1 /* 2 * Copyright (C) 2015 Cavium, Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of version 2 of the GNU General Public License 6 * as published by the Free Software Foundation. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/netdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/log2.h> 17 #include <linux/prefetch.h> 18 #include <linux/irq.h> 19 #include <linux/iommu.h> 20 #include <linux/bpf.h> 21 #include <linux/bpf_trace.h> 22 #include <linux/filter.h> 23 #include <linux/net_tstamp.h> 24 #include <linux/workqueue.h> 25 26 #include "nic_reg.h" 27 #include "nic.h" 28 #include "nicvf_queues.h" 29 #include "thunder_bgx.h" 30 #include "../common/cavium_ptp.h" 31 32 #define DRV_NAME "nicvf" 33 #define DRV_VERSION "1.0" 34 35 /* Supported devices */ 36 static const struct pci_device_id nicvf_id_table[] = { 37 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 38 PCI_DEVICE_ID_THUNDER_NIC_VF, 39 PCI_VENDOR_ID_CAVIUM, 40 PCI_SUBSYS_DEVID_88XX_NIC_VF) }, 41 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 42 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF, 43 PCI_VENDOR_ID_CAVIUM, 44 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) }, 45 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 46 PCI_DEVICE_ID_THUNDER_NIC_VF, 47 PCI_VENDOR_ID_CAVIUM, 48 PCI_SUBSYS_DEVID_81XX_NIC_VF) }, 49 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 50 PCI_DEVICE_ID_THUNDER_NIC_VF, 51 PCI_VENDOR_ID_CAVIUM, 52 PCI_SUBSYS_DEVID_83XX_NIC_VF) }, 53 { 0, } /* end of table */ 54 }; 55 56 MODULE_AUTHOR("Sunil Goutham"); 57 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver"); 58 MODULE_LICENSE("GPL v2"); 59 MODULE_VERSION(DRV_VERSION); 60 MODULE_DEVICE_TABLE(pci, nicvf_id_table); 61 62 static int debug = 0x00; 63 module_param(debug, int, 0644); 64 MODULE_PARM_DESC(debug, "Debug message level bitmap"); 65 66 static int cpi_alg = CPI_ALG_NONE; 67 module_param(cpi_alg, int, 0444); 68 MODULE_PARM_DESC(cpi_alg, 69 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)"); 70 71 /* workqueue for handling kernel ndo_set_rx_mode() calls */ 72 static struct workqueue_struct *nicvf_rx_mode_wq; 73 74 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx) 75 { 76 if (nic->sqs_mode) 77 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS); 78 else 79 return qidx; 80 } 81 82 /* The Cavium ThunderX network controller can *only* be found in SoCs 83 * containing the ThunderX ARM64 CPU implementation. All accesses to the device 84 * registers on this platform are implicitly strongly ordered with respect 85 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use 86 * with no memory barriers in this driver. The readq()/writeq() functions add 87 * explicit ordering operation which in this case are redundant, and only 88 * add overhead. 89 */ 90 91 /* Register read/write APIs */ 92 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val) 93 { 94 writeq_relaxed(val, nic->reg_base + offset); 95 } 96 97 u64 nicvf_reg_read(struct nicvf *nic, u64 offset) 98 { 99 return readq_relaxed(nic->reg_base + offset); 100 } 101 102 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset, 103 u64 qidx, u64 val) 104 { 105 void __iomem *addr = nic->reg_base + offset; 106 107 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT)); 108 } 109 110 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx) 111 { 112 void __iomem *addr = nic->reg_base + offset; 113 114 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT)); 115 } 116 117 /* VF -> PF mailbox communication */ 118 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx) 119 { 120 u64 *msg = (u64 *)mbx; 121 122 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]); 123 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]); 124 } 125 126 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx) 127 { 128 int timeout = NIC_MBOX_MSG_TIMEOUT; 129 int sleep = 10; 130 131 nic->pf_acked = false; 132 nic->pf_nacked = false; 133 134 nicvf_write_to_mbx(nic, mbx); 135 136 /* Wait for previous message to be acked, timeout 2sec */ 137 while (!nic->pf_acked) { 138 if (nic->pf_nacked) { 139 netdev_err(nic->netdev, 140 "PF NACK to mbox msg 0x%02x from VF%d\n", 141 (mbx->msg.msg & 0xFF), nic->vf_id); 142 return -EINVAL; 143 } 144 msleep(sleep); 145 if (nic->pf_acked) 146 break; 147 timeout -= sleep; 148 if (!timeout) { 149 netdev_err(nic->netdev, 150 "PF didn't ACK to mbox msg 0x%02x from VF%d\n", 151 (mbx->msg.msg & 0xFF), nic->vf_id); 152 return -EBUSY; 153 } 154 } 155 return 0; 156 } 157 158 /* Checks if VF is able to comminicate with PF 159 * and also gets the VNIC number this VF is associated to. 160 */ 161 static int nicvf_check_pf_ready(struct nicvf *nic) 162 { 163 union nic_mbx mbx = {}; 164 165 mbx.msg.msg = NIC_MBOX_MSG_READY; 166 if (nicvf_send_msg_to_pf(nic, &mbx)) { 167 netdev_err(nic->netdev, 168 "PF didn't respond to READY msg\n"); 169 return 0; 170 } 171 172 return 1; 173 } 174 175 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx) 176 { 177 if (bgx->rx) 178 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats; 179 else 180 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats; 181 } 182 183 static void nicvf_handle_mbx_intr(struct nicvf *nic) 184 { 185 union nic_mbx mbx = {}; 186 u64 *mbx_data; 187 u64 mbx_addr; 188 int i; 189 190 mbx_addr = NIC_VF_PF_MAILBOX_0_1; 191 mbx_data = (u64 *)&mbx; 192 193 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) { 194 *mbx_data = nicvf_reg_read(nic, mbx_addr); 195 mbx_data++; 196 mbx_addr += sizeof(u64); 197 } 198 199 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg); 200 switch (mbx.msg.msg) { 201 case NIC_MBOX_MSG_READY: 202 nic->pf_acked = true; 203 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F; 204 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F; 205 nic->node = mbx.nic_cfg.node_id; 206 if (!nic->set_mac_pending) 207 ether_addr_copy(nic->netdev->dev_addr, 208 mbx.nic_cfg.mac_addr); 209 nic->sqs_mode = mbx.nic_cfg.sqs_mode; 210 nic->loopback_supported = mbx.nic_cfg.loopback_supported; 211 nic->link_up = false; 212 nic->duplex = 0; 213 nic->speed = 0; 214 break; 215 case NIC_MBOX_MSG_ACK: 216 nic->pf_acked = true; 217 break; 218 case NIC_MBOX_MSG_NACK: 219 nic->pf_nacked = true; 220 break; 221 case NIC_MBOX_MSG_RSS_SIZE: 222 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size; 223 nic->pf_acked = true; 224 break; 225 case NIC_MBOX_MSG_BGX_STATS: 226 nicvf_read_bgx_stats(nic, &mbx.bgx_stats); 227 nic->pf_acked = true; 228 break; 229 case NIC_MBOX_MSG_BGX_LINK_CHANGE: 230 nic->pf_acked = true; 231 nic->link_up = mbx.link_status.link_up; 232 nic->duplex = mbx.link_status.duplex; 233 nic->speed = mbx.link_status.speed; 234 nic->mac_type = mbx.link_status.mac_type; 235 if (nic->link_up) { 236 netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n", 237 nic->speed, 238 nic->duplex == DUPLEX_FULL ? 239 "Full" : "Half"); 240 netif_carrier_on(nic->netdev); 241 netif_tx_start_all_queues(nic->netdev); 242 } else { 243 netdev_info(nic->netdev, "Link is Down\n"); 244 netif_carrier_off(nic->netdev); 245 netif_tx_stop_all_queues(nic->netdev); 246 } 247 break; 248 case NIC_MBOX_MSG_ALLOC_SQS: 249 nic->sqs_count = mbx.sqs_alloc.qs_count; 250 nic->pf_acked = true; 251 break; 252 case NIC_MBOX_MSG_SNICVF_PTR: 253 /* Primary VF: make note of secondary VF's pointer 254 * to be used while packet transmission. 255 */ 256 nic->snicvf[mbx.nicvf.sqs_id] = 257 (struct nicvf *)mbx.nicvf.nicvf; 258 nic->pf_acked = true; 259 break; 260 case NIC_MBOX_MSG_PNICVF_PTR: 261 /* Secondary VF/Qset: make note of primary VF's pointer 262 * to be used while packet reception, to handover packet 263 * to primary VF's netdev. 264 */ 265 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf; 266 nic->pf_acked = true; 267 break; 268 case NIC_MBOX_MSG_PFC: 269 nic->pfc.autoneg = mbx.pfc.autoneg; 270 nic->pfc.fc_rx = mbx.pfc.fc_rx; 271 nic->pfc.fc_tx = mbx.pfc.fc_tx; 272 nic->pf_acked = true; 273 break; 274 default: 275 netdev_err(nic->netdev, 276 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg); 277 break; 278 } 279 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0); 280 } 281 282 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev) 283 { 284 union nic_mbx mbx = {}; 285 286 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC; 287 mbx.mac.vf_id = nic->vf_id; 288 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr); 289 290 return nicvf_send_msg_to_pf(nic, &mbx); 291 } 292 293 static void nicvf_config_cpi(struct nicvf *nic) 294 { 295 union nic_mbx mbx = {}; 296 297 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG; 298 mbx.cpi_cfg.vf_id = nic->vf_id; 299 mbx.cpi_cfg.cpi_alg = nic->cpi_alg; 300 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt; 301 302 nicvf_send_msg_to_pf(nic, &mbx); 303 } 304 305 static void nicvf_get_rss_size(struct nicvf *nic) 306 { 307 union nic_mbx mbx = {}; 308 309 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE; 310 mbx.rss_size.vf_id = nic->vf_id; 311 nicvf_send_msg_to_pf(nic, &mbx); 312 } 313 314 void nicvf_config_rss(struct nicvf *nic) 315 { 316 union nic_mbx mbx = {}; 317 struct nicvf_rss_info *rss = &nic->rss_info; 318 int ind_tbl_len = rss->rss_size; 319 int i, nextq = 0; 320 321 mbx.rss_cfg.vf_id = nic->vf_id; 322 mbx.rss_cfg.hash_bits = rss->hash_bits; 323 while (ind_tbl_len) { 324 mbx.rss_cfg.tbl_offset = nextq; 325 mbx.rss_cfg.tbl_len = min(ind_tbl_len, 326 RSS_IND_TBL_LEN_PER_MBX_MSG); 327 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ? 328 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG; 329 330 for (i = 0; i < mbx.rss_cfg.tbl_len; i++) 331 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++]; 332 333 nicvf_send_msg_to_pf(nic, &mbx); 334 335 ind_tbl_len -= mbx.rss_cfg.tbl_len; 336 } 337 } 338 339 void nicvf_set_rss_key(struct nicvf *nic) 340 { 341 struct nicvf_rss_info *rss = &nic->rss_info; 342 u64 key_addr = NIC_VNIC_RSS_KEY_0_4; 343 int idx; 344 345 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) { 346 nicvf_reg_write(nic, key_addr, rss->key[idx]); 347 key_addr += sizeof(u64); 348 } 349 } 350 351 static int nicvf_rss_init(struct nicvf *nic) 352 { 353 struct nicvf_rss_info *rss = &nic->rss_info; 354 int idx; 355 356 nicvf_get_rss_size(nic); 357 358 if (cpi_alg != CPI_ALG_NONE) { 359 rss->enable = false; 360 rss->hash_bits = 0; 361 return 0; 362 } 363 364 rss->enable = true; 365 366 netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64)); 367 nicvf_set_rss_key(nic); 368 369 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA; 370 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg); 371 372 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size)); 373 374 for (idx = 0; idx < rss->rss_size; idx++) 375 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx, 376 nic->rx_queues); 377 nicvf_config_rss(nic); 378 return 1; 379 } 380 381 /* Request PF to allocate additional Qsets */ 382 static void nicvf_request_sqs(struct nicvf *nic) 383 { 384 union nic_mbx mbx = {}; 385 int sqs; 386 int sqs_count = nic->sqs_count; 387 int rx_queues = 0, tx_queues = 0; 388 389 /* Only primary VF should request */ 390 if (nic->sqs_mode || !nic->sqs_count) 391 return; 392 393 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS; 394 mbx.sqs_alloc.vf_id = nic->vf_id; 395 mbx.sqs_alloc.qs_count = nic->sqs_count; 396 if (nicvf_send_msg_to_pf(nic, &mbx)) { 397 /* No response from PF */ 398 nic->sqs_count = 0; 399 return; 400 } 401 402 /* Return if no Secondary Qsets available */ 403 if (!nic->sqs_count) 404 return; 405 406 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS) 407 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS; 408 409 tx_queues = nic->tx_queues + nic->xdp_tx_queues; 410 if (tx_queues > MAX_SND_QUEUES_PER_QS) 411 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS; 412 413 /* Set no of Rx/Tx queues in each of the SQsets */ 414 for (sqs = 0; sqs < nic->sqs_count; sqs++) { 415 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR; 416 mbx.nicvf.vf_id = nic->vf_id; 417 mbx.nicvf.sqs_id = sqs; 418 nicvf_send_msg_to_pf(nic, &mbx); 419 420 nic->snicvf[sqs]->sqs_id = sqs; 421 if (rx_queues > MAX_RCV_QUEUES_PER_QS) { 422 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS; 423 rx_queues -= MAX_RCV_QUEUES_PER_QS; 424 } else { 425 nic->snicvf[sqs]->qs->rq_cnt = rx_queues; 426 rx_queues = 0; 427 } 428 429 if (tx_queues > MAX_SND_QUEUES_PER_QS) { 430 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS; 431 tx_queues -= MAX_SND_QUEUES_PER_QS; 432 } else { 433 nic->snicvf[sqs]->qs->sq_cnt = tx_queues; 434 tx_queues = 0; 435 } 436 437 nic->snicvf[sqs]->qs->cq_cnt = 438 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt); 439 440 /* Initialize secondary Qset's queues and its interrupts */ 441 nicvf_open(nic->snicvf[sqs]->netdev); 442 } 443 444 /* Update stack with actual Rx/Tx queue count allocated */ 445 if (sqs_count != nic->sqs_count) 446 nicvf_set_real_num_queues(nic->netdev, 447 nic->tx_queues, nic->rx_queues); 448 } 449 450 /* Send this Qset's nicvf pointer to PF. 451 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs 452 * so that packets received by these Qsets can use primary VF's netdev 453 */ 454 static void nicvf_send_vf_struct(struct nicvf *nic) 455 { 456 union nic_mbx mbx = {}; 457 458 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR; 459 mbx.nicvf.sqs_mode = nic->sqs_mode; 460 mbx.nicvf.nicvf = (u64)nic; 461 nicvf_send_msg_to_pf(nic, &mbx); 462 } 463 464 static void nicvf_get_primary_vf_struct(struct nicvf *nic) 465 { 466 union nic_mbx mbx = {}; 467 468 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR; 469 nicvf_send_msg_to_pf(nic, &mbx); 470 } 471 472 int nicvf_set_real_num_queues(struct net_device *netdev, 473 int tx_queues, int rx_queues) 474 { 475 int err = 0; 476 477 err = netif_set_real_num_tx_queues(netdev, tx_queues); 478 if (err) { 479 netdev_err(netdev, 480 "Failed to set no of Tx queues: %d\n", tx_queues); 481 return err; 482 } 483 484 err = netif_set_real_num_rx_queues(netdev, rx_queues); 485 if (err) 486 netdev_err(netdev, 487 "Failed to set no of Rx queues: %d\n", rx_queues); 488 return err; 489 } 490 491 static int nicvf_init_resources(struct nicvf *nic) 492 { 493 int err; 494 495 /* Enable Qset */ 496 nicvf_qset_config(nic, true); 497 498 /* Initialize queues and HW for data transfer */ 499 err = nicvf_config_data_transfer(nic, true); 500 if (err) { 501 netdev_err(nic->netdev, 502 "Failed to alloc/config VF's QSet resources\n"); 503 return err; 504 } 505 506 return 0; 507 } 508 509 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog, 510 struct cqe_rx_t *cqe_rx, struct snd_queue *sq, 511 struct rcv_queue *rq, struct sk_buff **skb) 512 { 513 struct xdp_buff xdp; 514 struct page *page; 515 u32 action; 516 u16 len, offset = 0; 517 u64 dma_addr, cpu_addr; 518 void *orig_data; 519 520 /* Retrieve packet buffer's DMA address and length */ 521 len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64)))); 522 dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64)))); 523 524 cpu_addr = nicvf_iova_to_phys(nic, dma_addr); 525 if (!cpu_addr) 526 return false; 527 cpu_addr = (u64)phys_to_virt(cpu_addr); 528 page = virt_to_page((void *)cpu_addr); 529 530 xdp.data_hard_start = page_address(page); 531 xdp.data = (void *)cpu_addr; 532 xdp_set_data_meta_invalid(&xdp); 533 xdp.data_end = xdp.data + len; 534 xdp.rxq = &rq->xdp_rxq; 535 orig_data = xdp.data; 536 537 rcu_read_lock(); 538 action = bpf_prog_run_xdp(prog, &xdp); 539 rcu_read_unlock(); 540 541 len = xdp.data_end - xdp.data; 542 /* Check if XDP program has changed headers */ 543 if (orig_data != xdp.data) { 544 offset = orig_data - xdp.data; 545 dma_addr -= offset; 546 } 547 548 switch (action) { 549 case XDP_PASS: 550 /* Check if it's a recycled page, if not 551 * unmap the DMA mapping. 552 * 553 * Recycled page holds an extra reference. 554 */ 555 if (page_ref_count(page) == 1) { 556 dma_addr &= PAGE_MASK; 557 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, 558 RCV_FRAG_LEN + XDP_PACKET_HEADROOM, 559 DMA_FROM_DEVICE, 560 DMA_ATTR_SKIP_CPU_SYNC); 561 } 562 563 /* Build SKB and pass on packet to network stack */ 564 *skb = build_skb(xdp.data, 565 RCV_FRAG_LEN - cqe_rx->align_pad + offset); 566 if (!*skb) 567 put_page(page); 568 else 569 skb_put(*skb, len); 570 return false; 571 case XDP_TX: 572 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len); 573 return true; 574 default: 575 bpf_warn_invalid_xdp_action(action); 576 /* fall through */ 577 case XDP_ABORTED: 578 trace_xdp_exception(nic->netdev, prog, action); 579 /* fall through */ 580 case XDP_DROP: 581 /* Check if it's a recycled page, if not 582 * unmap the DMA mapping. 583 * 584 * Recycled page holds an extra reference. 585 */ 586 if (page_ref_count(page) == 1) { 587 dma_addr &= PAGE_MASK; 588 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, 589 RCV_FRAG_LEN + XDP_PACKET_HEADROOM, 590 DMA_FROM_DEVICE, 591 DMA_ATTR_SKIP_CPU_SYNC); 592 } 593 put_page(page); 594 return true; 595 } 596 return false; 597 } 598 599 static void nicvf_snd_ptp_handler(struct net_device *netdev, 600 struct cqe_send_t *cqe_tx) 601 { 602 struct nicvf *nic = netdev_priv(netdev); 603 struct skb_shared_hwtstamps ts; 604 u64 ns; 605 606 nic = nic->pnicvf; 607 608 /* Sync for 'ptp_skb' */ 609 smp_rmb(); 610 611 /* New timestamp request can be queued now */ 612 atomic_set(&nic->tx_ptp_skbs, 0); 613 614 /* Check for timestamp requested skb */ 615 if (!nic->ptp_skb) 616 return; 617 618 /* Check if timestamping is timedout, which is set to 10us */ 619 if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT || 620 cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT) 621 goto no_tstamp; 622 623 /* Get the timestamp */ 624 memset(&ts, 0, sizeof(ts)); 625 ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp); 626 ts.hwtstamp = ns_to_ktime(ns); 627 skb_tstamp_tx(nic->ptp_skb, &ts); 628 629 no_tstamp: 630 /* Free the original skb */ 631 dev_kfree_skb_any(nic->ptp_skb); 632 nic->ptp_skb = NULL; 633 /* Sync 'ptp_skb' */ 634 smp_wmb(); 635 } 636 637 static void nicvf_snd_pkt_handler(struct net_device *netdev, 638 struct cqe_send_t *cqe_tx, 639 int budget, int *subdesc_cnt, 640 unsigned int *tx_pkts, unsigned int *tx_bytes) 641 { 642 struct sk_buff *skb = NULL; 643 struct page *page; 644 struct nicvf *nic = netdev_priv(netdev); 645 struct snd_queue *sq; 646 struct sq_hdr_subdesc *hdr; 647 struct sq_hdr_subdesc *tso_sqe; 648 649 sq = &nic->qs->sq[cqe_tx->sq_idx]; 650 651 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr); 652 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) 653 return; 654 655 /* Check for errors */ 656 if (cqe_tx->send_status) 657 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx); 658 659 /* Is this a XDP designated Tx queue */ 660 if (sq->is_xdp) { 661 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr]; 662 /* Check if it's recycled page or else unmap DMA mapping */ 663 if (page && (page_ref_count(page) == 1)) 664 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr, 665 hdr->subdesc_cnt); 666 667 /* Release page reference for recycling */ 668 if (page) 669 put_page(page); 670 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL; 671 *subdesc_cnt += hdr->subdesc_cnt + 1; 672 return; 673 } 674 675 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr]; 676 if (skb) { 677 /* Check for dummy descriptor used for HW TSO offload on 88xx */ 678 if (hdr->dont_send) { 679 /* Get actual TSO descriptors and free them */ 680 tso_sqe = 681 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2); 682 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2, 683 tso_sqe->subdesc_cnt); 684 *subdesc_cnt += tso_sqe->subdesc_cnt + 1; 685 } else { 686 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr, 687 hdr->subdesc_cnt); 688 } 689 *subdesc_cnt += hdr->subdesc_cnt + 1; 690 prefetch(skb); 691 (*tx_pkts)++; 692 *tx_bytes += skb->len; 693 /* If timestamp is requested for this skb, don't free it */ 694 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 695 !nic->pnicvf->ptp_skb) 696 nic->pnicvf->ptp_skb = skb; 697 else 698 napi_consume_skb(skb, budget); 699 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL; 700 } else { 701 /* In case of SW TSO on 88xx, only last segment will have 702 * a SKB attached, so just free SQEs here. 703 */ 704 if (!nic->hw_tso) 705 *subdesc_cnt += hdr->subdesc_cnt + 1; 706 } 707 } 708 709 static inline void nicvf_set_rxhash(struct net_device *netdev, 710 struct cqe_rx_t *cqe_rx, 711 struct sk_buff *skb) 712 { 713 u8 hash_type; 714 u32 hash; 715 716 if (!(netdev->features & NETIF_F_RXHASH)) 717 return; 718 719 switch (cqe_rx->rss_alg) { 720 case RSS_ALG_TCP_IP: 721 case RSS_ALG_UDP_IP: 722 hash_type = PKT_HASH_TYPE_L4; 723 hash = cqe_rx->rss_tag; 724 break; 725 case RSS_ALG_IP: 726 hash_type = PKT_HASH_TYPE_L3; 727 hash = cqe_rx->rss_tag; 728 break; 729 default: 730 hash_type = PKT_HASH_TYPE_NONE; 731 hash = 0; 732 } 733 734 skb_set_hash(skb, hash, hash_type); 735 } 736 737 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb) 738 { 739 u64 ns; 740 741 if (!nic->ptp_clock || !nic->hw_rx_tstamp) 742 return; 743 744 /* The first 8 bytes is the timestamp */ 745 ns = cavium_ptp_tstamp2time(nic->ptp_clock, 746 be64_to_cpu(*(__be64 *)skb->data)); 747 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 748 749 __skb_pull(skb, 8); 750 } 751 752 static void nicvf_rcv_pkt_handler(struct net_device *netdev, 753 struct napi_struct *napi, 754 struct cqe_rx_t *cqe_rx, 755 struct snd_queue *sq, struct rcv_queue *rq) 756 { 757 struct sk_buff *skb = NULL; 758 struct nicvf *nic = netdev_priv(netdev); 759 struct nicvf *snic = nic; 760 int err = 0; 761 int rq_idx; 762 763 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx); 764 765 if (nic->sqs_mode) { 766 /* Use primary VF's 'nicvf' struct */ 767 nic = nic->pnicvf; 768 netdev = nic->netdev; 769 } 770 771 /* Check for errors */ 772 if (cqe_rx->err_level || cqe_rx->err_opcode) { 773 err = nicvf_check_cqe_rx_errs(nic, cqe_rx); 774 if (err && !cqe_rx->rb_cnt) 775 return; 776 } 777 778 /* For XDP, ignore pkts spanning multiple pages */ 779 if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) { 780 /* Packet consumed by XDP */ 781 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb)) 782 return; 783 } else { 784 skb = nicvf_get_rcv_skb(snic, cqe_rx, 785 nic->xdp_prog ? true : false); 786 } 787 788 if (!skb) 789 return; 790 791 if (netif_msg_pktdata(nic)) { 792 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len); 793 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1, 794 skb->data, skb->len, true); 795 } 796 797 /* If error packet, drop it here */ 798 if (err) { 799 dev_kfree_skb_any(skb); 800 return; 801 } 802 803 nicvf_set_rxtstamp(nic, skb); 804 nicvf_set_rxhash(netdev, cqe_rx, skb); 805 806 skb_record_rx_queue(skb, rq_idx); 807 if (netdev->hw_features & NETIF_F_RXCSUM) { 808 /* HW by default verifies TCP/UDP/SCTP checksums */ 809 skb->ip_summed = CHECKSUM_UNNECESSARY; 810 } else { 811 skb_checksum_none_assert(skb); 812 } 813 814 skb->protocol = eth_type_trans(skb, netdev); 815 816 /* Check for stripped VLAN */ 817 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped) 818 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 819 ntohs((__force __be16)cqe_rx->vlan_tci)); 820 821 if (napi && (netdev->features & NETIF_F_GRO)) 822 napi_gro_receive(napi, skb); 823 else 824 netif_receive_skb(skb); 825 } 826 827 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx, 828 struct napi_struct *napi, int budget) 829 { 830 int processed_cqe, work_done = 0, tx_done = 0; 831 int cqe_count, cqe_head; 832 int subdesc_cnt = 0; 833 struct nicvf *nic = netdev_priv(netdev); 834 struct queue_set *qs = nic->qs; 835 struct cmp_queue *cq = &qs->cq[cq_idx]; 836 struct cqe_rx_t *cq_desc; 837 struct netdev_queue *txq; 838 struct snd_queue *sq = &qs->sq[cq_idx]; 839 struct rcv_queue *rq = &qs->rq[cq_idx]; 840 unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx; 841 842 spin_lock_bh(&cq->lock); 843 loop: 844 processed_cqe = 0; 845 /* Get no of valid CQ entries to process */ 846 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx); 847 cqe_count &= CQ_CQE_COUNT; 848 if (!cqe_count) 849 goto done; 850 851 /* Get head of the valid CQ entries */ 852 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9; 853 cqe_head &= 0xFFFF; 854 855 while (processed_cqe < cqe_count) { 856 /* Get the CQ descriptor */ 857 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head); 858 cqe_head++; 859 cqe_head &= (cq->dmem.q_len - 1); 860 /* Initiate prefetch for next descriptor */ 861 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head)); 862 863 if ((work_done >= budget) && napi && 864 (cq_desc->cqe_type != CQE_TYPE_SEND)) { 865 break; 866 } 867 868 switch (cq_desc->cqe_type) { 869 case CQE_TYPE_RX: 870 nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq); 871 work_done++; 872 break; 873 case CQE_TYPE_SEND: 874 nicvf_snd_pkt_handler(netdev, (void *)cq_desc, 875 budget, &subdesc_cnt, 876 &tx_pkts, &tx_bytes); 877 tx_done++; 878 break; 879 case CQE_TYPE_SEND_PTP: 880 nicvf_snd_ptp_handler(netdev, (void *)cq_desc); 881 break; 882 case CQE_TYPE_INVALID: 883 case CQE_TYPE_RX_SPLIT: 884 case CQE_TYPE_RX_TCP: 885 /* Ignore for now */ 886 break; 887 } 888 processed_cqe++; 889 } 890 891 /* Ring doorbell to inform H/W to reuse processed CQEs */ 892 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, 893 cq_idx, processed_cqe); 894 895 if ((work_done < budget) && napi) 896 goto loop; 897 898 done: 899 /* Update SQ's descriptor free count */ 900 if (subdesc_cnt) 901 nicvf_put_sq_desc(sq, subdesc_cnt); 902 903 txq_idx = nicvf_netdev_qidx(nic, cq_idx); 904 /* Handle XDP TX queues */ 905 if (nic->pnicvf->xdp_prog) { 906 if (txq_idx < nic->pnicvf->xdp_tx_queues) { 907 nicvf_xdp_sq_doorbell(nic, sq, cq_idx); 908 goto out; 909 } 910 nic = nic->pnicvf; 911 txq_idx -= nic->pnicvf->xdp_tx_queues; 912 } 913 914 /* Wakeup TXQ if its stopped earlier due to SQ full */ 915 if (tx_done || 916 (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) { 917 netdev = nic->pnicvf->netdev; 918 txq = netdev_get_tx_queue(netdev, txq_idx); 919 if (tx_pkts) 920 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 921 922 /* To read updated queue and carrier status */ 923 smp_mb(); 924 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) { 925 netif_tx_wake_queue(txq); 926 nic = nic->pnicvf; 927 this_cpu_inc(nic->drv_stats->txq_wake); 928 netif_warn(nic, tx_err, netdev, 929 "Transmit queue wakeup SQ%d\n", txq_idx); 930 } 931 } 932 933 out: 934 spin_unlock_bh(&cq->lock); 935 return work_done; 936 } 937 938 static int nicvf_poll(struct napi_struct *napi, int budget) 939 { 940 u64 cq_head; 941 int work_done = 0; 942 struct net_device *netdev = napi->dev; 943 struct nicvf *nic = netdev_priv(netdev); 944 struct nicvf_cq_poll *cq; 945 946 cq = container_of(napi, struct nicvf_cq_poll, napi); 947 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget); 948 949 if (work_done < budget) { 950 /* Slow packet rate, exit polling */ 951 napi_complete_done(napi, work_done); 952 /* Re-enable interrupts */ 953 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, 954 cq->cq_idx); 955 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx); 956 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD, 957 cq->cq_idx, cq_head); 958 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx); 959 } 960 return work_done; 961 } 962 963 /* Qset error interrupt handler 964 * 965 * As of now only CQ errors are handled 966 */ 967 static void nicvf_handle_qs_err(unsigned long data) 968 { 969 struct nicvf *nic = (struct nicvf *)data; 970 struct queue_set *qs = nic->qs; 971 int qidx; 972 u64 status; 973 974 netif_tx_disable(nic->netdev); 975 976 /* Check if it is CQ err */ 977 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 978 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, 979 qidx); 980 if (!(status & CQ_ERR_MASK)) 981 continue; 982 /* Process already queued CQEs and reconfig CQ */ 983 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); 984 nicvf_sq_disable(nic, qidx); 985 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0); 986 nicvf_cmp_queue_config(nic, qs, qidx, true); 987 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx); 988 nicvf_sq_enable(nic, &qs->sq[qidx], qidx); 989 990 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx); 991 } 992 993 netif_tx_start_all_queues(nic->netdev); 994 /* Re-enable Qset error interrupt */ 995 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0); 996 } 997 998 static void nicvf_dump_intr_status(struct nicvf *nic) 999 { 1000 netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n", 1001 nicvf_reg_read(nic, NIC_VF_INT)); 1002 } 1003 1004 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq) 1005 { 1006 struct nicvf *nic = (struct nicvf *)nicvf_irq; 1007 u64 intr; 1008 1009 nicvf_dump_intr_status(nic); 1010 1011 intr = nicvf_reg_read(nic, NIC_VF_INT); 1012 /* Check for spurious interrupt */ 1013 if (!(intr & NICVF_INTR_MBOX_MASK)) 1014 return IRQ_HANDLED; 1015 1016 nicvf_handle_mbx_intr(nic); 1017 1018 return IRQ_HANDLED; 1019 } 1020 1021 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq) 1022 { 1023 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq; 1024 struct nicvf *nic = cq_poll->nicvf; 1025 int qidx = cq_poll->cq_idx; 1026 1027 nicvf_dump_intr_status(nic); 1028 1029 /* Disable interrupts */ 1030 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); 1031 1032 /* Schedule NAPI */ 1033 napi_schedule_irqoff(&cq_poll->napi); 1034 1035 /* Clear interrupt */ 1036 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx); 1037 1038 return IRQ_HANDLED; 1039 } 1040 1041 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq) 1042 { 1043 struct nicvf *nic = (struct nicvf *)nicvf_irq; 1044 u8 qidx; 1045 1046 1047 nicvf_dump_intr_status(nic); 1048 1049 /* Disable RBDR interrupt and schedule softirq */ 1050 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) { 1051 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx)) 1052 continue; 1053 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx); 1054 tasklet_hi_schedule(&nic->rbdr_task); 1055 /* Clear interrupt */ 1056 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx); 1057 } 1058 1059 return IRQ_HANDLED; 1060 } 1061 1062 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq) 1063 { 1064 struct nicvf *nic = (struct nicvf *)nicvf_irq; 1065 1066 nicvf_dump_intr_status(nic); 1067 1068 /* Disable Qset err interrupt and schedule softirq */ 1069 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0); 1070 tasklet_hi_schedule(&nic->qs_err_task); 1071 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0); 1072 1073 return IRQ_HANDLED; 1074 } 1075 1076 static void nicvf_set_irq_affinity(struct nicvf *nic) 1077 { 1078 int vec, cpu; 1079 1080 for (vec = 0; vec < nic->num_vec; vec++) { 1081 if (!nic->irq_allocated[vec]) 1082 continue; 1083 1084 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL)) 1085 return; 1086 /* CQ interrupts */ 1087 if (vec < NICVF_INTR_ID_SQ) 1088 /* Leave CPU0 for RBDR and other interrupts */ 1089 cpu = nicvf_netdev_qidx(nic, vec) + 1; 1090 else 1091 cpu = 0; 1092 1093 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node), 1094 nic->affinity_mask[vec]); 1095 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec), 1096 nic->affinity_mask[vec]); 1097 } 1098 } 1099 1100 static int nicvf_register_interrupts(struct nicvf *nic) 1101 { 1102 int irq, ret = 0; 1103 1104 for_each_cq_irq(irq) 1105 sprintf(nic->irq_name[irq], "%s-rxtx-%d", 1106 nic->pnicvf->netdev->name, 1107 nicvf_netdev_qidx(nic, irq)); 1108 1109 for_each_sq_irq(irq) 1110 sprintf(nic->irq_name[irq], "%s-sq-%d", 1111 nic->pnicvf->netdev->name, 1112 nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ)); 1113 1114 for_each_rbdr_irq(irq) 1115 sprintf(nic->irq_name[irq], "%s-rbdr-%d", 1116 nic->pnicvf->netdev->name, 1117 nic->sqs_mode ? (nic->sqs_id + 1) : 0); 1118 1119 /* Register CQ interrupts */ 1120 for (irq = 0; irq < nic->qs->cq_cnt; irq++) { 1121 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1122 nicvf_intr_handler, 1123 0, nic->irq_name[irq], nic->napi[irq]); 1124 if (ret) 1125 goto err; 1126 nic->irq_allocated[irq] = true; 1127 } 1128 1129 /* Register RBDR interrupt */ 1130 for (irq = NICVF_INTR_ID_RBDR; 1131 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) { 1132 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1133 nicvf_rbdr_intr_handler, 1134 0, nic->irq_name[irq], nic); 1135 if (ret) 1136 goto err; 1137 nic->irq_allocated[irq] = true; 1138 } 1139 1140 /* Register QS error interrupt */ 1141 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d", 1142 nic->pnicvf->netdev->name, 1143 nic->sqs_mode ? (nic->sqs_id + 1) : 0); 1144 irq = NICVF_INTR_ID_QS_ERR; 1145 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1146 nicvf_qs_err_intr_handler, 1147 0, nic->irq_name[irq], nic); 1148 if (ret) 1149 goto err; 1150 1151 nic->irq_allocated[irq] = true; 1152 1153 /* Set IRQ affinities */ 1154 nicvf_set_irq_affinity(nic); 1155 1156 err: 1157 if (ret) 1158 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq); 1159 1160 return ret; 1161 } 1162 1163 static void nicvf_unregister_interrupts(struct nicvf *nic) 1164 { 1165 struct pci_dev *pdev = nic->pdev; 1166 int irq; 1167 1168 /* Free registered interrupts */ 1169 for (irq = 0; irq < nic->num_vec; irq++) { 1170 if (!nic->irq_allocated[irq]) 1171 continue; 1172 1173 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL); 1174 free_cpumask_var(nic->affinity_mask[irq]); 1175 1176 if (irq < NICVF_INTR_ID_SQ) 1177 free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]); 1178 else 1179 free_irq(pci_irq_vector(pdev, irq), nic); 1180 1181 nic->irq_allocated[irq] = false; 1182 } 1183 1184 /* Disable MSI-X */ 1185 pci_free_irq_vectors(pdev); 1186 nic->num_vec = 0; 1187 } 1188 1189 /* Initialize MSIX vectors and register MISC interrupt. 1190 * Send READY message to PF to check if its alive 1191 */ 1192 static int nicvf_register_misc_interrupt(struct nicvf *nic) 1193 { 1194 int ret = 0; 1195 int irq = NICVF_INTR_ID_MISC; 1196 1197 /* Return if mailbox interrupt is already registered */ 1198 if (nic->pdev->msix_enabled) 1199 return 0; 1200 1201 /* Enable MSI-X */ 1202 nic->num_vec = pci_msix_vec_count(nic->pdev); 1203 ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec, 1204 PCI_IRQ_MSIX); 1205 if (ret < 0) { 1206 netdev_err(nic->netdev, 1207 "Req for #%d msix vectors failed\n", nic->num_vec); 1208 return 1; 1209 } 1210 1211 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF"); 1212 /* Register Misc interrupt */ 1213 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1214 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic); 1215 1216 if (ret) 1217 return ret; 1218 nic->irq_allocated[irq] = true; 1219 1220 /* Enable mailbox interrupt */ 1221 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0); 1222 1223 /* Check if VF is able to communicate with PF */ 1224 if (!nicvf_check_pf_ready(nic)) { 1225 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); 1226 nicvf_unregister_interrupts(nic); 1227 return 1; 1228 } 1229 1230 return 0; 1231 } 1232 1233 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev) 1234 { 1235 struct nicvf *nic = netdev_priv(netdev); 1236 int qid = skb_get_queue_mapping(skb); 1237 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid); 1238 struct nicvf *snic; 1239 struct snd_queue *sq; 1240 int tmp; 1241 1242 /* Check for minimum packet length */ 1243 if (skb->len <= ETH_HLEN) { 1244 dev_kfree_skb(skb); 1245 return NETDEV_TX_OK; 1246 } 1247 1248 /* In XDP case, initial HW tx queues are used for XDP, 1249 * but stack's queue mapping starts at '0', so skip the 1250 * Tx queues attached to Rx queues for XDP. 1251 */ 1252 if (nic->xdp_prog) 1253 qid += nic->xdp_tx_queues; 1254 1255 snic = nic; 1256 /* Get secondary Qset's SQ structure */ 1257 if (qid >= MAX_SND_QUEUES_PER_QS) { 1258 tmp = qid / MAX_SND_QUEUES_PER_QS; 1259 snic = (struct nicvf *)nic->snicvf[tmp - 1]; 1260 if (!snic) { 1261 netdev_warn(nic->netdev, 1262 "Secondary Qset#%d's ptr not initialized\n", 1263 tmp - 1); 1264 dev_kfree_skb(skb); 1265 return NETDEV_TX_OK; 1266 } 1267 qid = qid % MAX_SND_QUEUES_PER_QS; 1268 } 1269 1270 sq = &snic->qs->sq[qid]; 1271 if (!netif_tx_queue_stopped(txq) && 1272 !nicvf_sq_append_skb(snic, sq, skb, qid)) { 1273 netif_tx_stop_queue(txq); 1274 1275 /* Barrier, so that stop_queue visible to other cpus */ 1276 smp_mb(); 1277 1278 /* Check again, incase another cpu freed descriptors */ 1279 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) { 1280 netif_tx_wake_queue(txq); 1281 } else { 1282 this_cpu_inc(nic->drv_stats->txq_stop); 1283 netif_warn(nic, tx_err, netdev, 1284 "Transmit ring full, stopping SQ%d\n", qid); 1285 } 1286 return NETDEV_TX_BUSY; 1287 } 1288 1289 return NETDEV_TX_OK; 1290 } 1291 1292 static inline void nicvf_free_cq_poll(struct nicvf *nic) 1293 { 1294 struct nicvf_cq_poll *cq_poll; 1295 int qidx; 1296 1297 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) { 1298 cq_poll = nic->napi[qidx]; 1299 if (!cq_poll) 1300 continue; 1301 nic->napi[qidx] = NULL; 1302 kfree(cq_poll); 1303 } 1304 } 1305 1306 int nicvf_stop(struct net_device *netdev) 1307 { 1308 int irq, qidx; 1309 struct nicvf *nic = netdev_priv(netdev); 1310 struct queue_set *qs = nic->qs; 1311 struct nicvf_cq_poll *cq_poll = NULL; 1312 union nic_mbx mbx = {}; 1313 1314 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN; 1315 nicvf_send_msg_to_pf(nic, &mbx); 1316 1317 netif_carrier_off(netdev); 1318 netif_tx_stop_all_queues(nic->netdev); 1319 nic->link_up = false; 1320 1321 /* Teardown secondary qsets first */ 1322 if (!nic->sqs_mode) { 1323 for (qidx = 0; qidx < nic->sqs_count; qidx++) { 1324 if (!nic->snicvf[qidx]) 1325 continue; 1326 nicvf_stop(nic->snicvf[qidx]->netdev); 1327 nic->snicvf[qidx] = NULL; 1328 } 1329 } 1330 1331 /* Disable RBDR & QS error interrupts */ 1332 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) { 1333 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx); 1334 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx); 1335 } 1336 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0); 1337 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0); 1338 1339 /* Wait for pending IRQ handlers to finish */ 1340 for (irq = 0; irq < nic->num_vec; irq++) 1341 synchronize_irq(pci_irq_vector(nic->pdev, irq)); 1342 1343 tasklet_kill(&nic->rbdr_task); 1344 tasklet_kill(&nic->qs_err_task); 1345 if (nic->rb_work_scheduled) 1346 cancel_delayed_work_sync(&nic->rbdr_work); 1347 1348 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) { 1349 cq_poll = nic->napi[qidx]; 1350 if (!cq_poll) 1351 continue; 1352 napi_synchronize(&cq_poll->napi); 1353 /* CQ intr is enabled while napi_complete, 1354 * so disable it now 1355 */ 1356 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); 1357 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx); 1358 napi_disable(&cq_poll->napi); 1359 netif_napi_del(&cq_poll->napi); 1360 } 1361 1362 netif_tx_disable(netdev); 1363 1364 for (qidx = 0; qidx < netdev->num_tx_queues; qidx++) 1365 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx)); 1366 1367 /* Free resources */ 1368 nicvf_config_data_transfer(nic, false); 1369 1370 /* Disable HW Qset */ 1371 nicvf_qset_config(nic, false); 1372 1373 /* disable mailbox interrupt */ 1374 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); 1375 1376 nicvf_unregister_interrupts(nic); 1377 1378 nicvf_free_cq_poll(nic); 1379 1380 /* Free any pending SKB saved to receive timestamp */ 1381 if (nic->ptp_skb) { 1382 dev_kfree_skb_any(nic->ptp_skb); 1383 nic->ptp_skb = NULL; 1384 } 1385 1386 /* Clear multiqset info */ 1387 nic->pnicvf = nic; 1388 1389 return 0; 1390 } 1391 1392 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable) 1393 { 1394 union nic_mbx mbx = {}; 1395 1396 mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG; 1397 mbx.ptp.enable = enable; 1398 1399 return nicvf_send_msg_to_pf(nic, &mbx); 1400 } 1401 1402 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu) 1403 { 1404 union nic_mbx mbx = {}; 1405 1406 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS; 1407 mbx.frs.max_frs = mtu; 1408 mbx.frs.vf_id = nic->vf_id; 1409 1410 return nicvf_send_msg_to_pf(nic, &mbx); 1411 } 1412 1413 int nicvf_open(struct net_device *netdev) 1414 { 1415 int cpu, err, qidx; 1416 struct nicvf *nic = netdev_priv(netdev); 1417 struct queue_set *qs = nic->qs; 1418 struct nicvf_cq_poll *cq_poll = NULL; 1419 union nic_mbx mbx = {}; 1420 1421 netif_carrier_off(netdev); 1422 1423 err = nicvf_register_misc_interrupt(nic); 1424 if (err) 1425 return err; 1426 1427 /* Register NAPI handler for processing CQEs */ 1428 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 1429 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL); 1430 if (!cq_poll) { 1431 err = -ENOMEM; 1432 goto napi_del; 1433 } 1434 cq_poll->cq_idx = qidx; 1435 cq_poll->nicvf = nic; 1436 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll, 1437 NAPI_POLL_WEIGHT); 1438 napi_enable(&cq_poll->napi); 1439 nic->napi[qidx] = cq_poll; 1440 } 1441 1442 /* Check if we got MAC address from PF or else generate a radom MAC */ 1443 if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) { 1444 eth_hw_addr_random(netdev); 1445 nicvf_hw_set_mac_addr(nic, netdev); 1446 } 1447 1448 if (nic->set_mac_pending) { 1449 nic->set_mac_pending = false; 1450 nicvf_hw_set_mac_addr(nic, netdev); 1451 } 1452 1453 /* Init tasklet for handling Qset err interrupt */ 1454 tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err, 1455 (unsigned long)nic); 1456 1457 /* Init RBDR tasklet which will refill RBDR */ 1458 tasklet_init(&nic->rbdr_task, nicvf_rbdr_task, 1459 (unsigned long)nic); 1460 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work); 1461 1462 /* Configure CPI alorithm */ 1463 nic->cpi_alg = cpi_alg; 1464 if (!nic->sqs_mode) 1465 nicvf_config_cpi(nic); 1466 1467 nicvf_request_sqs(nic); 1468 if (nic->sqs_mode) 1469 nicvf_get_primary_vf_struct(nic); 1470 1471 /* Configure PTP timestamp */ 1472 if (nic->ptp_clock) 1473 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp); 1474 atomic_set(&nic->tx_ptp_skbs, 0); 1475 nic->ptp_skb = NULL; 1476 1477 /* Configure receive side scaling and MTU */ 1478 if (!nic->sqs_mode) { 1479 nicvf_rss_init(nic); 1480 err = nicvf_update_hw_max_frs(nic, netdev->mtu); 1481 if (err) 1482 goto cleanup; 1483 1484 /* Clear percpu stats */ 1485 for_each_possible_cpu(cpu) 1486 memset(per_cpu_ptr(nic->drv_stats, cpu), 0, 1487 sizeof(struct nicvf_drv_stats)); 1488 } 1489 1490 err = nicvf_register_interrupts(nic); 1491 if (err) 1492 goto cleanup; 1493 1494 /* Initialize the queues */ 1495 err = nicvf_init_resources(nic); 1496 if (err) 1497 goto cleanup; 1498 1499 /* Make sure queue initialization is written */ 1500 wmb(); 1501 1502 nicvf_reg_write(nic, NIC_VF_INT, -1); 1503 /* Enable Qset err interrupt */ 1504 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0); 1505 1506 /* Enable completion queue interrupt */ 1507 for (qidx = 0; qidx < qs->cq_cnt; qidx++) 1508 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx); 1509 1510 /* Enable RBDR threshold interrupt */ 1511 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) 1512 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx); 1513 1514 /* Send VF config done msg to PF */ 1515 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE; 1516 nicvf_write_to_mbx(nic, &mbx); 1517 1518 return 0; 1519 cleanup: 1520 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); 1521 nicvf_unregister_interrupts(nic); 1522 tasklet_kill(&nic->qs_err_task); 1523 tasklet_kill(&nic->rbdr_task); 1524 napi_del: 1525 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 1526 cq_poll = nic->napi[qidx]; 1527 if (!cq_poll) 1528 continue; 1529 napi_disable(&cq_poll->napi); 1530 netif_napi_del(&cq_poll->napi); 1531 } 1532 nicvf_free_cq_poll(nic); 1533 return err; 1534 } 1535 1536 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu) 1537 { 1538 struct nicvf *nic = netdev_priv(netdev); 1539 int orig_mtu = netdev->mtu; 1540 1541 netdev->mtu = new_mtu; 1542 1543 if (!netif_running(netdev)) 1544 return 0; 1545 1546 if (nicvf_update_hw_max_frs(nic, new_mtu)) { 1547 netdev->mtu = orig_mtu; 1548 return -EINVAL; 1549 } 1550 1551 return 0; 1552 } 1553 1554 static int nicvf_set_mac_address(struct net_device *netdev, void *p) 1555 { 1556 struct sockaddr *addr = p; 1557 struct nicvf *nic = netdev_priv(netdev); 1558 1559 if (!is_valid_ether_addr(addr->sa_data)) 1560 return -EADDRNOTAVAIL; 1561 1562 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1563 1564 if (nic->pdev->msix_enabled) { 1565 if (nicvf_hw_set_mac_addr(nic, netdev)) 1566 return -EBUSY; 1567 } else { 1568 nic->set_mac_pending = true; 1569 } 1570 1571 return 0; 1572 } 1573 1574 void nicvf_update_lmac_stats(struct nicvf *nic) 1575 { 1576 int stat = 0; 1577 union nic_mbx mbx = {}; 1578 1579 if (!netif_running(nic->netdev)) 1580 return; 1581 1582 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS; 1583 mbx.bgx_stats.vf_id = nic->vf_id; 1584 /* Rx stats */ 1585 mbx.bgx_stats.rx = 1; 1586 while (stat < BGX_RX_STATS_COUNT) { 1587 mbx.bgx_stats.idx = stat; 1588 if (nicvf_send_msg_to_pf(nic, &mbx)) 1589 return; 1590 stat++; 1591 } 1592 1593 stat = 0; 1594 1595 /* Tx stats */ 1596 mbx.bgx_stats.rx = 0; 1597 while (stat < BGX_TX_STATS_COUNT) { 1598 mbx.bgx_stats.idx = stat; 1599 if (nicvf_send_msg_to_pf(nic, &mbx)) 1600 return; 1601 stat++; 1602 } 1603 } 1604 1605 void nicvf_update_stats(struct nicvf *nic) 1606 { 1607 int qidx, cpu; 1608 u64 tmp_stats = 0; 1609 struct nicvf_hw_stats *stats = &nic->hw_stats; 1610 struct nicvf_drv_stats *drv_stats; 1611 struct queue_set *qs = nic->qs; 1612 1613 #define GET_RX_STATS(reg) \ 1614 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3)) 1615 #define GET_TX_STATS(reg) \ 1616 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3)) 1617 1618 stats->rx_bytes = GET_RX_STATS(RX_OCTS); 1619 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST); 1620 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST); 1621 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST); 1622 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS); 1623 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR); 1624 stats->rx_drop_red = GET_RX_STATS(RX_RED); 1625 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS); 1626 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN); 1627 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS); 1628 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST); 1629 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST); 1630 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST); 1631 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST); 1632 1633 stats->tx_bytes = GET_TX_STATS(TX_OCTS); 1634 stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST); 1635 stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST); 1636 stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST); 1637 stats->tx_drops = GET_TX_STATS(TX_DROP); 1638 1639 /* On T88 pass 2.0, the dummy SQE added for TSO notification 1640 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed 1641 * pointed by dummy SQE and results in tx_drops counter being 1642 * incremented. Subtracting it from tx_tso counter will give 1643 * exact tx_drops counter. 1644 */ 1645 if (nic->t88 && nic->hw_tso) { 1646 for_each_possible_cpu(cpu) { 1647 drv_stats = per_cpu_ptr(nic->drv_stats, cpu); 1648 tmp_stats += drv_stats->tx_tso; 1649 } 1650 stats->tx_drops = tmp_stats - stats->tx_drops; 1651 } 1652 stats->tx_frames = stats->tx_ucast_frames + 1653 stats->tx_bcast_frames + 1654 stats->tx_mcast_frames; 1655 stats->rx_frames = stats->rx_ucast_frames + 1656 stats->rx_bcast_frames + 1657 stats->rx_mcast_frames; 1658 stats->rx_drops = stats->rx_drop_red + 1659 stats->rx_drop_overrun; 1660 1661 /* Update RQ and SQ stats */ 1662 for (qidx = 0; qidx < qs->rq_cnt; qidx++) 1663 nicvf_update_rq_stats(nic, qidx); 1664 for (qidx = 0; qidx < qs->sq_cnt; qidx++) 1665 nicvf_update_sq_stats(nic, qidx); 1666 } 1667 1668 static void nicvf_get_stats64(struct net_device *netdev, 1669 struct rtnl_link_stats64 *stats) 1670 { 1671 struct nicvf *nic = netdev_priv(netdev); 1672 struct nicvf_hw_stats *hw_stats = &nic->hw_stats; 1673 1674 nicvf_update_stats(nic); 1675 1676 stats->rx_bytes = hw_stats->rx_bytes; 1677 stats->rx_packets = hw_stats->rx_frames; 1678 stats->rx_dropped = hw_stats->rx_drops; 1679 stats->multicast = hw_stats->rx_mcast_frames; 1680 1681 stats->tx_bytes = hw_stats->tx_bytes; 1682 stats->tx_packets = hw_stats->tx_frames; 1683 stats->tx_dropped = hw_stats->tx_drops; 1684 1685 } 1686 1687 static void nicvf_tx_timeout(struct net_device *dev) 1688 { 1689 struct nicvf *nic = netdev_priv(dev); 1690 1691 netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n"); 1692 1693 this_cpu_inc(nic->drv_stats->tx_timeout); 1694 schedule_work(&nic->reset_task); 1695 } 1696 1697 static void nicvf_reset_task(struct work_struct *work) 1698 { 1699 struct nicvf *nic; 1700 1701 nic = container_of(work, struct nicvf, reset_task); 1702 1703 if (!netif_running(nic->netdev)) 1704 return; 1705 1706 nicvf_stop(nic->netdev); 1707 nicvf_open(nic->netdev); 1708 netif_trans_update(nic->netdev); 1709 } 1710 1711 static int nicvf_config_loopback(struct nicvf *nic, 1712 netdev_features_t features) 1713 { 1714 union nic_mbx mbx = {}; 1715 1716 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK; 1717 mbx.lbk.vf_id = nic->vf_id; 1718 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0; 1719 1720 return nicvf_send_msg_to_pf(nic, &mbx); 1721 } 1722 1723 static netdev_features_t nicvf_fix_features(struct net_device *netdev, 1724 netdev_features_t features) 1725 { 1726 struct nicvf *nic = netdev_priv(netdev); 1727 1728 if ((features & NETIF_F_LOOPBACK) && 1729 netif_running(netdev) && !nic->loopback_supported) 1730 features &= ~NETIF_F_LOOPBACK; 1731 1732 return features; 1733 } 1734 1735 static int nicvf_set_features(struct net_device *netdev, 1736 netdev_features_t features) 1737 { 1738 struct nicvf *nic = netdev_priv(netdev); 1739 netdev_features_t changed = features ^ netdev->features; 1740 1741 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1742 nicvf_config_vlan_stripping(nic, features); 1743 1744 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev)) 1745 return nicvf_config_loopback(nic, features); 1746 1747 return 0; 1748 } 1749 1750 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached) 1751 { 1752 u8 cq_count, txq_count; 1753 1754 /* Set XDP Tx queue count same as Rx queue count */ 1755 if (!bpf_attached) 1756 nic->xdp_tx_queues = 0; 1757 else 1758 nic->xdp_tx_queues = nic->rx_queues; 1759 1760 /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets 1761 * needs to be allocated, check how many. 1762 */ 1763 txq_count = nic->xdp_tx_queues + nic->tx_queues; 1764 cq_count = max(nic->rx_queues, txq_count); 1765 if (cq_count > MAX_CMP_QUEUES_PER_QS) { 1766 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS); 1767 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1; 1768 } else { 1769 nic->sqs_count = 0; 1770 } 1771 1772 /* Set primary Qset's resources */ 1773 nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS); 1774 nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS); 1775 nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt); 1776 1777 /* Update stack */ 1778 nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues); 1779 } 1780 1781 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog) 1782 { 1783 struct net_device *dev = nic->netdev; 1784 bool if_up = netif_running(nic->netdev); 1785 struct bpf_prog *old_prog; 1786 bool bpf_attached = false; 1787 1788 /* For now just support only the usual MTU sized frames */ 1789 if (prog && (dev->mtu > 1500)) { 1790 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n", 1791 dev->mtu); 1792 return -EOPNOTSUPP; 1793 } 1794 1795 /* ALL SQs attached to CQs i.e same as RQs, are treated as 1796 * XDP Tx queues and more Tx queues are allocated for 1797 * network stack to send pkts out. 1798 * 1799 * No of Tx queues are either same as Rx queues or whatever 1800 * is left in max no of queues possible. 1801 */ 1802 if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) { 1803 netdev_warn(dev, 1804 "Failed to attach BPF prog, RXQs + TXQs > Max %d\n", 1805 nic->max_queues); 1806 return -ENOMEM; 1807 } 1808 1809 if (if_up) 1810 nicvf_stop(nic->netdev); 1811 1812 old_prog = xchg(&nic->xdp_prog, prog); 1813 /* Detach old prog, if any */ 1814 if (old_prog) 1815 bpf_prog_put(old_prog); 1816 1817 if (nic->xdp_prog) { 1818 /* Attach BPF program */ 1819 nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1); 1820 if (!IS_ERR(nic->xdp_prog)) 1821 bpf_attached = true; 1822 } 1823 1824 /* Calculate Tx queues needed for XDP and network stack */ 1825 nicvf_set_xdp_queues(nic, bpf_attached); 1826 1827 if (if_up) { 1828 /* Reinitialize interface, clean slate */ 1829 nicvf_open(nic->netdev); 1830 netif_trans_update(nic->netdev); 1831 } 1832 1833 return 0; 1834 } 1835 1836 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1837 { 1838 struct nicvf *nic = netdev_priv(netdev); 1839 1840 /* To avoid checks while retrieving buffer address from CQE_RX, 1841 * do not support XDP for T88 pass1.x silicons which are anyway 1842 * not in use widely. 1843 */ 1844 if (pass1_silicon(nic->pdev)) 1845 return -EOPNOTSUPP; 1846 1847 switch (xdp->command) { 1848 case XDP_SETUP_PROG: 1849 return nicvf_xdp_setup(nic, xdp->prog); 1850 case XDP_QUERY_PROG: 1851 xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0; 1852 return 0; 1853 default: 1854 return -EINVAL; 1855 } 1856 } 1857 1858 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr) 1859 { 1860 struct hwtstamp_config config; 1861 struct nicvf *nic = netdev_priv(netdev); 1862 1863 if (!nic->ptp_clock) 1864 return -ENODEV; 1865 1866 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1867 return -EFAULT; 1868 1869 /* reserved for future extensions */ 1870 if (config.flags) 1871 return -EINVAL; 1872 1873 switch (config.tx_type) { 1874 case HWTSTAMP_TX_OFF: 1875 case HWTSTAMP_TX_ON: 1876 break; 1877 default: 1878 return -ERANGE; 1879 } 1880 1881 switch (config.rx_filter) { 1882 case HWTSTAMP_FILTER_NONE: 1883 nic->hw_rx_tstamp = false; 1884 break; 1885 case HWTSTAMP_FILTER_ALL: 1886 case HWTSTAMP_FILTER_SOME: 1887 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1888 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1889 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1890 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1891 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1892 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1893 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1894 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1895 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1896 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1897 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1898 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1899 nic->hw_rx_tstamp = true; 1900 config.rx_filter = HWTSTAMP_FILTER_ALL; 1901 break; 1902 default: 1903 return -ERANGE; 1904 } 1905 1906 if (netif_running(netdev)) 1907 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp); 1908 1909 if (copy_to_user(ifr->ifr_data, &config, sizeof(config))) 1910 return -EFAULT; 1911 1912 return 0; 1913 } 1914 1915 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd) 1916 { 1917 switch (cmd) { 1918 case SIOCSHWTSTAMP: 1919 return nicvf_config_hwtstamp(netdev, req); 1920 default: 1921 return -EOPNOTSUPP; 1922 } 1923 } 1924 1925 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs, 1926 struct nicvf *nic) 1927 { 1928 union nic_mbx mbx = {}; 1929 int idx; 1930 1931 /* From the inside of VM code flow we have only 128 bits memory 1932 * available to send message to host's PF, so send all mc addrs 1933 * one by one, starting from flush command in case if kernel 1934 * requests to configure specific MAC filtering 1935 */ 1936 1937 /* flush DMAC filters and reset RX mode */ 1938 mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST; 1939 nicvf_send_msg_to_pf(nic, &mbx); 1940 1941 if (mode & BGX_XCAST_MCAST_FILTER) { 1942 /* once enabling filtering, we need to signal to PF to add 1943 * its' own LMAC to the filter to accept packets for it. 1944 */ 1945 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST; 1946 mbx.xcast.data.mac = 0; 1947 nicvf_send_msg_to_pf(nic, &mbx); 1948 } 1949 1950 /* check if we have any specific MACs to be added to PF DMAC filter */ 1951 if (mc_addrs) { 1952 /* now go through kernel list of MACs and add them one by one */ 1953 for (idx = 0; idx < mc_addrs->count; idx++) { 1954 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST; 1955 mbx.xcast.data.mac = mc_addrs->mc[idx]; 1956 nicvf_send_msg_to_pf(nic, &mbx); 1957 } 1958 kfree(mc_addrs); 1959 } 1960 1961 /* and finally set rx mode for PF accordingly */ 1962 mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST; 1963 mbx.xcast.data.mode = mode; 1964 1965 nicvf_send_msg_to_pf(nic, &mbx); 1966 } 1967 1968 static void nicvf_set_rx_mode_task(struct work_struct *work_arg) 1969 { 1970 struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work, 1971 work.work); 1972 struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work); 1973 u8 mode; 1974 struct xcast_addr_list *mc; 1975 1976 if (!vf_work) 1977 return; 1978 1979 /* Save message data locally to prevent them from 1980 * being overwritten by next ndo_set_rx_mode call(). 1981 */ 1982 spin_lock(&nic->rx_mode_wq_lock); 1983 mode = vf_work->mode; 1984 mc = vf_work->mc; 1985 vf_work->mc = NULL; 1986 spin_unlock(&nic->rx_mode_wq_lock); 1987 1988 __nicvf_set_rx_mode_task(mode, mc, nic); 1989 } 1990 1991 static void nicvf_set_rx_mode(struct net_device *netdev) 1992 { 1993 struct nicvf *nic = netdev_priv(netdev); 1994 struct netdev_hw_addr *ha; 1995 struct xcast_addr_list *mc_list = NULL; 1996 u8 mode = 0; 1997 1998 if (netdev->flags & IFF_PROMISC) { 1999 mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT; 2000 } else { 2001 if (netdev->flags & IFF_BROADCAST) 2002 mode |= BGX_XCAST_BCAST_ACCEPT; 2003 2004 if (netdev->flags & IFF_ALLMULTI) { 2005 mode |= BGX_XCAST_MCAST_ACCEPT; 2006 } else if (netdev->flags & IFF_MULTICAST) { 2007 mode |= BGX_XCAST_MCAST_FILTER; 2008 /* here we need to copy mc addrs */ 2009 if (netdev_mc_count(netdev)) { 2010 mc_list = kmalloc(offsetof(typeof(*mc_list), 2011 mc[netdev_mc_count(netdev)]), 2012 GFP_ATOMIC); 2013 if (unlikely(!mc_list)) 2014 return; 2015 mc_list->count = 0; 2016 netdev_hw_addr_list_for_each(ha, &netdev->mc) { 2017 mc_list->mc[mc_list->count] = 2018 ether_addr_to_u64(ha->addr); 2019 mc_list->count++; 2020 } 2021 } 2022 } 2023 } 2024 spin_lock(&nic->rx_mode_wq_lock); 2025 kfree(nic->rx_mode_work.mc); 2026 nic->rx_mode_work.mc = mc_list; 2027 nic->rx_mode_work.mode = mode; 2028 queue_delayed_work(nicvf_rx_mode_wq, &nic->rx_mode_work.work, 0); 2029 spin_unlock(&nic->rx_mode_wq_lock); 2030 } 2031 2032 static const struct net_device_ops nicvf_netdev_ops = { 2033 .ndo_open = nicvf_open, 2034 .ndo_stop = nicvf_stop, 2035 .ndo_start_xmit = nicvf_xmit, 2036 .ndo_change_mtu = nicvf_change_mtu, 2037 .ndo_set_mac_address = nicvf_set_mac_address, 2038 .ndo_get_stats64 = nicvf_get_stats64, 2039 .ndo_tx_timeout = nicvf_tx_timeout, 2040 .ndo_fix_features = nicvf_fix_features, 2041 .ndo_set_features = nicvf_set_features, 2042 .ndo_bpf = nicvf_xdp, 2043 .ndo_do_ioctl = nicvf_ioctl, 2044 .ndo_set_rx_mode = nicvf_set_rx_mode, 2045 }; 2046 2047 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2048 { 2049 struct device *dev = &pdev->dev; 2050 struct net_device *netdev; 2051 struct nicvf *nic; 2052 int err, qcount; 2053 u16 sdevid; 2054 struct cavium_ptp *ptp_clock; 2055 2056 ptp_clock = cavium_ptp_get(); 2057 if (IS_ERR(ptp_clock)) { 2058 if (PTR_ERR(ptp_clock) == -ENODEV) 2059 /* In virtualized environment we proceed without ptp */ 2060 ptp_clock = NULL; 2061 else 2062 return PTR_ERR(ptp_clock); 2063 } 2064 2065 err = pci_enable_device(pdev); 2066 if (err) { 2067 dev_err(dev, "Failed to enable PCI device\n"); 2068 return err; 2069 } 2070 2071 err = pci_request_regions(pdev, DRV_NAME); 2072 if (err) { 2073 dev_err(dev, "PCI request regions failed 0x%x\n", err); 2074 goto err_disable_device; 2075 } 2076 2077 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48)); 2078 if (err) { 2079 dev_err(dev, "Unable to get usable DMA configuration\n"); 2080 goto err_release_regions; 2081 } 2082 2083 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48)); 2084 if (err) { 2085 dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n"); 2086 goto err_release_regions; 2087 } 2088 2089 qcount = netif_get_num_default_rss_queues(); 2090 2091 /* Restrict multiqset support only for host bound VFs */ 2092 if (pdev->is_virtfn) { 2093 /* Set max number of queues per VF */ 2094 qcount = min_t(int, num_online_cpus(), 2095 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS); 2096 } 2097 2098 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount); 2099 if (!netdev) { 2100 err = -ENOMEM; 2101 goto err_release_regions; 2102 } 2103 2104 pci_set_drvdata(pdev, netdev); 2105 2106 SET_NETDEV_DEV(netdev, &pdev->dev); 2107 2108 nic = netdev_priv(netdev); 2109 nic->netdev = netdev; 2110 nic->pdev = pdev; 2111 nic->pnicvf = nic; 2112 nic->max_queues = qcount; 2113 /* If no of CPUs are too low, there won't be any queues left 2114 * for XDP_TX, hence double it. 2115 */ 2116 if (!nic->t88) 2117 nic->max_queues *= 2; 2118 nic->ptp_clock = ptp_clock; 2119 2120 /* MAP VF's configuration registers */ 2121 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0); 2122 if (!nic->reg_base) { 2123 dev_err(dev, "Cannot map config register space, aborting\n"); 2124 err = -ENOMEM; 2125 goto err_free_netdev; 2126 } 2127 2128 nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats); 2129 if (!nic->drv_stats) { 2130 err = -ENOMEM; 2131 goto err_free_netdev; 2132 } 2133 2134 err = nicvf_set_qset_resources(nic); 2135 if (err) 2136 goto err_free_netdev; 2137 2138 /* Check if PF is alive and get MAC address for this VF */ 2139 err = nicvf_register_misc_interrupt(nic); 2140 if (err) 2141 goto err_free_netdev; 2142 2143 nicvf_send_vf_struct(nic); 2144 2145 if (!pass1_silicon(nic->pdev)) 2146 nic->hw_tso = true; 2147 2148 /* Get iommu domain for iova to physical addr conversion */ 2149 nic->iommu_domain = iommu_get_domain_for_dev(dev); 2150 2151 pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid); 2152 if (sdevid == 0xA134) 2153 nic->t88 = true; 2154 2155 /* Check if this VF is in QS only mode */ 2156 if (nic->sqs_mode) 2157 return 0; 2158 2159 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues); 2160 if (err) 2161 goto err_unregister_interrupts; 2162 2163 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG | 2164 NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 | 2165 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2166 NETIF_F_HW_VLAN_CTAG_RX); 2167 2168 netdev->hw_features |= NETIF_F_RXHASH; 2169 2170 netdev->features |= netdev->hw_features; 2171 netdev->hw_features |= NETIF_F_LOOPBACK; 2172 2173 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | 2174 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6; 2175 2176 netdev->netdev_ops = &nicvf_netdev_ops; 2177 netdev->watchdog_timeo = NICVF_TX_TIMEOUT; 2178 2179 /* MTU range: 64 - 9200 */ 2180 netdev->min_mtu = NIC_HW_MIN_FRS; 2181 netdev->max_mtu = NIC_HW_MAX_FRS; 2182 2183 INIT_WORK(&nic->reset_task, nicvf_reset_task); 2184 2185 INIT_DELAYED_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task); 2186 spin_lock_init(&nic->rx_mode_wq_lock); 2187 2188 err = register_netdev(netdev); 2189 if (err) { 2190 dev_err(dev, "Failed to register netdevice\n"); 2191 goto err_unregister_interrupts; 2192 } 2193 2194 nic->msg_enable = debug; 2195 2196 nicvf_set_ethtool_ops(netdev); 2197 2198 return 0; 2199 2200 err_unregister_interrupts: 2201 nicvf_unregister_interrupts(nic); 2202 err_free_netdev: 2203 pci_set_drvdata(pdev, NULL); 2204 if (nic->drv_stats) 2205 free_percpu(nic->drv_stats); 2206 free_netdev(netdev); 2207 err_release_regions: 2208 pci_release_regions(pdev); 2209 err_disable_device: 2210 pci_disable_device(pdev); 2211 return err; 2212 } 2213 2214 static void nicvf_remove(struct pci_dev *pdev) 2215 { 2216 struct net_device *netdev = pci_get_drvdata(pdev); 2217 struct nicvf *nic; 2218 struct net_device *pnetdev; 2219 2220 if (!netdev) 2221 return; 2222 2223 nic = netdev_priv(netdev); 2224 pnetdev = nic->pnicvf->netdev; 2225 2226 cancel_delayed_work_sync(&nic->rx_mode_work.work); 2227 2228 /* Check if this Qset is assigned to different VF. 2229 * If yes, clean primary and all secondary Qsets. 2230 */ 2231 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED)) 2232 unregister_netdev(pnetdev); 2233 nicvf_unregister_interrupts(nic); 2234 pci_set_drvdata(pdev, NULL); 2235 if (nic->drv_stats) 2236 free_percpu(nic->drv_stats); 2237 cavium_ptp_put(nic->ptp_clock); 2238 free_netdev(netdev); 2239 pci_release_regions(pdev); 2240 pci_disable_device(pdev); 2241 } 2242 2243 static void nicvf_shutdown(struct pci_dev *pdev) 2244 { 2245 nicvf_remove(pdev); 2246 } 2247 2248 static struct pci_driver nicvf_driver = { 2249 .name = DRV_NAME, 2250 .id_table = nicvf_id_table, 2251 .probe = nicvf_probe, 2252 .remove = nicvf_remove, 2253 .shutdown = nicvf_shutdown, 2254 }; 2255 2256 static int __init nicvf_init_module(void) 2257 { 2258 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION); 2259 nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_generic", 2260 WQ_MEM_RECLAIM); 2261 return pci_register_driver(&nicvf_driver); 2262 } 2263 2264 static void __exit nicvf_cleanup_module(void) 2265 { 2266 if (nicvf_rx_mode_wq) { 2267 destroy_workqueue(nicvf_rx_mode_wq); 2268 nicvf_rx_mode_wq = NULL; 2269 } 2270 pci_unregister_driver(&nicvf_driver); 2271 } 2272 2273 module_init(nicvf_init_module); 2274 module_exit(nicvf_cleanup_module); 2275