1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/ip.h>
12 #include <linux/etherdevice.h>
13 #include <net/ip.h>
14 #include <net/tso.h>
15 
16 #include "nic_reg.h"
17 #include "nic.h"
18 #include "q_struct.h"
19 #include "nicvf_queues.h"
20 
21 struct rbuf_info {
22 	struct page *page;
23 	void	*data;
24 	u64	offset;
25 };
26 
27 #define GET_RBUF_INFO(x) ((struct rbuf_info *)(x - NICVF_RCV_BUF_ALIGN_BYTES))
28 
29 /* Poll a register for a specific value */
30 static int nicvf_poll_reg(struct nicvf *nic, int qidx,
31 			  u64 reg, int bit_pos, int bits, int val)
32 {
33 	u64 bit_mask;
34 	u64 reg_val;
35 	int timeout = 10;
36 
37 	bit_mask = (1ULL << bits) - 1;
38 	bit_mask = (bit_mask << bit_pos);
39 
40 	while (timeout) {
41 		reg_val = nicvf_queue_reg_read(nic, reg, qidx);
42 		if (((reg_val & bit_mask) >> bit_pos) == val)
43 			return 0;
44 		usleep_range(1000, 2000);
45 		timeout--;
46 	}
47 	netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg);
48 	return 1;
49 }
50 
51 /* Allocate memory for a queue's descriptors */
52 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem,
53 				  int q_len, int desc_size, int align_bytes)
54 {
55 	dmem->q_len = q_len;
56 	dmem->size = (desc_size * q_len) + align_bytes;
57 	/* Save address, need it while freeing */
58 	dmem->unalign_base = dma_zalloc_coherent(&nic->pdev->dev, dmem->size,
59 						&dmem->dma, GFP_KERNEL);
60 	if (!dmem->unalign_base)
61 		return -ENOMEM;
62 
63 	/* Align memory address for 'align_bytes' */
64 	dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes);
65 	dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma);
66 	return 0;
67 }
68 
69 /* Free queue's descriptor memory */
70 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem)
71 {
72 	if (!dmem)
73 		return;
74 
75 	dma_free_coherent(&nic->pdev->dev, dmem->size,
76 			  dmem->unalign_base, dmem->dma);
77 	dmem->unalign_base = NULL;
78 	dmem->base = NULL;
79 }
80 
81 /* Allocate buffer for packet reception
82  * HW returns memory address where packet is DMA'ed but not a pointer
83  * into RBDR ring, so save buffer address at the start of fragment and
84  * align the start address to a cache aligned address
85  */
86 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, gfp_t gfp,
87 					 u32 buf_len, u64 **rbuf)
88 {
89 	u64 data;
90 	struct rbuf_info *rinfo;
91 	int order = get_order(buf_len);
92 
93 	/* Check if request can be accomodated in previous allocated page */
94 	if (nic->rb_page) {
95 		if ((nic->rb_page_offset + buf_len + buf_len) >
96 		    (PAGE_SIZE << order)) {
97 			nic->rb_page = NULL;
98 		} else {
99 			nic->rb_page_offset += buf_len;
100 			get_page(nic->rb_page);
101 		}
102 	}
103 
104 	/* Allocate a new page */
105 	if (!nic->rb_page) {
106 		nic->rb_page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
107 					   order);
108 		if (!nic->rb_page) {
109 			netdev_err(nic->netdev,
110 				   "Failed to allocate new rcv buffer\n");
111 			return -ENOMEM;
112 		}
113 		nic->rb_page_offset = 0;
114 	}
115 
116 	data = (u64)page_address(nic->rb_page) + nic->rb_page_offset;
117 
118 	/* Align buffer addr to cache line i.e 128 bytes */
119 	rinfo = (struct rbuf_info *)(data + NICVF_RCV_BUF_ALIGN_LEN(data));
120 	/* Save page address for reference updation */
121 	rinfo->page = nic->rb_page;
122 	/* Store start address for later retrieval */
123 	rinfo->data = (void *)data;
124 	/* Store alignment offset */
125 	rinfo->offset = NICVF_RCV_BUF_ALIGN_LEN(data);
126 
127 	data += rinfo->offset;
128 
129 	/* Give next aligned address to hw for DMA */
130 	*rbuf = (u64 *)(data + NICVF_RCV_BUF_ALIGN_BYTES);
131 	return 0;
132 }
133 
134 /* Retrieve actual buffer start address and build skb for received packet */
135 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic,
136 					   u64 rb_ptr, int len)
137 {
138 	struct sk_buff *skb;
139 	struct rbuf_info *rinfo;
140 
141 	rb_ptr = (u64)phys_to_virt(rb_ptr);
142 	/* Get buffer start address and alignment offset */
143 	rinfo = GET_RBUF_INFO(rb_ptr);
144 
145 	/* Now build an skb to give to stack */
146 	skb = build_skb(rinfo->data, RCV_FRAG_LEN);
147 	if (!skb) {
148 		put_page(rinfo->page);
149 		return NULL;
150 	}
151 
152 	/* Set correct skb->data */
153 	skb_reserve(skb, rinfo->offset + NICVF_RCV_BUF_ALIGN_BYTES);
154 
155 	prefetch((void *)rb_ptr);
156 	return skb;
157 }
158 
159 /* Allocate RBDR ring and populate receive buffers */
160 static int  nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr,
161 			    int ring_len, int buf_size)
162 {
163 	int idx;
164 	u64 *rbuf;
165 	struct rbdr_entry_t *desc;
166 	int err;
167 
168 	err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len,
169 				     sizeof(struct rbdr_entry_t),
170 				     NICVF_RCV_BUF_ALIGN_BYTES);
171 	if (err)
172 		return err;
173 
174 	rbdr->desc = rbdr->dmem.base;
175 	/* Buffer size has to be in multiples of 128 bytes */
176 	rbdr->dma_size = buf_size;
177 	rbdr->enable = true;
178 	rbdr->thresh = RBDR_THRESH;
179 
180 	nic->rb_page = NULL;
181 	for (idx = 0; idx < ring_len; idx++) {
182 		err = nicvf_alloc_rcv_buffer(nic, GFP_KERNEL, RCV_FRAG_LEN,
183 					     &rbuf);
184 		if (err)
185 			return err;
186 
187 		desc = GET_RBDR_DESC(rbdr, idx);
188 		desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
189 	}
190 	return 0;
191 }
192 
193 /* Free RBDR ring and its receive buffers */
194 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr)
195 {
196 	int head, tail;
197 	u64 buf_addr;
198 	struct rbdr_entry_t *desc;
199 	struct rbuf_info *rinfo;
200 
201 	if (!rbdr)
202 		return;
203 
204 	rbdr->enable = false;
205 	if (!rbdr->dmem.base)
206 		return;
207 
208 	head = rbdr->head;
209 	tail = rbdr->tail;
210 
211 	/* Free SKBs */
212 	while (head != tail) {
213 		desc = GET_RBDR_DESC(rbdr, head);
214 		buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
215 		rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
216 		put_page(rinfo->page);
217 		head++;
218 		head &= (rbdr->dmem.q_len - 1);
219 	}
220 	/* Free SKB of tail desc */
221 	desc = GET_RBDR_DESC(rbdr, tail);
222 	buf_addr = desc->buf_addr << NICVF_RCV_BUF_ALIGN;
223 	rinfo = GET_RBUF_INFO((u64)phys_to_virt(buf_addr));
224 	put_page(rinfo->page);
225 
226 	/* Free RBDR ring */
227 	nicvf_free_q_desc_mem(nic, &rbdr->dmem);
228 }
229 
230 /* Refill receive buffer descriptors with new buffers.
231  */
232 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp)
233 {
234 	struct queue_set *qs = nic->qs;
235 	int rbdr_idx = qs->rbdr_cnt;
236 	int tail, qcount;
237 	int refill_rb_cnt;
238 	struct rbdr *rbdr;
239 	struct rbdr_entry_t *desc;
240 	u64 *rbuf;
241 	int new_rb = 0;
242 
243 refill:
244 	if (!rbdr_idx)
245 		return;
246 	rbdr_idx--;
247 	rbdr = &qs->rbdr[rbdr_idx];
248 	/* Check if it's enabled */
249 	if (!rbdr->enable)
250 		goto next_rbdr;
251 
252 	/* Get no of desc's to be refilled */
253 	qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx);
254 	qcount &= 0x7FFFF;
255 	/* Doorbell can be ringed with a max of ring size minus 1 */
256 	if (qcount >= (qs->rbdr_len - 1))
257 		goto next_rbdr;
258 	else
259 		refill_rb_cnt = qs->rbdr_len - qcount - 1;
260 
261 	/* Start filling descs from tail */
262 	tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3;
263 	while (refill_rb_cnt) {
264 		tail++;
265 		tail &= (rbdr->dmem.q_len - 1);
266 
267 		if (nicvf_alloc_rcv_buffer(nic, gfp, RCV_FRAG_LEN, &rbuf))
268 			break;
269 
270 		desc = GET_RBDR_DESC(rbdr, tail);
271 		desc->buf_addr = virt_to_phys(rbuf) >> NICVF_RCV_BUF_ALIGN;
272 		refill_rb_cnt--;
273 		new_rb++;
274 	}
275 
276 	/* make sure all memory stores are done before ringing doorbell */
277 	smp_wmb();
278 
279 	/* Check if buffer allocation failed */
280 	if (refill_rb_cnt)
281 		nic->rb_alloc_fail = true;
282 	else
283 		nic->rb_alloc_fail = false;
284 
285 	/* Notify HW */
286 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
287 			      rbdr_idx, new_rb);
288 next_rbdr:
289 	/* Re-enable RBDR interrupts only if buffer allocation is success */
290 	if (!nic->rb_alloc_fail && rbdr->enable)
291 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx);
292 
293 	if (rbdr_idx)
294 		goto refill;
295 }
296 
297 /* Alloc rcv buffers in non-atomic mode for better success */
298 void nicvf_rbdr_work(struct work_struct *work)
299 {
300 	struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work);
301 
302 	nicvf_refill_rbdr(nic, GFP_KERNEL);
303 	if (nic->rb_alloc_fail)
304 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
305 	else
306 		nic->rb_work_scheduled = false;
307 }
308 
309 /* In Softirq context, alloc rcv buffers in atomic mode */
310 void nicvf_rbdr_task(unsigned long data)
311 {
312 	struct nicvf *nic = (struct nicvf *)data;
313 
314 	nicvf_refill_rbdr(nic, GFP_ATOMIC);
315 	if (nic->rb_alloc_fail) {
316 		nic->rb_work_scheduled = true;
317 		schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10));
318 	}
319 }
320 
321 /* Initialize completion queue */
322 static int nicvf_init_cmp_queue(struct nicvf *nic,
323 				struct cmp_queue *cq, int q_len)
324 {
325 	int err;
326 
327 	err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE,
328 				     NICVF_CQ_BASE_ALIGN_BYTES);
329 	if (err)
330 		return err;
331 
332 	cq->desc = cq->dmem.base;
333 	cq->thresh = CMP_QUEUE_CQE_THRESH;
334 	nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1;
335 
336 	return 0;
337 }
338 
339 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq)
340 {
341 	if (!cq)
342 		return;
343 	if (!cq->dmem.base)
344 		return;
345 
346 	nicvf_free_q_desc_mem(nic, &cq->dmem);
347 }
348 
349 /* Initialize transmit queue */
350 static int nicvf_init_snd_queue(struct nicvf *nic,
351 				struct snd_queue *sq, int q_len)
352 {
353 	int err;
354 
355 	err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE,
356 				     NICVF_SQ_BASE_ALIGN_BYTES);
357 	if (err)
358 		return err;
359 
360 	sq->desc = sq->dmem.base;
361 	sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL);
362 	if (!sq->skbuff)
363 		return -ENOMEM;
364 	sq->head = 0;
365 	sq->tail = 0;
366 	atomic_set(&sq->free_cnt, q_len - 1);
367 	sq->thresh = SND_QUEUE_THRESH;
368 
369 	/* Preallocate memory for TSO segment's header */
370 	sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev,
371 					  q_len * TSO_HEADER_SIZE,
372 					  &sq->tso_hdrs_phys, GFP_KERNEL);
373 	if (!sq->tso_hdrs)
374 		return -ENOMEM;
375 
376 	return 0;
377 }
378 
379 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq)
380 {
381 	if (!sq)
382 		return;
383 	if (!sq->dmem.base)
384 		return;
385 
386 	if (sq->tso_hdrs)
387 		dma_free_coherent(&nic->pdev->dev,
388 				  sq->dmem.q_len * TSO_HEADER_SIZE,
389 				  sq->tso_hdrs, sq->tso_hdrs_phys);
390 
391 	kfree(sq->skbuff);
392 	nicvf_free_q_desc_mem(nic, &sq->dmem);
393 }
394 
395 static void nicvf_reclaim_snd_queue(struct nicvf *nic,
396 				    struct queue_set *qs, int qidx)
397 {
398 	/* Disable send queue */
399 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0);
400 	/* Check if SQ is stopped */
401 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01))
402 		return;
403 	/* Reset send queue */
404 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
405 }
406 
407 static void nicvf_reclaim_rcv_queue(struct nicvf *nic,
408 				    struct queue_set *qs, int qidx)
409 {
410 	union nic_mbx mbx = {};
411 
412 	/* Make sure all packets in the pipeline are written back into mem */
413 	mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC;
414 	nicvf_send_msg_to_pf(nic, &mbx);
415 }
416 
417 static void nicvf_reclaim_cmp_queue(struct nicvf *nic,
418 				    struct queue_set *qs, int qidx)
419 {
420 	/* Disable timer threshold (doesn't get reset upon CQ reset */
421 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0);
422 	/* Disable completion queue */
423 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0);
424 	/* Reset completion queue */
425 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
426 }
427 
428 static void nicvf_reclaim_rbdr(struct nicvf *nic,
429 			       struct rbdr *rbdr, int qidx)
430 {
431 	u64 tmp, fifo_state;
432 	int timeout = 10;
433 
434 	/* Save head and tail pointers for feeing up buffers */
435 	rbdr->head = nicvf_queue_reg_read(nic,
436 					  NIC_QSET_RBDR_0_1_HEAD,
437 					  qidx) >> 3;
438 	rbdr->tail = nicvf_queue_reg_read(nic,
439 					  NIC_QSET_RBDR_0_1_TAIL,
440 					  qidx) >> 3;
441 
442 	/* If RBDR FIFO is in 'FAIL' state then do a reset first
443 	 * before relaiming.
444 	 */
445 	fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx);
446 	if (((fifo_state >> 62) & 0x03) == 0x3)
447 		nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
448 				      qidx, NICVF_RBDR_RESET);
449 
450 	/* Disable RBDR */
451 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0);
452 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
453 		return;
454 	while (1) {
455 		tmp = nicvf_queue_reg_read(nic,
456 					   NIC_QSET_RBDR_0_1_PREFETCH_STATUS,
457 					   qidx);
458 		if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF))
459 			break;
460 		usleep_range(1000, 2000);
461 		timeout--;
462 		if (!timeout) {
463 			netdev_err(nic->netdev,
464 				   "Failed polling on prefetch status\n");
465 			return;
466 		}
467 	}
468 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
469 			      qidx, NICVF_RBDR_RESET);
470 
471 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02))
472 		return;
473 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00);
474 	if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00))
475 		return;
476 }
477 
478 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features)
479 {
480 	u64 rq_cfg;
481 	int sqs;
482 
483 	rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0);
484 
485 	/* Enable first VLAN stripping */
486 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
487 		rq_cfg |= (1ULL << 25);
488 	else
489 		rq_cfg &= ~(1ULL << 25);
490 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
491 
492 	/* Configure Secondary Qsets, if any */
493 	for (sqs = 0; sqs < nic->sqs_count; sqs++)
494 		if (nic->snicvf[sqs])
495 			nicvf_queue_reg_write(nic->snicvf[sqs],
496 					      NIC_QSET_RQ_GEN_CFG, 0, rq_cfg);
497 }
498 
499 /* Configures receive queue */
500 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs,
501 				   int qidx, bool enable)
502 {
503 	union nic_mbx mbx = {};
504 	struct rcv_queue *rq;
505 	struct rq_cfg rq_cfg;
506 
507 	rq = &qs->rq[qidx];
508 	rq->enable = enable;
509 
510 	/* Disable receive queue */
511 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0);
512 
513 	if (!rq->enable) {
514 		nicvf_reclaim_rcv_queue(nic, qs, qidx);
515 		return;
516 	}
517 
518 	rq->cq_qs = qs->vnic_id;
519 	rq->cq_idx = qidx;
520 	rq->start_rbdr_qs = qs->vnic_id;
521 	rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1;
522 	rq->cont_rbdr_qs = qs->vnic_id;
523 	rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1;
524 	/* all writes of RBDR data to be loaded into L2 Cache as well*/
525 	rq->caching = 1;
526 
527 	/* Send a mailbox msg to PF to config RQ */
528 	mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG;
529 	mbx.rq.qs_num = qs->vnic_id;
530 	mbx.rq.rq_num = qidx;
531 	mbx.rq.cfg = (rq->caching << 26) | (rq->cq_qs << 19) |
532 			  (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) |
533 			  (rq->cont_qs_rbdr_idx << 8) |
534 			  (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx);
535 	nicvf_send_msg_to_pf(nic, &mbx);
536 
537 	mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG;
538 	mbx.rq.cfg = (1ULL << 63) | (1ULL << 62) | (qs->vnic_id << 0);
539 	nicvf_send_msg_to_pf(nic, &mbx);
540 
541 	/* RQ drop config
542 	 * Enable CQ drop to reserve sufficient CQEs for all tx packets
543 	 */
544 	mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG;
545 	mbx.rq.cfg = (1ULL << 62) | (RQ_CQ_DROP << 8);
546 	nicvf_send_msg_to_pf(nic, &mbx);
547 
548 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 0x00);
549 	if (!nic->sqs_mode)
550 		nicvf_config_vlan_stripping(nic, nic->netdev->features);
551 
552 	/* Enable Receive queue */
553 	rq_cfg.ena = 1;
554 	rq_cfg.tcp_ena = 0;
555 	nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg);
556 }
557 
558 /* Configures completion queue */
559 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs,
560 			    int qidx, bool enable)
561 {
562 	struct cmp_queue *cq;
563 	struct cq_cfg cq_cfg;
564 
565 	cq = &qs->cq[qidx];
566 	cq->enable = enable;
567 
568 	if (!cq->enable) {
569 		nicvf_reclaim_cmp_queue(nic, qs, qidx);
570 		return;
571 	}
572 
573 	/* Reset completion queue */
574 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET);
575 
576 	if (!cq->enable)
577 		return;
578 
579 	spin_lock_init(&cq->lock);
580 	/* Set completion queue base address */
581 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE,
582 			      qidx, (u64)(cq->dmem.phys_base));
583 
584 	/* Enable Completion queue */
585 	cq_cfg.ena = 1;
586 	cq_cfg.reset = 0;
587 	cq_cfg.caching = 0;
588 	cq_cfg.qsize = CMP_QSIZE;
589 	cq_cfg.avg_con = 0;
590 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg);
591 
592 	/* Set threshold value for interrupt generation */
593 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh);
594 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2,
595 			      qidx, nic->cq_coalesce_usecs);
596 }
597 
598 /* Configures transmit queue */
599 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs,
600 				   int qidx, bool enable)
601 {
602 	union nic_mbx mbx = {};
603 	struct snd_queue *sq;
604 	struct sq_cfg sq_cfg;
605 
606 	sq = &qs->sq[qidx];
607 	sq->enable = enable;
608 
609 	if (!sq->enable) {
610 		nicvf_reclaim_snd_queue(nic, qs, qidx);
611 		return;
612 	}
613 
614 	/* Reset send queue */
615 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET);
616 
617 	sq->cq_qs = qs->vnic_id;
618 	sq->cq_idx = qidx;
619 
620 	/* Send a mailbox msg to PF to config SQ */
621 	mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG;
622 	mbx.sq.qs_num = qs->vnic_id;
623 	mbx.sq.sq_num = qidx;
624 	mbx.sq.sqs_mode = nic->sqs_mode;
625 	mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx;
626 	nicvf_send_msg_to_pf(nic, &mbx);
627 
628 	/* Set queue base address */
629 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE,
630 			      qidx, (u64)(sq->dmem.phys_base));
631 
632 	/* Enable send queue  & set queue size */
633 	sq_cfg.ena = 1;
634 	sq_cfg.reset = 0;
635 	sq_cfg.ldwb = 0;
636 	sq_cfg.qsize = SND_QSIZE;
637 	sq_cfg.tstmp_bgx_intf = 0;
638 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg);
639 
640 	/* Set threshold value for interrupt generation */
641 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh);
642 
643 	/* Set queue:cpu affinity for better load distribution */
644 	if (cpu_online(qidx)) {
645 		cpumask_set_cpu(qidx, &sq->affinity_mask);
646 		netif_set_xps_queue(nic->netdev,
647 				    &sq->affinity_mask, qidx);
648 	}
649 }
650 
651 /* Configures receive buffer descriptor ring */
652 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs,
653 			      int qidx, bool enable)
654 {
655 	struct rbdr *rbdr;
656 	struct rbdr_cfg rbdr_cfg;
657 
658 	rbdr = &qs->rbdr[qidx];
659 	nicvf_reclaim_rbdr(nic, rbdr, qidx);
660 	if (!enable)
661 		return;
662 
663 	/* Set descriptor base address */
664 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE,
665 			      qidx, (u64)(rbdr->dmem.phys_base));
666 
667 	/* Enable RBDR  & set queue size */
668 	/* Buffer size should be in multiples of 128 bytes */
669 	rbdr_cfg.ena = 1;
670 	rbdr_cfg.reset = 0;
671 	rbdr_cfg.ldwb = 0;
672 	rbdr_cfg.qsize = RBDR_SIZE;
673 	rbdr_cfg.avg_con = 0;
674 	rbdr_cfg.lines = rbdr->dma_size / 128;
675 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG,
676 			      qidx, *(u64 *)&rbdr_cfg);
677 
678 	/* Notify HW */
679 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR,
680 			      qidx, qs->rbdr_len - 1);
681 
682 	/* Set threshold value for interrupt generation */
683 	nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH,
684 			      qidx, rbdr->thresh - 1);
685 }
686 
687 /* Requests PF to assign and enable Qset */
688 void nicvf_qset_config(struct nicvf *nic, bool enable)
689 {
690 	union nic_mbx mbx = {};
691 	struct queue_set *qs = nic->qs;
692 	struct qs_cfg *qs_cfg;
693 
694 	if (!qs) {
695 		netdev_warn(nic->netdev,
696 			    "Qset is still not allocated, don't init queues\n");
697 		return;
698 	}
699 
700 	qs->enable = enable;
701 	qs->vnic_id = nic->vf_id;
702 
703 	/* Send a mailbox msg to PF to config Qset */
704 	mbx.qs.msg = NIC_MBOX_MSG_QS_CFG;
705 	mbx.qs.num = qs->vnic_id;
706 	mbx.qs.sqs_count = nic->sqs_count;
707 
708 	mbx.qs.cfg = 0;
709 	qs_cfg = (struct qs_cfg *)&mbx.qs.cfg;
710 	if (qs->enable) {
711 		qs_cfg->ena = 1;
712 #ifdef __BIG_ENDIAN
713 		qs_cfg->be = 1;
714 #endif
715 		qs_cfg->vnic = qs->vnic_id;
716 	}
717 	nicvf_send_msg_to_pf(nic, &mbx);
718 }
719 
720 static void nicvf_free_resources(struct nicvf *nic)
721 {
722 	int qidx;
723 	struct queue_set *qs = nic->qs;
724 
725 	/* Free receive buffer descriptor ring */
726 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
727 		nicvf_free_rbdr(nic, &qs->rbdr[qidx]);
728 
729 	/* Free completion queue */
730 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
731 		nicvf_free_cmp_queue(nic, &qs->cq[qidx]);
732 
733 	/* Free send queue */
734 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
735 		nicvf_free_snd_queue(nic, &qs->sq[qidx]);
736 }
737 
738 static int nicvf_alloc_resources(struct nicvf *nic)
739 {
740 	int qidx;
741 	struct queue_set *qs = nic->qs;
742 
743 	/* Alloc receive buffer descriptor ring */
744 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
745 		if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len,
746 				    DMA_BUFFER_LEN))
747 			goto alloc_fail;
748 	}
749 
750 	/* Alloc send queue */
751 	for (qidx = 0; qidx < qs->sq_cnt; qidx++) {
752 		if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len))
753 			goto alloc_fail;
754 	}
755 
756 	/* Alloc completion queue */
757 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
758 		if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len))
759 			goto alloc_fail;
760 	}
761 
762 	return 0;
763 alloc_fail:
764 	nicvf_free_resources(nic);
765 	return -ENOMEM;
766 }
767 
768 int nicvf_set_qset_resources(struct nicvf *nic)
769 {
770 	struct queue_set *qs;
771 
772 	qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL);
773 	if (!qs)
774 		return -ENOMEM;
775 	nic->qs = qs;
776 
777 	/* Set count of each queue */
778 	qs->rbdr_cnt = RBDR_CNT;
779 	qs->rq_cnt = RCV_QUEUE_CNT;
780 	qs->sq_cnt = SND_QUEUE_CNT;
781 	qs->cq_cnt = CMP_QUEUE_CNT;
782 
783 	/* Set queue lengths */
784 	qs->rbdr_len = RCV_BUF_COUNT;
785 	qs->sq_len = SND_QUEUE_LEN;
786 	qs->cq_len = CMP_QUEUE_LEN;
787 
788 	nic->rx_queues = qs->rq_cnt;
789 	nic->tx_queues = qs->sq_cnt;
790 
791 	return 0;
792 }
793 
794 int nicvf_config_data_transfer(struct nicvf *nic, bool enable)
795 {
796 	bool disable = false;
797 	struct queue_set *qs = nic->qs;
798 	int qidx;
799 
800 	if (!qs)
801 		return 0;
802 
803 	if (enable) {
804 		if (nicvf_alloc_resources(nic))
805 			return -ENOMEM;
806 
807 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
808 			nicvf_snd_queue_config(nic, qs, qidx, enable);
809 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
810 			nicvf_cmp_queue_config(nic, qs, qidx, enable);
811 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
812 			nicvf_rbdr_config(nic, qs, qidx, enable);
813 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
814 			nicvf_rcv_queue_config(nic, qs, qidx, enable);
815 	} else {
816 		for (qidx = 0; qidx < qs->rq_cnt; qidx++)
817 			nicvf_rcv_queue_config(nic, qs, qidx, disable);
818 		for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
819 			nicvf_rbdr_config(nic, qs, qidx, disable);
820 		for (qidx = 0; qidx < qs->sq_cnt; qidx++)
821 			nicvf_snd_queue_config(nic, qs, qidx, disable);
822 		for (qidx = 0; qidx < qs->cq_cnt; qidx++)
823 			nicvf_cmp_queue_config(nic, qs, qidx, disable);
824 
825 		nicvf_free_resources(nic);
826 	}
827 
828 	return 0;
829 }
830 
831 /* Get a free desc from SQ
832  * returns descriptor ponter & descriptor number
833  */
834 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt)
835 {
836 	int qentry;
837 
838 	qentry = sq->tail;
839 	atomic_sub(desc_cnt, &sq->free_cnt);
840 	sq->tail += desc_cnt;
841 	sq->tail &= (sq->dmem.q_len - 1);
842 
843 	return qentry;
844 }
845 
846 /* Free descriptor back to SQ for future use */
847 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt)
848 {
849 	atomic_add(desc_cnt, &sq->free_cnt);
850 	sq->head += desc_cnt;
851 	sq->head &= (sq->dmem.q_len - 1);
852 }
853 
854 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry)
855 {
856 	qentry++;
857 	qentry &= (sq->dmem.q_len - 1);
858 	return qentry;
859 }
860 
861 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx)
862 {
863 	u64 sq_cfg;
864 
865 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
866 	sq_cfg |= NICVF_SQ_EN;
867 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
868 	/* Ring doorbell so that H/W restarts processing SQEs */
869 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0);
870 }
871 
872 void nicvf_sq_disable(struct nicvf *nic, int qidx)
873 {
874 	u64 sq_cfg;
875 
876 	sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx);
877 	sq_cfg &= ~NICVF_SQ_EN;
878 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg);
879 }
880 
881 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq,
882 			      int qidx)
883 {
884 	u64 head, tail;
885 	struct sk_buff *skb;
886 	struct nicvf *nic = netdev_priv(netdev);
887 	struct sq_hdr_subdesc *hdr;
888 
889 	head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4;
890 	tail = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_TAIL, qidx) >> 4;
891 	while (sq->head != head) {
892 		hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head);
893 		if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) {
894 			nicvf_put_sq_desc(sq, 1);
895 			continue;
896 		}
897 		skb = (struct sk_buff *)sq->skbuff[sq->head];
898 		if (skb)
899 			dev_kfree_skb_any(skb);
900 		atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets);
901 		atomic64_add(hdr->tot_len,
902 			     (atomic64_t *)&netdev->stats.tx_bytes);
903 		nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1);
904 	}
905 }
906 
907 /* Calculate no of SQ subdescriptors needed to transmit all
908  * segments of this TSO packet.
909  * Taken from 'Tilera network driver' with a minor modification.
910  */
911 static int nicvf_tso_count_subdescs(struct sk_buff *skb)
912 {
913 	struct skb_shared_info *sh = skb_shinfo(skb);
914 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
915 	unsigned int data_len = skb->len - sh_len;
916 	unsigned int p_len = sh->gso_size;
917 	long f_id = -1;    /* id of the current fragment */
918 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
919 	long f_used = 0;  /* bytes used from the current fragment */
920 	long n;            /* size of the current piece of payload */
921 	int num_edescs = 0;
922 	int segment;
923 
924 	for (segment = 0; segment < sh->gso_segs; segment++) {
925 		unsigned int p_used = 0;
926 
927 		/* One edesc for header and for each piece of the payload. */
928 		for (num_edescs++; p_used < p_len; num_edescs++) {
929 			/* Advance as needed. */
930 			while (f_used >= f_size) {
931 				f_id++;
932 				f_size = skb_frag_size(&sh->frags[f_id]);
933 				f_used = 0;
934 			}
935 
936 			/* Use bytes from the current fragment. */
937 			n = p_len - p_used;
938 			if (n > f_size - f_used)
939 				n = f_size - f_used;
940 			f_used += n;
941 			p_used += n;
942 		}
943 
944 		/* The last segment may be less than gso_size. */
945 		data_len -= p_len;
946 		if (data_len < p_len)
947 			p_len = data_len;
948 	}
949 
950 	/* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */
951 	return num_edescs + sh->gso_segs;
952 }
953 
954 /* Get the number of SQ descriptors needed to xmit this skb */
955 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb)
956 {
957 	int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT;
958 
959 	if (skb_shinfo(skb)->gso_size) {
960 		subdesc_cnt = nicvf_tso_count_subdescs(skb);
961 		return subdesc_cnt;
962 	}
963 
964 	if (skb_shinfo(skb)->nr_frags)
965 		subdesc_cnt += skb_shinfo(skb)->nr_frags;
966 
967 	return subdesc_cnt;
968 }
969 
970 /* Add SQ HEADER subdescriptor.
971  * First subdescriptor for every send descriptor.
972  */
973 static inline void
974 nicvf_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry,
975 			 int subdesc_cnt, struct sk_buff *skb, int len)
976 {
977 	int proto;
978 	struct sq_hdr_subdesc *hdr;
979 
980 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry);
981 	sq->skbuff[qentry] = (u64)skb;
982 
983 	memset(hdr, 0, SND_QUEUE_DESC_SIZE);
984 	hdr->subdesc_type = SQ_DESC_TYPE_HEADER;
985 	/* Enable notification via CQE after processing SQE */
986 	hdr->post_cqe = 1;
987 	/* No of subdescriptors following this */
988 	hdr->subdesc_cnt = subdesc_cnt;
989 	hdr->tot_len = len;
990 
991 	/* Offload checksum calculation to HW */
992 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
993 		hdr->csum_l3 = 1; /* Enable IP csum calculation */
994 		hdr->l3_offset = skb_network_offset(skb);
995 		hdr->l4_offset = skb_transport_offset(skb);
996 
997 		proto = ip_hdr(skb)->protocol;
998 		switch (proto) {
999 		case IPPROTO_TCP:
1000 			hdr->csum_l4 = SEND_L4_CSUM_TCP;
1001 			break;
1002 		case IPPROTO_UDP:
1003 			hdr->csum_l4 = SEND_L4_CSUM_UDP;
1004 			break;
1005 		case IPPROTO_SCTP:
1006 			hdr->csum_l4 = SEND_L4_CSUM_SCTP;
1007 			break;
1008 		}
1009 	}
1010 }
1011 
1012 /* SQ GATHER subdescriptor
1013  * Must follow HDR descriptor
1014  */
1015 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry,
1016 					       int size, u64 data)
1017 {
1018 	struct sq_gather_subdesc *gather;
1019 
1020 	qentry &= (sq->dmem.q_len - 1);
1021 	gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry);
1022 
1023 	memset(gather, 0, SND_QUEUE_DESC_SIZE);
1024 	gather->subdesc_type = SQ_DESC_TYPE_GATHER;
1025 	gather->ld_type = NIC_SEND_LD_TYPE_E_LDD;
1026 	gather->size = size;
1027 	gather->addr = data;
1028 }
1029 
1030 /* Segment a TSO packet into 'gso_size' segments and append
1031  * them to SQ for transfer
1032  */
1033 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq,
1034 			       int sq_num, int qentry, struct sk_buff *skb)
1035 {
1036 	struct tso_t tso;
1037 	int seg_subdescs = 0, desc_cnt = 0;
1038 	int seg_len, total_len, data_left;
1039 	int hdr_qentry = qentry;
1040 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1041 
1042 	tso_start(skb, &tso);
1043 	total_len = skb->len - hdr_len;
1044 	while (total_len > 0) {
1045 		char *hdr;
1046 
1047 		/* Save Qentry for adding HDR_SUBDESC at the end */
1048 		hdr_qentry = qentry;
1049 
1050 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1051 		total_len -= data_left;
1052 
1053 		/* Add segment's header */
1054 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1055 		hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE;
1056 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1057 		nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len,
1058 					    sq->tso_hdrs_phys +
1059 					    qentry * TSO_HEADER_SIZE);
1060 		/* HDR_SUDESC + GATHER */
1061 		seg_subdescs = 2;
1062 		seg_len = hdr_len;
1063 
1064 		/* Add segment's payload fragments */
1065 		while (data_left > 0) {
1066 			int size;
1067 
1068 			size = min_t(int, tso.size, data_left);
1069 
1070 			qentry = nicvf_get_nxt_sqentry(sq, qentry);
1071 			nicvf_sq_add_gather_subdesc(sq, qentry, size,
1072 						    virt_to_phys(tso.data));
1073 			seg_subdescs++;
1074 			seg_len += size;
1075 
1076 			data_left -= size;
1077 			tso_build_data(skb, &tso, size);
1078 		}
1079 		nicvf_sq_add_hdr_subdesc(sq, hdr_qentry,
1080 					 seg_subdescs - 1, skb, seg_len);
1081 		sq->skbuff[hdr_qentry] = (u64)NULL;
1082 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1083 
1084 		desc_cnt += seg_subdescs;
1085 	}
1086 	/* Save SKB in the last segment for freeing */
1087 	sq->skbuff[hdr_qentry] = (u64)skb;
1088 
1089 	/* make sure all memory stores are done before ringing doorbell */
1090 	smp_wmb();
1091 
1092 	/* Inform HW to xmit all TSO segments */
1093 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1094 			      sq_num, desc_cnt);
1095 	nic->drv_stats.tx_tso++;
1096 	return 1;
1097 }
1098 
1099 /* Append an skb to a SQ for packet transfer. */
1100 int nicvf_sq_append_skb(struct nicvf *nic, struct sk_buff *skb)
1101 {
1102 	int i, size;
1103 	int subdesc_cnt;
1104 	int sq_num, qentry;
1105 	struct queue_set *qs;
1106 	struct snd_queue *sq;
1107 
1108 	sq_num = skb_get_queue_mapping(skb);
1109 	if (sq_num >= MAX_SND_QUEUES_PER_QS) {
1110 		/* Get secondary Qset's SQ structure */
1111 		i = sq_num / MAX_SND_QUEUES_PER_QS;
1112 		if (!nic->snicvf[i - 1]) {
1113 			netdev_warn(nic->netdev,
1114 				    "Secondary Qset#%d's ptr not initialized\n",
1115 				    i - 1);
1116 			return 1;
1117 		}
1118 		nic = (struct nicvf *)nic->snicvf[i - 1];
1119 		sq_num = sq_num % MAX_SND_QUEUES_PER_QS;
1120 	}
1121 
1122 	qs = nic->qs;
1123 	sq = &qs->sq[sq_num];
1124 
1125 	subdesc_cnt = nicvf_sq_subdesc_required(nic, skb);
1126 	if (subdesc_cnt > atomic_read(&sq->free_cnt))
1127 		goto append_fail;
1128 
1129 	qentry = nicvf_get_sq_desc(sq, subdesc_cnt);
1130 
1131 	/* Check if its a TSO packet */
1132 	if (skb_shinfo(skb)->gso_size)
1133 		return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb);
1134 
1135 	/* Add SQ header subdesc */
1136 	nicvf_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, skb, skb->len);
1137 
1138 	/* Add SQ gather subdescs */
1139 	qentry = nicvf_get_nxt_sqentry(sq, qentry);
1140 	size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
1141 	nicvf_sq_add_gather_subdesc(sq, qentry, size, virt_to_phys(skb->data));
1142 
1143 	/* Check for scattered buffer */
1144 	if (!skb_is_nonlinear(skb))
1145 		goto doorbell;
1146 
1147 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1148 		const struct skb_frag_struct *frag;
1149 
1150 		frag = &skb_shinfo(skb)->frags[i];
1151 
1152 		qentry = nicvf_get_nxt_sqentry(sq, qentry);
1153 		size = skb_frag_size(frag);
1154 		nicvf_sq_add_gather_subdesc(sq, qentry, size,
1155 					    virt_to_phys(
1156 					    skb_frag_address(frag)));
1157 	}
1158 
1159 doorbell:
1160 	/* make sure all memory stores are done before ringing doorbell */
1161 	smp_wmb();
1162 
1163 	/* Inform HW to xmit new packet */
1164 	nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR,
1165 			      sq_num, subdesc_cnt);
1166 	return 1;
1167 
1168 append_fail:
1169 	/* Use original PCI dev for debug log */
1170 	nic = nic->pnicvf;
1171 	netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n");
1172 	return 0;
1173 }
1174 
1175 static inline unsigned frag_num(unsigned i)
1176 {
1177 #ifdef __BIG_ENDIAN
1178 	return (i & ~3) + 3 - (i & 3);
1179 #else
1180 	return i;
1181 #endif
1182 }
1183 
1184 /* Returns SKB for a received packet */
1185 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, struct cqe_rx_t *cqe_rx)
1186 {
1187 	int frag;
1188 	int payload_len = 0;
1189 	struct sk_buff *skb = NULL;
1190 	struct sk_buff *skb_frag = NULL;
1191 	struct sk_buff *prev_frag = NULL;
1192 	u16 *rb_lens = NULL;
1193 	u64 *rb_ptrs = NULL;
1194 
1195 	rb_lens = (void *)cqe_rx + (3 * sizeof(u64));
1196 	rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64));
1197 
1198 	netdev_dbg(nic->netdev, "%s rb_cnt %d rb0_ptr %llx rb0_sz %d\n",
1199 		   __func__, cqe_rx->rb_cnt, cqe_rx->rb0_ptr, cqe_rx->rb0_sz);
1200 
1201 	for (frag = 0; frag < cqe_rx->rb_cnt; frag++) {
1202 		payload_len = rb_lens[frag_num(frag)];
1203 		if (!frag) {
1204 			/* First fragment */
1205 			skb = nicvf_rb_ptr_to_skb(nic,
1206 						  *rb_ptrs - cqe_rx->align_pad,
1207 						  payload_len);
1208 			if (!skb)
1209 				return NULL;
1210 			skb_reserve(skb, cqe_rx->align_pad);
1211 			skb_put(skb, payload_len);
1212 		} else {
1213 			/* Add fragments */
1214 			skb_frag = nicvf_rb_ptr_to_skb(nic, *rb_ptrs,
1215 						       payload_len);
1216 			if (!skb_frag) {
1217 				dev_kfree_skb(skb);
1218 				return NULL;
1219 			}
1220 
1221 			if (!skb_shinfo(skb)->frag_list)
1222 				skb_shinfo(skb)->frag_list = skb_frag;
1223 			else
1224 				prev_frag->next = skb_frag;
1225 
1226 			prev_frag = skb_frag;
1227 			skb->len += payload_len;
1228 			skb->data_len += payload_len;
1229 			skb_frag->len = payload_len;
1230 		}
1231 		/* Next buffer pointer */
1232 		rb_ptrs++;
1233 	}
1234 	return skb;
1235 }
1236 
1237 /* Enable interrupt */
1238 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx)
1239 {
1240 	u64 reg_val;
1241 
1242 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1243 
1244 	switch (int_type) {
1245 	case NICVF_INTR_CQ:
1246 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1247 		break;
1248 	case NICVF_INTR_SQ:
1249 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1250 		break;
1251 	case NICVF_INTR_RBDR:
1252 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1253 		break;
1254 	case NICVF_INTR_PKT_DROP:
1255 		reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1256 		break;
1257 	case NICVF_INTR_TCP_TIMER:
1258 		reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1259 		break;
1260 	case NICVF_INTR_MBOX:
1261 		reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1262 		break;
1263 	case NICVF_INTR_QS_ERR:
1264 		reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1265 		break;
1266 	default:
1267 		netdev_err(nic->netdev,
1268 			   "Failed to enable interrupt: unknown type\n");
1269 		break;
1270 	}
1271 
1272 	nicvf_reg_write(nic, NIC_VF_ENA_W1S, reg_val);
1273 }
1274 
1275 /* Disable interrupt */
1276 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx)
1277 {
1278 	u64 reg_val = 0;
1279 
1280 	switch (int_type) {
1281 	case NICVF_INTR_CQ:
1282 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1283 		break;
1284 	case NICVF_INTR_SQ:
1285 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1286 		break;
1287 	case NICVF_INTR_RBDR:
1288 		reg_val |= ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1289 		break;
1290 	case NICVF_INTR_PKT_DROP:
1291 		reg_val |= (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1292 		break;
1293 	case NICVF_INTR_TCP_TIMER:
1294 		reg_val |= (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1295 		break;
1296 	case NICVF_INTR_MBOX:
1297 		reg_val |= (1ULL << NICVF_INTR_MBOX_SHIFT);
1298 		break;
1299 	case NICVF_INTR_QS_ERR:
1300 		reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1301 		break;
1302 	default:
1303 		netdev_err(nic->netdev,
1304 			   "Failed to disable interrupt: unknown type\n");
1305 		break;
1306 	}
1307 
1308 	nicvf_reg_write(nic, NIC_VF_ENA_W1C, reg_val);
1309 }
1310 
1311 /* Clear interrupt */
1312 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx)
1313 {
1314 	u64 reg_val = 0;
1315 
1316 	switch (int_type) {
1317 	case NICVF_INTR_CQ:
1318 		reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1319 		break;
1320 	case NICVF_INTR_SQ:
1321 		reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1322 		break;
1323 	case NICVF_INTR_RBDR:
1324 		reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1325 		break;
1326 	case NICVF_INTR_PKT_DROP:
1327 		reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT);
1328 		break;
1329 	case NICVF_INTR_TCP_TIMER:
1330 		reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT);
1331 		break;
1332 	case NICVF_INTR_MBOX:
1333 		reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT);
1334 		break;
1335 	case NICVF_INTR_QS_ERR:
1336 		reg_val |= (1ULL << NICVF_INTR_QS_ERR_SHIFT);
1337 		break;
1338 	default:
1339 		netdev_err(nic->netdev,
1340 			   "Failed to clear interrupt: unknown type\n");
1341 		break;
1342 	}
1343 
1344 	nicvf_reg_write(nic, NIC_VF_INT, reg_val);
1345 }
1346 
1347 /* Check if interrupt is enabled */
1348 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx)
1349 {
1350 	u64 reg_val;
1351 	u64 mask = 0xff;
1352 
1353 	reg_val = nicvf_reg_read(nic, NIC_VF_ENA_W1S);
1354 
1355 	switch (int_type) {
1356 	case NICVF_INTR_CQ:
1357 		mask = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT);
1358 		break;
1359 	case NICVF_INTR_SQ:
1360 		mask = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT);
1361 		break;
1362 	case NICVF_INTR_RBDR:
1363 		mask = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT);
1364 		break;
1365 	case NICVF_INTR_PKT_DROP:
1366 		mask = NICVF_INTR_PKT_DROP_MASK;
1367 		break;
1368 	case NICVF_INTR_TCP_TIMER:
1369 		mask = NICVF_INTR_TCP_TIMER_MASK;
1370 		break;
1371 	case NICVF_INTR_MBOX:
1372 		mask = NICVF_INTR_MBOX_MASK;
1373 		break;
1374 	case NICVF_INTR_QS_ERR:
1375 		mask = NICVF_INTR_QS_ERR_MASK;
1376 		break;
1377 	default:
1378 		netdev_err(nic->netdev,
1379 			   "Failed to check interrupt enable: unknown type\n");
1380 		break;
1381 	}
1382 
1383 	return (reg_val & mask);
1384 }
1385 
1386 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx)
1387 {
1388 	struct rcv_queue *rq;
1389 
1390 #define GET_RQ_STATS(reg) \
1391 	nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\
1392 			    (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1393 
1394 	rq = &nic->qs->rq[rq_idx];
1395 	rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS);
1396 	rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS);
1397 }
1398 
1399 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx)
1400 {
1401 	struct snd_queue *sq;
1402 
1403 #define GET_SQ_STATS(reg) \
1404 	nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\
1405 			    (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3))
1406 
1407 	sq = &nic->qs->sq[sq_idx];
1408 	sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS);
1409 	sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS);
1410 }
1411 
1412 /* Check for errors in the receive cmp.queue entry */
1413 int nicvf_check_cqe_rx_errs(struct nicvf *nic,
1414 			    struct cmp_queue *cq, struct cqe_rx_t *cqe_rx)
1415 {
1416 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1417 	struct nicvf_drv_stats *drv_stats = &nic->drv_stats;
1418 
1419 	if (!cqe_rx->err_level && !cqe_rx->err_opcode) {
1420 		drv_stats->rx_frames_ok++;
1421 		return 0;
1422 	}
1423 
1424 	if (netif_msg_rx_err(nic))
1425 		netdev_err(nic->netdev,
1426 			   "%s: RX error CQE err_level 0x%x err_opcode 0x%x\n",
1427 			   nic->netdev->name,
1428 			   cqe_rx->err_level, cqe_rx->err_opcode);
1429 
1430 	switch (cqe_rx->err_opcode) {
1431 	case CQ_RX_ERROP_RE_PARTIAL:
1432 		stats->rx_bgx_truncated_pkts++;
1433 		break;
1434 	case CQ_RX_ERROP_RE_JABBER:
1435 		stats->rx_jabber_errs++;
1436 		break;
1437 	case CQ_RX_ERROP_RE_FCS:
1438 		stats->rx_fcs_errs++;
1439 		break;
1440 	case CQ_RX_ERROP_RE_RX_CTL:
1441 		stats->rx_bgx_errs++;
1442 		break;
1443 	case CQ_RX_ERROP_PREL2_ERR:
1444 		stats->rx_prel2_errs++;
1445 		break;
1446 	case CQ_RX_ERROP_L2_MAL:
1447 		stats->rx_l2_hdr_malformed++;
1448 		break;
1449 	case CQ_RX_ERROP_L2_OVERSIZE:
1450 		stats->rx_oversize++;
1451 		break;
1452 	case CQ_RX_ERROP_L2_UNDERSIZE:
1453 		stats->rx_undersize++;
1454 		break;
1455 	case CQ_RX_ERROP_L2_LENMISM:
1456 		stats->rx_l2_len_mismatch++;
1457 		break;
1458 	case CQ_RX_ERROP_L2_PCLP:
1459 		stats->rx_l2_pclp++;
1460 		break;
1461 	case CQ_RX_ERROP_IP_NOT:
1462 		stats->rx_ip_ver_errs++;
1463 		break;
1464 	case CQ_RX_ERROP_IP_CSUM_ERR:
1465 		stats->rx_ip_csum_errs++;
1466 		break;
1467 	case CQ_RX_ERROP_IP_MAL:
1468 		stats->rx_ip_hdr_malformed++;
1469 		break;
1470 	case CQ_RX_ERROP_IP_MALD:
1471 		stats->rx_ip_payload_malformed++;
1472 		break;
1473 	case CQ_RX_ERROP_IP_HOP:
1474 		stats->rx_ip_ttl_errs++;
1475 		break;
1476 	case CQ_RX_ERROP_L3_PCLP:
1477 		stats->rx_l3_pclp++;
1478 		break;
1479 	case CQ_RX_ERROP_L4_MAL:
1480 		stats->rx_l4_malformed++;
1481 		break;
1482 	case CQ_RX_ERROP_L4_CHK:
1483 		stats->rx_l4_csum_errs++;
1484 		break;
1485 	case CQ_RX_ERROP_UDP_LEN:
1486 		stats->rx_udp_len_errs++;
1487 		break;
1488 	case CQ_RX_ERROP_L4_PORT:
1489 		stats->rx_l4_port_errs++;
1490 		break;
1491 	case CQ_RX_ERROP_TCP_FLAG:
1492 		stats->rx_tcp_flag_errs++;
1493 		break;
1494 	case CQ_RX_ERROP_TCP_OFFSET:
1495 		stats->rx_tcp_offset_errs++;
1496 		break;
1497 	case CQ_RX_ERROP_L4_PCLP:
1498 		stats->rx_l4_pclp++;
1499 		break;
1500 	case CQ_RX_ERROP_RBDR_TRUNC:
1501 		stats->rx_truncated_pkts++;
1502 		break;
1503 	}
1504 
1505 	return 1;
1506 }
1507 
1508 /* Check for errors in the send cmp.queue entry */
1509 int nicvf_check_cqe_tx_errs(struct nicvf *nic,
1510 			    struct cmp_queue *cq, struct cqe_send_t *cqe_tx)
1511 {
1512 	struct cmp_queue_stats *stats = &cq->stats;
1513 
1514 	switch (cqe_tx->send_status) {
1515 	case CQ_TX_ERROP_GOOD:
1516 		stats->tx.good++;
1517 		return 0;
1518 	case CQ_TX_ERROP_DESC_FAULT:
1519 		stats->tx.desc_fault++;
1520 		break;
1521 	case CQ_TX_ERROP_HDR_CONS_ERR:
1522 		stats->tx.hdr_cons_err++;
1523 		break;
1524 	case CQ_TX_ERROP_SUBDC_ERR:
1525 		stats->tx.subdesc_err++;
1526 		break;
1527 	case CQ_TX_ERROP_IMM_SIZE_OFLOW:
1528 		stats->tx.imm_size_oflow++;
1529 		break;
1530 	case CQ_TX_ERROP_DATA_SEQUENCE_ERR:
1531 		stats->tx.data_seq_err++;
1532 		break;
1533 	case CQ_TX_ERROP_MEM_SEQUENCE_ERR:
1534 		stats->tx.mem_seq_err++;
1535 		break;
1536 	case CQ_TX_ERROP_LOCK_VIOL:
1537 		stats->tx.lock_viol++;
1538 		break;
1539 	case CQ_TX_ERROP_DATA_FAULT:
1540 		stats->tx.data_fault++;
1541 		break;
1542 	case CQ_TX_ERROP_TSTMP_CONFLICT:
1543 		stats->tx.tstmp_conflict++;
1544 		break;
1545 	case CQ_TX_ERROP_TSTMP_TIMEOUT:
1546 		stats->tx.tstmp_timeout++;
1547 		break;
1548 	case CQ_TX_ERROP_MEM_FAULT:
1549 		stats->tx.mem_fault++;
1550 		break;
1551 	case CQ_TX_ERROP_CK_OVERLAP:
1552 		stats->tx.csum_overlap++;
1553 		break;
1554 	case CQ_TX_ERROP_CK_OFLOW:
1555 		stats->tx.csum_overflow++;
1556 		break;
1557 	}
1558 
1559 	return 1;
1560 }
1561