nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
114 				   order);
115 	if (!nic->rb_page) {
116 		this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures);
117 		return -ENOMEM;
118 	}
119 	nic->rb_page_offset = 0;
120 ret:
121 	/* HW will ensure data coherency, CPU sync not required */
122 	*rbuf = (u64 *)((u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page,
123 						nic->rb_page_offset, buf_len,
124 						DMA_FROM_DEVICE,
125 						DMA_ATTR_SKIP_CPU_SYNC));
126 	if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) {
127 		if (!nic->rb_page_offset)
128 			__free_pages(nic->rb_page, order);
129 		nic->rb_page = NULL;
130 		return -ENOMEM;
131 	}
132 	nic->rb_page_offset += buf_len;
133 
134 	return 0;
135 }
136 
137 /* Build skb around receive buffer */
138 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
139 					   u64 rb_ptr, int len)
140 {
141 	void *data;
142 	struct sk_buff *skb;
143 
144 	data = phys_to_virt(rb_ptr);
145 
146 	/* Now build an skb to give to stack */
147 	skb = build_skb(data, RCV_FRAG_LEN);
148 	if (!skb) {
149 		put_page(virt_to_page(data));
150 		return NULL;
151 	}
152 
153 	prefetch(skb->data);
154 	return skb;
155 }
156 
157 /* Allocate RBDR ring and populate receive buffers */
158 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
159 			    int ring_len, int buf_size)
160 {
161 	int idx;
162 	u64 *rbuf;
163 	struct rbdr_entry_t *desc;
164 	int err;
165 
166 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
167 				     sizeof(struct rbdr_entry_t),
168 				     NICVF_RCV_BUF_ALIGN_BYTES);
169 	if (err)
170 		return err;
171 
172 	rbdr->desc = rbdr->dmem.base;
173 	/* Buffer size has to be in multiples of 128 bytes */
174 	rbdr->dma_size = buf_size;
175 	rbdr->enable = true;
176 	rbdr->thresh = RBDR_THRESH;
177 	rbdr->head = 0;
178 	rbdr->tail = 0;
179 
180 	nic->rb_page = NULL;
181 	for (idx = 0; idx < ring_len; idx++) {
182 		err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
183 					     &rbuf);
184 		if (err) {
185 			/* To free already allocated and mapped ones */
186 			rbdr->tail = idx - 1;
187 			return err;
188 		}
189 
190 		desc = GET_RBDR_DESC(rbdr, idx);
191 		desc->buf_addr = (u64)rbuf >> NICVF_RCV_BUF_ALIGN;
192 	}
193 
194 	nicvf_get_page(nic);
195 
196 	return 0;
197 }
198 
199 /* Free RBDR ring and its receive buffers */
200 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
201 {
202 	int head, tail;
203 	u64 buf_addr, phys_addr;
204 	struct rbdr_entry_t *desc;
205 
206 	if (!rbdr)
207 		return;
208 
209 	rbdr->enable = false;
210 	if (!rbdr->dmem.base)
211 		return;
212 
213 	head = rbdr->head;
214 	tail = rbdr->tail;
215 
216 	/* Release page references */
217 	while (head != tail) {
218 		desc = GET_RBDR_DESC(rbdr, head);
219 		buf_addr = ((u64)desc->buf_addr) << NICVF_RCV_BUF_ALIGN;
220 		phys_addr = nicvf_iova_to_phys(nic, buf_addr);
221 		dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
222 				     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
223 		if (phys_addr)
224 			put_page(virt_to_page(phys_to_virt(phys_addr)));
225 		head++;
226 		head &= (rbdr->dmem.q_len - 1);
227 	}
228 	/* Release buffer of tail desc */
229 	desc = GET_RBDR_DESC(rbdr, tail);
230 	buf_addr = ((u64)desc->buf_addr) << NICVF_RCV_BUF_ALIGN;
231 	phys_addr = nicvf_iova_to_phys(nic, buf_addr);
232 	dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN,
233 			     DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
234 	if (phys_addr)
235 		put_page(virt_to_page(phys_to_virt(phys_addr)));
236 
237 	/* Free RBDR ring */
238 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
239 }
240 
241 /* Refill receive buffer descriptors with new buffers.
242  */
243 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
244 {
245 	struct queue_set *qs = nic->qs;
246 	int rbdr_idx = qs->rbdr_cnt;
247 	int tail, qcount;
248 	int refill_rb_cnt;
249 	struct rbdr *rbdr;
250 	struct rbdr_entry_t *desc;
251 	u64 *rbuf;
252 	int new_rb = 0;
253 
254 refill:
255 	if (!rbdr_idx)
256 		return;
257 	rbdr_idx--;
258 	rbdr = &qs->rbdr[rbdr_idx];
259 	/* Check if it's enabled */
260 	if (!rbdr->enable)
261 		goto next_rbdr;
262 
263 	/* Get no of desc's to be refilled */
264 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
265 	qcount &= 0x7FFFF;
266 	/* Doorbell can be ringed with a max of ring size minus 1 */
267 	if (qcount >= (qs->rbdr_len - 1))
268 		goto next_rbdr;
269 	else
270 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
271 
272 	/* Start filling descs from tail */
273 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
274 	while (refill_rb_cnt) {
275 		tail++;
276 		tail &= (rbdr->dmem.q_len - 1);
277 
278 		if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
279 			break;
280 
281 		desc = GET_RBDR_DESC(rbdr, tail);
282 		desc->buf_addr = (u64)rbuf >> NICVF_RCV_BUF_ALIGN;
283 		refill_rb_cnt--;
284 		new_rb++;
285 	}
286 
287 	nicvf_get_page(nic);
288 
289 	/* make sure all memory stores are done before ringing doorbell */
290 	smp_wmb();
291 
292 	/* Check if buffer allocation failed */
293 	if (refill_rb_cnt)
294 		nic->rb_alloc_fail = true;
295 	else
296 		nic->rb_alloc_fail = false;
297 
298 	/* Notify HW */
299 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
300 			      rbdr_idx, new_rb);
301 next_rbdr:
302 	/* Re-enable RBDR interrupts only if buffer allocation is success */
303 	if (!nic->rb_alloc_fail && rbdr->enable &&
304 	    netif_running(nic->pnicvf->netdev))
305 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
306 
307 	if (rbdr_idx)
308 		goto refill;
309 }
310 
311 /* Alloc rcv buffers in non-atomic mode for better success */
312 void nicvf_rbdr_work(struct work_struct *work)
313 {
314 	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
315 
316 	nicvf_refill_rbdr(nic, GFP_KERNEL);
317 	if (nic->rb_alloc_fail)
318 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
319 	else
320 		nic->rb_work_scheduled = false;
321 }
322 
323 /* In Softirq context, alloc rcv buffers in atomic mode */
324 void nicvf_rbdr_task(unsigned long data)
325 {
326 	struct nicvf *nic = (struct nicvf *)data;
327 
328 	nicvf_refill_rbdr(nic, GFP_ATOMIC);
329 	if (nic->rb_alloc_fail) {
330 		nic->rb_work_scheduled = true;
331 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
332 	}
333 }
334 
335 /* Initialize completion queue */
336 static int nicvf_init_cmp_queue(struct nicvf *nic,
337 				struct cmp_queue *cq, int q_len)
338 {
339 	int err;
340 
341 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
342 				     NICVF_CQ_BASE_ALIGN_BYTES);
343 	if (err)
344 		return err;
345 
346 	cq->desc = cq->dmem.base;
347 	cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH;
348 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
349 
350 	return 0;
351 }
352 
353 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
354 {
355 	if (!cq)
356 		return;
357 	if (!cq->dmem.base)
358 		return;
359 
360 	nicvf_free_q_desc_mem(nic, &cq->dmem);
361 }
362 
363 /* Initialize transmit queue */
364 static int nicvf_init_snd_queue(struct nicvf *nic,
365 				struct snd_queue *sq, int q_len)
366 {
367 	int err;
368 
369 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
370 				     NICVF_SQ_BASE_ALIGN_BYTES);
371 	if (err)
372 		return err;
373 
374 	sq->desc = sq->dmem.base;
375 	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
376 	if (!sq->skbuff)
377 		return -ENOMEM;
378 	sq->head = 0;
379 	sq->tail = 0;
380 	atomic_set(&sq->free_cnt, q_len - 1);
381 	sq->thresh = SND_QUEUE_THRESH;
382 
383 	/* Preallocate memory for TSO segment's header */
384 	sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
385 					  q_len * TSO_HEADER_SIZE,
386 					  &sq->tso_hdrs_phys, GFP_KERNEL);
387 	if (!sq->tso_hdrs)
388 		return -ENOMEM;
389 
390 	return 0;
391 }
392 
393 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq,
394 			      int hdr_sqe, u8 subdesc_cnt)
395 {
396 	u8 idx;
397 	struct sq_gather_subdesc *gather;
398 
399 	/* Unmap DMA mapped skb data buffers */
400 	for (idx = 0; idx < subdesc_cnt; idx++) {
401 		hdr_sqe++;
402 		hdr_sqe &= (sq->dmem.q_len - 1);
403 		gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe);
404 		/* HW will ensure data coherency, CPU sync not required */
405 		dma_unmap_page_attrs(&nic->pdev->dev, gather->addr,
406 				     gather->size, DMA_TO_DEVICE,
407 				     DMA_ATTR_SKIP_CPU_SYNC);
408 	}
409 }
410 
411 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
412 {
413 	struct sk_buff *skb;
414 	struct sq_hdr_subdesc *hdr;
415 	struct sq_hdr_subdesc *tso_sqe;
416 
417 	if (!sq)
418 		return;
419 	if (!sq->dmem.base)
420 		return;
421 
422 	if (sq->tso_hdrs)
423 		dma_free_coherent(&nic->pdev->dev,
424 				  sq->dmem.q_len * TSO_HEADER_SIZE,
425 				  sq->tso_hdrs, sq->tso_hdrs_phys);
426 
427 	/* Free pending skbs in the queue */
428 	smp_rmb();
429 	while (sq->head != sq->tail) {
430 		skb = (struct sk_buff *)sq->skbuff[sq->head];
431 		if (!skb)
432 			goto next;
433 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
434 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
435 		if (hdr->dont_send) {
436 			/* Get actual TSO descriptors and unmap them */
437 			tso_sqe =
438 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
439 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
440 						 tso_sqe->subdesc_cnt);
441 		} else {
442 			nicvf_unmap_sndq_buffers(nic, sq, sq->head,
443 						 hdr->subdesc_cnt);
444 		}
445 		dev_kfree_skb_any(skb);
446 next:
447 		sq->head++;
448 		sq->head &= (sq->dmem.q_len - 1);
449 	}
450 	kfree(sq->skbuff);
451 	nicvf_free_q_desc_mem(nic, &sq->dmem);
452 }
453 
454 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
455 				    struct queue_set *qs, int qidx)
456 {
457 	/* Disable send queue */
458 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
459 	/* Check if SQ is stopped */
460 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
461 		return;
462 	/* Reset send queue */
463 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
464 }
465 
466 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
467 				    struct queue_set *qs, int qidx)
468 {
469 	union nic_mbx mbx = {};
470 
471 	/* Make sure all packets in the pipeline are written back into mem */
472 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
473 	nicvf_send_msg_to_pf(nic, &mbx);
474 }
475 
476 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
477 				    struct queue_set *qs, int qidx)
478 {
479 	/* Disable timer threshold (doesn't get reset upon CQ reset */
480 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
481 	/* Disable completion queue */
482 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
483 	/* Reset completion queue */
484 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
485 }
486 
487 static void nicvf_reclaim_rbdr(struct nicvf *nic,
488 			       struct rbdr *rbdr, int qidx)
489 {
490 	u64 tmp, fifo_state;
491 	int timeout = 10;
492 
493 	/* Save head and tail pointers for feeing up buffers */
494 	rbdr->head = nicvf_queue_reg_read(nic,
495 					  NIC_QSET_RBDR_0_1_HEAD,
496 					  qidx) >> 3;
497 	rbdr->tail = nicvf_queue_reg_read(nic,
498 					  NIC_QSET_RBDR_0_1_TAIL,
499 					  qidx) >> 3;
500 
501 	/* If RBDR FIFO is in 'FAIL' state then do a reset first
502 	 * before relaiming.
503 	 */
504 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
505 	if (((fifo_state >> 62) & 0x03) == 0x3)
506 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
507 				      qidx, NICVF_RBDR_RESET);
508 
509 	/* Disable RBDR */
510 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
511 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
512 		return;
513 	while (1) {
514 		tmp = nicvf_queue_reg_read(nic,
515 					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
516 					   qidx);
517 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
518 			break;
519 		usleep_range(1000, 2000);
520 		timeout--;
521 		if (!timeout) {
522 			netdev_err(nic->netdev,
523 				   "Failed polling on prefetch status\n");
524 			return;
525 		}
526 	}
527 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
528 			      qidx, NICVF_RBDR_RESET);
529 
530 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
531 		return;
532 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
533 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
534 		return;
535 }
536 
537 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
538 {
539 	u64 rq_cfg;
540 	int sqs;
541 
542 	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
543 
544 	/* Enable first VLAN stripping */
545 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
546 		rq_cfg |= (1ULL << 25);
547 	else
548 		rq_cfg &= ~(1ULL << 25);
549 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
550 
551 	/* Configure Secondary Qsets, if any */
552 	for (sqs = 0; sqs < nic->sqs_count; sqs++)
553 		if (nic->snicvf[sqs])
554 			nicvf_queue_reg_write(nic->snicvf[sqs],
555 					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
556 }
557 
558 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic)
559 {
560 	union nic_mbx mbx = {};
561 
562 	/* Reset all RQ/SQ and VF stats */
563 	mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER;
564 	mbx.reset_stat.rx_stat_mask = 0x3FFF;
565 	mbx.reset_stat.tx_stat_mask = 0x1F;
566 	mbx.reset_stat.rq_stat_mask = 0xFFFF;
567 	mbx.reset_stat.sq_stat_mask = 0xFFFF;
568 	nicvf_send_msg_to_pf(nic, &mbx);
569 }
570 
571 /* Configures receive queue */
572 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
573 				   int qidx, bool enable)
574 {
575 	union nic_mbx mbx = {};
576 	struct rcv_queue *rq;
577 	struct rq_cfg rq_cfg;
578 
579 	rq = &qs->rq[qidx];
580 	rq->enable = enable;
581 
582 	/* Disable receive queue */
583 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
584 
585 	if (!rq->enable) {
586 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
587 		return;
588 	}
589 
590 	rq->cq_qs = qs->vnic_id;
591 	rq->cq_idx = qidx;
592 	rq->start_rbdr_qs = qs->vnic_id;
593 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
594 	rq->cont_rbdr_qs = qs->vnic_id;
595 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
596 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
597 	rq->caching = 1;
598 
599 	/* Send a mailbox msg to PF to config RQ */
600 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
601 	mbx.rq.qs_num = qs->vnic_id;
602 	mbx.rq.rq_num = qidx;
603 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
604 			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
605 			  (rq->cont_qs_rbdr_idx << 8) |
606 			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
607 	nicvf_send_msg_to_pf(nic, &mbx);
608 
609 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
610 	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
611 		     (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) |
612 		     (qs->vnic_id << 0);
613 	nicvf_send_msg_to_pf(nic, &mbx);
614 
615 	/* RQ drop config
616 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
617 	 */
618 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
619 	mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) |
620 		     (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) |
621 		     (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8);
622 	nicvf_send_msg_to_pf(nic, &mbx);
623 
624 	if (!nic->sqs_mode && (qidx == 0)) {
625 		/* Enable checking L3/L4 length and TCP/UDP checksums
626 		 * Also allow IPv6 pkts with zero UDP checksum.
627 		 */
628 		nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0,
629 				      (BIT(24) | BIT(23) | BIT(21) | BIT(20)));
630 		nicvf_config_vlan_stripping(nic, nic->netdev->features);
631 	}
632 
633 	/* Enable Receive queue */
634 	memset(&rq_cfg, 0, sizeof(struct rq_cfg));
635 	rq_cfg.ena = 1;
636 	rq_cfg.tcp_ena = 0;
637 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
638 }
639 
640 /* Configures completion queue */
641 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
642 			    int qidx, bool enable)
643 {
644 	struct cmp_queue *cq;
645 	struct cq_cfg cq_cfg;
646 
647 	cq = &qs->cq[qidx];
648 	cq->enable = enable;
649 
650 	if (!cq->enable) {
651 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
652 		return;
653 	}
654 
655 	/* Reset completion queue */
656 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
657 
658 	if (!cq->enable)
659 		return;
660 
661 	spin_lock_init(&cq->lock);
662 	/* Set completion queue base address */
663 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
664 			      qidx, (u64)(cq->dmem.phys_base));
665 
666 	/* Enable Completion queue */
667 	memset(&cq_cfg, 0, sizeof(struct cq_cfg));
668 	cq_cfg.ena = 1;
669 	cq_cfg.reset = 0;
670 	cq_cfg.caching = 0;
671 	cq_cfg.qsize = ilog2(qs->cq_len >> 10);
672 	cq_cfg.avg_con = 0;
673 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
674 
675 	/* Set threshold value for interrupt generation */
676 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
677 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
678 			      qidx, CMP_QUEUE_TIMER_THRESH);
679 }
680 
681 /* Configures transmit queue */
682 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
683 				   int qidx, bool enable)
684 {
685 	union nic_mbx mbx = {};
686 	struct snd_queue *sq;
687 	struct sq_cfg sq_cfg;
688 
689 	sq = &qs->sq[qidx];
690 	sq->enable = enable;
691 
692 	if (!sq->enable) {
693 		nicvf_reclaim_snd_queue(nic, qs, qidx);
694 		return;
695 	}
696 
697 	/* Reset send queue */
698 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
699 
700 	sq->cq_qs = qs->vnic_id;
701 	sq->cq_idx = qidx;
702 
703 	/* Send a mailbox msg to PF to config SQ */
704 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
705 	mbx.sq.qs_num = qs->vnic_id;
706 	mbx.sq.sq_num = qidx;
707 	mbx.sq.sqs_mode = nic->sqs_mode;
708 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
709 	nicvf_send_msg_to_pf(nic, &mbx);
710 
711 	/* Set queue base address */
712 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
713 			      qidx, (u64)(sq->dmem.phys_base));
714 
715 	/* Enable send queue  & set queue size */
716 	memset(&sq_cfg, 0, sizeof(struct sq_cfg));
717 	sq_cfg.ena = 1;
718 	sq_cfg.reset = 0;
719 	sq_cfg.ldwb = 0;
720 	sq_cfg.qsize = ilog2(qs->sq_len >> 10);
721 	sq_cfg.tstmp_bgx_intf = 0;
722 	/* CQ's level at which HW will stop processing SQEs to avoid
723 	 * transmitting a pkt with no space in CQ to post CQE_TX.
724 	 */
725 	sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len;
726 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
727 
728 	/* Set threshold value for interrupt generation */
729 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
730 
731 	/* Set queue:cpu affinity for better load distribution */
732 	if (cpu_online(qidx)) {
733 		cpumask_set_cpu(qidx, &sq->affinity_mask);
734 		netif_set_xps_queue(nic->netdev,
735 				    &sq->affinity_mask, qidx);
736 	}
737 }
738 
739 /* Configures receive buffer descriptor ring */
740 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
741 			      int qidx, bool enable)
742 {
743 	struct rbdr *rbdr;
744 	struct rbdr_cfg rbdr_cfg;
745 
746 	rbdr = &qs->rbdr[qidx];
747 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
748 	if (!enable)
749 		return;
750 
751 	/* Set descriptor base address */
752 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
753 			      qidx, (u64)(rbdr->dmem.phys_base));
754 
755 	/* Enable RBDR  & set queue size */
756 	/* Buffer size should be in multiples of 128 bytes */
757 	memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg));
758 	rbdr_cfg.ena = 1;
759 	rbdr_cfg.reset = 0;
760 	rbdr_cfg.ldwb = 0;
761 	rbdr_cfg.qsize = RBDR_SIZE;
762 	rbdr_cfg.avg_con = 0;
763 	rbdr_cfg.lines = rbdr->dma_size / 128;
764 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
765 			      qidx, *(u64 *)&rbdr_cfg);
766 
767 	/* Notify HW */
768 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
769 			      qidx, qs->rbdr_len - 1);
770 
771 	/* Set threshold value for interrupt generation */
772 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
773 			      qidx, rbdr->thresh - 1);
774 }
775 
776 /* Requests PF to assign and enable Qset */
777 void nicvf_qset_config(struct nicvf *nic, bool enable)
778 {
779 	union nic_mbx mbx = {};
780 	struct queue_set *qs = nic->qs;
781 	struct qs_cfg *qs_cfg;
782 
783 	if (!qs) {
784 		netdev_warn(nic->netdev,
785 			    "Qset is still not allocated, don't init queues\n");
786 		return;
787 	}
788 
789 	qs->enable = enable;
790 	qs->vnic_id = nic->vf_id;
791 
792 	/* Send a mailbox msg to PF to config Qset */
793 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
794 	mbx.qs.num = qs->vnic_id;
795 	mbx.qs.sqs_count = nic->sqs_count;
796 
797 	mbx.qs.cfg = 0;
798 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
799 	if (qs->enable) {
800 		qs_cfg->ena = 1;
801 #ifdef __BIG_ENDIAN
802 		qs_cfg->be = 1;
803 #endif
804 		qs_cfg->vnic = qs->vnic_id;
805 	}
806 	nicvf_send_msg_to_pf(nic, &mbx);
807 }
808 
809 static void nicvf_free_resources(struct nicvf *nic)
810 {
811 	int qidx;
812 	struct queue_set *qs = nic->qs;
813 
814 	/* Free receive buffer descriptor ring */
815 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
816 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
817 
818 	/* Free completion queue */
819 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
820 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
821 
822 	/* Free send queue */
823 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
824 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
825 }
826 
827 static int nicvf_alloc_resources(struct nicvf *nic)
828 {
829 	int qidx;
830 	struct queue_set *qs = nic->qs;
831 
832 	/* Alloc receive buffer descriptor ring */
833 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
834 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
835 				    DMA_BUFFER_LEN))
836 			goto alloc_fail;
837 	}
838 
839 	/* Alloc send queue */
840 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
841 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
842 			goto alloc_fail;
843 	}
844 
845 	/* Alloc completion queue */
846 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
847 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
848 			goto alloc_fail;
849 	}
850 
851 	return 0;
852 alloc_fail:
853 	nicvf_free_resources(nic);
854 	return -ENOMEM;
855 }
856 
857 int nicvf_set_qset_resources(struct nicvf *nic)
858 {
859 	struct queue_set *qs;
860 
861 	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
862 	if (!qs)
863 		return -ENOMEM;
864 	nic->qs = qs;
865 
866 	/* Set count of each queue */
867 	qs->rbdr_cnt = DEFAULT_RBDR_CNT;
868 	qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus());
869 	qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus());
870 	qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt);
871 
872 	/* Set queue lengths */
873 	qs->rbdr_len = RCV_BUF_COUNT;
874 	qs->sq_len = SND_QUEUE_LEN;
875 	qs->cq_len = CMP_QUEUE_LEN;
876 
877 	nic->rx_queues = qs->rq_cnt;
878 	nic->tx_queues = qs->sq_cnt;
879 
880 	return 0;
881 }
882 
883 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
884 {
885 	bool disable = false;
886 	struct queue_set *qs = nic->qs;
887 	struct queue_set *pqs = nic->pnicvf->qs;
888 	int qidx;
889 
890 	if (!qs)
891 		return 0;
892 
893 	/* Take primary VF's queue lengths.
894 	 * This is needed to take queue lengths set from ethtool
895 	 * into consideration.
896 	 */
897 	if (nic->sqs_mode && pqs) {
898 		qs->cq_len = pqs->cq_len;
899 		qs->sq_len = pqs->sq_len;
900 	}
901 
902 	if (enable) {
903 		if (nicvf_alloc_resources(nic))
904 			return -ENOMEM;
905 
906 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
907 			nicvf_snd_queue_config(nic, qs, qidx, enable);
908 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
909 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
910 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
911 			nicvf_rbdr_config(nic, qs, qidx, enable);
912 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
913 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
914 	} else {
915 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
916 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
917 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
918 			nicvf_rbdr_config(nic, qs, qidx, disable);
919 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
920 			nicvf_snd_queue_config(nic, qs, qidx, disable);
921 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
922 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
923 
924 		nicvf_free_resources(nic);
925 	}
926 
927 	/* Reset RXQ's stats.
928 	 * SQ's stats will get reset automatically once SQ is reset.
929 	 */
930 	nicvf_reset_rcv_queue_stats(nic);
931 
932 	return 0;
933 }
934 
935 /* Get a free desc from SQ
936  * returns descriptor ponter & descriptor number
937  */
938 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
939 {
940 	int qentry;
941 
942 	qentry = sq->tail;
943 	atomic_sub(desc_cnt, &sq->free_cnt);
944 	sq->tail += desc_cnt;
945 	sq->tail &= (sq->dmem.q_len - 1);
946 
947 	return qentry;
948 }
949 
950 /* Rollback to previous tail pointer when descriptors not used */
951 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq,
952 					  int qentry, int desc_cnt)
953 {
954 	sq->tail = qentry;
955 	atomic_add(desc_cnt, &sq->free_cnt);
956 }
957 
958 /* Free descriptor back to SQ for future use */
959 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
960 {
961 	atomic_add(desc_cnt, &sq->free_cnt);
962 	sq->head += desc_cnt;
963 	sq->head &= (sq->dmem.q_len - 1);
964 }
965 
966 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
967 {
968 	qentry++;
969 	qentry &= (sq->dmem.q_len - 1);
970 	return qentry;
971 }
972 
973 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
974 {
975 	u64 sq_cfg;
976 
977 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
978 	sq_cfg |= NICVF_SQ_EN;
979 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
980 	/* Ring doorbell so that H/W restarts processing SQEs */
981 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
982 }
983 
984 void nicvf_sq_disable(struct nicvf *nic, int qidx)
985 {
986 	u64 sq_cfg;
987 
988 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
989 	sq_cfg &= ~NICVF_SQ_EN;
990 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
991 }
992 
993 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
994 			      int qidx)
995 {
996 	u64 head, tail;
997 	struct sk_buff *skb;
998 	struct nicvf *nic = netdev_priv(netdev);
999 	struct sq_hdr_subdesc *hdr;
1000 
1001 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
1002 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
1003 	while (sq->head != head) {
1004 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
1005 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
1006 			nicvf_put_sq_desc(sq, 1);
1007 			continue;
1008 		}
1009 		skb = (struct sk_buff *)sq->skbuff[sq->head];
1010 		if (skb)
1011 			dev_kfree_skb_any(skb);
1012 		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
1013 		atomic64_add(hdr->tot_len,
1014 			     (atomic64_t *)&netdev->stats.tx_bytes);
1015 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
1016 	}
1017 }
1018 
1019 /* Calculate no of SQ subdescriptors needed to transmit all
1020  * segments of this TSO packet.
1021  * Taken from 'Tilera network driver' with a minor modification.
1022  */
1023 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
1024 {
1025 	struct skb_shared_info *sh = skb_shinfo(skb);
1026 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1027 	unsigned int data_len = skb->len - sh_len;
1028 	unsigned int p_len = sh->gso_size;
1029 	long f_id = -1;    /* id of the current fragment */
1030 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1031 	long f_used = 0;  /* bytes used from the current fragment */
1032 	long n;            /* size of the current piece of payload */
1033 	int num_edescs = 0;
1034 	int segment;
1035 
1036 	for (segment = 0; segment < sh->gso_segs; segment++) {
1037 		unsigned int p_used = 0;
1038 
1039 		/* One edesc for header and for each piece of the payload. */
1040 		for (num_edescs++; p_used < p_len; num_edescs++) {
1041 			/* Advance as needed. */
1042 			while (f_used >= f_size) {
1043 				f_id++;
1044 				f_size = skb_frag_size(&sh->frags[f_id]);
1045 				f_used = 0;
1046 			}
1047 
1048 			/* Use bytes from the current fragment. */
1049 			n = p_len - p_used;
1050 			if (n > f_size - f_used)
1051 				n = f_size - f_used;
1052 			f_used += n;
1053 			p_used += n;
1054 		}
1055 
1056 		/* The last segment may be less than gso_size. */
1057 		data_len -= p_len;
1058 		if (data_len < p_len)
1059 			p_len = data_len;
1060 	}
1061 
1062 	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
1063 	return num_edescs + sh->gso_segs;
1064 }
1065 
1066 #define POST_CQE_DESC_COUNT 2
1067 
1068 /* Get the number of SQ descriptors needed to xmit this skb */
1069 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
1070 {
1071 	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
1072 
1073 	if (skb_shinfo(skb)->gso_size && !nic->hw_tso) {
1074 		subdesc_cnt = nicvf_tso_count_subdescs(skb);
1075 		return subdesc_cnt;
1076 	}
1077 
1078 	/* Dummy descriptors to get TSO pkt completion notification */
1079 	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size)
1080 		subdesc_cnt += POST_CQE_DESC_COUNT;
1081 
1082 	if (skb_shinfo(skb)->nr_frags)
1083 		subdesc_cnt += skb_shinfo(skb)->nr_frags;
1084 
1085 	return subdesc_cnt;
1086 }
1087 
1088 /* Add SQ HEADER subdescriptor.
1089  * First subdescriptor for every send descriptor.
1090  */
1091 static inline void
1092 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry,
1093 			 int subdesc_cnt, struct sk_buff *skb, int len)
1094 {
1095 	int proto;
1096 	struct sq_hdr_subdesc *hdr;
1097 
1098 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1099 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1100 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1101 
1102 	if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) {
1103 		/* post_cqe = 0, to avoid HW posting a CQE for every TSO
1104 		 * segment transmitted on 88xx.
1105 		 */
1106 		hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT;
1107 	} else {
1108 		sq->skbuff[qentry] = (u64)skb;
1109 		/* Enable notification via CQE after processing SQE */
1110 		hdr->post_cqe = 1;
1111 		/* No of subdescriptors following this */
1112 		hdr->subdesc_cnt = subdesc_cnt;
1113 	}
1114 	hdr->tot_len = len;
1115 
1116 	/* Offload checksum calculation to HW */
1117 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1118 		hdr->csum_l3 = 1; /* Enable IP csum calculation */
1119 		hdr->l3_offset = skb_network_offset(skb);
1120 		hdr->l4_offset = skb_transport_offset(skb);
1121 
1122 		proto = ip_hdr(skb)->protocol;
1123 		switch (proto) {
1124 		case IPPROTO_TCP:
1125 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1126 			break;
1127 		case IPPROTO_UDP:
1128 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1129 			break;
1130 		case IPPROTO_SCTP:
1131 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1132 			break;
1133 		}
1134 	}
1135 
1136 	if (nic->hw_tso && skb_shinfo(skb)->gso_size) {
1137 		hdr->tso = 1;
1138 		hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb);
1139 		hdr->tso_max_paysize = skb_shinfo(skb)->gso_size;
1140 		/* For non-tunneled pkts, point this to L2 ethertype */
1141 		hdr->inner_l3_offset = skb_network_offset(skb) - 2;
1142 		this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1143 	}
1144 }
1145 
1146 /* SQ GATHER subdescriptor
1147  * Must follow HDR descriptor
1148  */
1149 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1150 					       int size, u64 data)
1151 {
1152 	struct sq_gather_subdesc *gather;
1153 
1154 	qentry &= (sq->dmem.q_len - 1);
1155 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1156 
1157 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1158 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1159 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1160 	gather->size = size;
1161 	gather->addr = data;
1162 }
1163 
1164 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO
1165  * packet so that a CQE is posted as a notifation for transmission of
1166  * TSO packet.
1167  */
1168 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry,
1169 					    int tso_sqe, struct sk_buff *skb)
1170 {
1171 	struct sq_imm_subdesc *imm;
1172 	struct sq_hdr_subdesc *hdr;
1173 
1174 	sq->skbuff[qentry] = (u64)skb;
1175 
1176 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
1177 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
1178 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
1179 	/* Enable notification via CQE after processing SQE */
1180 	hdr->post_cqe = 1;
1181 	/* There is no packet to transmit here */
1182 	hdr->dont_send = 1;
1183 	hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1;
1184 	hdr->tot_len = 1;
1185 	/* Actual TSO header SQE index, needed for cleanup */
1186 	hdr->rsvd2 = tso_sqe;
1187 
1188 	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1189 	imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry);
1190 	memset(imm, 0, SND_QUEUE_DESC_SIZE);
1191 	imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE;
1192 	imm->len = 1;
1193 }
1194 
1195 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb,
1196 				     int sq_num, int desc_cnt)
1197 {
1198 	struct netdev_queue *txq;
1199 
1200 	txq = netdev_get_tx_queue(nic->pnicvf->netdev,
1201 				  skb_get_queue_mapping(skb));
1202 
1203 	netdev_tx_sent_queue(txq, skb->len);
1204 
1205 	/* make sure all memory stores are done before ringing doorbell */
1206 	smp_wmb();
1207 
1208 	/* Inform HW to xmit all TSO segments */
1209 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1210 			      sq_num, desc_cnt);
1211 }
1212 
1213 /* Segment a TSO packet into 'gso_size' segments and append
1214  * them to SQ for transfer
1215  */
1216 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1217 			       int sq_num, int qentry, struct sk_buff *skb)
1218 {
1219 	struct tso_t tso;
1220 	int seg_subdescs = 0, desc_cnt = 0;
1221 	int seg_len, total_len, data_left;
1222 	int hdr_qentry = qentry;
1223 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1224 
1225 	tso_start(skb, &tso);
1226 	total_len = skb->len - hdr_len;
1227 	while (total_len > 0) {
1228 		char *hdr;
1229 
1230 		/* Save Qentry for adding HDR_SUBDESC at the end */
1231 		hdr_qentry = qentry;
1232 
1233 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1234 		total_len -= data_left;
1235 
1236 		/* Add segment's header */
1237 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1238 		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1239 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1240 		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1241 					    sq->tso_hdrs_phys +
1242 					    qentry * TSO_HEADER_SIZE);
1243 		/* HDR_SUDESC + GATHER */
1244 		seg_subdescs = 2;
1245 		seg_len = hdr_len;
1246 
1247 		/* Add segment's payload fragments */
1248 		while (data_left > 0) {
1249 			int size;
1250 
1251 			size = min_t(int, tso.size, data_left);
1252 
1253 			qentry = nicvf_get_nxt_sqentry(sq, qentry);
1254 			nicvf_sq_add_gather_subdesc(sq, qentry, size,
1255 						    virt_to_phys(tso.data));
1256 			seg_subdescs++;
1257 			seg_len += size;
1258 
1259 			data_left -= size;
1260 			tso_build_data(skb, &tso, size);
1261 		}
1262 		nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry,
1263 					 seg_subdescs - 1, skb, seg_len);
1264 		sq->skbuff[hdr_qentry] = (u64)NULL;
1265 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1266 
1267 		desc_cnt += seg_subdescs;
1268 	}
1269 	/* Save SKB in the last segment for freeing */
1270 	sq->skbuff[hdr_qentry] = (u64)skb;
1271 
1272 	nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt);
1273 
1274 	this_cpu_inc(nic->pnicvf->drv_stats->tx_tso);
1275 	return 1;
1276 }
1277 
1278 /* Append an skb to a SQ for packet transfer. */
1279 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq,
1280 			struct sk_buff *skb, u8 sq_num)
1281 {
1282 	int i, size;
1283 	int subdesc_cnt, hdr_sqe = 0;
1284 	int qentry;
1285 	u64 dma_addr;
1286 
1287 	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1288 	if (subdesc_cnt > atomic_read(&sq->free_cnt))
1289 		goto append_fail;
1290 
1291 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1292 
1293 	/* Check if its a TSO packet */
1294 	if (skb_shinfo(skb)->gso_size && !nic->hw_tso)
1295 		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1296 
1297 	/* Add SQ header subdesc */
1298 	nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1,
1299 				 skb, skb->len);
1300 	hdr_sqe = qentry;
1301 
1302 	/* Add SQ gather subdescs */
1303 	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1304 	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1305 	/* HW will ensure data coherency, CPU sync not required */
1306 	dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data),
1307 				      offset_in_page(skb->data), size,
1308 				      DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
1309 	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1310 		nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1311 		return 0;
1312 	}
1313 
1314 	nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1315 
1316 	/* Check for scattered buffer */
1317 	if (!skb_is_nonlinear(skb))
1318 		goto doorbell;
1319 
1320 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1321 		const struct skb_frag_struct *frag;
1322 
1323 		frag = &skb_shinfo(skb)->frags[i];
1324 
1325 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1326 		size = skb_frag_size(frag);
1327 		dma_addr = dma_map_page_attrs(&nic->pdev->dev,
1328 					      skb_frag_page(frag),
1329 					      frag->page_offset, size,
1330 					      DMA_TO_DEVICE,
1331 					      DMA_ATTR_SKIP_CPU_SYNC);
1332 		if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1333 			/* Free entire chain of mapped buffers
1334 			 * here 'i' = frags mapped + above mapped skb->data
1335 			 */
1336 			nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i);
1337 			nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt);
1338 			return 0;
1339 		}
1340 		nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr);
1341 	}
1342 
1343 doorbell:
1344 	if (nic->t88 && skb_shinfo(skb)->gso_size) {
1345 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1346 		nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb);
1347 	}
1348 
1349 	nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt);
1350 
1351 	return 1;
1352 
1353 append_fail:
1354 	/* Use original PCI dev for debug log */
1355 	nic = nic->pnicvf;
1356 	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1357 	return 0;
1358 }
1359 
1360 static inline unsigned frag_num(unsigned i)
1361 {
1362 #ifdef __BIG_ENDIAN
1363 	return (i & ~3) + 3 - (i & 3);
1364 #else
1365 	return i;
1366 #endif
1367 }
1368 
1369 /* Returns SKB for a received packet */
1370 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1371 {
1372 	int frag;
1373 	int payload_len = 0;
1374 	struct sk_buff *skb = NULL;
1375 	struct page *page;
1376 	int offset;
1377 	u16 *rb_lens = NULL;
1378 	u64 *rb_ptrs = NULL;
1379 	u64 phys_addr;
1380 
1381 	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1382 	/* Except 88xx pass1 on all other chips CQE_RX2_S is added to
1383 	 * CQE_RX at word6, hence buffer pointers move by word
1384 	 *
1385 	 * Use existing 'hw_tso' flag which will be set for all chips
1386 	 * except 88xx pass1 instead of a additional cache line
1387 	 * access (or miss) by using pci dev's revision.
1388 	 */
1389 	if (!nic->hw_tso)
1390 		rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1391 	else
1392 		rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64));
1393 
1394 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1395 		payload_len = rb_lens[frag_num(frag)];
1396 		phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs);
1397 		if (!phys_addr) {
1398 			if (skb)
1399 				dev_kfree_skb_any(skb);
1400 			return NULL;
1401 		}
1402 
1403 		if (!frag) {
1404 			/* First fragment */
1405 			dma_unmap_page_attrs(&nic->pdev->dev,
1406 					     *rb_ptrs - cqe_rx->align_pad,
1407 					     RCV_FRAG_LEN, DMA_FROM_DEVICE,
1408 					     DMA_ATTR_SKIP_CPU_SYNC);
1409 			skb = nicvf_rb_ptr_to_skb(nic,
1410 						  phys_addr - cqe_rx->align_pad,
1411 						  payload_len);
1412 			if (!skb)
1413 				return NULL;
1414 			skb_reserve(skb, cqe_rx->align_pad);
1415 			skb_put(skb, payload_len);
1416 		} else {
1417 			/* Add fragments */
1418 			dma_unmap_page_attrs(&nic->pdev->dev, *rb_ptrs,
1419 					     RCV_FRAG_LEN, DMA_FROM_DEVICE,
1420 					     DMA_ATTR_SKIP_CPU_SYNC);
1421 			page = virt_to_page(phys_to_virt(phys_addr));
1422 			offset = phys_to_virt(phys_addr) - page_address(page);
1423 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1424 					offset, payload_len, RCV_FRAG_LEN);
1425 		}
1426 		/* Next buffer pointer */
1427 		rb_ptrs++;
1428 	}
1429 	return skb;
1430 }
1431 
1432 static u64 nicvf_int_type_to_mask(int int_type, int q_idx)
1433 {
1434 	u64 reg_val;
1435 
1436 	switch (int_type) {
1437 	case NICVF_INTR_CQ:
1438 		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1439 		break;
1440 	case NICVF_INTR_SQ:
1441 		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1442 		break;
1443 	case NICVF_INTR_RBDR:
1444 		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1445 		break;
1446 	case NICVF_INTR_PKT_DROP:
1447 		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1448 		break;
1449 	case NICVF_INTR_TCP_TIMER:
1450 		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1451 		break;
1452 	case NICVF_INTR_MBOX:
1453 		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1454 		break;
1455 	case NICVF_INTR_QS_ERR:
1456 		reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1457 		break;
1458 	default:
1459 		reg_val = 0;
1460 	}
1461 
1462 	return reg_val;
1463 }
1464 
1465 /* Enable interrupt */
1466 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1467 {
1468 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1469 
1470 	if (!mask) {
1471 		netdev_dbg(nic->netdev,
1472 			   "Failed to enable interrupt: unknown type\n");
1473 		return;
1474 	}
1475 	nicvf_reg_write(nic, NIC_VF_ENA_W1S,
1476 			nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask);
1477 }
1478 
1479 /* Disable interrupt */
1480 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1481 {
1482 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1483 
1484 	if (!mask) {
1485 		netdev_dbg(nic->netdev,
1486 			   "Failed to disable interrupt: unknown type\n");
1487 		return;
1488 	}
1489 
1490 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask);
1491 }
1492 
1493 /* Clear interrupt */
1494 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1495 {
1496 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1497 
1498 	if (!mask) {
1499 		netdev_dbg(nic->netdev,
1500 			   "Failed to clear interrupt: unknown type\n");
1501 		return;
1502 	}
1503 
1504 	nicvf_reg_write(nic, NIC_VF_INT, mask);
1505 }
1506 
1507 /* Check if interrupt is enabled */
1508 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1509 {
1510 	u64 mask = nicvf_int_type_to_mask(int_type, q_idx);
1511 	/* If interrupt type is unknown, we treat it disabled. */
1512 	if (!mask) {
1513 		netdev_dbg(nic->netdev,
1514 			   "Failed to check interrupt enable: unknown type\n");
1515 		return 0;
1516 	}
1517 
1518 	return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1519 }
1520 
1521 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1522 {
1523 	struct rcv_queue *rq;
1524 
1525 #define GET_RQ_STATS(reg) \
1526 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1527 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1528 
1529 	rq = &nic->qs->rq[rq_idx];
1530 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1531 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1532 }
1533 
1534 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1535 {
1536 	struct snd_queue *sq;
1537 
1538 #define GET_SQ_STATS(reg) \
1539 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1540 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1541 
1542 	sq = &nic->qs->sq[sq_idx];
1543 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1544 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1545 }
1546 
1547 /* Check for errors in the receive cmp.queue entry */
1548 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1549 {
1550 	if (!cqe_rx->err_level && !cqe_rx->err_opcode)
1551 		return 0;
1552 
1553 	if (netif_msg_rx_err(nic))
1554 		netdev_err(nic->netdev,
1555 			   "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1556 			   nic->netdev->name,
1557 			   cqe_rx->err_level, cqe_rx->err_opcode);
1558 
1559 	switch (cqe_rx->err_opcode) {
1560 	case CQ_RX_ERROP_RE_PARTIAL:
1561 		this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts);
1562 		break;
1563 	case CQ_RX_ERROP_RE_JABBER:
1564 		this_cpu_inc(nic->drv_stats->rx_jabber_errs);
1565 		break;
1566 	case CQ_RX_ERROP_RE_FCS:
1567 		this_cpu_inc(nic->drv_stats->rx_fcs_errs);
1568 		break;
1569 	case CQ_RX_ERROP_RE_RX_CTL:
1570 		this_cpu_inc(nic->drv_stats->rx_bgx_errs);
1571 		break;
1572 	case CQ_RX_ERROP_PREL2_ERR:
1573 		this_cpu_inc(nic->drv_stats->rx_prel2_errs);
1574 		break;
1575 	case CQ_RX_ERROP_L2_MAL:
1576 		this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed);
1577 		break;
1578 	case CQ_RX_ERROP_L2_OVERSIZE:
1579 		this_cpu_inc(nic->drv_stats->rx_oversize);
1580 		break;
1581 	case CQ_RX_ERROP_L2_UNDERSIZE:
1582 		this_cpu_inc(nic->drv_stats->rx_undersize);
1583 		break;
1584 	case CQ_RX_ERROP_L2_LENMISM:
1585 		this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch);
1586 		break;
1587 	case CQ_RX_ERROP_L2_PCLP:
1588 		this_cpu_inc(nic->drv_stats->rx_l2_pclp);
1589 		break;
1590 	case CQ_RX_ERROP_IP_NOT:
1591 		this_cpu_inc(nic->drv_stats->rx_ip_ver_errs);
1592 		break;
1593 	case CQ_RX_ERROP_IP_CSUM_ERR:
1594 		this_cpu_inc(nic->drv_stats->rx_ip_csum_errs);
1595 		break;
1596 	case CQ_RX_ERROP_IP_MAL:
1597 		this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed);
1598 		break;
1599 	case CQ_RX_ERROP_IP_MALD:
1600 		this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed);
1601 		break;
1602 	case CQ_RX_ERROP_IP_HOP:
1603 		this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs);
1604 		break;
1605 	case CQ_RX_ERROP_L3_PCLP:
1606 		this_cpu_inc(nic->drv_stats->rx_l3_pclp);
1607 		break;
1608 	case CQ_RX_ERROP_L4_MAL:
1609 		this_cpu_inc(nic->drv_stats->rx_l4_malformed);
1610 		break;
1611 	case CQ_RX_ERROP_L4_CHK:
1612 		this_cpu_inc(nic->drv_stats->rx_l4_csum_errs);
1613 		break;
1614 	case CQ_RX_ERROP_UDP_LEN:
1615 		this_cpu_inc(nic->drv_stats->rx_udp_len_errs);
1616 		break;
1617 	case CQ_RX_ERROP_L4_PORT:
1618 		this_cpu_inc(nic->drv_stats->rx_l4_port_errs);
1619 		break;
1620 	case CQ_RX_ERROP_TCP_FLAG:
1621 		this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs);
1622 		break;
1623 	case CQ_RX_ERROP_TCP_OFFSET:
1624 		this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs);
1625 		break;
1626 	case CQ_RX_ERROP_L4_PCLP:
1627 		this_cpu_inc(nic->drv_stats->rx_l4_pclp);
1628 		break;
1629 	case CQ_RX_ERROP_RBDR_TRUNC:
1630 		this_cpu_inc(nic->drv_stats->rx_truncated_pkts);
1631 		break;
1632 	}
1633 
1634 	return 1;
1635 }
1636 
1637 /* Check for errors in the send cmp.queue entry */
1638 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx)
1639 {
1640 	switch (cqe_tx->send_status) {
1641 	case CQ_TX_ERROP_GOOD:
1642 		return 0;
1643 	case CQ_TX_ERROP_DESC_FAULT:
1644 		this_cpu_inc(nic->drv_stats->tx_desc_fault);
1645 		break;
1646 	case CQ_TX_ERROP_HDR_CONS_ERR:
1647 		this_cpu_inc(nic->drv_stats->tx_hdr_cons_err);
1648 		break;
1649 	case CQ_TX_ERROP_SUBDC_ERR:
1650 		this_cpu_inc(nic->drv_stats->tx_subdesc_err);
1651 		break;
1652 	case CQ_TX_ERROP_MAX_SIZE_VIOL:
1653 		this_cpu_inc(nic->drv_stats->tx_max_size_exceeded);
1654 		break;
1655 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1656 		this_cpu_inc(nic->drv_stats->tx_imm_size_oflow);
1657 		break;
1658 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1659 		this_cpu_inc(nic->drv_stats->tx_data_seq_err);
1660 		break;
1661 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1662 		this_cpu_inc(nic->drv_stats->tx_mem_seq_err);
1663 		break;
1664 	case CQ_TX_ERROP_LOCK_VIOL:
1665 		this_cpu_inc(nic->drv_stats->tx_lock_viol);
1666 		break;
1667 	case CQ_TX_ERROP_DATA_FAULT:
1668 		this_cpu_inc(nic->drv_stats->tx_data_fault);
1669 		break;
1670 	case CQ_TX_ERROP_TSTMP_CONFLICT:
1671 		this_cpu_inc(nic->drv_stats->tx_tstmp_conflict);
1672 		break;
1673 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1674 		this_cpu_inc(nic->drv_stats->tx_tstmp_timeout);
1675 		break;
1676 	case CQ_TX_ERROP_MEM_FAULT:
1677 		this_cpu_inc(nic->drv_stats->tx_mem_fault);
1678 		break;
1679 	case CQ_TX_ERROP_CK_OVERLAP:
1680 		this_cpu_inc(nic->drv_stats->tx_csum_overlap);
1681 		break;
1682 	case CQ_TX_ERROP_CK_OFLOW:
1683 		this_cpu_inc(nic->drv_stats->tx_csum_overflow);
1684 		break;
1685 	}
1686 
1687 	return 1;
1688 }
1689