1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Cavium, Inc. 4 */ 5 6 #include <linux/pci.h> 7 #include <linux/netdevice.h> 8 #include <linux/ip.h> 9 #include <linux/etherdevice.h> 10 #include <linux/iommu.h> 11 #include <net/ip.h> 12 #include <net/tso.h> 13 #include <uapi/linux/bpf.h> 14 15 #include "nic_reg.h" 16 #include "nic.h" 17 #include "q_struct.h" 18 #include "nicvf_queues.h" 19 20 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry, 21 int size, u64 data); 22 static void nicvf_get_page(struct nicvf *nic) 23 { 24 if (!nic->rb_pageref || !nic->rb_page) 25 return; 26 27 page_ref_add(nic->rb_page, nic->rb_pageref); 28 nic->rb_pageref = 0; 29 } 30 31 /* Poll a register for a specific value */ 32 static int nicvf_poll_reg(struct nicvf *nic, int qidx, 33 u64 reg, int bit_pos, int bits, int val) 34 { 35 u64 bit_mask; 36 u64 reg_val; 37 int timeout = 10; 38 39 bit_mask = (1ULL << bits) - 1; 40 bit_mask = (bit_mask << bit_pos); 41 42 while (timeout) { 43 reg_val = nicvf_queue_reg_read(nic, reg, qidx); 44 if (((reg_val & bit_mask) >> bit_pos) == val) 45 return 0; 46 usleep_range(1000, 2000); 47 timeout--; 48 } 49 netdev_err(nic->netdev, "Poll on reg 0x%llx failed\n", reg); 50 return 1; 51 } 52 53 /* Allocate memory for a queue's descriptors */ 54 static int nicvf_alloc_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem, 55 int q_len, int desc_size, int align_bytes) 56 { 57 dmem->q_len = q_len; 58 dmem->size = (desc_size * q_len) + align_bytes; 59 /* Save address, need it while freeing */ 60 dmem->unalign_base = dma_alloc_coherent(&nic->pdev->dev, dmem->size, 61 &dmem->dma, GFP_KERNEL); 62 if (!dmem->unalign_base) 63 return -ENOMEM; 64 65 /* Align memory address for 'align_bytes' */ 66 dmem->phys_base = NICVF_ALIGNED_ADDR((u64)dmem->dma, align_bytes); 67 dmem->base = dmem->unalign_base + (dmem->phys_base - dmem->dma); 68 return 0; 69 } 70 71 /* Free queue's descriptor memory */ 72 static void nicvf_free_q_desc_mem(struct nicvf *nic, struct q_desc_mem *dmem) 73 { 74 if (!dmem) 75 return; 76 77 dma_free_coherent(&nic->pdev->dev, dmem->size, 78 dmem->unalign_base, dmem->dma); 79 dmem->unalign_base = NULL; 80 dmem->base = NULL; 81 } 82 83 #define XDP_PAGE_REFCNT_REFILL 256 84 85 /* Allocate a new page or recycle one if possible 86 * 87 * We cannot optimize dma mapping here, since 88 * 1. It's only one RBDR ring for 8 Rx queues. 89 * 2. CQE_RX gives address of the buffer where pkt has been DMA'ed 90 * and not idx into RBDR ring, so can't refer to saved info. 91 * 3. There are multiple receive buffers per page 92 */ 93 static inline struct pgcache *nicvf_alloc_page(struct nicvf *nic, 94 struct rbdr *rbdr, gfp_t gfp) 95 { 96 int ref_count; 97 struct page *page = NULL; 98 struct pgcache *pgcache, *next; 99 100 /* Check if page is already allocated */ 101 pgcache = &rbdr->pgcache[rbdr->pgidx]; 102 page = pgcache->page; 103 /* Check if page can be recycled */ 104 if (page) { 105 ref_count = page_ref_count(page); 106 /* This page can be recycled if internal ref_count and page's 107 * ref_count are equal, indicating that the page has been used 108 * once for packet transmission. For non-XDP mode, internal 109 * ref_count is always '1'. 110 */ 111 if (rbdr->is_xdp) { 112 if (ref_count == pgcache->ref_count) 113 pgcache->ref_count--; 114 else 115 page = NULL; 116 } else if (ref_count != 1) { 117 page = NULL; 118 } 119 } 120 121 if (!page) { 122 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 0); 123 if (!page) 124 return NULL; 125 126 this_cpu_inc(nic->pnicvf->drv_stats->page_alloc); 127 128 /* Check for space */ 129 if (rbdr->pgalloc >= rbdr->pgcnt) { 130 /* Page can still be used */ 131 nic->rb_page = page; 132 return NULL; 133 } 134 135 /* Save the page in page cache */ 136 pgcache->page = page; 137 pgcache->dma_addr = 0; 138 pgcache->ref_count = 0; 139 rbdr->pgalloc++; 140 } 141 142 /* Take additional page references for recycling */ 143 if (rbdr->is_xdp) { 144 /* Since there is single RBDR (i.e single core doing 145 * page recycling) per 8 Rx queues, in XDP mode adjusting 146 * page references atomically is the biggest bottleneck, so 147 * take bunch of references at a time. 148 * 149 * So here, below reference counts defer by '1'. 150 */ 151 if (!pgcache->ref_count) { 152 pgcache->ref_count = XDP_PAGE_REFCNT_REFILL; 153 page_ref_add(page, XDP_PAGE_REFCNT_REFILL); 154 } 155 } else { 156 /* In non-XDP case, single 64K page is divided across multiple 157 * receive buffers, so cost of recycling is less anyway. 158 * So we can do with just one extra reference. 159 */ 160 page_ref_add(page, 1); 161 } 162 163 rbdr->pgidx++; 164 rbdr->pgidx &= (rbdr->pgcnt - 1); 165 166 /* Prefetch refcount of next page in page cache */ 167 next = &rbdr->pgcache[rbdr->pgidx]; 168 page = next->page; 169 if (page) 170 prefetch(&page->_refcount); 171 172 return pgcache; 173 } 174 175 /* Allocate buffer for packet reception */ 176 static inline int nicvf_alloc_rcv_buffer(struct nicvf *nic, struct rbdr *rbdr, 177 gfp_t gfp, u32 buf_len, u64 *rbuf) 178 { 179 struct pgcache *pgcache = NULL; 180 181 /* Check if request can be accomodated in previous allocated page. 182 * But in XDP mode only one buffer per page is permitted. 183 */ 184 if (!rbdr->is_xdp && nic->rb_page && 185 ((nic->rb_page_offset + buf_len) <= PAGE_SIZE)) { 186 nic->rb_pageref++; 187 goto ret; 188 } 189 190 nicvf_get_page(nic); 191 nic->rb_page = NULL; 192 193 /* Get new page, either recycled or new one */ 194 pgcache = nicvf_alloc_page(nic, rbdr, gfp); 195 if (!pgcache && !nic->rb_page) { 196 this_cpu_inc(nic->pnicvf->drv_stats->rcv_buffer_alloc_failures); 197 return -ENOMEM; 198 } 199 200 nic->rb_page_offset = 0; 201 202 /* Reserve space for header modifications by BPF program */ 203 if (rbdr->is_xdp) 204 buf_len += XDP_PACKET_HEADROOM; 205 206 /* Check if it's recycled */ 207 if (pgcache) 208 nic->rb_page = pgcache->page; 209 ret: 210 if (rbdr->is_xdp && pgcache && pgcache->dma_addr) { 211 *rbuf = pgcache->dma_addr; 212 } else { 213 /* HW will ensure data coherency, CPU sync not required */ 214 *rbuf = (u64)dma_map_page_attrs(&nic->pdev->dev, nic->rb_page, 215 nic->rb_page_offset, buf_len, 216 DMA_FROM_DEVICE, 217 DMA_ATTR_SKIP_CPU_SYNC); 218 if (dma_mapping_error(&nic->pdev->dev, (dma_addr_t)*rbuf)) { 219 if (!nic->rb_page_offset) 220 __free_pages(nic->rb_page, 0); 221 nic->rb_page = NULL; 222 return -ENOMEM; 223 } 224 if (pgcache) 225 pgcache->dma_addr = *rbuf + XDP_PACKET_HEADROOM; 226 nic->rb_page_offset += buf_len; 227 } 228 229 return 0; 230 } 231 232 /* Build skb around receive buffer */ 233 static struct sk_buff *nicvf_rb_ptr_to_skb(struct nicvf *nic, 234 u64 rb_ptr, int len) 235 { 236 void *data; 237 struct sk_buff *skb; 238 239 data = phys_to_virt(rb_ptr); 240 241 /* Now build an skb to give to stack */ 242 skb = build_skb(data, RCV_FRAG_LEN); 243 if (!skb) { 244 put_page(virt_to_page(data)); 245 return NULL; 246 } 247 248 prefetch(skb->data); 249 return skb; 250 } 251 252 /* Allocate RBDR ring and populate receive buffers */ 253 static int nicvf_init_rbdr(struct nicvf *nic, struct rbdr *rbdr, 254 int ring_len, int buf_size) 255 { 256 int idx; 257 u64 rbuf; 258 struct rbdr_entry_t *desc; 259 int err; 260 261 err = nicvf_alloc_q_desc_mem(nic, &rbdr->dmem, ring_len, 262 sizeof(struct rbdr_entry_t), 263 NICVF_RCV_BUF_ALIGN_BYTES); 264 if (err) 265 return err; 266 267 rbdr->desc = rbdr->dmem.base; 268 /* Buffer size has to be in multiples of 128 bytes */ 269 rbdr->dma_size = buf_size; 270 rbdr->enable = true; 271 rbdr->thresh = RBDR_THRESH; 272 rbdr->head = 0; 273 rbdr->tail = 0; 274 275 /* Initialize page recycling stuff. 276 * 277 * Can't use single buffer per page especially with 64K pages. 278 * On embedded platforms i.e 81xx/83xx available memory itself 279 * is low and minimum ring size of RBDR is 8K, that takes away 280 * lots of memory. 281 * 282 * But for XDP it has to be a single buffer per page. 283 */ 284 if (!nic->pnicvf->xdp_prog) { 285 rbdr->pgcnt = ring_len / (PAGE_SIZE / buf_size); 286 rbdr->is_xdp = false; 287 } else { 288 rbdr->pgcnt = ring_len; 289 rbdr->is_xdp = true; 290 } 291 rbdr->pgcnt = roundup_pow_of_two(rbdr->pgcnt); 292 rbdr->pgcache = kcalloc(rbdr->pgcnt, sizeof(*rbdr->pgcache), 293 GFP_KERNEL); 294 if (!rbdr->pgcache) 295 return -ENOMEM; 296 rbdr->pgidx = 0; 297 rbdr->pgalloc = 0; 298 299 nic->rb_page = NULL; 300 for (idx = 0; idx < ring_len; idx++) { 301 err = nicvf_alloc_rcv_buffer(nic, rbdr, GFP_KERNEL, 302 RCV_FRAG_LEN, &rbuf); 303 if (err) { 304 /* To free already allocated and mapped ones */ 305 rbdr->tail = idx - 1; 306 return err; 307 } 308 309 desc = GET_RBDR_DESC(rbdr, idx); 310 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1); 311 } 312 313 nicvf_get_page(nic); 314 315 return 0; 316 } 317 318 /* Free RBDR ring and its receive buffers */ 319 static void nicvf_free_rbdr(struct nicvf *nic, struct rbdr *rbdr) 320 { 321 int head, tail; 322 u64 buf_addr, phys_addr; 323 struct pgcache *pgcache; 324 struct rbdr_entry_t *desc; 325 326 if (!rbdr) 327 return; 328 329 rbdr->enable = false; 330 if (!rbdr->dmem.base) 331 return; 332 333 head = rbdr->head; 334 tail = rbdr->tail; 335 336 /* Release page references */ 337 while (head != tail) { 338 desc = GET_RBDR_DESC(rbdr, head); 339 buf_addr = desc->buf_addr; 340 phys_addr = nicvf_iova_to_phys(nic, buf_addr); 341 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN, 342 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 343 if (phys_addr) 344 put_page(virt_to_page(phys_to_virt(phys_addr))); 345 head++; 346 head &= (rbdr->dmem.q_len - 1); 347 } 348 /* Release buffer of tail desc */ 349 desc = GET_RBDR_DESC(rbdr, tail); 350 buf_addr = desc->buf_addr; 351 phys_addr = nicvf_iova_to_phys(nic, buf_addr); 352 dma_unmap_page_attrs(&nic->pdev->dev, buf_addr, RCV_FRAG_LEN, 353 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 354 if (phys_addr) 355 put_page(virt_to_page(phys_to_virt(phys_addr))); 356 357 /* Sync page cache info */ 358 smp_rmb(); 359 360 /* Release additional page references held for recycling */ 361 head = 0; 362 while (head < rbdr->pgcnt) { 363 pgcache = &rbdr->pgcache[head]; 364 if (pgcache->page && page_ref_count(pgcache->page) != 0) { 365 if (rbdr->is_xdp) { 366 page_ref_sub(pgcache->page, 367 pgcache->ref_count - 1); 368 } 369 put_page(pgcache->page); 370 } 371 head++; 372 } 373 374 /* Free RBDR ring */ 375 nicvf_free_q_desc_mem(nic, &rbdr->dmem); 376 } 377 378 /* Refill receive buffer descriptors with new buffers. 379 */ 380 static void nicvf_refill_rbdr(struct nicvf *nic, gfp_t gfp) 381 { 382 struct queue_set *qs = nic->qs; 383 int rbdr_idx = qs->rbdr_cnt; 384 int tail, qcount; 385 int refill_rb_cnt; 386 struct rbdr *rbdr; 387 struct rbdr_entry_t *desc; 388 u64 rbuf; 389 int new_rb = 0; 390 391 refill: 392 if (!rbdr_idx) 393 return; 394 rbdr_idx--; 395 rbdr = &qs->rbdr[rbdr_idx]; 396 /* Check if it's enabled */ 397 if (!rbdr->enable) 398 goto next_rbdr; 399 400 /* Get no of desc's to be refilled */ 401 qcount = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, rbdr_idx); 402 qcount &= 0x7FFFF; 403 /* Doorbell can be ringed with a max of ring size minus 1 */ 404 if (qcount >= (qs->rbdr_len - 1)) 405 goto next_rbdr; 406 else 407 refill_rb_cnt = qs->rbdr_len - qcount - 1; 408 409 /* Sync page cache info */ 410 smp_rmb(); 411 412 /* Start filling descs from tail */ 413 tail = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_TAIL, rbdr_idx) >> 3; 414 while (refill_rb_cnt) { 415 tail++; 416 tail &= (rbdr->dmem.q_len - 1); 417 418 if (nicvf_alloc_rcv_buffer(nic, rbdr, gfp, RCV_FRAG_LEN, &rbuf)) 419 break; 420 421 desc = GET_RBDR_DESC(rbdr, tail); 422 desc->buf_addr = rbuf & ~(NICVF_RCV_BUF_ALIGN_BYTES - 1); 423 refill_rb_cnt--; 424 new_rb++; 425 } 426 427 nicvf_get_page(nic); 428 429 /* make sure all memory stores are done before ringing doorbell */ 430 smp_wmb(); 431 432 /* Check if buffer allocation failed */ 433 if (refill_rb_cnt) 434 nic->rb_alloc_fail = true; 435 else 436 nic->rb_alloc_fail = false; 437 438 /* Notify HW */ 439 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, 440 rbdr_idx, new_rb); 441 next_rbdr: 442 /* Re-enable RBDR interrupts only if buffer allocation is success */ 443 if (!nic->rb_alloc_fail && rbdr->enable && 444 netif_running(nic->pnicvf->netdev)) 445 nicvf_enable_intr(nic, NICVF_INTR_RBDR, rbdr_idx); 446 447 if (rbdr_idx) 448 goto refill; 449 } 450 451 /* Alloc rcv buffers in non-atomic mode for better success */ 452 void nicvf_rbdr_work(struct work_struct *work) 453 { 454 struct nicvf *nic = container_of(work, struct nicvf, rbdr_work.work); 455 456 nicvf_refill_rbdr(nic, GFP_KERNEL); 457 if (nic->rb_alloc_fail) 458 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10)); 459 else 460 nic->rb_work_scheduled = false; 461 } 462 463 /* In Softirq context, alloc rcv buffers in atomic mode */ 464 void nicvf_rbdr_task(struct tasklet_struct *t) 465 { 466 struct nicvf *nic = from_tasklet(nic, t, rbdr_task); 467 468 nicvf_refill_rbdr(nic, GFP_ATOMIC); 469 if (nic->rb_alloc_fail) { 470 nic->rb_work_scheduled = true; 471 schedule_delayed_work(&nic->rbdr_work, msecs_to_jiffies(10)); 472 } 473 } 474 475 /* Initialize completion queue */ 476 static int nicvf_init_cmp_queue(struct nicvf *nic, 477 struct cmp_queue *cq, int q_len) 478 { 479 int err; 480 481 err = nicvf_alloc_q_desc_mem(nic, &cq->dmem, q_len, CMP_QUEUE_DESC_SIZE, 482 NICVF_CQ_BASE_ALIGN_BYTES); 483 if (err) 484 return err; 485 486 cq->desc = cq->dmem.base; 487 cq->thresh = pass1_silicon(nic->pdev) ? 0 : CMP_QUEUE_CQE_THRESH; 488 nic->cq_coalesce_usecs = (CMP_QUEUE_TIMER_THRESH * 0.05) - 1; 489 490 return 0; 491 } 492 493 static void nicvf_free_cmp_queue(struct nicvf *nic, struct cmp_queue *cq) 494 { 495 if (!cq) 496 return; 497 if (!cq->dmem.base) 498 return; 499 500 nicvf_free_q_desc_mem(nic, &cq->dmem); 501 } 502 503 /* Initialize transmit queue */ 504 static int nicvf_init_snd_queue(struct nicvf *nic, 505 struct snd_queue *sq, int q_len, int qidx) 506 { 507 int err; 508 509 err = nicvf_alloc_q_desc_mem(nic, &sq->dmem, q_len, SND_QUEUE_DESC_SIZE, 510 NICVF_SQ_BASE_ALIGN_BYTES); 511 if (err) 512 return err; 513 514 sq->desc = sq->dmem.base; 515 sq->skbuff = kcalloc(q_len, sizeof(u64), GFP_KERNEL); 516 if (!sq->skbuff) 517 return -ENOMEM; 518 519 sq->head = 0; 520 sq->tail = 0; 521 sq->thresh = SND_QUEUE_THRESH; 522 523 /* Check if this SQ is a XDP TX queue */ 524 if (nic->sqs_mode) 525 qidx += ((nic->sqs_id + 1) * MAX_SND_QUEUES_PER_QS); 526 if (qidx < nic->pnicvf->xdp_tx_queues) { 527 /* Alloc memory to save page pointers for XDP_TX */ 528 sq->xdp_page = kcalloc(q_len, sizeof(u64), GFP_KERNEL); 529 if (!sq->xdp_page) 530 return -ENOMEM; 531 sq->xdp_desc_cnt = 0; 532 sq->xdp_free_cnt = q_len - 1; 533 sq->is_xdp = true; 534 } else { 535 sq->xdp_page = NULL; 536 sq->xdp_desc_cnt = 0; 537 sq->xdp_free_cnt = 0; 538 sq->is_xdp = false; 539 540 atomic_set(&sq->free_cnt, q_len - 1); 541 542 /* Preallocate memory for TSO segment's header */ 543 sq->tso_hdrs = dma_alloc_coherent(&nic->pdev->dev, 544 q_len * TSO_HEADER_SIZE, 545 &sq->tso_hdrs_phys, 546 GFP_KERNEL); 547 if (!sq->tso_hdrs) 548 return -ENOMEM; 549 } 550 551 return 0; 552 } 553 554 void nicvf_unmap_sndq_buffers(struct nicvf *nic, struct snd_queue *sq, 555 int hdr_sqe, u8 subdesc_cnt) 556 { 557 u8 idx; 558 struct sq_gather_subdesc *gather; 559 560 /* Unmap DMA mapped skb data buffers */ 561 for (idx = 0; idx < subdesc_cnt; idx++) { 562 hdr_sqe++; 563 hdr_sqe &= (sq->dmem.q_len - 1); 564 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, hdr_sqe); 565 /* HW will ensure data coherency, CPU sync not required */ 566 dma_unmap_page_attrs(&nic->pdev->dev, gather->addr, 567 gather->size, DMA_TO_DEVICE, 568 DMA_ATTR_SKIP_CPU_SYNC); 569 } 570 } 571 572 static void nicvf_free_snd_queue(struct nicvf *nic, struct snd_queue *sq) 573 { 574 struct sk_buff *skb; 575 struct page *page; 576 struct sq_hdr_subdesc *hdr; 577 struct sq_hdr_subdesc *tso_sqe; 578 579 if (!sq) 580 return; 581 if (!sq->dmem.base) 582 return; 583 584 if (sq->tso_hdrs) { 585 dma_free_coherent(&nic->pdev->dev, 586 sq->dmem.q_len * TSO_HEADER_SIZE, 587 sq->tso_hdrs, sq->tso_hdrs_phys); 588 sq->tso_hdrs = NULL; 589 } 590 591 /* Free pending skbs in the queue */ 592 smp_rmb(); 593 while (sq->head != sq->tail) { 594 skb = (struct sk_buff *)sq->skbuff[sq->head]; 595 if (!skb || !sq->xdp_page) 596 goto next; 597 598 page = (struct page *)sq->xdp_page[sq->head]; 599 if (!page) 600 goto next; 601 else 602 put_page(page); 603 604 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head); 605 /* Check for dummy descriptor used for HW TSO offload on 88xx */ 606 if (hdr->dont_send) { 607 /* Get actual TSO descriptors and unmap them */ 608 tso_sqe = 609 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2); 610 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2, 611 tso_sqe->subdesc_cnt); 612 } else { 613 nicvf_unmap_sndq_buffers(nic, sq, sq->head, 614 hdr->subdesc_cnt); 615 } 616 if (skb) 617 dev_kfree_skb_any(skb); 618 next: 619 sq->head++; 620 sq->head &= (sq->dmem.q_len - 1); 621 } 622 kfree(sq->skbuff); 623 kfree(sq->xdp_page); 624 nicvf_free_q_desc_mem(nic, &sq->dmem); 625 } 626 627 static void nicvf_reclaim_snd_queue(struct nicvf *nic, 628 struct queue_set *qs, int qidx) 629 { 630 /* Disable send queue */ 631 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, 0); 632 /* Check if SQ is stopped */ 633 if (nicvf_poll_reg(nic, qidx, NIC_QSET_SQ_0_7_STATUS, 21, 1, 0x01)) 634 return; 635 /* Reset send queue */ 636 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET); 637 } 638 639 static void nicvf_reclaim_rcv_queue(struct nicvf *nic, 640 struct queue_set *qs, int qidx) 641 { 642 union nic_mbx mbx = {}; 643 644 /* Make sure all packets in the pipeline are written back into mem */ 645 mbx.msg.msg = NIC_MBOX_MSG_RQ_SW_SYNC; 646 nicvf_send_msg_to_pf(nic, &mbx); 647 } 648 649 static void nicvf_reclaim_cmp_queue(struct nicvf *nic, 650 struct queue_set *qs, int qidx) 651 { 652 /* Disable timer threshold (doesn't get reset upon CQ reset */ 653 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, qidx, 0); 654 /* Disable completion queue */ 655 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, 0); 656 /* Reset completion queue */ 657 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET); 658 } 659 660 static void nicvf_reclaim_rbdr(struct nicvf *nic, 661 struct rbdr *rbdr, int qidx) 662 { 663 u64 tmp, fifo_state; 664 int timeout = 10; 665 666 /* Save head and tail pointers for feeing up buffers */ 667 rbdr->head = nicvf_queue_reg_read(nic, 668 NIC_QSET_RBDR_0_1_HEAD, 669 qidx) >> 3; 670 rbdr->tail = nicvf_queue_reg_read(nic, 671 NIC_QSET_RBDR_0_1_TAIL, 672 qidx) >> 3; 673 674 /* If RBDR FIFO is in 'FAIL' state then do a reset first 675 * before relaiming. 676 */ 677 fifo_state = nicvf_queue_reg_read(nic, NIC_QSET_RBDR_0_1_STATUS0, qidx); 678 if (((fifo_state >> 62) & 0x03) == 0x3) 679 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, 680 qidx, NICVF_RBDR_RESET); 681 682 /* Disable RBDR */ 683 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0); 684 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00)) 685 return; 686 while (1) { 687 tmp = nicvf_queue_reg_read(nic, 688 NIC_QSET_RBDR_0_1_PREFETCH_STATUS, 689 qidx); 690 if ((tmp & 0xFFFFFFFF) == ((tmp >> 32) & 0xFFFFFFFF)) 691 break; 692 usleep_range(1000, 2000); 693 timeout--; 694 if (!timeout) { 695 netdev_err(nic->netdev, 696 "Failed polling on prefetch status\n"); 697 return; 698 } 699 } 700 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, 701 qidx, NICVF_RBDR_RESET); 702 703 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x02)) 704 return; 705 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, qidx, 0x00); 706 if (nicvf_poll_reg(nic, qidx, NIC_QSET_RBDR_0_1_STATUS0, 62, 2, 0x00)) 707 return; 708 } 709 710 void nicvf_config_vlan_stripping(struct nicvf *nic, netdev_features_t features) 711 { 712 u64 rq_cfg; 713 int sqs; 714 715 rq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_RQ_GEN_CFG, 0); 716 717 /* Enable first VLAN stripping */ 718 if (features & NETIF_F_HW_VLAN_CTAG_RX) 719 rq_cfg |= (1ULL << 25); 720 else 721 rq_cfg &= ~(1ULL << 25); 722 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, rq_cfg); 723 724 /* Configure Secondary Qsets, if any */ 725 for (sqs = 0; sqs < nic->sqs_count; sqs++) 726 if (nic->snicvf[sqs]) 727 nicvf_queue_reg_write(nic->snicvf[sqs], 728 NIC_QSET_RQ_GEN_CFG, 0, rq_cfg); 729 } 730 731 static void nicvf_reset_rcv_queue_stats(struct nicvf *nic) 732 { 733 union nic_mbx mbx = {}; 734 735 /* Reset all RQ/SQ and VF stats */ 736 mbx.reset_stat.msg = NIC_MBOX_MSG_RESET_STAT_COUNTER; 737 mbx.reset_stat.rx_stat_mask = 0x3FFF; 738 mbx.reset_stat.tx_stat_mask = 0x1F; 739 mbx.reset_stat.rq_stat_mask = 0xFFFF; 740 mbx.reset_stat.sq_stat_mask = 0xFFFF; 741 nicvf_send_msg_to_pf(nic, &mbx); 742 } 743 744 /* Configures receive queue */ 745 static void nicvf_rcv_queue_config(struct nicvf *nic, struct queue_set *qs, 746 int qidx, bool enable) 747 { 748 union nic_mbx mbx = {}; 749 struct rcv_queue *rq; 750 struct rq_cfg rq_cfg; 751 752 rq = &qs->rq[qidx]; 753 rq->enable = enable; 754 755 /* Disable receive queue */ 756 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, 0); 757 758 if (!rq->enable) { 759 nicvf_reclaim_rcv_queue(nic, qs, qidx); 760 xdp_rxq_info_unreg(&rq->xdp_rxq); 761 return; 762 } 763 764 rq->cq_qs = qs->vnic_id; 765 rq->cq_idx = qidx; 766 rq->start_rbdr_qs = qs->vnic_id; 767 rq->start_qs_rbdr_idx = qs->rbdr_cnt - 1; 768 rq->cont_rbdr_qs = qs->vnic_id; 769 rq->cont_qs_rbdr_idx = qs->rbdr_cnt - 1; 770 /* all writes of RBDR data to be loaded into L2 Cache as well*/ 771 rq->caching = 1; 772 773 /* Driver have no proper error path for failed XDP RX-queue info reg */ 774 WARN_ON(xdp_rxq_info_reg(&rq->xdp_rxq, nic->netdev, qidx, 0) < 0); 775 776 /* Send a mailbox msg to PF to config RQ */ 777 mbx.rq.msg = NIC_MBOX_MSG_RQ_CFG; 778 mbx.rq.qs_num = qs->vnic_id; 779 mbx.rq.rq_num = qidx; 780 mbx.rq.cfg = ((u64)rq->caching << 26) | (rq->cq_qs << 19) | 781 (rq->cq_idx << 16) | (rq->cont_rbdr_qs << 9) | 782 (rq->cont_qs_rbdr_idx << 8) | 783 (rq->start_rbdr_qs << 1) | (rq->start_qs_rbdr_idx); 784 nicvf_send_msg_to_pf(nic, &mbx); 785 786 mbx.rq.msg = NIC_MBOX_MSG_RQ_BP_CFG; 787 mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) | 788 (RQ_PASS_RBDR_LVL << 16) | (RQ_PASS_CQ_LVL << 8) | 789 (qs->vnic_id << 0); 790 nicvf_send_msg_to_pf(nic, &mbx); 791 792 /* RQ drop config 793 * Enable CQ drop to reserve sufficient CQEs for all tx packets 794 */ 795 mbx.rq.msg = NIC_MBOX_MSG_RQ_DROP_CFG; 796 mbx.rq.cfg = BIT_ULL(63) | BIT_ULL(62) | 797 (RQ_PASS_RBDR_LVL << 40) | (RQ_DROP_RBDR_LVL << 32) | 798 (RQ_PASS_CQ_LVL << 16) | (RQ_DROP_CQ_LVL << 8); 799 nicvf_send_msg_to_pf(nic, &mbx); 800 801 if (!nic->sqs_mode && (qidx == 0)) { 802 /* Enable checking L3/L4 length and TCP/UDP checksums 803 * Also allow IPv6 pkts with zero UDP checksum. 804 */ 805 nicvf_queue_reg_write(nic, NIC_QSET_RQ_GEN_CFG, 0, 806 (BIT(24) | BIT(23) | BIT(21) | BIT(20))); 807 nicvf_config_vlan_stripping(nic, nic->netdev->features); 808 } 809 810 /* Enable Receive queue */ 811 memset(&rq_cfg, 0, sizeof(struct rq_cfg)); 812 rq_cfg.ena = 1; 813 rq_cfg.tcp_ena = 0; 814 nicvf_queue_reg_write(nic, NIC_QSET_RQ_0_7_CFG, qidx, *(u64 *)&rq_cfg); 815 } 816 817 /* Configures completion queue */ 818 void nicvf_cmp_queue_config(struct nicvf *nic, struct queue_set *qs, 819 int qidx, bool enable) 820 { 821 struct cmp_queue *cq; 822 struct cq_cfg cq_cfg; 823 824 cq = &qs->cq[qidx]; 825 cq->enable = enable; 826 827 if (!cq->enable) { 828 nicvf_reclaim_cmp_queue(nic, qs, qidx); 829 return; 830 } 831 832 /* Reset completion queue */ 833 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, NICVF_CQ_RESET); 834 835 if (!cq->enable) 836 return; 837 838 spin_lock_init(&cq->lock); 839 /* Set completion queue base address */ 840 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_BASE, 841 qidx, (u64)(cq->dmem.phys_base)); 842 843 /* Enable Completion queue */ 844 memset(&cq_cfg, 0, sizeof(struct cq_cfg)); 845 cq_cfg.ena = 1; 846 cq_cfg.reset = 0; 847 cq_cfg.caching = 0; 848 cq_cfg.qsize = ilog2(qs->cq_len >> 10); 849 cq_cfg.avg_con = 0; 850 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG, qidx, *(u64 *)&cq_cfg); 851 852 /* Set threshold value for interrupt generation */ 853 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_THRESH, qidx, cq->thresh); 854 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_CFG2, 855 qidx, CMP_QUEUE_TIMER_THRESH); 856 } 857 858 /* Configures transmit queue */ 859 static void nicvf_snd_queue_config(struct nicvf *nic, struct queue_set *qs, 860 int qidx, bool enable) 861 { 862 union nic_mbx mbx = {}; 863 struct snd_queue *sq; 864 struct sq_cfg sq_cfg; 865 866 sq = &qs->sq[qidx]; 867 sq->enable = enable; 868 869 if (!sq->enable) { 870 nicvf_reclaim_snd_queue(nic, qs, qidx); 871 return; 872 } 873 874 /* Reset send queue */ 875 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, NICVF_SQ_RESET); 876 877 sq->cq_qs = qs->vnic_id; 878 sq->cq_idx = qidx; 879 880 /* Send a mailbox msg to PF to config SQ */ 881 mbx.sq.msg = NIC_MBOX_MSG_SQ_CFG; 882 mbx.sq.qs_num = qs->vnic_id; 883 mbx.sq.sq_num = qidx; 884 mbx.sq.sqs_mode = nic->sqs_mode; 885 mbx.sq.cfg = (sq->cq_qs << 3) | sq->cq_idx; 886 nicvf_send_msg_to_pf(nic, &mbx); 887 888 /* Set queue base address */ 889 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_BASE, 890 qidx, (u64)(sq->dmem.phys_base)); 891 892 /* Enable send queue & set queue size */ 893 memset(&sq_cfg, 0, sizeof(struct sq_cfg)); 894 sq_cfg.ena = 1; 895 sq_cfg.reset = 0; 896 sq_cfg.ldwb = 0; 897 sq_cfg.qsize = ilog2(qs->sq_len >> 10); 898 sq_cfg.tstmp_bgx_intf = 0; 899 /* CQ's level at which HW will stop processing SQEs to avoid 900 * transmitting a pkt with no space in CQ to post CQE_TX. 901 */ 902 sq_cfg.cq_limit = (CMP_QUEUE_PIPELINE_RSVD * 256) / qs->cq_len; 903 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, *(u64 *)&sq_cfg); 904 905 /* Set threshold value for interrupt generation */ 906 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_THRESH, qidx, sq->thresh); 907 908 /* Set queue:cpu affinity for better load distribution */ 909 if (cpu_online(qidx)) { 910 cpumask_set_cpu(qidx, &sq->affinity_mask); 911 netif_set_xps_queue(nic->netdev, 912 &sq->affinity_mask, qidx); 913 } 914 } 915 916 /* Configures receive buffer descriptor ring */ 917 static void nicvf_rbdr_config(struct nicvf *nic, struct queue_set *qs, 918 int qidx, bool enable) 919 { 920 struct rbdr *rbdr; 921 struct rbdr_cfg rbdr_cfg; 922 923 rbdr = &qs->rbdr[qidx]; 924 nicvf_reclaim_rbdr(nic, rbdr, qidx); 925 if (!enable) 926 return; 927 928 /* Set descriptor base address */ 929 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_BASE, 930 qidx, (u64)(rbdr->dmem.phys_base)); 931 932 /* Enable RBDR & set queue size */ 933 /* Buffer size should be in multiples of 128 bytes */ 934 memset(&rbdr_cfg, 0, sizeof(struct rbdr_cfg)); 935 rbdr_cfg.ena = 1; 936 rbdr_cfg.reset = 0; 937 rbdr_cfg.ldwb = 0; 938 rbdr_cfg.qsize = RBDR_SIZE; 939 rbdr_cfg.avg_con = 0; 940 rbdr_cfg.lines = rbdr->dma_size / 128; 941 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_CFG, 942 qidx, *(u64 *)&rbdr_cfg); 943 944 /* Notify HW */ 945 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_DOOR, 946 qidx, qs->rbdr_len - 1); 947 948 /* Set threshold value for interrupt generation */ 949 nicvf_queue_reg_write(nic, NIC_QSET_RBDR_0_1_THRESH, 950 qidx, rbdr->thresh - 1); 951 } 952 953 /* Requests PF to assign and enable Qset */ 954 void nicvf_qset_config(struct nicvf *nic, bool enable) 955 { 956 union nic_mbx mbx = {}; 957 struct queue_set *qs = nic->qs; 958 struct qs_cfg *qs_cfg; 959 960 if (!qs) { 961 netdev_warn(nic->netdev, 962 "Qset is still not allocated, don't init queues\n"); 963 return; 964 } 965 966 qs->enable = enable; 967 qs->vnic_id = nic->vf_id; 968 969 /* Send a mailbox msg to PF to config Qset */ 970 mbx.qs.msg = NIC_MBOX_MSG_QS_CFG; 971 mbx.qs.num = qs->vnic_id; 972 mbx.qs.sqs_count = nic->sqs_count; 973 974 mbx.qs.cfg = 0; 975 qs_cfg = (struct qs_cfg *)&mbx.qs.cfg; 976 if (qs->enable) { 977 qs_cfg->ena = 1; 978 #ifdef __BIG_ENDIAN 979 qs_cfg->be = 1; 980 #endif 981 qs_cfg->vnic = qs->vnic_id; 982 /* Enable Tx timestamping capability */ 983 if (nic->ptp_clock) 984 qs_cfg->send_tstmp_ena = 1; 985 } 986 nicvf_send_msg_to_pf(nic, &mbx); 987 } 988 989 static void nicvf_free_resources(struct nicvf *nic) 990 { 991 int qidx; 992 struct queue_set *qs = nic->qs; 993 994 /* Free receive buffer descriptor ring */ 995 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) 996 nicvf_free_rbdr(nic, &qs->rbdr[qidx]); 997 998 /* Free completion queue */ 999 for (qidx = 0; qidx < qs->cq_cnt; qidx++) 1000 nicvf_free_cmp_queue(nic, &qs->cq[qidx]); 1001 1002 /* Free send queue */ 1003 for (qidx = 0; qidx < qs->sq_cnt; qidx++) 1004 nicvf_free_snd_queue(nic, &qs->sq[qidx]); 1005 } 1006 1007 static int nicvf_alloc_resources(struct nicvf *nic) 1008 { 1009 int qidx; 1010 struct queue_set *qs = nic->qs; 1011 1012 /* Alloc receive buffer descriptor ring */ 1013 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) { 1014 if (nicvf_init_rbdr(nic, &qs->rbdr[qidx], qs->rbdr_len, 1015 DMA_BUFFER_LEN)) 1016 goto alloc_fail; 1017 } 1018 1019 /* Alloc send queue */ 1020 for (qidx = 0; qidx < qs->sq_cnt; qidx++) { 1021 if (nicvf_init_snd_queue(nic, &qs->sq[qidx], qs->sq_len, qidx)) 1022 goto alloc_fail; 1023 } 1024 1025 /* Alloc completion queue */ 1026 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 1027 if (nicvf_init_cmp_queue(nic, &qs->cq[qidx], qs->cq_len)) 1028 goto alloc_fail; 1029 } 1030 1031 return 0; 1032 alloc_fail: 1033 nicvf_free_resources(nic); 1034 return -ENOMEM; 1035 } 1036 1037 int nicvf_set_qset_resources(struct nicvf *nic) 1038 { 1039 struct queue_set *qs; 1040 1041 qs = devm_kzalloc(&nic->pdev->dev, sizeof(*qs), GFP_KERNEL); 1042 if (!qs) 1043 return -ENOMEM; 1044 nic->qs = qs; 1045 1046 /* Set count of each queue */ 1047 qs->rbdr_cnt = DEFAULT_RBDR_CNT; 1048 qs->rq_cnt = min_t(u8, MAX_RCV_QUEUES_PER_QS, num_online_cpus()); 1049 qs->sq_cnt = min_t(u8, MAX_SND_QUEUES_PER_QS, num_online_cpus()); 1050 qs->cq_cnt = max_t(u8, qs->rq_cnt, qs->sq_cnt); 1051 1052 /* Set queue lengths */ 1053 qs->rbdr_len = RCV_BUF_COUNT; 1054 qs->sq_len = SND_QUEUE_LEN; 1055 qs->cq_len = CMP_QUEUE_LEN; 1056 1057 nic->rx_queues = qs->rq_cnt; 1058 nic->tx_queues = qs->sq_cnt; 1059 nic->xdp_tx_queues = 0; 1060 1061 return 0; 1062 } 1063 1064 int nicvf_config_data_transfer(struct nicvf *nic, bool enable) 1065 { 1066 bool disable = false; 1067 struct queue_set *qs = nic->qs; 1068 struct queue_set *pqs = nic->pnicvf->qs; 1069 int qidx; 1070 1071 if (!qs) 1072 return 0; 1073 1074 /* Take primary VF's queue lengths. 1075 * This is needed to take queue lengths set from ethtool 1076 * into consideration. 1077 */ 1078 if (nic->sqs_mode && pqs) { 1079 qs->cq_len = pqs->cq_len; 1080 qs->sq_len = pqs->sq_len; 1081 } 1082 1083 if (enable) { 1084 if (nicvf_alloc_resources(nic)) 1085 return -ENOMEM; 1086 1087 for (qidx = 0; qidx < qs->sq_cnt; qidx++) 1088 nicvf_snd_queue_config(nic, qs, qidx, enable); 1089 for (qidx = 0; qidx < qs->cq_cnt; qidx++) 1090 nicvf_cmp_queue_config(nic, qs, qidx, enable); 1091 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) 1092 nicvf_rbdr_config(nic, qs, qidx, enable); 1093 for (qidx = 0; qidx < qs->rq_cnt; qidx++) 1094 nicvf_rcv_queue_config(nic, qs, qidx, enable); 1095 } else { 1096 for (qidx = 0; qidx < qs->rq_cnt; qidx++) 1097 nicvf_rcv_queue_config(nic, qs, qidx, disable); 1098 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) 1099 nicvf_rbdr_config(nic, qs, qidx, disable); 1100 for (qidx = 0; qidx < qs->sq_cnt; qidx++) 1101 nicvf_snd_queue_config(nic, qs, qidx, disable); 1102 for (qidx = 0; qidx < qs->cq_cnt; qidx++) 1103 nicvf_cmp_queue_config(nic, qs, qidx, disable); 1104 1105 nicvf_free_resources(nic); 1106 } 1107 1108 /* Reset RXQ's stats. 1109 * SQ's stats will get reset automatically once SQ is reset. 1110 */ 1111 nicvf_reset_rcv_queue_stats(nic); 1112 1113 return 0; 1114 } 1115 1116 /* Get a free desc from SQ 1117 * returns descriptor ponter & descriptor number 1118 */ 1119 static inline int nicvf_get_sq_desc(struct snd_queue *sq, int desc_cnt) 1120 { 1121 int qentry; 1122 1123 qentry = sq->tail; 1124 if (!sq->is_xdp) 1125 atomic_sub(desc_cnt, &sq->free_cnt); 1126 else 1127 sq->xdp_free_cnt -= desc_cnt; 1128 sq->tail += desc_cnt; 1129 sq->tail &= (sq->dmem.q_len - 1); 1130 1131 return qentry; 1132 } 1133 1134 /* Rollback to previous tail pointer when descriptors not used */ 1135 static inline void nicvf_rollback_sq_desc(struct snd_queue *sq, 1136 int qentry, int desc_cnt) 1137 { 1138 sq->tail = qentry; 1139 atomic_add(desc_cnt, &sq->free_cnt); 1140 } 1141 1142 /* Free descriptor back to SQ for future use */ 1143 void nicvf_put_sq_desc(struct snd_queue *sq, int desc_cnt) 1144 { 1145 if (!sq->is_xdp) 1146 atomic_add(desc_cnt, &sq->free_cnt); 1147 else 1148 sq->xdp_free_cnt += desc_cnt; 1149 sq->head += desc_cnt; 1150 sq->head &= (sq->dmem.q_len - 1); 1151 } 1152 1153 static inline int nicvf_get_nxt_sqentry(struct snd_queue *sq, int qentry) 1154 { 1155 qentry++; 1156 qentry &= (sq->dmem.q_len - 1); 1157 return qentry; 1158 } 1159 1160 void nicvf_sq_enable(struct nicvf *nic, struct snd_queue *sq, int qidx) 1161 { 1162 u64 sq_cfg; 1163 1164 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx); 1165 sq_cfg |= NICVF_SQ_EN; 1166 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg); 1167 /* Ring doorbell so that H/W restarts processing SQEs */ 1168 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, qidx, 0); 1169 } 1170 1171 void nicvf_sq_disable(struct nicvf *nic, int qidx) 1172 { 1173 u64 sq_cfg; 1174 1175 sq_cfg = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_CFG, qidx); 1176 sq_cfg &= ~NICVF_SQ_EN; 1177 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_CFG, qidx, sq_cfg); 1178 } 1179 1180 void nicvf_sq_free_used_descs(struct net_device *netdev, struct snd_queue *sq, 1181 int qidx) 1182 { 1183 u64 head; 1184 struct sk_buff *skb; 1185 struct nicvf *nic = netdev_priv(netdev); 1186 struct sq_hdr_subdesc *hdr; 1187 1188 head = nicvf_queue_reg_read(nic, NIC_QSET_SQ_0_7_HEAD, qidx) >> 4; 1189 while (sq->head != head) { 1190 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, sq->head); 1191 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) { 1192 nicvf_put_sq_desc(sq, 1); 1193 continue; 1194 } 1195 skb = (struct sk_buff *)sq->skbuff[sq->head]; 1196 if (skb) 1197 dev_kfree_skb_any(skb); 1198 atomic64_add(1, (atomic64_t *)&netdev->stats.tx_packets); 1199 atomic64_add(hdr->tot_len, 1200 (atomic64_t *)&netdev->stats.tx_bytes); 1201 nicvf_put_sq_desc(sq, hdr->subdesc_cnt + 1); 1202 } 1203 } 1204 1205 /* XDP Transmit APIs */ 1206 void nicvf_xdp_sq_doorbell(struct nicvf *nic, 1207 struct snd_queue *sq, int sq_num) 1208 { 1209 if (!sq->xdp_desc_cnt) 1210 return; 1211 1212 /* make sure all memory stores are done before ringing doorbell */ 1213 wmb(); 1214 1215 /* Inform HW to xmit all TSO segments */ 1216 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, 1217 sq_num, sq->xdp_desc_cnt); 1218 sq->xdp_desc_cnt = 0; 1219 } 1220 1221 static inline void 1222 nicvf_xdp_sq_add_hdr_subdesc(struct snd_queue *sq, int qentry, 1223 int subdesc_cnt, u64 data, int len) 1224 { 1225 struct sq_hdr_subdesc *hdr; 1226 1227 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); 1228 memset(hdr, 0, SND_QUEUE_DESC_SIZE); 1229 hdr->subdesc_type = SQ_DESC_TYPE_HEADER; 1230 hdr->subdesc_cnt = subdesc_cnt; 1231 hdr->tot_len = len; 1232 hdr->post_cqe = 1; 1233 sq->xdp_page[qentry] = (u64)virt_to_page((void *)data); 1234 } 1235 1236 int nicvf_xdp_sq_append_pkt(struct nicvf *nic, struct snd_queue *sq, 1237 u64 bufaddr, u64 dma_addr, u16 len) 1238 { 1239 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT; 1240 int qentry; 1241 1242 if (subdesc_cnt > sq->xdp_free_cnt) 1243 return 0; 1244 1245 qentry = nicvf_get_sq_desc(sq, subdesc_cnt); 1246 1247 nicvf_xdp_sq_add_hdr_subdesc(sq, qentry, subdesc_cnt - 1, bufaddr, len); 1248 1249 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1250 nicvf_sq_add_gather_subdesc(sq, qentry, len, dma_addr); 1251 1252 sq->xdp_desc_cnt += subdesc_cnt; 1253 1254 return 1; 1255 } 1256 1257 /* Calculate no of SQ subdescriptors needed to transmit all 1258 * segments of this TSO packet. 1259 * Taken from 'Tilera network driver' with a minor modification. 1260 */ 1261 static int nicvf_tso_count_subdescs(struct sk_buff *skb) 1262 { 1263 struct skb_shared_info *sh = skb_shinfo(skb); 1264 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1265 unsigned int data_len = skb->len - sh_len; 1266 unsigned int p_len = sh->gso_size; 1267 long f_id = -1; /* id of the current fragment */ 1268 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */ 1269 long f_used = 0; /* bytes used from the current fragment */ 1270 long n; /* size of the current piece of payload */ 1271 int num_edescs = 0; 1272 int segment; 1273 1274 for (segment = 0; segment < sh->gso_segs; segment++) { 1275 unsigned int p_used = 0; 1276 1277 /* One edesc for header and for each piece of the payload. */ 1278 for (num_edescs++; p_used < p_len; num_edescs++) { 1279 /* Advance as needed. */ 1280 while (f_used >= f_size) { 1281 f_id++; 1282 f_size = skb_frag_size(&sh->frags[f_id]); 1283 f_used = 0; 1284 } 1285 1286 /* Use bytes from the current fragment. */ 1287 n = p_len - p_used; 1288 if (n > f_size - f_used) 1289 n = f_size - f_used; 1290 f_used += n; 1291 p_used += n; 1292 } 1293 1294 /* The last segment may be less than gso_size. */ 1295 data_len -= p_len; 1296 if (data_len < p_len) 1297 p_len = data_len; 1298 } 1299 1300 /* '+ gso_segs' for SQ_HDR_SUDESCs for each segment */ 1301 return num_edescs + sh->gso_segs; 1302 } 1303 1304 #define POST_CQE_DESC_COUNT 2 1305 1306 /* Get the number of SQ descriptors needed to xmit this skb */ 1307 static int nicvf_sq_subdesc_required(struct nicvf *nic, struct sk_buff *skb) 1308 { 1309 int subdesc_cnt = MIN_SQ_DESC_PER_PKT_XMIT; 1310 1311 if (skb_shinfo(skb)->gso_size && !nic->hw_tso) { 1312 subdesc_cnt = nicvf_tso_count_subdescs(skb); 1313 return subdesc_cnt; 1314 } 1315 1316 /* Dummy descriptors to get TSO pkt completion notification */ 1317 if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) 1318 subdesc_cnt += POST_CQE_DESC_COUNT; 1319 1320 if (skb_shinfo(skb)->nr_frags) 1321 subdesc_cnt += skb_shinfo(skb)->nr_frags; 1322 1323 return subdesc_cnt; 1324 } 1325 1326 /* Add SQ HEADER subdescriptor. 1327 * First subdescriptor for every send descriptor. 1328 */ 1329 static inline void 1330 nicvf_sq_add_hdr_subdesc(struct nicvf *nic, struct snd_queue *sq, int qentry, 1331 int subdesc_cnt, struct sk_buff *skb, int len) 1332 { 1333 int proto; 1334 struct sq_hdr_subdesc *hdr; 1335 union { 1336 struct iphdr *v4; 1337 struct ipv6hdr *v6; 1338 unsigned char *hdr; 1339 } ip; 1340 1341 ip.hdr = skb_network_header(skb); 1342 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); 1343 memset(hdr, 0, SND_QUEUE_DESC_SIZE); 1344 hdr->subdesc_type = SQ_DESC_TYPE_HEADER; 1345 1346 if (nic->t88 && nic->hw_tso && skb_shinfo(skb)->gso_size) { 1347 /* post_cqe = 0, to avoid HW posting a CQE for every TSO 1348 * segment transmitted on 88xx. 1349 */ 1350 hdr->subdesc_cnt = subdesc_cnt - POST_CQE_DESC_COUNT; 1351 } else { 1352 sq->skbuff[qentry] = (u64)skb; 1353 /* Enable notification via CQE after processing SQE */ 1354 hdr->post_cqe = 1; 1355 /* No of subdescriptors following this */ 1356 hdr->subdesc_cnt = subdesc_cnt; 1357 } 1358 hdr->tot_len = len; 1359 1360 /* Offload checksum calculation to HW */ 1361 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1362 if (ip.v4->version == 4) 1363 hdr->csum_l3 = 1; /* Enable IP csum calculation */ 1364 hdr->l3_offset = skb_network_offset(skb); 1365 hdr->l4_offset = skb_transport_offset(skb); 1366 1367 proto = (ip.v4->version == 4) ? ip.v4->protocol : 1368 ip.v6->nexthdr; 1369 1370 switch (proto) { 1371 case IPPROTO_TCP: 1372 hdr->csum_l4 = SEND_L4_CSUM_TCP; 1373 break; 1374 case IPPROTO_UDP: 1375 hdr->csum_l4 = SEND_L4_CSUM_UDP; 1376 break; 1377 case IPPROTO_SCTP: 1378 hdr->csum_l4 = SEND_L4_CSUM_SCTP; 1379 break; 1380 } 1381 } 1382 1383 if (nic->hw_tso && skb_shinfo(skb)->gso_size) { 1384 hdr->tso = 1; 1385 hdr->tso_start = skb_transport_offset(skb) + tcp_hdrlen(skb); 1386 hdr->tso_max_paysize = skb_shinfo(skb)->gso_size; 1387 /* For non-tunneled pkts, point this to L2 ethertype */ 1388 hdr->inner_l3_offset = skb_network_offset(skb) - 2; 1389 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso); 1390 } 1391 1392 /* Check if timestamp is requested */ 1393 if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 1394 skb_tx_timestamp(skb); 1395 return; 1396 } 1397 1398 /* Tx timestamping not supported along with TSO, so ignore request */ 1399 if (skb_shinfo(skb)->gso_size) 1400 return; 1401 1402 /* HW supports only a single outstanding packet to timestamp */ 1403 if (!atomic_add_unless(&nic->pnicvf->tx_ptp_skbs, 1, 1)) 1404 return; 1405 1406 /* Mark the SKB for later reference */ 1407 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1408 1409 /* Finally enable timestamp generation 1410 * Since 'post_cqe' is also set, two CQEs will be posted 1411 * for this packet i.e CQE_TYPE_SEND and CQE_TYPE_SEND_PTP. 1412 */ 1413 hdr->tstmp = 1; 1414 } 1415 1416 /* SQ GATHER subdescriptor 1417 * Must follow HDR descriptor 1418 */ 1419 static inline void nicvf_sq_add_gather_subdesc(struct snd_queue *sq, int qentry, 1420 int size, u64 data) 1421 { 1422 struct sq_gather_subdesc *gather; 1423 1424 qentry &= (sq->dmem.q_len - 1); 1425 gather = (struct sq_gather_subdesc *)GET_SQ_DESC(sq, qentry); 1426 1427 memset(gather, 0, SND_QUEUE_DESC_SIZE); 1428 gather->subdesc_type = SQ_DESC_TYPE_GATHER; 1429 gather->ld_type = NIC_SEND_LD_TYPE_E_LDD; 1430 gather->size = size; 1431 gather->addr = data; 1432 } 1433 1434 /* Add HDR + IMMEDIATE subdescriptors right after descriptors of a TSO 1435 * packet so that a CQE is posted as a notifation for transmission of 1436 * TSO packet. 1437 */ 1438 static inline void nicvf_sq_add_cqe_subdesc(struct snd_queue *sq, int qentry, 1439 int tso_sqe, struct sk_buff *skb) 1440 { 1441 struct sq_imm_subdesc *imm; 1442 struct sq_hdr_subdesc *hdr; 1443 1444 sq->skbuff[qentry] = (u64)skb; 1445 1446 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, qentry); 1447 memset(hdr, 0, SND_QUEUE_DESC_SIZE); 1448 hdr->subdesc_type = SQ_DESC_TYPE_HEADER; 1449 /* Enable notification via CQE after processing SQE */ 1450 hdr->post_cqe = 1; 1451 /* There is no packet to transmit here */ 1452 hdr->dont_send = 1; 1453 hdr->subdesc_cnt = POST_CQE_DESC_COUNT - 1; 1454 hdr->tot_len = 1; 1455 /* Actual TSO header SQE index, needed for cleanup */ 1456 hdr->rsvd2 = tso_sqe; 1457 1458 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1459 imm = (struct sq_imm_subdesc *)GET_SQ_DESC(sq, qentry); 1460 memset(imm, 0, SND_QUEUE_DESC_SIZE); 1461 imm->subdesc_type = SQ_DESC_TYPE_IMMEDIATE; 1462 imm->len = 1; 1463 } 1464 1465 static inline void nicvf_sq_doorbell(struct nicvf *nic, struct sk_buff *skb, 1466 int sq_num, int desc_cnt) 1467 { 1468 struct netdev_queue *txq; 1469 1470 txq = netdev_get_tx_queue(nic->pnicvf->netdev, 1471 skb_get_queue_mapping(skb)); 1472 1473 netdev_tx_sent_queue(txq, skb->len); 1474 1475 /* make sure all memory stores are done before ringing doorbell */ 1476 smp_wmb(); 1477 1478 /* Inform HW to xmit all TSO segments */ 1479 nicvf_queue_reg_write(nic, NIC_QSET_SQ_0_7_DOOR, 1480 sq_num, desc_cnt); 1481 } 1482 1483 /* Segment a TSO packet into 'gso_size' segments and append 1484 * them to SQ for transfer 1485 */ 1486 static int nicvf_sq_append_tso(struct nicvf *nic, struct snd_queue *sq, 1487 int sq_num, int qentry, struct sk_buff *skb) 1488 { 1489 struct tso_t tso; 1490 int seg_subdescs = 0, desc_cnt = 0; 1491 int seg_len, total_len, data_left; 1492 int hdr_qentry = qentry; 1493 int hdr_len; 1494 1495 hdr_len = tso_start(skb, &tso); 1496 1497 total_len = skb->len - hdr_len; 1498 while (total_len > 0) { 1499 char *hdr; 1500 1501 /* Save Qentry for adding HDR_SUBDESC at the end */ 1502 hdr_qentry = qentry; 1503 1504 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1505 total_len -= data_left; 1506 1507 /* Add segment's header */ 1508 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1509 hdr = sq->tso_hdrs + qentry * TSO_HEADER_SIZE; 1510 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1511 nicvf_sq_add_gather_subdesc(sq, qentry, hdr_len, 1512 sq->tso_hdrs_phys + 1513 qentry * TSO_HEADER_SIZE); 1514 /* HDR_SUDESC + GATHER */ 1515 seg_subdescs = 2; 1516 seg_len = hdr_len; 1517 1518 /* Add segment's payload fragments */ 1519 while (data_left > 0) { 1520 int size; 1521 1522 size = min_t(int, tso.size, data_left); 1523 1524 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1525 nicvf_sq_add_gather_subdesc(sq, qentry, size, 1526 virt_to_phys(tso.data)); 1527 seg_subdescs++; 1528 seg_len += size; 1529 1530 data_left -= size; 1531 tso_build_data(skb, &tso, size); 1532 } 1533 nicvf_sq_add_hdr_subdesc(nic, sq, hdr_qentry, 1534 seg_subdescs - 1, skb, seg_len); 1535 sq->skbuff[hdr_qentry] = (u64)NULL; 1536 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1537 1538 desc_cnt += seg_subdescs; 1539 } 1540 /* Save SKB in the last segment for freeing */ 1541 sq->skbuff[hdr_qentry] = (u64)skb; 1542 1543 nicvf_sq_doorbell(nic, skb, sq_num, desc_cnt); 1544 1545 this_cpu_inc(nic->pnicvf->drv_stats->tx_tso); 1546 return 1; 1547 } 1548 1549 /* Append an skb to a SQ for packet transfer. */ 1550 int nicvf_sq_append_skb(struct nicvf *nic, struct snd_queue *sq, 1551 struct sk_buff *skb, u8 sq_num) 1552 { 1553 int i, size; 1554 int subdesc_cnt, hdr_sqe = 0; 1555 int qentry; 1556 u64 dma_addr; 1557 1558 subdesc_cnt = nicvf_sq_subdesc_required(nic, skb); 1559 if (subdesc_cnt > atomic_read(&sq->free_cnt)) 1560 goto append_fail; 1561 1562 qentry = nicvf_get_sq_desc(sq, subdesc_cnt); 1563 1564 /* Check if its a TSO packet */ 1565 if (skb_shinfo(skb)->gso_size && !nic->hw_tso) 1566 return nicvf_sq_append_tso(nic, sq, sq_num, qentry, skb); 1567 1568 /* Add SQ header subdesc */ 1569 nicvf_sq_add_hdr_subdesc(nic, sq, qentry, subdesc_cnt - 1, 1570 skb, skb->len); 1571 hdr_sqe = qentry; 1572 1573 /* Add SQ gather subdescs */ 1574 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1575 size = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len; 1576 /* HW will ensure data coherency, CPU sync not required */ 1577 dma_addr = dma_map_page_attrs(&nic->pdev->dev, virt_to_page(skb->data), 1578 offset_in_page(skb->data), size, 1579 DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 1580 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) { 1581 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt); 1582 return 0; 1583 } 1584 1585 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr); 1586 1587 /* Check for scattered buffer */ 1588 if (!skb_is_nonlinear(skb)) 1589 goto doorbell; 1590 1591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1592 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1593 1594 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1595 size = skb_frag_size(frag); 1596 dma_addr = dma_map_page_attrs(&nic->pdev->dev, 1597 skb_frag_page(frag), 1598 skb_frag_off(frag), size, 1599 DMA_TO_DEVICE, 1600 DMA_ATTR_SKIP_CPU_SYNC); 1601 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) { 1602 /* Free entire chain of mapped buffers 1603 * here 'i' = frags mapped + above mapped skb->data 1604 */ 1605 nicvf_unmap_sndq_buffers(nic, sq, hdr_sqe, i); 1606 nicvf_rollback_sq_desc(sq, qentry, subdesc_cnt); 1607 return 0; 1608 } 1609 nicvf_sq_add_gather_subdesc(sq, qentry, size, dma_addr); 1610 } 1611 1612 doorbell: 1613 if (nic->t88 && skb_shinfo(skb)->gso_size) { 1614 qentry = nicvf_get_nxt_sqentry(sq, qentry); 1615 nicvf_sq_add_cqe_subdesc(sq, qentry, hdr_sqe, skb); 1616 } 1617 1618 nicvf_sq_doorbell(nic, skb, sq_num, subdesc_cnt); 1619 1620 return 1; 1621 1622 append_fail: 1623 /* Use original PCI dev for debug log */ 1624 nic = nic->pnicvf; 1625 netdev_dbg(nic->netdev, "Not enough SQ descriptors to xmit pkt\n"); 1626 return 0; 1627 } 1628 1629 static inline unsigned frag_num(unsigned i) 1630 { 1631 #ifdef __BIG_ENDIAN 1632 return (i & ~3) + 3 - (i & 3); 1633 #else 1634 return i; 1635 #endif 1636 } 1637 1638 static void nicvf_unmap_rcv_buffer(struct nicvf *nic, u64 dma_addr, 1639 u64 buf_addr, bool xdp) 1640 { 1641 struct page *page = NULL; 1642 int len = RCV_FRAG_LEN; 1643 1644 if (xdp) { 1645 page = virt_to_page(phys_to_virt(buf_addr)); 1646 /* Check if it's a recycled page, if not 1647 * unmap the DMA mapping. 1648 * 1649 * Recycled page holds an extra reference. 1650 */ 1651 if (page_ref_count(page) != 1) 1652 return; 1653 1654 len += XDP_PACKET_HEADROOM; 1655 /* Receive buffers in XDP mode are mapped from page start */ 1656 dma_addr &= PAGE_MASK; 1657 } 1658 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, len, 1659 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 1660 } 1661 1662 /* Returns SKB for a received packet */ 1663 struct sk_buff *nicvf_get_rcv_skb(struct nicvf *nic, 1664 struct cqe_rx_t *cqe_rx, bool xdp) 1665 { 1666 int frag; 1667 int payload_len = 0; 1668 struct sk_buff *skb = NULL; 1669 struct page *page; 1670 int offset; 1671 u16 *rb_lens = NULL; 1672 u64 *rb_ptrs = NULL; 1673 u64 phys_addr; 1674 1675 rb_lens = (void *)cqe_rx + (3 * sizeof(u64)); 1676 /* Except 88xx pass1 on all other chips CQE_RX2_S is added to 1677 * CQE_RX at word6, hence buffer pointers move by word 1678 * 1679 * Use existing 'hw_tso' flag which will be set for all chips 1680 * except 88xx pass1 instead of a additional cache line 1681 * access (or miss) by using pci dev's revision. 1682 */ 1683 if (!nic->hw_tso) 1684 rb_ptrs = (void *)cqe_rx + (6 * sizeof(u64)); 1685 else 1686 rb_ptrs = (void *)cqe_rx + (7 * sizeof(u64)); 1687 1688 for (frag = 0; frag < cqe_rx->rb_cnt; frag++) { 1689 payload_len = rb_lens[frag_num(frag)]; 1690 phys_addr = nicvf_iova_to_phys(nic, *rb_ptrs); 1691 if (!phys_addr) { 1692 if (skb) 1693 dev_kfree_skb_any(skb); 1694 return NULL; 1695 } 1696 1697 if (!frag) { 1698 /* First fragment */ 1699 nicvf_unmap_rcv_buffer(nic, 1700 *rb_ptrs - cqe_rx->align_pad, 1701 phys_addr, xdp); 1702 skb = nicvf_rb_ptr_to_skb(nic, 1703 phys_addr - cqe_rx->align_pad, 1704 payload_len); 1705 if (!skb) 1706 return NULL; 1707 skb_reserve(skb, cqe_rx->align_pad); 1708 skb_put(skb, payload_len); 1709 } else { 1710 /* Add fragments */ 1711 nicvf_unmap_rcv_buffer(nic, *rb_ptrs, phys_addr, xdp); 1712 page = virt_to_page(phys_to_virt(phys_addr)); 1713 offset = phys_to_virt(phys_addr) - page_address(page); 1714 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 1715 offset, payload_len, RCV_FRAG_LEN); 1716 } 1717 /* Next buffer pointer */ 1718 rb_ptrs++; 1719 } 1720 return skb; 1721 } 1722 1723 static u64 nicvf_int_type_to_mask(int int_type, int q_idx) 1724 { 1725 u64 reg_val; 1726 1727 switch (int_type) { 1728 case NICVF_INTR_CQ: 1729 reg_val = ((1ULL << q_idx) << NICVF_INTR_CQ_SHIFT); 1730 break; 1731 case NICVF_INTR_SQ: 1732 reg_val = ((1ULL << q_idx) << NICVF_INTR_SQ_SHIFT); 1733 break; 1734 case NICVF_INTR_RBDR: 1735 reg_val = ((1ULL << q_idx) << NICVF_INTR_RBDR_SHIFT); 1736 break; 1737 case NICVF_INTR_PKT_DROP: 1738 reg_val = (1ULL << NICVF_INTR_PKT_DROP_SHIFT); 1739 break; 1740 case NICVF_INTR_TCP_TIMER: 1741 reg_val = (1ULL << NICVF_INTR_TCP_TIMER_SHIFT); 1742 break; 1743 case NICVF_INTR_MBOX: 1744 reg_val = (1ULL << NICVF_INTR_MBOX_SHIFT); 1745 break; 1746 case NICVF_INTR_QS_ERR: 1747 reg_val = (1ULL << NICVF_INTR_QS_ERR_SHIFT); 1748 break; 1749 default: 1750 reg_val = 0; 1751 } 1752 1753 return reg_val; 1754 } 1755 1756 /* Enable interrupt */ 1757 void nicvf_enable_intr(struct nicvf *nic, int int_type, int q_idx) 1758 { 1759 u64 mask = nicvf_int_type_to_mask(int_type, q_idx); 1760 1761 if (!mask) { 1762 netdev_dbg(nic->netdev, 1763 "Failed to enable interrupt: unknown type\n"); 1764 return; 1765 } 1766 nicvf_reg_write(nic, NIC_VF_ENA_W1S, 1767 nicvf_reg_read(nic, NIC_VF_ENA_W1S) | mask); 1768 } 1769 1770 /* Disable interrupt */ 1771 void nicvf_disable_intr(struct nicvf *nic, int int_type, int q_idx) 1772 { 1773 u64 mask = nicvf_int_type_to_mask(int_type, q_idx); 1774 1775 if (!mask) { 1776 netdev_dbg(nic->netdev, 1777 "Failed to disable interrupt: unknown type\n"); 1778 return; 1779 } 1780 1781 nicvf_reg_write(nic, NIC_VF_ENA_W1C, mask); 1782 } 1783 1784 /* Clear interrupt */ 1785 void nicvf_clear_intr(struct nicvf *nic, int int_type, int q_idx) 1786 { 1787 u64 mask = nicvf_int_type_to_mask(int_type, q_idx); 1788 1789 if (!mask) { 1790 netdev_dbg(nic->netdev, 1791 "Failed to clear interrupt: unknown type\n"); 1792 return; 1793 } 1794 1795 nicvf_reg_write(nic, NIC_VF_INT, mask); 1796 } 1797 1798 /* Check if interrupt is enabled */ 1799 int nicvf_is_intr_enabled(struct nicvf *nic, int int_type, int q_idx) 1800 { 1801 u64 mask = nicvf_int_type_to_mask(int_type, q_idx); 1802 /* If interrupt type is unknown, we treat it disabled. */ 1803 if (!mask) { 1804 netdev_dbg(nic->netdev, 1805 "Failed to check interrupt enable: unknown type\n"); 1806 return 0; 1807 } 1808 1809 return mask & nicvf_reg_read(nic, NIC_VF_ENA_W1S); 1810 } 1811 1812 void nicvf_update_rq_stats(struct nicvf *nic, int rq_idx) 1813 { 1814 struct rcv_queue *rq; 1815 1816 #define GET_RQ_STATS(reg) \ 1817 nicvf_reg_read(nic, NIC_QSET_RQ_0_7_STAT_0_1 |\ 1818 (rq_idx << NIC_Q_NUM_SHIFT) | (reg << 3)) 1819 1820 rq = &nic->qs->rq[rq_idx]; 1821 rq->stats.bytes = GET_RQ_STATS(RQ_SQ_STATS_OCTS); 1822 rq->stats.pkts = GET_RQ_STATS(RQ_SQ_STATS_PKTS); 1823 } 1824 1825 void nicvf_update_sq_stats(struct nicvf *nic, int sq_idx) 1826 { 1827 struct snd_queue *sq; 1828 1829 #define GET_SQ_STATS(reg) \ 1830 nicvf_reg_read(nic, NIC_QSET_SQ_0_7_STAT_0_1 |\ 1831 (sq_idx << NIC_Q_NUM_SHIFT) | (reg << 3)) 1832 1833 sq = &nic->qs->sq[sq_idx]; 1834 sq->stats.bytes = GET_SQ_STATS(RQ_SQ_STATS_OCTS); 1835 sq->stats.pkts = GET_SQ_STATS(RQ_SQ_STATS_PKTS); 1836 } 1837 1838 /* Check for errors in the receive cmp.queue entry */ 1839 int nicvf_check_cqe_rx_errs(struct nicvf *nic, struct cqe_rx_t *cqe_rx) 1840 { 1841 netif_err(nic, rx_err, nic->netdev, 1842 "RX error CQE err_level 0x%x err_opcode 0x%x\n", 1843 cqe_rx->err_level, cqe_rx->err_opcode); 1844 1845 switch (cqe_rx->err_opcode) { 1846 case CQ_RX_ERROP_RE_PARTIAL: 1847 this_cpu_inc(nic->drv_stats->rx_bgx_truncated_pkts); 1848 break; 1849 case CQ_RX_ERROP_RE_JABBER: 1850 this_cpu_inc(nic->drv_stats->rx_jabber_errs); 1851 break; 1852 case CQ_RX_ERROP_RE_FCS: 1853 this_cpu_inc(nic->drv_stats->rx_fcs_errs); 1854 break; 1855 case CQ_RX_ERROP_RE_RX_CTL: 1856 this_cpu_inc(nic->drv_stats->rx_bgx_errs); 1857 break; 1858 case CQ_RX_ERROP_PREL2_ERR: 1859 this_cpu_inc(nic->drv_stats->rx_prel2_errs); 1860 break; 1861 case CQ_RX_ERROP_L2_MAL: 1862 this_cpu_inc(nic->drv_stats->rx_l2_hdr_malformed); 1863 break; 1864 case CQ_RX_ERROP_L2_OVERSIZE: 1865 this_cpu_inc(nic->drv_stats->rx_oversize); 1866 break; 1867 case CQ_RX_ERROP_L2_UNDERSIZE: 1868 this_cpu_inc(nic->drv_stats->rx_undersize); 1869 break; 1870 case CQ_RX_ERROP_L2_LENMISM: 1871 this_cpu_inc(nic->drv_stats->rx_l2_len_mismatch); 1872 break; 1873 case CQ_RX_ERROP_L2_PCLP: 1874 this_cpu_inc(nic->drv_stats->rx_l2_pclp); 1875 break; 1876 case CQ_RX_ERROP_IP_NOT: 1877 this_cpu_inc(nic->drv_stats->rx_ip_ver_errs); 1878 break; 1879 case CQ_RX_ERROP_IP_CSUM_ERR: 1880 this_cpu_inc(nic->drv_stats->rx_ip_csum_errs); 1881 break; 1882 case CQ_RX_ERROP_IP_MAL: 1883 this_cpu_inc(nic->drv_stats->rx_ip_hdr_malformed); 1884 break; 1885 case CQ_RX_ERROP_IP_MALD: 1886 this_cpu_inc(nic->drv_stats->rx_ip_payload_malformed); 1887 break; 1888 case CQ_RX_ERROP_IP_HOP: 1889 this_cpu_inc(nic->drv_stats->rx_ip_ttl_errs); 1890 break; 1891 case CQ_RX_ERROP_L3_PCLP: 1892 this_cpu_inc(nic->drv_stats->rx_l3_pclp); 1893 break; 1894 case CQ_RX_ERROP_L4_MAL: 1895 this_cpu_inc(nic->drv_stats->rx_l4_malformed); 1896 break; 1897 case CQ_RX_ERROP_L4_CHK: 1898 this_cpu_inc(nic->drv_stats->rx_l4_csum_errs); 1899 break; 1900 case CQ_RX_ERROP_UDP_LEN: 1901 this_cpu_inc(nic->drv_stats->rx_udp_len_errs); 1902 break; 1903 case CQ_RX_ERROP_L4_PORT: 1904 this_cpu_inc(nic->drv_stats->rx_l4_port_errs); 1905 break; 1906 case CQ_RX_ERROP_TCP_FLAG: 1907 this_cpu_inc(nic->drv_stats->rx_tcp_flag_errs); 1908 break; 1909 case CQ_RX_ERROP_TCP_OFFSET: 1910 this_cpu_inc(nic->drv_stats->rx_tcp_offset_errs); 1911 break; 1912 case CQ_RX_ERROP_L4_PCLP: 1913 this_cpu_inc(nic->drv_stats->rx_l4_pclp); 1914 break; 1915 case CQ_RX_ERROP_RBDR_TRUNC: 1916 this_cpu_inc(nic->drv_stats->rx_truncated_pkts); 1917 break; 1918 } 1919 1920 return 1; 1921 } 1922 1923 /* Check for errors in the send cmp.queue entry */ 1924 int nicvf_check_cqe_tx_errs(struct nicvf *nic, struct cqe_send_t *cqe_tx) 1925 { 1926 switch (cqe_tx->send_status) { 1927 case CQ_TX_ERROP_DESC_FAULT: 1928 this_cpu_inc(nic->drv_stats->tx_desc_fault); 1929 break; 1930 case CQ_TX_ERROP_HDR_CONS_ERR: 1931 this_cpu_inc(nic->drv_stats->tx_hdr_cons_err); 1932 break; 1933 case CQ_TX_ERROP_SUBDC_ERR: 1934 this_cpu_inc(nic->drv_stats->tx_subdesc_err); 1935 break; 1936 case CQ_TX_ERROP_MAX_SIZE_VIOL: 1937 this_cpu_inc(nic->drv_stats->tx_max_size_exceeded); 1938 break; 1939 case CQ_TX_ERROP_IMM_SIZE_OFLOW: 1940 this_cpu_inc(nic->drv_stats->tx_imm_size_oflow); 1941 break; 1942 case CQ_TX_ERROP_DATA_SEQUENCE_ERR: 1943 this_cpu_inc(nic->drv_stats->tx_data_seq_err); 1944 break; 1945 case CQ_TX_ERROP_MEM_SEQUENCE_ERR: 1946 this_cpu_inc(nic->drv_stats->tx_mem_seq_err); 1947 break; 1948 case CQ_TX_ERROP_LOCK_VIOL: 1949 this_cpu_inc(nic->drv_stats->tx_lock_viol); 1950 break; 1951 case CQ_TX_ERROP_DATA_FAULT: 1952 this_cpu_inc(nic->drv_stats->tx_data_fault); 1953 break; 1954 case CQ_TX_ERROP_TSTMP_CONFLICT: 1955 this_cpu_inc(nic->drv_stats->tx_tstmp_conflict); 1956 break; 1957 case CQ_TX_ERROP_TSTMP_TIMEOUT: 1958 this_cpu_inc(nic->drv_stats->tx_tstmp_timeout); 1959 break; 1960 case CQ_TX_ERROP_MEM_FAULT: 1961 this_cpu_inc(nic->drv_stats->tx_mem_fault); 1962 break; 1963 case CQ_TX_ERROP_CK_OVERLAP: 1964 this_cpu_inc(nic->drv_stats->tx_csum_overlap); 1965 break; 1966 case CQ_TX_ERROP_CK_OFLOW: 1967 this_cpu_inc(nic->drv_stats->tx_csum_overflow); 1968 break; 1969 } 1970 1971 return 1; 1972 } 1973