xref: /openbmc/linux/drivers/net/ethernet/cavium/thunder/nicvf_queues.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15 
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20 
21 struct rbuf_info {
22 	struct page *page;
23 	void	*data;
24 	u64	offset;
25 };
26 
27 #define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28 
29 /* Poll a register for a specific value */
30 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 			  u64 reg, int bit_pos, int bits, int val)
32 {
33 	u64 bit_mask;
34 	u64 reg_val;
35 	int timeout = 10;
36 
37 	bit_mask = (1ULL << bits) - 1;
38 	bit_mask = (bit_mask << bit_pos);
39 
40 	while (timeout) {
41 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 		if (((reg_val & bit_mask) >> bit_pos) == val)
43 			return 0;
44 		usleep_range(1000, 2000);
45 		timeout--;
46 	}
47 	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 	return 1;
49 }
50 
51 /* Allocate memory for a queue's descriptors */
52 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 				  int q_len, int desc_size, int align_bytes)
54 {
55 	dmem->q_len = q_len;
56 	dmem->size = (desc_size * q_len) + align_bytes;
57 	/* Save address, need it while freeing */
58 	dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 						&dmem->dma, GFP_KERNEL);
60 	if (!dmem->unalign_base)
61 		return -ENOMEM;
62 
63 	/* Align memory address for 'align_bytes' */
64 	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
65 	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
66 	return 0;
67 }
68 
69 /* Free queue's descriptor memory */
70 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
71 {
72 	if (!dmem)
73 		return;
74 
75 	dma_free_coherent(&nic->pdev->dev, dmem->size,
76 			  dmem->unalign_base, dmem->dma);
77 	dmem->unalign_base = NULL;
78 	dmem->base = NULL;
79 }
80 
81 /* Allocate buffer for packet reception
82  * HW returns memory address where packet is DMA'ed but not a pointer
83  * into RBDR ring, so save buffer address at the start of fragment and
84  * align the start address to a cache aligned address
85  */
86 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
87 					 u32 buf_len, u64 **rbuf)
88 {
89 	u64 data;
90 	struct rbuf_info *rinfo;
91 	int order = get_order(buf_len);
92 
93 	/* Check if request can be accomodated in previous allocated page */
94 	if (nic->rb_page) {
95 		if ((nic->rb_page_offset + buf_len + buf_len) >
96 		    (PAGE_SIZE << order)) {
97 			nic->rb_page = NULL;
98 		} else {
99 			nic->rb_page_offset += buf_len;
100 			get_page(nic->rb_page);
101 		}
102 	}
103 
104 	/* Allocate a new page */
105 	if (!nic->rb_page) {
106 		nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
107 					   order);
108 		if (!nic->rb_page) {
109 			netdev_err(nic->netdev,
110 				   "Failed to allocate new rcv buffer\n");
111 			return -ENOMEM;
112 		}
113 		nic->rb_page_offset = 0;
114 	}
115 
116 	data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
117 
118 	/* Align buffer addr to cache line i.e 128 bytes */
119 	rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
120 	/* Save page address for reference updation */
121 	rinfo->page = nic->rb_page;
122 	/* Store start address for later retrieval */
123 	rinfo->data = (void *)data;
124 	/* Store alignment offset */
125 	rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
126 
127 	data += rinfo->offset;
128 
129 	/* Give next aligned address to hw for DMA */
130 	*rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
131 	return 0;
132 }
133 
134 /* Retrieve actual buffer start address and build skb for received packet */
135 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
136 					   u64 rb_ptr, int len)
137 {
138 	struct sk_buff *skb;
139 	struct rbuf_info *rinfo;
140 
141 	rb_ptr = (u64)phys_to_virt(rb_ptr);
142 	/* Get buffer start address and alignment offset */
143 	rinfo = GET_RBUF_INFO(rb_ptr);
144 
145 	/* Now build an skb to give to stack */
146 	skb = build_skb(rinfo->data, RCV_FRAG_LEN);
147 	if (!skb) {
148 		put_page(rinfo->page);
149 		return NULL;
150 	}
151 
152 	/* Set correct skb->data */
153 	skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
154 
155 	prefetch((void *)rb_ptr);
156 	return skb;
157 }
158 
159 /* Allocate RBDR ring and populate receive buffers */
160 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
161 			    int ring_len, int buf_size)
162 {
163 	int idx;
164 	u64 *rbuf;
165 	struct rbdr_entry_t *desc;
166 	int err;
167 
168 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
169 				     sizeof(struct rbdr_entry_t),
170 				     NICVF_RCV_BUF_ALIGN_BYTES);
171 	if (err)
172 		return err;
173 
174 	rbdr->desc = rbdr->dmem.base;
175 	/* Buffer size has to be in multiples of 128 bytes */
176 	rbdr->dma_size = buf_size;
177 	rbdr->enable = true;
178 	rbdr->thresh = RBDR_THRESH;
179 
180 	nic->rb_page = NULL;
181 	for (idx = 0; idx < ring_len; idx++) {
182 		err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
183 					     &rbuf);
184 		if (err)
185 			return err;
186 
187 		desc = GET_RBDR_DESC(rbdr, idx);
188 		desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
189 	}
190 	return 0;
191 }
192 
193 /* Free RBDR ring and its receive buffers */
194 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
195 {
196 	int head, tail;
197 	u64 buf_addr;
198 	struct rbdr_entry_t *desc;
199 	struct rbuf_info *rinfo;
200 
201 	if (!rbdr)
202 		return;
203 
204 	rbdr->enable = false;
205 	if (!rbdr->dmem.base)
206 		return;
207 
208 	head = rbdr->head;
209 	tail = rbdr->tail;
210 
211 	/* Free SKBs */
212 	while (head != tail) {
213 		desc = GET_RBDR_DESC(rbdr, head);
214 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
215 		rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
216 		put_page(rinfo->page);
217 		head++;
218 		head &= (rbdr->dmem.q_len - 1);
219 	}
220 	/* Free SKB of tail desc */
221 	desc = GET_RBDR_DESC(rbdr, tail);
222 	buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
223 	rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
224 	put_page(rinfo->page);
225 
226 	/* Free RBDR ring */
227 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
228 }
229 
230 /* Refill receive buffer descriptors with new buffers.
231  */
232 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
233 {
234 	struct queue_set *qs = nic->qs;
235 	int rbdr_idx = qs->rbdr_cnt;
236 	int tail, qcount;
237 	int refill_rb_cnt;
238 	struct rbdr *rbdr;
239 	struct rbdr_entry_t *desc;
240 	u64 *rbuf;
241 	int new_rb = 0;
242 
243 refill:
244 	if (!rbdr_idx)
245 		return;
246 	rbdr_idx--;
247 	rbdr = &qs->rbdr[rbdr_idx];
248 	/* Check if it's enabled */
249 	if (!rbdr->enable)
250 		goto next_rbdr;
251 
252 	/* Get no of desc's to be refilled */
253 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
254 	qcount &= 0x7FFFF;
255 	/* Doorbell can be ringed with a max of ring size minus 1 */
256 	if (qcount >= (qs->rbdr_len - 1))
257 		goto next_rbdr;
258 	else
259 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
260 
261 	/* Start filling descs from tail */
262 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
263 	while (refill_rb_cnt) {
264 		tail++;
265 		tail &= (rbdr->dmem.q_len - 1);
266 
267 		if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
268 			break;
269 
270 		desc = GET_RBDR_DESC(rbdr, tail);
271 		desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
272 		refill_rb_cnt--;
273 		new_rb++;
274 	}
275 
276 	/* make sure all memory stores are done before ringing doorbell */
277 	smp_wmb();
278 
279 	/* Check if buffer allocation failed */
280 	if (refill_rb_cnt)
281 		nic->rb_alloc_fail = true;
282 	else
283 		nic->rb_alloc_fail = false;
284 
285 	/* Notify HW */
286 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
287 			      rbdr_idx, new_rb);
288 next_rbdr:
289 	/* Re-enable RBDR interrupts only if buffer allocation is success */
290 	if (!nic->rb_alloc_fail && rbdr->enable)
291 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
292 
293 	if (rbdr_idx)
294 		goto refill;
295 }
296 
297 /* Alloc rcv buffers in non-atomic mode for better success */
298 void nicvf_rbdr_work(struct work_struct *work)
299 {
300 	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
301 
302 	nicvf_refill_rbdr(nic, GFP_KERNEL);
303 	if (nic->rb_alloc_fail)
304 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
305 	else
306 		nic->rb_work_scheduled = false;
307 }
308 
309 /* In Softirq context, alloc rcv buffers in atomic mode */
310 void nicvf_rbdr_task(unsigned long data)
311 {
312 	struct nicvf *nic = (struct nicvf *)data;
313 
314 	nicvf_refill_rbdr(nic, GFP_ATOMIC);
315 	if (nic->rb_alloc_fail) {
316 		nic->rb_work_scheduled = true;
317 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
318 	}
319 }
320 
321 /* Initialize completion queue */
322 static int nicvf_init_cmp_queue(struct nicvf *nic,
323 				struct cmp_queue *cq, int q_len)
324 {
325 	int err;
326 
327 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
328 				     NICVF_CQ_BASE_ALIGN_BYTES);
329 	if (err)
330 		return err;
331 
332 	cq->desc = cq->dmem.base;
333 	cq->thresh = CMP_QUEUE_CQE_THRESH;
334 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
335 
336 	return 0;
337 }
338 
339 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
340 {
341 	if (!cq)
342 		return;
343 	if (!cq->dmem.base)
344 		return;
345 
346 	nicvf_free_q_desc_mem(nic, &cq->dmem);
347 }
348 
349 /* Initialize transmit queue */
350 static int nicvf_init_snd_queue(struct nicvf *nic,
351 				struct snd_queue *sq, int q_len)
352 {
353 	int err;
354 
355 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
356 				     NICVF_SQ_BASE_ALIGN_BYTES);
357 	if (err)
358 		return err;
359 
360 	sq->desc = sq->dmem.base;
361 	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
362 	if (!sq->skbuff)
363 		return -ENOMEM;
364 	sq->head = 0;
365 	sq->tail = 0;
366 	atomic_set(&sq->free_cnt, q_len - 1);
367 	sq->thresh = SND_QUEUE_THRESH;
368 
369 	/* Preallocate memory for TSO segment's header */
370 	sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
371 					  q_len * TSO_HEADER_SIZE,
372 					  &sq->tso_hdrs_phys, GFP_KERNEL);
373 	if (!sq->tso_hdrs)
374 		return -ENOMEM;
375 
376 	return 0;
377 }
378 
379 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
380 {
381 	if (!sq)
382 		return;
383 	if (!sq->dmem.base)
384 		return;
385 
386 	if (sq->tso_hdrs)
387 		dma_free_coherent(&nic->pdev->dev,
388 				  sq->dmem.q_len * TSO_HEADER_SIZE,
389 				  sq->tso_hdrs, sq->tso_hdrs_phys);
390 
391 	kfree(sq->skbuff);
392 	nicvf_free_q_desc_mem(nic, &sq->dmem);
393 }
394 
395 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
396 				    struct queue_set *qs, int qidx)
397 {
398 	/* Disable send queue */
399 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
400 	/* Check if SQ is stopped */
401 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
402 		return;
403 	/* Reset send queue */
404 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
405 }
406 
407 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
408 				    struct queue_set *qs, int qidx)
409 {
410 	union nic_mbx mbx = {};
411 
412 	/* Make sure all packets in the pipeline are written back into mem */
413 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
414 	nicvf_send_msg_to_pf(nic, &mbx);
415 }
416 
417 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
418 				    struct queue_set *qs, int qidx)
419 {
420 	/* Disable timer threshold (doesn't get reset upon CQ reset */
421 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
422 	/* Disable completion queue */
423 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
424 	/* Reset completion queue */
425 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
426 }
427 
428 static void nicvf_reclaim_rbdr(struct nicvf *nic,
429 			       struct rbdr *rbdr, int qidx)
430 {
431 	u64 tmp, fifo_state;
432 	int timeout = 10;
433 
434 	/* Save head and tail pointers for feeing up buffers */
435 	rbdr->head = nicvf_queue_reg_read(nic,
436 					  NIC_QSET_RBDR_0_1_HEAD,
437 					  qidx) >> 3;
438 	rbdr->tail = nicvf_queue_reg_read(nic,
439 					  NIC_QSET_RBDR_0_1_TAIL,
440 					  qidx) >> 3;
441 
442 	/* If RBDR FIFO is in 'FAIL' state then do a reset first
443 	 * before relaiming.
444 	 */
445 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
446 	if (((fifo_state >> 62) & 0x03) == 0x3)
447 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
448 				      qidx, NICVF_RBDR_RESET);
449 
450 	/* Disable RBDR */
451 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
452 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
453 		return;
454 	while (1) {
455 		tmp = nicvf_queue_reg_read(nic,
456 					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
457 					   qidx);
458 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
459 			break;
460 		usleep_range(1000, 2000);
461 		timeout--;
462 		if (!timeout) {
463 			netdev_err(nic->netdev,
464 				   "Failed polling on prefetch status\n");
465 			return;
466 		}
467 	}
468 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
469 			      qidx, NICVF_RBDR_RESET);
470 
471 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
472 		return;
473 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
474 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
475 		return;
476 }
477 
478 /* Configures receive queue */
479 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
480 				   int qidx, bool enable)
481 {
482 	union nic_mbx mbx = {};
483 	struct rcv_queue *rq;
484 	struct rq_cfg rq_cfg;
485 
486 	rq = &qs->rq[qidx];
487 	rq->enable = enable;
488 
489 	/* Disable receive queue */
490 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
491 
492 	if (!rq->enable) {
493 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
494 		return;
495 	}
496 
497 	rq->cq_qs = qs->vnic_id;
498 	rq->cq_idx = qidx;
499 	rq->start_rbdr_qs = qs->vnic_id;
500 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
501 	rq->cont_rbdr_qs = qs->vnic_id;
502 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
503 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
504 	rq->caching = 1;
505 
506 	/* Send a mailbox msg to PF to config RQ */
507 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
508 	mbx.rq.qs_num = qs->vnic_id;
509 	mbx.rq.rq_num = qidx;
510 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
511 			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
512 			  (rq->cont_qs_rbdr_idx << 8) |
513 			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
514 	nicvf_send_msg_to_pf(nic, &mbx);
515 
516 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
517 	mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
518 	nicvf_send_msg_to_pf(nic, &mbx);
519 
520 	/* RQ drop config
521 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
522 	 */
523 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
524 	mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
525 	nicvf_send_msg_to_pf(nic, &mbx);
526 
527 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, qidx, 0x00);
528 
529 	/* Enable Receive queue */
530 	rq_cfg.ena = 1;
531 	rq_cfg.tcp_ena = 0;
532 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
533 }
534 
535 /* Configures completion queue */
536 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
537 			    int qidx, bool enable)
538 {
539 	struct cmp_queue *cq;
540 	struct cq_cfg cq_cfg;
541 
542 	cq = &qs->cq[qidx];
543 	cq->enable = enable;
544 
545 	if (!cq->enable) {
546 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
547 		return;
548 	}
549 
550 	/* Reset completion queue */
551 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
552 
553 	if (!cq->enable)
554 		return;
555 
556 	spin_lock_init(&cq->lock);
557 	/* Set completion queue base address */
558 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
559 			      qidx, (u64)(cq->dmem.phys_base));
560 
561 	/* Enable Completion queue */
562 	cq_cfg.ena = 1;
563 	cq_cfg.reset = 0;
564 	cq_cfg.caching = 0;
565 	cq_cfg.qsize = CMP_QSIZE;
566 	cq_cfg.avg_con = 0;
567 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
568 
569 	/* Set threshold value for interrupt generation */
570 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
571 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
572 			      qidx, nic->cq_coalesce_usecs);
573 }
574 
575 /* Configures transmit queue */
576 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
577 				   int qidx, bool enable)
578 {
579 	union nic_mbx mbx = {};
580 	struct snd_queue *sq;
581 	struct sq_cfg sq_cfg;
582 
583 	sq = &qs->sq[qidx];
584 	sq->enable = enable;
585 
586 	if (!sq->enable) {
587 		nicvf_reclaim_snd_queue(nic, qs, qidx);
588 		return;
589 	}
590 
591 	/* Reset send queue */
592 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
593 
594 	sq->cq_qs = qs->vnic_id;
595 	sq->cq_idx = qidx;
596 
597 	/* Send a mailbox msg to PF to config SQ */
598 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
599 	mbx.sq.qs_num = qs->vnic_id;
600 	mbx.sq.sq_num = qidx;
601 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
602 	nicvf_send_msg_to_pf(nic, &mbx);
603 
604 	/* Set queue base address */
605 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
606 			      qidx, (u64)(sq->dmem.phys_base));
607 
608 	/* Enable send queue  & set queue size */
609 	sq_cfg.ena = 1;
610 	sq_cfg.reset = 0;
611 	sq_cfg.ldwb = 0;
612 	sq_cfg.qsize = SND_QSIZE;
613 	sq_cfg.tstmp_bgx_intf = 0;
614 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
615 
616 	/* Set threshold value for interrupt generation */
617 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
618 
619 	/* Set queue:cpu affinity for better load distribution */
620 	if (cpu_online(qidx)) {
621 		cpumask_set_cpu(qidx, &sq->affinity_mask);
622 		netif_set_xps_queue(nic->netdev,
623 				    &sq->affinity_mask, qidx);
624 	}
625 }
626 
627 /* Configures receive buffer descriptor ring */
628 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
629 			      int qidx, bool enable)
630 {
631 	struct rbdr *rbdr;
632 	struct rbdr_cfg rbdr_cfg;
633 
634 	rbdr = &qs->rbdr[qidx];
635 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
636 	if (!enable)
637 		return;
638 
639 	/* Set descriptor base address */
640 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
641 			      qidx, (u64)(rbdr->dmem.phys_base));
642 
643 	/* Enable RBDR  & set queue size */
644 	/* Buffer size should be in multiples of 128 bytes */
645 	rbdr_cfg.ena = 1;
646 	rbdr_cfg.reset = 0;
647 	rbdr_cfg.ldwb = 0;
648 	rbdr_cfg.qsize = RBDR_SIZE;
649 	rbdr_cfg.avg_con = 0;
650 	rbdr_cfg.lines = rbdr->dma_size / 128;
651 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
652 			      qidx, *(u64 *)&rbdr_cfg);
653 
654 	/* Notify HW */
655 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
656 			      qidx, qs->rbdr_len - 1);
657 
658 	/* Set threshold value for interrupt generation */
659 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
660 			      qidx, rbdr->thresh - 1);
661 }
662 
663 /* Requests PF to assign and enable Qset */
664 void nicvf_qset_config(struct nicvf *nic, bool enable)
665 {
666 	union nic_mbx mbx = {};
667 	struct queue_set *qs = nic->qs;
668 	struct qs_cfg *qs_cfg;
669 
670 	if (!qs) {
671 		netdev_warn(nic->netdev,
672 			    "Qset is still not allocated, don't init queues\n");
673 		return;
674 	}
675 
676 	qs->enable = enable;
677 	qs->vnic_id = nic->vf_id;
678 
679 	/* Send a mailbox msg to PF to config Qset */
680 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
681 	mbx.qs.num = qs->vnic_id;
682 
683 	mbx.qs.cfg = 0;
684 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
685 	if (qs->enable) {
686 		qs_cfg->ena = 1;
687 #ifdef __BIG_ENDIAN
688 		qs_cfg->be = 1;
689 #endif
690 		qs_cfg->vnic = qs->vnic_id;
691 	}
692 	nicvf_send_msg_to_pf(nic, &mbx);
693 }
694 
695 static void nicvf_free_resources(struct nicvf *nic)
696 {
697 	int qidx;
698 	struct queue_set *qs = nic->qs;
699 
700 	/* Free receive buffer descriptor ring */
701 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
702 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
703 
704 	/* Free completion queue */
705 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
706 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
707 
708 	/* Free send queue */
709 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
710 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
711 }
712 
713 static int nicvf_alloc_resources(struct nicvf *nic)
714 {
715 	int qidx;
716 	struct queue_set *qs = nic->qs;
717 
718 	/* Alloc receive buffer descriptor ring */
719 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
720 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
721 				    DMA_BUFFER_LEN))
722 			goto alloc_fail;
723 	}
724 
725 	/* Alloc send queue */
726 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
727 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
728 			goto alloc_fail;
729 	}
730 
731 	/* Alloc completion queue */
732 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
733 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
734 			goto alloc_fail;
735 	}
736 
737 	return 0;
738 alloc_fail:
739 	nicvf_free_resources(nic);
740 	return -ENOMEM;
741 }
742 
743 int nicvf_set_qset_resources(struct nicvf *nic)
744 {
745 	struct queue_set *qs;
746 
747 	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
748 	if (!qs)
749 		return -ENOMEM;
750 	nic->qs = qs;
751 
752 	/* Set count of each queue */
753 	qs->rbdr_cnt = RBDR_CNT;
754 	qs->rq_cnt = RCV_QUEUE_CNT;
755 	qs->sq_cnt = SND_QUEUE_CNT;
756 	qs->cq_cnt = CMP_QUEUE_CNT;
757 
758 	/* Set queue lengths */
759 	qs->rbdr_len = RCV_BUF_COUNT;
760 	qs->sq_len = SND_QUEUE_LEN;
761 	qs->cq_len = CMP_QUEUE_LEN;
762 	return 0;
763 }
764 
765 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
766 {
767 	bool disable = false;
768 	struct queue_set *qs = nic->qs;
769 	int qidx;
770 
771 	if (!qs)
772 		return 0;
773 
774 	if (enable) {
775 		if (nicvf_alloc_resources(nic))
776 			return -ENOMEM;
777 
778 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
779 			nicvf_snd_queue_config(nic, qs, qidx, enable);
780 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
781 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
782 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
783 			nicvf_rbdr_config(nic, qs, qidx, enable);
784 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
785 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
786 	} else {
787 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
788 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
789 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
790 			nicvf_rbdr_config(nic, qs, qidx, disable);
791 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
792 			nicvf_snd_queue_config(nic, qs, qidx, disable);
793 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
794 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
795 
796 		nicvf_free_resources(nic);
797 	}
798 
799 	return 0;
800 }
801 
802 /* Get a free desc from SQ
803  * returns descriptor ponter & descriptor number
804  */
805 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
806 {
807 	int qentry;
808 
809 	qentry = sq->tail;
810 	atomic_sub(desc_cnt, &sq->free_cnt);
811 	sq->tail += desc_cnt;
812 	sq->tail &= (sq->dmem.q_len - 1);
813 
814 	return qentry;
815 }
816 
817 /* Free descriptor back to SQ for future use */
818 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
819 {
820 	atomic_add(desc_cnt, &sq->free_cnt);
821 	sq->head += desc_cnt;
822 	sq->head &= (sq->dmem.q_len - 1);
823 }
824 
825 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
826 {
827 	qentry++;
828 	qentry &= (sq->dmem.q_len - 1);
829 	return qentry;
830 }
831 
832 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
833 {
834 	u64 sq_cfg;
835 
836 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
837 	sq_cfg |= NICVF_SQ_EN;
838 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
839 	/* Ring doorbell so that H/W restarts processing SQEs */
840 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
841 }
842 
843 void nicvf_sq_disable(struct nicvf *nic, int qidx)
844 {
845 	u64 sq_cfg;
846 
847 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
848 	sq_cfg &= ~NICVF_SQ_EN;
849 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
850 }
851 
852 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
853 			      int qidx)
854 {
855 	u64 head, tail;
856 	struct sk_buff *skb;
857 	struct nicvf *nic = netdev_priv(netdev);
858 	struct sq_hdr_subdesc *hdr;
859 
860 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
861 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
862 	while (sq->head != head) {
863 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
864 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
865 			nicvf_put_sq_desc(sq, 1);
866 			continue;
867 		}
868 		skb = (struct sk_buff *)sq->skbuff[sq->head];
869 		if (skb)
870 			dev_kfree_skb_any(skb);
871 		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
872 		atomic64_add(hdr->tot_len,
873 			     (atomic64_t *)&netdev->stats.tx_bytes);
874 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
875 	}
876 }
877 
878 /* Calculate no of SQ subdescriptors needed to transmit all
879  * segments of this TSO packet.
880  * Taken from 'Tilera network driver' with a minor modification.
881  */
882 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
883 {
884 	struct skb_shared_info *sh = skb_shinfo(skb);
885 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
886 	unsigned int data_len = skb->len - sh_len;
887 	unsigned int p_len = sh->gso_size;
888 	long f_id = -1;    /* id of the current fragment */
889 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
890 	long f_used = 0;  /* bytes used from the current fragment */
891 	long n;            /* size of the current piece of payload */
892 	int num_edescs = 0;
893 	int segment;
894 
895 	for (segment = 0; segment < sh->gso_segs; segment++) {
896 		unsigned int p_used = 0;
897 
898 		/* One edesc for header and for each piece of the payload. */
899 		for (num_edescs++; p_used < p_len; num_edescs++) {
900 			/* Advance as needed. */
901 			while (f_used >= f_size) {
902 				f_id++;
903 				f_size = skb_frag_size(&sh->frags[f_id]);
904 				f_used = 0;
905 			}
906 
907 			/* Use bytes from the current fragment. */
908 			n = p_len - p_used;
909 			if (n > f_size - f_used)
910 				n = f_size - f_used;
911 			f_used += n;
912 			p_used += n;
913 		}
914 
915 		/* The last segment may be less than gso_size. */
916 		data_len -= p_len;
917 		if (data_len < p_len)
918 			p_len = data_len;
919 	}
920 
921 	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
922 	return num_edescs + sh->gso_segs;
923 }
924 
925 /* Get the number of SQ descriptors needed to xmit this skb */
926 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
927 {
928 	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
929 
930 	if (skb_shinfo(skb)->gso_size) {
931 		subdesc_cnt = nicvf_tso_count_subdescs(skb);
932 		return subdesc_cnt;
933 	}
934 
935 	if (skb_shinfo(skb)->nr_frags)
936 		subdesc_cnt += skb_shinfo(skb)->nr_frags;
937 
938 	return subdesc_cnt;
939 }
940 
941 /* Add SQ HEADER subdescriptor.
942  * First subdescriptor for every send descriptor.
943  */
944 static inline void
945 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
946 			 int subdesc_cnt, struct sk_buff *skb, int len)
947 {
948 	int proto;
949 	struct sq_hdr_subdesc *hdr;
950 
951 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
952 	sq->skbuff[qentry] = (u64)skb;
953 
954 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
955 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
956 	/* Enable notification via CQE after processing SQE */
957 	hdr->post_cqe = 1;
958 	/* No of subdescriptors following this */
959 	hdr->subdesc_cnt = subdesc_cnt;
960 	hdr->tot_len = len;
961 
962 	/* Offload checksum calculation to HW */
963 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
964 		if (skb->protocol != htons(ETH_P_IP))
965 			return;
966 
967 		hdr->csum_l3 = 1; /* Enable IP csum calculation */
968 		hdr->l3_offset = skb_network_offset(skb);
969 		hdr->l4_offset = skb_transport_offset(skb);
970 
971 		proto = ip_hdr(skb)->protocol;
972 		switch (proto) {
973 		case IPPROTO_TCP:
974 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
975 			break;
976 		case IPPROTO_UDP:
977 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
978 			break;
979 		case IPPROTO_SCTP:
980 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
981 			break;
982 		}
983 	}
984 }
985 
986 /* SQ GATHER subdescriptor
987  * Must follow HDR descriptor
988  */
989 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
990 					       int size, u64 data)
991 {
992 	struct sq_gather_subdesc *gather;
993 
994 	qentry &= (sq->dmem.q_len - 1);
995 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
996 
997 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
998 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
999 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1000 	gather->size = size;
1001 	gather->addr = data;
1002 }
1003 
1004 /* Segment a TSO packet into 'gso_size' segments and append
1005  * them to SQ for transfer
1006  */
1007 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1008 			       int qentry, struct sk_buff *skb)
1009 {
1010 	struct tso_t tso;
1011 	int seg_subdescs = 0, desc_cnt = 0;
1012 	int seg_len, total_len, data_left;
1013 	int hdr_qentry = qentry;
1014 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1015 
1016 	tso_start(skb, &tso);
1017 	total_len = skb->len - hdr_len;
1018 	while (total_len > 0) {
1019 		char *hdr;
1020 
1021 		/* Save Qentry for adding HDR_SUBDESC at the end */
1022 		hdr_qentry = qentry;
1023 
1024 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1025 		total_len -= data_left;
1026 
1027 		/* Add segment's header */
1028 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1029 		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1030 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1031 		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1032 					    sq->tso_hdrs_phys +
1033 					    qentry * TSO_HEADER_SIZE);
1034 		/* HDR_SUDESC + GATHER */
1035 		seg_subdescs = 2;
1036 		seg_len = hdr_len;
1037 
1038 		/* Add segment's payload fragments */
1039 		while (data_left > 0) {
1040 			int size;
1041 
1042 			size = min_t(int, tso.size, data_left);
1043 
1044 			qentry = nicvf_get_nxt_sqentry(sq, qentry);
1045 			nicvf_sq_add_gather_subdesc(sq, qentry, size,
1046 						    virt_to_phys(tso.data));
1047 			seg_subdescs++;
1048 			seg_len += size;
1049 
1050 			data_left -= size;
1051 			tso_build_data(skb, &tso, size);
1052 		}
1053 		nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1054 					 seg_subdescs - 1, skb, seg_len);
1055 		sq->skbuff[hdr_qentry] = (u64)NULL;
1056 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1057 
1058 		desc_cnt += seg_subdescs;
1059 	}
1060 	/* Save SKB in the last segment for freeing */
1061 	sq->skbuff[hdr_qentry] = (u64)skb;
1062 
1063 	/* make sure all memory stores are done before ringing doorbell */
1064 	smp_wmb();
1065 
1066 	/* Inform HW to xmit all TSO segments */
1067 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1068 			      skb_get_queue_mapping(skb), desc_cnt);
1069 	nic->drv_stats.tx_tso++;
1070 	return 1;
1071 }
1072 
1073 /* Append an skb to a SQ for packet transfer. */
1074 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1075 {
1076 	int i, size;
1077 	int subdesc_cnt;
1078 	int sq_num, qentry;
1079 	struct queue_set *qs = nic->qs;
1080 	struct snd_queue *sq;
1081 
1082 	sq_num = skb_get_queue_mapping(skb);
1083 	sq = &qs->sq[sq_num];
1084 
1085 	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1086 	if (subdesc_cnt > atomic_read(&sq->free_cnt))
1087 		goto append_fail;
1088 
1089 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1090 
1091 	/* Check if its a TSO packet */
1092 	if (skb_shinfo(skb)->gso_size)
1093 		return nicvf_sq_append_tso(nic, sq, qentry, skb);
1094 
1095 	/* Add SQ header subdesc */
1096 	nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1097 
1098 	/* Add SQ gather subdescs */
1099 	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1100 	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1101 	nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1102 
1103 	/* Check for scattered buffer */
1104 	if (!skb_is_nonlinear(skb))
1105 		goto doorbell;
1106 
1107 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1108 		const struct skb_frag_struct *frag;
1109 
1110 		frag = &skb_shinfo(skb)->frags[i];
1111 
1112 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1113 		size = skb_frag_size(frag);
1114 		nicvf_sq_add_gather_subdesc(sq, qentry, size,
1115 					    virt_to_phys(
1116 					    skb_frag_address(frag)));
1117 	}
1118 
1119 doorbell:
1120 	/* make sure all memory stores are done before ringing doorbell */
1121 	smp_wmb();
1122 
1123 	/* Inform HW to xmit new packet */
1124 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1125 			      sq_num, subdesc_cnt);
1126 	return 1;
1127 
1128 append_fail:
1129 	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1130 	return 0;
1131 }
1132 
1133 static inline unsigned frag_num(unsigned i)
1134 {
1135 #ifdef __BIG_ENDIAN
1136 	return (i & ~3) + 3 - (i & 3);
1137 #else
1138 	return i;
1139 #endif
1140 }
1141 
1142 /* Returns SKB for a received packet */
1143 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1144 {
1145 	int frag;
1146 	int payload_len = 0;
1147 	struct sk_buff *skb = NULL;
1148 	struct sk_buff *skb_frag = NULL;
1149 	struct sk_buff *prev_frag = NULL;
1150 	u16 *rb_lens = NULL;
1151 	u64 *rb_ptrs = NULL;
1152 
1153 	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1154 	rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1155 
1156 	netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1157 		   __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1158 
1159 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1160 		payload_len = rb_lens[frag_num(frag)];
1161 		if (!frag) {
1162 			/* First fragment */
1163 			skb = nicvf_rb_ptr_to_skb(nic,
1164 						  *rb_ptrs - cqe_rx->align_pad,
1165 						  payload_len);
1166 			if (!skb)
1167 				return NULL;
1168 			skb_reserve(skb, cqe_rx->align_pad);
1169 			skb_put(skb, payload_len);
1170 		} else {
1171 			/* Add fragments */
1172 			skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1173 						       payload_len);
1174 			if (!skb_frag) {
1175 				dev_kfree_skb(skb);
1176 				return NULL;
1177 			}
1178 
1179 			if (!skb_shinfo(skb)->frag_list)
1180 				skb_shinfo(skb)->frag_list = skb_frag;
1181 			else
1182 				prev_frag->next = skb_frag;
1183 
1184 			prev_frag = skb_frag;
1185 			skb->len += payload_len;
1186 			skb->data_len += payload_len;
1187 			skb_frag->len = payload_len;
1188 		}
1189 		/* Next buffer pointer */
1190 		rb_ptrs++;
1191 	}
1192 	return skb;
1193 }
1194 
1195 /* Enable interrupt */
1196 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1197 {
1198 	u64 reg_val;
1199 
1200 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1201 
1202 	switch (int_type) {
1203 	case NICVF_INTR_CQ:
1204 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1205 		break;
1206 	case NICVF_INTR_SQ:
1207 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1208 		break;
1209 	case NICVF_INTR_RBDR:
1210 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1211 		break;
1212 	case NICVF_INTR_PKT_DROP:
1213 		reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1214 		break;
1215 	case NICVF_INTR_TCP_TIMER:
1216 		reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1217 		break;
1218 	case NICVF_INTR_MBOX:
1219 		reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1220 		break;
1221 	case NICVF_INTR_QS_ERR:
1222 		reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1223 		break;
1224 	default:
1225 		netdev_err(nic->netdev,
1226 			   "Failed to enable interrupt: unknown type\n");
1227 		break;
1228 	}
1229 
1230 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1231 }
1232 
1233 /* Disable interrupt */
1234 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1235 {
1236 	u64 reg_val = 0;
1237 
1238 	switch (int_type) {
1239 	case NICVF_INTR_CQ:
1240 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1241 		break;
1242 	case NICVF_INTR_SQ:
1243 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1244 		break;
1245 	case NICVF_INTR_RBDR:
1246 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1247 		break;
1248 	case NICVF_INTR_PKT_DROP:
1249 		reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1250 		break;
1251 	case NICVF_INTR_TCP_TIMER:
1252 		reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1253 		break;
1254 	case NICVF_INTR_MBOX:
1255 		reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1256 		break;
1257 	case NICVF_INTR_QS_ERR:
1258 		reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1259 		break;
1260 	default:
1261 		netdev_err(nic->netdev,
1262 			   "Failed to disable interrupt: unknown type\n");
1263 		break;
1264 	}
1265 
1266 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1267 }
1268 
1269 /* Clear interrupt */
1270 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1271 {
1272 	u64 reg_val = 0;
1273 
1274 	switch (int_type) {
1275 	case NICVF_INTR_CQ:
1276 		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1277 		break;
1278 	case NICVF_INTR_SQ:
1279 		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1280 		break;
1281 	case NICVF_INTR_RBDR:
1282 		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1283 		break;
1284 	case NICVF_INTR_PKT_DROP:
1285 		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1286 		break;
1287 	case NICVF_INTR_TCP_TIMER:
1288 		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1289 		break;
1290 	case NICVF_INTR_MBOX:
1291 		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1292 		break;
1293 	case NICVF_INTR_QS_ERR:
1294 		reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1295 		break;
1296 	default:
1297 		netdev_err(nic->netdev,
1298 			   "Failed to clear interrupt: unknown type\n");
1299 		break;
1300 	}
1301 
1302 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1303 }
1304 
1305 /* Check if interrupt is enabled */
1306 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1307 {
1308 	u64 reg_val;
1309 	u64 mask = 0xff;
1310 
1311 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1312 
1313 	switch (int_type) {
1314 	case NICVF_INTR_CQ:
1315 		mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1316 		break;
1317 	case NICVF_INTR_SQ:
1318 		mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1319 		break;
1320 	case NICVF_INTR_RBDR:
1321 		mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1322 		break;
1323 	case NICVF_INTR_PKT_DROP:
1324 		mask = NICVF_INTR_PKT_DROP_MASK;
1325 		break;
1326 	case NICVF_INTR_TCP_TIMER:
1327 		mask = NICVF_INTR_TCP_TIMER_MASK;
1328 		break;
1329 	case NICVF_INTR_MBOX:
1330 		mask = NICVF_INTR_MBOX_MASK;
1331 		break;
1332 	case NICVF_INTR_QS_ERR:
1333 		mask = NICVF_INTR_QS_ERR_MASK;
1334 		break;
1335 	default:
1336 		netdev_err(nic->netdev,
1337 			   "Failed to check interrupt enable: unknown type\n");
1338 		break;
1339 	}
1340 
1341 	return (reg_val & mask);
1342 }
1343 
1344 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1345 {
1346 	struct rcv_queue *rq;
1347 
1348 #define GET_RQ_STATS(reg) \
1349 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1350 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1351 
1352 	rq = &nic->qs->rq[rq_idx];
1353 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1354 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1355 }
1356 
1357 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1358 {
1359 	struct snd_queue *sq;
1360 
1361 #define GET_SQ_STATS(reg) \
1362 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1363 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1364 
1365 	sq = &nic->qs->sq[sq_idx];
1366 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1367 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1368 }
1369 
1370 /* Check for errors in the receive cmp.queue entry */
1371 int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1372 			    struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1373 {
1374 	struct cmp_queue_stats *stats = &cq->stats;
1375 
1376 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1377 		stats->rx.errop.good++;
1378 		return 0;
1379 	}
1380 
1381 	if (netif_msg_rx_err(nic))
1382 		netdev_err(nic->netdev,
1383 			   "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1384 			   nic->netdev->name,
1385 			   cqe_rx->err_level, cqe_rx->err_opcode);
1386 
1387 	switch (cqe_rx->err_level) {
1388 	case CQ_ERRLVL_MAC:
1389 		stats->rx.errlvl.mac_errs++;
1390 		break;
1391 	case CQ_ERRLVL_L2:
1392 		stats->rx.errlvl.l2_errs++;
1393 		break;
1394 	case CQ_ERRLVL_L3:
1395 		stats->rx.errlvl.l3_errs++;
1396 		break;
1397 	case CQ_ERRLVL_L4:
1398 		stats->rx.errlvl.l4_errs++;
1399 		break;
1400 	}
1401 
1402 	switch (cqe_rx->err_opcode) {
1403 	case CQ_RX_ERROP_RE_PARTIAL:
1404 		stats->rx.errop.partial_pkts++;
1405 		break;
1406 	case CQ_RX_ERROP_RE_JABBER:
1407 		stats->rx.errop.jabber_errs++;
1408 		break;
1409 	case CQ_RX_ERROP_RE_FCS:
1410 		stats->rx.errop.fcs_errs++;
1411 		break;
1412 	case CQ_RX_ERROP_RE_TERMINATE:
1413 		stats->rx.errop.terminate_errs++;
1414 		break;
1415 	case CQ_RX_ERROP_RE_RX_CTL:
1416 		stats->rx.errop.bgx_rx_errs++;
1417 		break;
1418 	case CQ_RX_ERROP_PREL2_ERR:
1419 		stats->rx.errop.prel2_errs++;
1420 		break;
1421 	case CQ_RX_ERROP_L2_FRAGMENT:
1422 		stats->rx.errop.l2_frags++;
1423 		break;
1424 	case CQ_RX_ERROP_L2_OVERRUN:
1425 		stats->rx.errop.l2_overruns++;
1426 		break;
1427 	case CQ_RX_ERROP_L2_PFCS:
1428 		stats->rx.errop.l2_pfcs++;
1429 		break;
1430 	case CQ_RX_ERROP_L2_PUNY:
1431 		stats->rx.errop.l2_puny++;
1432 		break;
1433 	case CQ_RX_ERROP_L2_MAL:
1434 		stats->rx.errop.l2_hdr_malformed++;
1435 		break;
1436 	case CQ_RX_ERROP_L2_OVERSIZE:
1437 		stats->rx.errop.l2_oversize++;
1438 		break;
1439 	case CQ_RX_ERROP_L2_UNDERSIZE:
1440 		stats->rx.errop.l2_undersize++;
1441 		break;
1442 	case CQ_RX_ERROP_L2_LENMISM:
1443 		stats->rx.errop.l2_len_mismatch++;
1444 		break;
1445 	case CQ_RX_ERROP_L2_PCLP:
1446 		stats->rx.errop.l2_pclp++;
1447 		break;
1448 	case CQ_RX_ERROP_IP_NOT:
1449 		stats->rx.errop.non_ip++;
1450 		break;
1451 	case CQ_RX_ERROP_IP_CSUM_ERR:
1452 		stats->rx.errop.ip_csum_err++;
1453 		break;
1454 	case CQ_RX_ERROP_IP_MAL:
1455 		stats->rx.errop.ip_hdr_malformed++;
1456 		break;
1457 	case CQ_RX_ERROP_IP_MALD:
1458 		stats->rx.errop.ip_payload_malformed++;
1459 		break;
1460 	case CQ_RX_ERROP_IP_HOP:
1461 		stats->rx.errop.ip_hop_errs++;
1462 		break;
1463 	case CQ_RX_ERROP_L3_ICRC:
1464 		stats->rx.errop.l3_icrc_errs++;
1465 		break;
1466 	case CQ_RX_ERROP_L3_PCLP:
1467 		stats->rx.errop.l3_pclp++;
1468 		break;
1469 	case CQ_RX_ERROP_L4_MAL:
1470 		stats->rx.errop.l4_malformed++;
1471 		break;
1472 	case CQ_RX_ERROP_L4_CHK:
1473 		stats->rx.errop.l4_csum_errs++;
1474 		break;
1475 	case CQ_RX_ERROP_UDP_LEN:
1476 		stats->rx.errop.udp_len_err++;
1477 		break;
1478 	case CQ_RX_ERROP_L4_PORT:
1479 		stats->rx.errop.bad_l4_port++;
1480 		break;
1481 	case CQ_RX_ERROP_TCP_FLAG:
1482 		stats->rx.errop.bad_tcp_flag++;
1483 		break;
1484 	case CQ_RX_ERROP_TCP_OFFSET:
1485 		stats->rx.errop.tcp_offset_errs++;
1486 		break;
1487 	case CQ_RX_ERROP_L4_PCLP:
1488 		stats->rx.errop.l4_pclp++;
1489 		break;
1490 	case CQ_RX_ERROP_RBDR_TRUNC:
1491 		stats->rx.errop.pkt_truncated++;
1492 		break;
1493 	}
1494 
1495 	return 1;
1496 }
1497 
1498 /* Check for errors in the send cmp.queue entry */
1499 int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1500 			    struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1501 {
1502 	struct cmp_queue_stats *stats = &cq->stats;
1503 
1504 	switch (cqe_tx->send_status) {
1505 	case CQ_TX_ERROP_GOOD:
1506 		stats->tx.good++;
1507 		return 0;
1508 	case CQ_TX_ERROP_DESC_FAULT:
1509 		stats->tx.desc_fault++;
1510 		break;
1511 	case CQ_TX_ERROP_HDR_CONS_ERR:
1512 		stats->tx.hdr_cons_err++;
1513 		break;
1514 	case CQ_TX_ERROP_SUBDC_ERR:
1515 		stats->tx.subdesc_err++;
1516 		break;
1517 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1518 		stats->tx.imm_size_oflow++;
1519 		break;
1520 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1521 		stats->tx.data_seq_err++;
1522 		break;
1523 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1524 		stats->tx.mem_seq_err++;
1525 		break;
1526 	case CQ_TX_ERROP_LOCK_VIOL:
1527 		stats->tx.lock_viol++;
1528 		break;
1529 	case CQ_TX_ERROP_DATA_FAULT:
1530 		stats->tx.data_fault++;
1531 		break;
1532 	case CQ_TX_ERROP_TSTMP_CONFLICT:
1533 		stats->tx.tstmp_conflict++;
1534 		break;
1535 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1536 		stats->tx.tstmp_timeout++;
1537 		break;
1538 	case CQ_TX_ERROP_MEM_FAULT:
1539 		stats->tx.mem_fault++;
1540 		break;
1541 	case CQ_TX_ERROP_CK_OVERLAP:
1542 		stats->tx.csum_overlap++;
1543 		break;
1544 	case CQ_TX_ERROP_CK_OFLOW:
1545 		stats->tx.csum_overflow++;
1546 		break;
1547 	}
1548 
1549 	return 1;
1550 }
1551