1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Cavium, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/interrupt.h>
8 #include <linux/pci.h>
9 #include <linux/netdevice.h>
10 #include <linux/if_vlan.h>
11 #include <linux/etherdevice.h>
12 #include <linux/ethtool.h>
13 #include <linux/log2.h>
14 #include <linux/prefetch.h>
15 #include <linux/irq.h>
16 #include <linux/iommu.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_trace.h>
19 #include <linux/filter.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/workqueue.h>
22 
23 #include "nic_reg.h"
24 #include "nic.h"
25 #include "nicvf_queues.h"
26 #include "thunder_bgx.h"
27 #include "../common/cavium_ptp.h"
28 
29 #define DRV_NAME	"nicvf"
30 #define DRV_VERSION	"1.0"
31 
32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
33  * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
34  * this value, keeping headroom for the 14 byte Ethernet header and two
35  * VLAN tags (for QinQ)
36  */
37 #define MAX_XDP_MTU	(1530 - ETH_HLEN - VLAN_HLEN * 2)
38 
39 /* Supported devices */
40 static const struct pci_device_id nicvf_id_table[] = {
41 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
43 			 PCI_VENDOR_ID_CAVIUM,
44 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
45 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
47 			 PCI_VENDOR_ID_CAVIUM,
48 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
49 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 			 PCI_VENDOR_ID_CAVIUM,
52 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
53 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
54 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
55 			 PCI_VENDOR_ID_CAVIUM,
56 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
57 	{ 0, }  /* end of table */
58 };
59 
60 MODULE_AUTHOR("Sunil Goutham");
61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
62 MODULE_LICENSE("GPL v2");
63 MODULE_VERSION(DRV_VERSION);
64 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
65 
66 static int debug = 0x00;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Debug message level bitmap");
69 
70 static int cpi_alg = CPI_ALG_NONE;
71 module_param(cpi_alg, int, 0444);
72 MODULE_PARM_DESC(cpi_alg,
73 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
74 
75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
76 {
77 	if (nic->sqs_mode)
78 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
79 	else
80 		return qidx;
81 }
82 
83 /* The Cavium ThunderX network controller can *only* be found in SoCs
84  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
85  * registers on this platform are implicitly strongly ordered with respect
86  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
87  * with no memory barriers in this driver.  The readq()/writeq() functions add
88  * explicit ordering operation which in this case are redundant, and only
89  * add overhead.
90  */
91 
92 /* Register read/write APIs */
93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
94 {
95 	writeq_relaxed(val, nic->reg_base + offset);
96 }
97 
98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
99 {
100 	return readq_relaxed(nic->reg_base + offset);
101 }
102 
103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
104 			   u64 qidx, u64 val)
105 {
106 	void __iomem *addr = nic->reg_base + offset;
107 
108 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110 
111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
112 {
113 	void __iomem *addr = nic->reg_base + offset;
114 
115 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
116 }
117 
118 /* VF -> PF mailbox communication */
119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
120 {
121 	u64 *msg = (u64 *)mbx;
122 
123 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
124 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
125 }
126 
127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
128 {
129 	unsigned long timeout;
130 	int ret = 0;
131 
132 	mutex_lock(&nic->rx_mode_mtx);
133 
134 	nic->pf_acked = false;
135 	nic->pf_nacked = false;
136 
137 	nicvf_write_to_mbx(nic, mbx);
138 
139 	timeout = jiffies + msecs_to_jiffies(NIC_MBOX_MSG_TIMEOUT);
140 	/* Wait for previous message to be acked, timeout 2sec */
141 	while (!nic->pf_acked) {
142 		if (nic->pf_nacked) {
143 			netdev_err(nic->netdev,
144 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
145 				   (mbx->msg.msg & 0xFF), nic->vf_id);
146 			ret = -EINVAL;
147 			break;
148 		}
149 		usleep_range(8000, 10000);
150 		if (nic->pf_acked)
151 			break;
152 		if (time_after(jiffies, timeout)) {
153 			netdev_err(nic->netdev,
154 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
155 				   (mbx->msg.msg & 0xFF), nic->vf_id);
156 			ret = -EBUSY;
157 			break;
158 		}
159 	}
160 	mutex_unlock(&nic->rx_mode_mtx);
161 	return ret;
162 }
163 
164 /* Checks if VF is able to comminicate with PF
165 * and also gets the VNIC number this VF is associated to.
166 */
167 static int nicvf_check_pf_ready(struct nicvf *nic)
168 {
169 	union nic_mbx mbx = {};
170 
171 	mbx.msg.msg = NIC_MBOX_MSG_READY;
172 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
173 		netdev_err(nic->netdev,
174 			   "PF didn't respond to READY msg\n");
175 		return 0;
176 	}
177 
178 	return 1;
179 }
180 
181 static void nicvf_send_cfg_done(struct nicvf *nic)
182 {
183 	union nic_mbx mbx = {};
184 
185 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
186 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
187 		netdev_err(nic->netdev,
188 			   "PF didn't respond to CFG DONE msg\n");
189 	}
190 }
191 
192 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
193 {
194 	if (bgx->rx)
195 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
196 	else
197 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
198 }
199 
200 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
201 {
202 	union nic_mbx mbx = {};
203 	u64 *mbx_data;
204 	u64 mbx_addr;
205 	int i;
206 
207 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
208 	mbx_data = (u64 *)&mbx;
209 
210 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
211 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
212 		mbx_data++;
213 		mbx_addr += sizeof(u64);
214 	}
215 
216 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
217 	switch (mbx.msg.msg) {
218 	case NIC_MBOX_MSG_READY:
219 		nic->pf_acked = true;
220 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
221 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
222 		nic->node = mbx.nic_cfg.node_id;
223 		if (!nic->set_mac_pending)
224 			ether_addr_copy(nic->netdev->dev_addr,
225 					mbx.nic_cfg.mac_addr);
226 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
227 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
228 		nic->link_up = false;
229 		nic->duplex = 0;
230 		nic->speed = 0;
231 		break;
232 	case NIC_MBOX_MSG_ACK:
233 		nic->pf_acked = true;
234 		break;
235 	case NIC_MBOX_MSG_NACK:
236 		nic->pf_nacked = true;
237 		break;
238 	case NIC_MBOX_MSG_RSS_SIZE:
239 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
240 		nic->pf_acked = true;
241 		break;
242 	case NIC_MBOX_MSG_BGX_STATS:
243 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
244 		nic->pf_acked = true;
245 		break;
246 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
247 		nic->pf_acked = true;
248 		if (nic->link_up != mbx.link_status.link_up) {
249 			nic->link_up = mbx.link_status.link_up;
250 			nic->duplex = mbx.link_status.duplex;
251 			nic->speed = mbx.link_status.speed;
252 			nic->mac_type = mbx.link_status.mac_type;
253 			if (nic->link_up) {
254 				netdev_info(nic->netdev,
255 					    "Link is Up %d Mbps %s duplex\n",
256 					    nic->speed,
257 					    nic->duplex == DUPLEX_FULL ?
258 					    "Full" : "Half");
259 				netif_carrier_on(nic->netdev);
260 				netif_tx_start_all_queues(nic->netdev);
261 			} else {
262 				netdev_info(nic->netdev, "Link is Down\n");
263 				netif_carrier_off(nic->netdev);
264 				netif_tx_stop_all_queues(nic->netdev);
265 			}
266 		}
267 		break;
268 	case NIC_MBOX_MSG_ALLOC_SQS:
269 		nic->sqs_count = mbx.sqs_alloc.qs_count;
270 		nic->pf_acked = true;
271 		break;
272 	case NIC_MBOX_MSG_SNICVF_PTR:
273 		/* Primary VF: make note of secondary VF's pointer
274 		 * to be used while packet transmission.
275 		 */
276 		nic->snicvf[mbx.nicvf.sqs_id] =
277 			(struct nicvf *)mbx.nicvf.nicvf;
278 		nic->pf_acked = true;
279 		break;
280 	case NIC_MBOX_MSG_PNICVF_PTR:
281 		/* Secondary VF/Qset: make note of primary VF's pointer
282 		 * to be used while packet reception, to handover packet
283 		 * to primary VF's netdev.
284 		 */
285 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
286 		nic->pf_acked = true;
287 		break;
288 	case NIC_MBOX_MSG_PFC:
289 		nic->pfc.autoneg = mbx.pfc.autoneg;
290 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
291 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
292 		nic->pf_acked = true;
293 		break;
294 	default:
295 		netdev_err(nic->netdev,
296 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
297 		break;
298 	}
299 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
300 }
301 
302 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
303 {
304 	union nic_mbx mbx = {};
305 
306 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
307 	mbx.mac.vf_id = nic->vf_id;
308 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
309 
310 	return nicvf_send_msg_to_pf(nic, &mbx);
311 }
312 
313 static void nicvf_config_cpi(struct nicvf *nic)
314 {
315 	union nic_mbx mbx = {};
316 
317 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
318 	mbx.cpi_cfg.vf_id = nic->vf_id;
319 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
320 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
321 
322 	nicvf_send_msg_to_pf(nic, &mbx);
323 }
324 
325 static void nicvf_get_rss_size(struct nicvf *nic)
326 {
327 	union nic_mbx mbx = {};
328 
329 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
330 	mbx.rss_size.vf_id = nic->vf_id;
331 	nicvf_send_msg_to_pf(nic, &mbx);
332 }
333 
334 void nicvf_config_rss(struct nicvf *nic)
335 {
336 	union nic_mbx mbx = {};
337 	struct nicvf_rss_info *rss = &nic->rss_info;
338 	int ind_tbl_len = rss->rss_size;
339 	int i, nextq = 0;
340 
341 	mbx.rss_cfg.vf_id = nic->vf_id;
342 	mbx.rss_cfg.hash_bits = rss->hash_bits;
343 	while (ind_tbl_len) {
344 		mbx.rss_cfg.tbl_offset = nextq;
345 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
346 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
347 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
348 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
349 
350 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
351 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
352 
353 		nicvf_send_msg_to_pf(nic, &mbx);
354 
355 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
356 	}
357 }
358 
359 void nicvf_set_rss_key(struct nicvf *nic)
360 {
361 	struct nicvf_rss_info *rss = &nic->rss_info;
362 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
363 	int idx;
364 
365 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
366 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
367 		key_addr += sizeof(u64);
368 	}
369 }
370 
371 static int nicvf_rss_init(struct nicvf *nic)
372 {
373 	struct nicvf_rss_info *rss = &nic->rss_info;
374 	int idx;
375 
376 	nicvf_get_rss_size(nic);
377 
378 	if (cpi_alg != CPI_ALG_NONE) {
379 		rss->enable = false;
380 		rss->hash_bits = 0;
381 		return 0;
382 	}
383 
384 	rss->enable = true;
385 
386 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
387 	nicvf_set_rss_key(nic);
388 
389 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
390 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
391 
392 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
393 
394 	for (idx = 0; idx < rss->rss_size; idx++)
395 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
396 							       nic->rx_queues);
397 	nicvf_config_rss(nic);
398 	return 1;
399 }
400 
401 /* Request PF to allocate additional Qsets */
402 static void nicvf_request_sqs(struct nicvf *nic)
403 {
404 	union nic_mbx mbx = {};
405 	int sqs;
406 	int sqs_count = nic->sqs_count;
407 	int rx_queues = 0, tx_queues = 0;
408 
409 	/* Only primary VF should request */
410 	if (nic->sqs_mode ||  !nic->sqs_count)
411 		return;
412 
413 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
414 	mbx.sqs_alloc.vf_id = nic->vf_id;
415 	mbx.sqs_alloc.qs_count = nic->sqs_count;
416 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
417 		/* No response from PF */
418 		nic->sqs_count = 0;
419 		return;
420 	}
421 
422 	/* Return if no Secondary Qsets available */
423 	if (!nic->sqs_count)
424 		return;
425 
426 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
427 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
428 
429 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
430 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
431 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
432 
433 	/* Set no of Rx/Tx queues in each of the SQsets */
434 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
435 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
436 		mbx.nicvf.vf_id = nic->vf_id;
437 		mbx.nicvf.sqs_id = sqs;
438 		nicvf_send_msg_to_pf(nic, &mbx);
439 
440 		nic->snicvf[sqs]->sqs_id = sqs;
441 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
442 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
443 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
444 		} else {
445 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
446 			rx_queues = 0;
447 		}
448 
449 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
450 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
451 			tx_queues -= MAX_SND_QUEUES_PER_QS;
452 		} else {
453 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
454 			tx_queues = 0;
455 		}
456 
457 		nic->snicvf[sqs]->qs->cq_cnt =
458 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
459 
460 		/* Initialize secondary Qset's queues and its interrupts */
461 		nicvf_open(nic->snicvf[sqs]->netdev);
462 	}
463 
464 	/* Update stack with actual Rx/Tx queue count allocated */
465 	if (sqs_count != nic->sqs_count)
466 		nicvf_set_real_num_queues(nic->netdev,
467 					  nic->tx_queues, nic->rx_queues);
468 }
469 
470 /* Send this Qset's nicvf pointer to PF.
471  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
472  * so that packets received by these Qsets can use primary VF's netdev
473  */
474 static void nicvf_send_vf_struct(struct nicvf *nic)
475 {
476 	union nic_mbx mbx = {};
477 
478 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
479 	mbx.nicvf.sqs_mode = nic->sqs_mode;
480 	mbx.nicvf.nicvf = (u64)nic;
481 	nicvf_send_msg_to_pf(nic, &mbx);
482 }
483 
484 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
485 {
486 	union nic_mbx mbx = {};
487 
488 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
489 	nicvf_send_msg_to_pf(nic, &mbx);
490 }
491 
492 int nicvf_set_real_num_queues(struct net_device *netdev,
493 			      int tx_queues, int rx_queues)
494 {
495 	int err = 0;
496 
497 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
498 	if (err) {
499 		netdev_err(netdev,
500 			   "Failed to set no of Tx queues: %d\n", tx_queues);
501 		return err;
502 	}
503 
504 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
505 	if (err)
506 		netdev_err(netdev,
507 			   "Failed to set no of Rx queues: %d\n", rx_queues);
508 	return err;
509 }
510 
511 static int nicvf_init_resources(struct nicvf *nic)
512 {
513 	int err;
514 
515 	/* Enable Qset */
516 	nicvf_qset_config(nic, true);
517 
518 	/* Initialize queues and HW for data transfer */
519 	err = nicvf_config_data_transfer(nic, true);
520 	if (err) {
521 		netdev_err(nic->netdev,
522 			   "Failed to alloc/config VF's QSet resources\n");
523 		return err;
524 	}
525 
526 	return 0;
527 }
528 
529 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
530 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
531 				struct rcv_queue *rq, struct sk_buff **skb)
532 {
533 	unsigned char *hard_start, *data;
534 	struct xdp_buff xdp;
535 	struct page *page;
536 	u32 action;
537 	u16 len, offset = 0;
538 	u64 dma_addr, cpu_addr;
539 	void *orig_data;
540 
541 	/* Retrieve packet buffer's DMA address and length */
542 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
543 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
544 
545 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
546 	if (!cpu_addr)
547 		return false;
548 	cpu_addr = (u64)phys_to_virt(cpu_addr);
549 	page = virt_to_page((void *)cpu_addr);
550 
551 	xdp_init_buff(&xdp, RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
552 		      &rq->xdp_rxq);
553 	hard_start = page_address(page);
554 	data = (unsigned char *)cpu_addr;
555 	xdp_prepare_buff(&xdp, hard_start, data - hard_start, len, false);
556 	orig_data = xdp.data;
557 
558 	action = bpf_prog_run_xdp(prog, &xdp);
559 
560 	len = xdp.data_end - xdp.data;
561 	/* Check if XDP program has changed headers */
562 	if (orig_data != xdp.data) {
563 		offset = orig_data - xdp.data;
564 		dma_addr -= offset;
565 	}
566 
567 	switch (action) {
568 	case XDP_PASS:
569 		/* Check if it's a recycled page, if not
570 		 * unmap the DMA mapping.
571 		 *
572 		 * Recycled page holds an extra reference.
573 		 */
574 		if (page_ref_count(page) == 1) {
575 			dma_addr &= PAGE_MASK;
576 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
577 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
578 					     DMA_FROM_DEVICE,
579 					     DMA_ATTR_SKIP_CPU_SYNC);
580 		}
581 
582 		/* Build SKB and pass on packet to network stack */
583 		*skb = build_skb(xdp.data,
584 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
585 		if (!*skb)
586 			put_page(page);
587 		else
588 			skb_put(*skb, len);
589 		return false;
590 	case XDP_TX:
591 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
592 		return true;
593 	default:
594 		bpf_warn_invalid_xdp_action(action);
595 		fallthrough;
596 	case XDP_ABORTED:
597 		trace_xdp_exception(nic->netdev, prog, action);
598 		fallthrough;
599 	case XDP_DROP:
600 		/* Check if it's a recycled page, if not
601 		 * unmap the DMA mapping.
602 		 *
603 		 * Recycled page holds an extra reference.
604 		 */
605 		if (page_ref_count(page) == 1) {
606 			dma_addr &= PAGE_MASK;
607 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
608 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
609 					     DMA_FROM_DEVICE,
610 					     DMA_ATTR_SKIP_CPU_SYNC);
611 		}
612 		put_page(page);
613 		return true;
614 	}
615 	return false;
616 }
617 
618 static void nicvf_snd_ptp_handler(struct net_device *netdev,
619 				  struct cqe_send_t *cqe_tx)
620 {
621 	struct nicvf *nic = netdev_priv(netdev);
622 	struct skb_shared_hwtstamps ts;
623 	u64 ns;
624 
625 	nic = nic->pnicvf;
626 
627 	/* Sync for 'ptp_skb' */
628 	smp_rmb();
629 
630 	/* New timestamp request can be queued now */
631 	atomic_set(&nic->tx_ptp_skbs, 0);
632 
633 	/* Check for timestamp requested skb */
634 	if (!nic->ptp_skb)
635 		return;
636 
637 	/* Check if timestamping is timedout, which is set to 10us */
638 	if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
639 	    cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
640 		goto no_tstamp;
641 
642 	/* Get the timestamp */
643 	memset(&ts, 0, sizeof(ts));
644 	ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
645 	ts.hwtstamp = ns_to_ktime(ns);
646 	skb_tstamp_tx(nic->ptp_skb, &ts);
647 
648 no_tstamp:
649 	/* Free the original skb */
650 	dev_kfree_skb_any(nic->ptp_skb);
651 	nic->ptp_skb = NULL;
652 	/* Sync 'ptp_skb' */
653 	smp_wmb();
654 }
655 
656 static void nicvf_snd_pkt_handler(struct net_device *netdev,
657 				  struct cqe_send_t *cqe_tx,
658 				  int budget, int *subdesc_cnt,
659 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
660 {
661 	struct sk_buff *skb = NULL;
662 	struct page *page;
663 	struct nicvf *nic = netdev_priv(netdev);
664 	struct snd_queue *sq;
665 	struct sq_hdr_subdesc *hdr;
666 	struct sq_hdr_subdesc *tso_sqe;
667 
668 	sq = &nic->qs->sq[cqe_tx->sq_idx];
669 
670 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
671 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
672 		return;
673 
674 	/* Check for errors */
675 	if (cqe_tx->send_status)
676 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
677 
678 	/* Is this a XDP designated Tx queue */
679 	if (sq->is_xdp) {
680 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
681 		/* Check if it's recycled page or else unmap DMA mapping */
682 		if (page && (page_ref_count(page) == 1))
683 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
684 						 hdr->subdesc_cnt);
685 
686 		/* Release page reference for recycling */
687 		if (page)
688 			put_page(page);
689 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
690 		*subdesc_cnt += hdr->subdesc_cnt + 1;
691 		return;
692 	}
693 
694 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
695 	if (skb) {
696 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
697 		if (hdr->dont_send) {
698 			/* Get actual TSO descriptors and free them */
699 			tso_sqe =
700 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
701 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
702 						 tso_sqe->subdesc_cnt);
703 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
704 		} else {
705 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
706 						 hdr->subdesc_cnt);
707 		}
708 		*subdesc_cnt += hdr->subdesc_cnt + 1;
709 		prefetch(skb);
710 		(*tx_pkts)++;
711 		*tx_bytes += skb->len;
712 		/* If timestamp is requested for this skb, don't free it */
713 		if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
714 		    !nic->pnicvf->ptp_skb)
715 			nic->pnicvf->ptp_skb = skb;
716 		else
717 			napi_consume_skb(skb, budget);
718 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
719 	} else {
720 		/* In case of SW TSO on 88xx, only last segment will have
721 		 * a SKB attached, so just free SQEs here.
722 		 */
723 		if (!nic->hw_tso)
724 			*subdesc_cnt += hdr->subdesc_cnt + 1;
725 	}
726 }
727 
728 static inline void nicvf_set_rxhash(struct net_device *netdev,
729 				    struct cqe_rx_t *cqe_rx,
730 				    struct sk_buff *skb)
731 {
732 	u8 hash_type;
733 	u32 hash;
734 
735 	if (!(netdev->features & NETIF_F_RXHASH))
736 		return;
737 
738 	switch (cqe_rx->rss_alg) {
739 	case RSS_ALG_TCP_IP:
740 	case RSS_ALG_UDP_IP:
741 		hash_type = PKT_HASH_TYPE_L4;
742 		hash = cqe_rx->rss_tag;
743 		break;
744 	case RSS_ALG_IP:
745 		hash_type = PKT_HASH_TYPE_L3;
746 		hash = cqe_rx->rss_tag;
747 		break;
748 	default:
749 		hash_type = PKT_HASH_TYPE_NONE;
750 		hash = 0;
751 	}
752 
753 	skb_set_hash(skb, hash, hash_type);
754 }
755 
756 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
757 {
758 	u64 ns;
759 
760 	if (!nic->ptp_clock || !nic->hw_rx_tstamp)
761 		return;
762 
763 	/* The first 8 bytes is the timestamp */
764 	ns = cavium_ptp_tstamp2time(nic->ptp_clock,
765 				    be64_to_cpu(*(__be64 *)skb->data));
766 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
767 
768 	__skb_pull(skb, 8);
769 }
770 
771 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
772 				  struct napi_struct *napi,
773 				  struct cqe_rx_t *cqe_rx,
774 				  struct snd_queue *sq, struct rcv_queue *rq)
775 {
776 	struct sk_buff *skb = NULL;
777 	struct nicvf *nic = netdev_priv(netdev);
778 	struct nicvf *snic = nic;
779 	int err = 0;
780 	int rq_idx;
781 
782 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
783 
784 	if (nic->sqs_mode) {
785 		/* Use primary VF's 'nicvf' struct */
786 		nic = nic->pnicvf;
787 		netdev = nic->netdev;
788 	}
789 
790 	/* Check for errors */
791 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
792 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
793 		if (err && !cqe_rx->rb_cnt)
794 			return;
795 	}
796 
797 	/* For XDP, ignore pkts spanning multiple pages */
798 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
799 		/* Packet consumed by XDP */
800 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
801 			return;
802 	} else {
803 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
804 					nic->xdp_prog ? true : false);
805 	}
806 
807 	if (!skb)
808 		return;
809 
810 	if (netif_msg_pktdata(nic)) {
811 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
812 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
813 			       skb->data, skb->len, true);
814 	}
815 
816 	/* If error packet, drop it here */
817 	if (err) {
818 		dev_kfree_skb_any(skb);
819 		return;
820 	}
821 
822 	nicvf_set_rxtstamp(nic, skb);
823 	nicvf_set_rxhash(netdev, cqe_rx, skb);
824 
825 	skb_record_rx_queue(skb, rq_idx);
826 	if (netdev->hw_features & NETIF_F_RXCSUM) {
827 		/* HW by default verifies TCP/UDP/SCTP checksums */
828 		skb->ip_summed = CHECKSUM_UNNECESSARY;
829 	} else {
830 		skb_checksum_none_assert(skb);
831 	}
832 
833 	skb->protocol = eth_type_trans(skb, netdev);
834 
835 	/* Check for stripped VLAN */
836 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
837 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
838 				       ntohs((__force __be16)cqe_rx->vlan_tci));
839 
840 	if (napi && (netdev->features & NETIF_F_GRO))
841 		napi_gro_receive(napi, skb);
842 	else
843 		netif_receive_skb(skb);
844 }
845 
846 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
847 				 struct napi_struct *napi, int budget)
848 {
849 	int processed_cqe, work_done = 0, tx_done = 0;
850 	int cqe_count, cqe_head;
851 	int subdesc_cnt = 0;
852 	struct nicvf *nic = netdev_priv(netdev);
853 	struct queue_set *qs = nic->qs;
854 	struct cmp_queue *cq = &qs->cq[cq_idx];
855 	struct cqe_rx_t *cq_desc;
856 	struct netdev_queue *txq;
857 	struct snd_queue *sq = &qs->sq[cq_idx];
858 	struct rcv_queue *rq = &qs->rq[cq_idx];
859 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
860 
861 	spin_lock_bh(&cq->lock);
862 loop:
863 	processed_cqe = 0;
864 	/* Get no of valid CQ entries to process */
865 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
866 	cqe_count &= CQ_CQE_COUNT;
867 	if (!cqe_count)
868 		goto done;
869 
870 	/* Get head of the valid CQ entries */
871 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
872 	cqe_head &= 0xFFFF;
873 
874 	while (processed_cqe < cqe_count) {
875 		/* Get the CQ descriptor */
876 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
877 		cqe_head++;
878 		cqe_head &= (cq->dmem.q_len - 1);
879 		/* Initiate prefetch for next descriptor */
880 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
881 
882 		if ((work_done >= budget) && napi &&
883 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
884 			break;
885 		}
886 
887 		switch (cq_desc->cqe_type) {
888 		case CQE_TYPE_RX:
889 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
890 			work_done++;
891 		break;
892 		case CQE_TYPE_SEND:
893 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
894 					      budget, &subdesc_cnt,
895 					      &tx_pkts, &tx_bytes);
896 			tx_done++;
897 		break;
898 		case CQE_TYPE_SEND_PTP:
899 			nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
900 		break;
901 		case CQE_TYPE_INVALID:
902 		case CQE_TYPE_RX_SPLIT:
903 		case CQE_TYPE_RX_TCP:
904 			/* Ignore for now */
905 		break;
906 		}
907 		processed_cqe++;
908 	}
909 
910 	/* Ring doorbell to inform H/W to reuse processed CQEs */
911 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
912 			      cq_idx, processed_cqe);
913 
914 	if ((work_done < budget) && napi)
915 		goto loop;
916 
917 done:
918 	/* Update SQ's descriptor free count */
919 	if (subdesc_cnt)
920 		nicvf_put_sq_desc(sq, subdesc_cnt);
921 
922 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
923 	/* Handle XDP TX queues */
924 	if (nic->pnicvf->xdp_prog) {
925 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
926 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
927 			goto out;
928 		}
929 		nic = nic->pnicvf;
930 		txq_idx -= nic->pnicvf->xdp_tx_queues;
931 	}
932 
933 	/* Wakeup TXQ if its stopped earlier due to SQ full */
934 	if (tx_done ||
935 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
936 		netdev = nic->pnicvf->netdev;
937 		txq = netdev_get_tx_queue(netdev, txq_idx);
938 		if (tx_pkts)
939 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
940 
941 		/* To read updated queue and carrier status */
942 		smp_mb();
943 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
944 			netif_tx_wake_queue(txq);
945 			nic = nic->pnicvf;
946 			this_cpu_inc(nic->drv_stats->txq_wake);
947 			netif_warn(nic, tx_err, netdev,
948 				   "Transmit queue wakeup SQ%d\n", txq_idx);
949 		}
950 	}
951 
952 out:
953 	spin_unlock_bh(&cq->lock);
954 	return work_done;
955 }
956 
957 static int nicvf_poll(struct napi_struct *napi, int budget)
958 {
959 	u64  cq_head;
960 	int  work_done = 0;
961 	struct net_device *netdev = napi->dev;
962 	struct nicvf *nic = netdev_priv(netdev);
963 	struct nicvf_cq_poll *cq;
964 
965 	cq = container_of(napi, struct nicvf_cq_poll, napi);
966 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
967 
968 	if (work_done < budget) {
969 		/* Slow packet rate, exit polling */
970 		napi_complete_done(napi, work_done);
971 		/* Re-enable interrupts */
972 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
973 					       cq->cq_idx);
974 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
975 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
976 				      cq->cq_idx, cq_head);
977 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
978 	}
979 	return work_done;
980 }
981 
982 /* Qset error interrupt handler
983  *
984  * As of now only CQ errors are handled
985  */
986 static void nicvf_handle_qs_err(struct tasklet_struct *t)
987 {
988 	struct nicvf *nic = from_tasklet(nic, t, qs_err_task);
989 	struct queue_set *qs = nic->qs;
990 	int qidx;
991 	u64 status;
992 
993 	netif_tx_disable(nic->netdev);
994 
995 	/* Check if it is CQ err */
996 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
997 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
998 					      qidx);
999 		if (!(status & CQ_ERR_MASK))
1000 			continue;
1001 		/* Process already queued CQEs and reconfig CQ */
1002 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1003 		nicvf_sq_disable(nic, qidx);
1004 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1005 		nicvf_cmp_queue_config(nic, qs, qidx, true);
1006 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1007 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1008 
1009 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1010 	}
1011 
1012 	netif_tx_start_all_queues(nic->netdev);
1013 	/* Re-enable Qset error interrupt */
1014 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1015 }
1016 
1017 static void nicvf_dump_intr_status(struct nicvf *nic)
1018 {
1019 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1020 		   nicvf_reg_read(nic, NIC_VF_INT));
1021 }
1022 
1023 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1024 {
1025 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1026 	u64 intr;
1027 
1028 	nicvf_dump_intr_status(nic);
1029 
1030 	intr = nicvf_reg_read(nic, NIC_VF_INT);
1031 	/* Check for spurious interrupt */
1032 	if (!(intr & NICVF_INTR_MBOX_MASK))
1033 		return IRQ_HANDLED;
1034 
1035 	nicvf_handle_mbx_intr(nic);
1036 
1037 	return IRQ_HANDLED;
1038 }
1039 
1040 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1041 {
1042 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1043 	struct nicvf *nic = cq_poll->nicvf;
1044 	int qidx = cq_poll->cq_idx;
1045 
1046 	nicvf_dump_intr_status(nic);
1047 
1048 	/* Disable interrupts */
1049 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1050 
1051 	/* Schedule NAPI */
1052 	napi_schedule_irqoff(&cq_poll->napi);
1053 
1054 	/* Clear interrupt */
1055 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1056 
1057 	return IRQ_HANDLED;
1058 }
1059 
1060 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1061 {
1062 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1063 	u8 qidx;
1064 
1065 
1066 	nicvf_dump_intr_status(nic);
1067 
1068 	/* Disable RBDR interrupt and schedule softirq */
1069 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1070 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1071 			continue;
1072 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1073 		tasklet_hi_schedule(&nic->rbdr_task);
1074 		/* Clear interrupt */
1075 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1076 	}
1077 
1078 	return IRQ_HANDLED;
1079 }
1080 
1081 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1082 {
1083 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1084 
1085 	nicvf_dump_intr_status(nic);
1086 
1087 	/* Disable Qset err interrupt and schedule softirq */
1088 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1089 	tasklet_hi_schedule(&nic->qs_err_task);
1090 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1091 
1092 	return IRQ_HANDLED;
1093 }
1094 
1095 static void nicvf_set_irq_affinity(struct nicvf *nic)
1096 {
1097 	int vec, cpu;
1098 
1099 	for (vec = 0; vec < nic->num_vec; vec++) {
1100 		if (!nic->irq_allocated[vec])
1101 			continue;
1102 
1103 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1104 			return;
1105 		 /* CQ interrupts */
1106 		if (vec < NICVF_INTR_ID_SQ)
1107 			/* Leave CPU0 for RBDR and other interrupts */
1108 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1109 		else
1110 			cpu = 0;
1111 
1112 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1113 				nic->affinity_mask[vec]);
1114 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1115 				      nic->affinity_mask[vec]);
1116 	}
1117 }
1118 
1119 static int nicvf_register_interrupts(struct nicvf *nic)
1120 {
1121 	int irq, ret = 0;
1122 
1123 	for_each_cq_irq(irq)
1124 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1125 			nic->pnicvf->netdev->name,
1126 			nicvf_netdev_qidx(nic, irq));
1127 
1128 	for_each_sq_irq(irq)
1129 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1130 			nic->pnicvf->netdev->name,
1131 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1132 
1133 	for_each_rbdr_irq(irq)
1134 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1135 			nic->pnicvf->netdev->name,
1136 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1137 
1138 	/* Register CQ interrupts */
1139 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1140 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1141 				  nicvf_intr_handler,
1142 				  0, nic->irq_name[irq], nic->napi[irq]);
1143 		if (ret)
1144 			goto err;
1145 		nic->irq_allocated[irq] = true;
1146 	}
1147 
1148 	/* Register RBDR interrupt */
1149 	for (irq = NICVF_INTR_ID_RBDR;
1150 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1151 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1152 				  nicvf_rbdr_intr_handler,
1153 				  0, nic->irq_name[irq], nic);
1154 		if (ret)
1155 			goto err;
1156 		nic->irq_allocated[irq] = true;
1157 	}
1158 
1159 	/* Register QS error interrupt */
1160 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1161 		nic->pnicvf->netdev->name,
1162 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1163 	irq = NICVF_INTR_ID_QS_ERR;
1164 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1165 			  nicvf_qs_err_intr_handler,
1166 			  0, nic->irq_name[irq], nic);
1167 	if (ret)
1168 		goto err;
1169 
1170 	nic->irq_allocated[irq] = true;
1171 
1172 	/* Set IRQ affinities */
1173 	nicvf_set_irq_affinity(nic);
1174 
1175 err:
1176 	if (ret)
1177 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1178 
1179 	return ret;
1180 }
1181 
1182 static void nicvf_unregister_interrupts(struct nicvf *nic)
1183 {
1184 	struct pci_dev *pdev = nic->pdev;
1185 	int irq;
1186 
1187 	/* Free registered interrupts */
1188 	for (irq = 0; irq < nic->num_vec; irq++) {
1189 		if (!nic->irq_allocated[irq])
1190 			continue;
1191 
1192 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1193 		free_cpumask_var(nic->affinity_mask[irq]);
1194 
1195 		if (irq < NICVF_INTR_ID_SQ)
1196 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1197 		else
1198 			free_irq(pci_irq_vector(pdev, irq), nic);
1199 
1200 		nic->irq_allocated[irq] = false;
1201 	}
1202 
1203 	/* Disable MSI-X */
1204 	pci_free_irq_vectors(pdev);
1205 	nic->num_vec = 0;
1206 }
1207 
1208 /* Initialize MSIX vectors and register MISC interrupt.
1209  * Send READY message to PF to check if its alive
1210  */
1211 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1212 {
1213 	int ret = 0;
1214 	int irq = NICVF_INTR_ID_MISC;
1215 
1216 	/* Return if mailbox interrupt is already registered */
1217 	if (nic->pdev->msix_enabled)
1218 		return 0;
1219 
1220 	/* Enable MSI-X */
1221 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1222 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1223 				    PCI_IRQ_MSIX);
1224 	if (ret < 0) {
1225 		netdev_err(nic->netdev,
1226 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1227 		return 1;
1228 	}
1229 
1230 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1231 	/* Register Misc interrupt */
1232 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1233 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1234 
1235 	if (ret)
1236 		return ret;
1237 	nic->irq_allocated[irq] = true;
1238 
1239 	/* Enable mailbox interrupt */
1240 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1241 
1242 	/* Check if VF is able to communicate with PF */
1243 	if (!nicvf_check_pf_ready(nic)) {
1244 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1245 		nicvf_unregister_interrupts(nic);
1246 		return 1;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1253 {
1254 	struct nicvf *nic = netdev_priv(netdev);
1255 	int qid = skb_get_queue_mapping(skb);
1256 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1257 	struct nicvf *snic;
1258 	struct snd_queue *sq;
1259 	int tmp;
1260 
1261 	/* Check for minimum packet length */
1262 	if (skb->len <= ETH_HLEN) {
1263 		dev_kfree_skb(skb);
1264 		return NETDEV_TX_OK;
1265 	}
1266 
1267 	/* In XDP case, initial HW tx queues are used for XDP,
1268 	 * but stack's queue mapping starts at '0', so skip the
1269 	 * Tx queues attached to Rx queues for XDP.
1270 	 */
1271 	if (nic->xdp_prog)
1272 		qid += nic->xdp_tx_queues;
1273 
1274 	snic = nic;
1275 	/* Get secondary Qset's SQ structure */
1276 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1277 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1278 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1279 		if (!snic) {
1280 			netdev_warn(nic->netdev,
1281 				    "Secondary Qset#%d's ptr not initialized\n",
1282 				    tmp - 1);
1283 			dev_kfree_skb(skb);
1284 			return NETDEV_TX_OK;
1285 		}
1286 		qid = qid % MAX_SND_QUEUES_PER_QS;
1287 	}
1288 
1289 	sq = &snic->qs->sq[qid];
1290 	if (!netif_tx_queue_stopped(txq) &&
1291 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1292 		netif_tx_stop_queue(txq);
1293 
1294 		/* Barrier, so that stop_queue visible to other cpus */
1295 		smp_mb();
1296 
1297 		/* Check again, incase another cpu freed descriptors */
1298 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1299 			netif_tx_wake_queue(txq);
1300 		} else {
1301 			this_cpu_inc(nic->drv_stats->txq_stop);
1302 			netif_warn(nic, tx_err, netdev,
1303 				   "Transmit ring full, stopping SQ%d\n", qid);
1304 		}
1305 		return NETDEV_TX_BUSY;
1306 	}
1307 
1308 	return NETDEV_TX_OK;
1309 }
1310 
1311 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1312 {
1313 	struct nicvf_cq_poll *cq_poll;
1314 	int qidx;
1315 
1316 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1317 		cq_poll = nic->napi[qidx];
1318 		if (!cq_poll)
1319 			continue;
1320 		nic->napi[qidx] = NULL;
1321 		kfree(cq_poll);
1322 	}
1323 }
1324 
1325 int nicvf_stop(struct net_device *netdev)
1326 {
1327 	int irq, qidx;
1328 	struct nicvf *nic = netdev_priv(netdev);
1329 	struct queue_set *qs = nic->qs;
1330 	struct nicvf_cq_poll *cq_poll = NULL;
1331 	union nic_mbx mbx = {};
1332 
1333 	/* wait till all queued set_rx_mode tasks completes */
1334 	if (nic->nicvf_rx_mode_wq) {
1335 		cancel_delayed_work_sync(&nic->link_change_work);
1336 		drain_workqueue(nic->nicvf_rx_mode_wq);
1337 	}
1338 
1339 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1340 	nicvf_send_msg_to_pf(nic, &mbx);
1341 
1342 	netif_carrier_off(netdev);
1343 	netif_tx_stop_all_queues(nic->netdev);
1344 	nic->link_up = false;
1345 
1346 	/* Teardown secondary qsets first */
1347 	if (!nic->sqs_mode) {
1348 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1349 			if (!nic->snicvf[qidx])
1350 				continue;
1351 			nicvf_stop(nic->snicvf[qidx]->netdev);
1352 			nic->snicvf[qidx] = NULL;
1353 		}
1354 	}
1355 
1356 	/* Disable RBDR & QS error interrupts */
1357 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1358 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1359 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1360 	}
1361 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1362 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1363 
1364 	/* Wait for pending IRQ handlers to finish */
1365 	for (irq = 0; irq < nic->num_vec; irq++)
1366 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1367 
1368 	tasklet_kill(&nic->rbdr_task);
1369 	tasklet_kill(&nic->qs_err_task);
1370 	if (nic->rb_work_scheduled)
1371 		cancel_delayed_work_sync(&nic->rbdr_work);
1372 
1373 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1374 		cq_poll = nic->napi[qidx];
1375 		if (!cq_poll)
1376 			continue;
1377 		napi_synchronize(&cq_poll->napi);
1378 		/* CQ intr is enabled while napi_complete,
1379 		 * so disable it now
1380 		 */
1381 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1382 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1383 		napi_disable(&cq_poll->napi);
1384 		netif_napi_del(&cq_poll->napi);
1385 	}
1386 
1387 	netif_tx_disable(netdev);
1388 
1389 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1390 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1391 
1392 	/* Free resources */
1393 	nicvf_config_data_transfer(nic, false);
1394 
1395 	/* Disable HW Qset */
1396 	nicvf_qset_config(nic, false);
1397 
1398 	/* disable mailbox interrupt */
1399 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1400 
1401 	nicvf_unregister_interrupts(nic);
1402 
1403 	nicvf_free_cq_poll(nic);
1404 
1405 	/* Free any pending SKB saved to receive timestamp */
1406 	if (nic->ptp_skb) {
1407 		dev_kfree_skb_any(nic->ptp_skb);
1408 		nic->ptp_skb = NULL;
1409 	}
1410 
1411 	/* Clear multiqset info */
1412 	nic->pnicvf = nic;
1413 
1414 	return 0;
1415 }
1416 
1417 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1418 {
1419 	union nic_mbx mbx = {};
1420 
1421 	mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1422 	mbx.ptp.enable = enable;
1423 
1424 	return nicvf_send_msg_to_pf(nic, &mbx);
1425 }
1426 
1427 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1428 {
1429 	union nic_mbx mbx = {};
1430 
1431 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1432 	mbx.frs.max_frs = mtu;
1433 	mbx.frs.vf_id = nic->vf_id;
1434 
1435 	return nicvf_send_msg_to_pf(nic, &mbx);
1436 }
1437 
1438 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1439 {
1440 	struct nicvf *nic = container_of(work_arg,
1441 					 struct nicvf,
1442 					 link_change_work.work);
1443 	union nic_mbx mbx = {};
1444 	mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1445 	nicvf_send_msg_to_pf(nic, &mbx);
1446 	queue_delayed_work(nic->nicvf_rx_mode_wq,
1447 			   &nic->link_change_work, 2 * HZ);
1448 }
1449 
1450 int nicvf_open(struct net_device *netdev)
1451 {
1452 	int cpu, err, qidx;
1453 	struct nicvf *nic = netdev_priv(netdev);
1454 	struct queue_set *qs = nic->qs;
1455 	struct nicvf_cq_poll *cq_poll = NULL;
1456 
1457 	/* wait till all queued set_rx_mode tasks completes if any */
1458 	if (nic->nicvf_rx_mode_wq)
1459 		drain_workqueue(nic->nicvf_rx_mode_wq);
1460 
1461 	netif_carrier_off(netdev);
1462 
1463 	err = nicvf_register_misc_interrupt(nic);
1464 	if (err)
1465 		return err;
1466 
1467 	/* Register NAPI handler for processing CQEs */
1468 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1469 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1470 		if (!cq_poll) {
1471 			err = -ENOMEM;
1472 			goto napi_del;
1473 		}
1474 		cq_poll->cq_idx = qidx;
1475 		cq_poll->nicvf = nic;
1476 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1477 			       NAPI_POLL_WEIGHT);
1478 		napi_enable(&cq_poll->napi);
1479 		nic->napi[qidx] = cq_poll;
1480 	}
1481 
1482 	/* Check if we got MAC address from PF or else generate a radom MAC */
1483 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1484 		eth_hw_addr_random(netdev);
1485 		nicvf_hw_set_mac_addr(nic, netdev);
1486 	}
1487 
1488 	if (nic->set_mac_pending) {
1489 		nic->set_mac_pending = false;
1490 		nicvf_hw_set_mac_addr(nic, netdev);
1491 	}
1492 
1493 	/* Init tasklet for handling Qset err interrupt */
1494 	tasklet_setup(&nic->qs_err_task, nicvf_handle_qs_err);
1495 
1496 	/* Init RBDR tasklet which will refill RBDR */
1497 	tasklet_setup(&nic->rbdr_task, nicvf_rbdr_task);
1498 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1499 
1500 	/* Configure CPI alorithm */
1501 	nic->cpi_alg = cpi_alg;
1502 	if (!nic->sqs_mode)
1503 		nicvf_config_cpi(nic);
1504 
1505 	nicvf_request_sqs(nic);
1506 	if (nic->sqs_mode)
1507 		nicvf_get_primary_vf_struct(nic);
1508 
1509 	/* Configure PTP timestamp */
1510 	if (nic->ptp_clock)
1511 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1512 	atomic_set(&nic->tx_ptp_skbs, 0);
1513 	nic->ptp_skb = NULL;
1514 
1515 	/* Configure receive side scaling and MTU */
1516 	if (!nic->sqs_mode) {
1517 		nicvf_rss_init(nic);
1518 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1519 		if (err)
1520 			goto cleanup;
1521 
1522 		/* Clear percpu stats */
1523 		for_each_possible_cpu(cpu)
1524 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1525 			       sizeof(struct nicvf_drv_stats));
1526 	}
1527 
1528 	err = nicvf_register_interrupts(nic);
1529 	if (err)
1530 		goto cleanup;
1531 
1532 	/* Initialize the queues */
1533 	err = nicvf_init_resources(nic);
1534 	if (err)
1535 		goto cleanup;
1536 
1537 	/* Make sure queue initialization is written */
1538 	wmb();
1539 
1540 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1541 	/* Enable Qset err interrupt */
1542 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1543 
1544 	/* Enable completion queue interrupt */
1545 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1546 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1547 
1548 	/* Enable RBDR threshold interrupt */
1549 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1550 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1551 
1552 	/* Send VF config done msg to PF */
1553 	nicvf_send_cfg_done(nic);
1554 
1555 	if (nic->nicvf_rx_mode_wq) {
1556 		INIT_DELAYED_WORK(&nic->link_change_work,
1557 				  nicvf_link_status_check_task);
1558 		queue_delayed_work(nic->nicvf_rx_mode_wq,
1559 				   &nic->link_change_work, 0);
1560 	}
1561 
1562 	return 0;
1563 cleanup:
1564 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1565 	nicvf_unregister_interrupts(nic);
1566 	tasklet_kill(&nic->qs_err_task);
1567 	tasklet_kill(&nic->rbdr_task);
1568 napi_del:
1569 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1570 		cq_poll = nic->napi[qidx];
1571 		if (!cq_poll)
1572 			continue;
1573 		napi_disable(&cq_poll->napi);
1574 		netif_napi_del(&cq_poll->napi);
1575 	}
1576 	nicvf_free_cq_poll(nic);
1577 	return err;
1578 }
1579 
1580 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1581 {
1582 	struct nicvf *nic = netdev_priv(netdev);
1583 	int orig_mtu = netdev->mtu;
1584 
1585 	/* For now just support only the usual MTU sized frames,
1586 	 * plus some headroom for VLAN, QinQ.
1587 	 */
1588 	if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1589 		netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1590 			    netdev->mtu);
1591 		return -EINVAL;
1592 	}
1593 
1594 	netdev->mtu = new_mtu;
1595 
1596 	if (!netif_running(netdev))
1597 		return 0;
1598 
1599 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1600 		netdev->mtu = orig_mtu;
1601 		return -EINVAL;
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1608 {
1609 	struct sockaddr *addr = p;
1610 	struct nicvf *nic = netdev_priv(netdev);
1611 
1612 	if (!is_valid_ether_addr(addr->sa_data))
1613 		return -EADDRNOTAVAIL;
1614 
1615 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1616 
1617 	if (nic->pdev->msix_enabled) {
1618 		if (nicvf_hw_set_mac_addr(nic, netdev))
1619 			return -EBUSY;
1620 	} else {
1621 		nic->set_mac_pending = true;
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 void nicvf_update_lmac_stats(struct nicvf *nic)
1628 {
1629 	int stat = 0;
1630 	union nic_mbx mbx = {};
1631 
1632 	if (!netif_running(nic->netdev))
1633 		return;
1634 
1635 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1636 	mbx.bgx_stats.vf_id = nic->vf_id;
1637 	/* Rx stats */
1638 	mbx.bgx_stats.rx = 1;
1639 	while (stat < BGX_RX_STATS_COUNT) {
1640 		mbx.bgx_stats.idx = stat;
1641 		if (nicvf_send_msg_to_pf(nic, &mbx))
1642 			return;
1643 		stat++;
1644 	}
1645 
1646 	stat = 0;
1647 
1648 	/* Tx stats */
1649 	mbx.bgx_stats.rx = 0;
1650 	while (stat < BGX_TX_STATS_COUNT) {
1651 		mbx.bgx_stats.idx = stat;
1652 		if (nicvf_send_msg_to_pf(nic, &mbx))
1653 			return;
1654 		stat++;
1655 	}
1656 }
1657 
1658 void nicvf_update_stats(struct nicvf *nic)
1659 {
1660 	int qidx, cpu;
1661 	u64 tmp_stats = 0;
1662 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1663 	struct nicvf_drv_stats *drv_stats;
1664 	struct queue_set *qs = nic->qs;
1665 
1666 #define GET_RX_STATS(reg) \
1667 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1668 #define GET_TX_STATS(reg) \
1669 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1670 
1671 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1672 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1673 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1674 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1675 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1676 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1677 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1678 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1679 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1680 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1681 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1682 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1683 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1684 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1685 
1686 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1687 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1688 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1689 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1690 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1691 
1692 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1693 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1694 	 * pointed by dummy SQE and results in tx_drops counter being
1695 	 * incremented. Subtracting it from tx_tso counter will give
1696 	 * exact tx_drops counter.
1697 	 */
1698 	if (nic->t88 && nic->hw_tso) {
1699 		for_each_possible_cpu(cpu) {
1700 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1701 			tmp_stats += drv_stats->tx_tso;
1702 		}
1703 		stats->tx_drops = tmp_stats - stats->tx_drops;
1704 	}
1705 	stats->tx_frames = stats->tx_ucast_frames +
1706 			   stats->tx_bcast_frames +
1707 			   stats->tx_mcast_frames;
1708 	stats->rx_frames = stats->rx_ucast_frames +
1709 			   stats->rx_bcast_frames +
1710 			   stats->rx_mcast_frames;
1711 	stats->rx_drops = stats->rx_drop_red +
1712 			  stats->rx_drop_overrun;
1713 
1714 	/* Update RQ and SQ stats */
1715 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1716 		nicvf_update_rq_stats(nic, qidx);
1717 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1718 		nicvf_update_sq_stats(nic, qidx);
1719 }
1720 
1721 static void nicvf_get_stats64(struct net_device *netdev,
1722 			      struct rtnl_link_stats64 *stats)
1723 {
1724 	struct nicvf *nic = netdev_priv(netdev);
1725 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1726 
1727 	nicvf_update_stats(nic);
1728 
1729 	stats->rx_bytes = hw_stats->rx_bytes;
1730 	stats->rx_packets = hw_stats->rx_frames;
1731 	stats->rx_dropped = hw_stats->rx_drops;
1732 	stats->multicast = hw_stats->rx_mcast_frames;
1733 
1734 	stats->tx_bytes = hw_stats->tx_bytes;
1735 	stats->tx_packets = hw_stats->tx_frames;
1736 	stats->tx_dropped = hw_stats->tx_drops;
1737 
1738 }
1739 
1740 static void nicvf_tx_timeout(struct net_device *dev, unsigned int txqueue)
1741 {
1742 	struct nicvf *nic = netdev_priv(dev);
1743 
1744 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1745 
1746 	this_cpu_inc(nic->drv_stats->tx_timeout);
1747 	schedule_work(&nic->reset_task);
1748 }
1749 
1750 static void nicvf_reset_task(struct work_struct *work)
1751 {
1752 	struct nicvf *nic;
1753 
1754 	nic = container_of(work, struct nicvf, reset_task);
1755 
1756 	if (!netif_running(nic->netdev))
1757 		return;
1758 
1759 	nicvf_stop(nic->netdev);
1760 	nicvf_open(nic->netdev);
1761 	netif_trans_update(nic->netdev);
1762 }
1763 
1764 static int nicvf_config_loopback(struct nicvf *nic,
1765 				 netdev_features_t features)
1766 {
1767 	union nic_mbx mbx = {};
1768 
1769 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1770 	mbx.lbk.vf_id = nic->vf_id;
1771 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1772 
1773 	return nicvf_send_msg_to_pf(nic, &mbx);
1774 }
1775 
1776 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1777 					    netdev_features_t features)
1778 {
1779 	struct nicvf *nic = netdev_priv(netdev);
1780 
1781 	if ((features & NETIF_F_LOOPBACK) &&
1782 	    netif_running(netdev) && !nic->loopback_supported)
1783 		features &= ~NETIF_F_LOOPBACK;
1784 
1785 	return features;
1786 }
1787 
1788 static int nicvf_set_features(struct net_device *netdev,
1789 			      netdev_features_t features)
1790 {
1791 	struct nicvf *nic = netdev_priv(netdev);
1792 	netdev_features_t changed = features ^ netdev->features;
1793 
1794 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1795 		nicvf_config_vlan_stripping(nic, features);
1796 
1797 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1798 		return nicvf_config_loopback(nic, features);
1799 
1800 	return 0;
1801 }
1802 
1803 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1804 {
1805 	u8 cq_count, txq_count;
1806 
1807 	/* Set XDP Tx queue count same as Rx queue count */
1808 	if (!bpf_attached)
1809 		nic->xdp_tx_queues = 0;
1810 	else
1811 		nic->xdp_tx_queues = nic->rx_queues;
1812 
1813 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1814 	 * needs to be allocated, check how many.
1815 	 */
1816 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1817 	cq_count = max(nic->rx_queues, txq_count);
1818 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1819 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1820 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1821 	} else {
1822 		nic->sqs_count = 0;
1823 	}
1824 
1825 	/* Set primary Qset's resources */
1826 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1827 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1828 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1829 
1830 	/* Update stack */
1831 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1832 }
1833 
1834 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1835 {
1836 	struct net_device *dev = nic->netdev;
1837 	bool if_up = netif_running(nic->netdev);
1838 	struct bpf_prog *old_prog;
1839 	bool bpf_attached = false;
1840 	int ret = 0;
1841 
1842 	/* For now just support only the usual MTU sized frames,
1843 	 * plus some headroom for VLAN, QinQ.
1844 	 */
1845 	if (prog && dev->mtu > MAX_XDP_MTU) {
1846 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1847 			    dev->mtu);
1848 		return -EOPNOTSUPP;
1849 	}
1850 
1851 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1852 	 * XDP Tx queues and more Tx queues are allocated for
1853 	 * network stack to send pkts out.
1854 	 *
1855 	 * No of Tx queues are either same as Rx queues or whatever
1856 	 * is left in max no of queues possible.
1857 	 */
1858 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1859 		netdev_warn(dev,
1860 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1861 			    nic->max_queues);
1862 		return -ENOMEM;
1863 	}
1864 
1865 	if (if_up)
1866 		nicvf_stop(nic->netdev);
1867 
1868 	old_prog = xchg(&nic->xdp_prog, prog);
1869 	/* Detach old prog, if any */
1870 	if (old_prog)
1871 		bpf_prog_put(old_prog);
1872 
1873 	if (nic->xdp_prog) {
1874 		/* Attach BPF program */
1875 		bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1876 		bpf_attached = true;
1877 	}
1878 
1879 	/* Calculate Tx queues needed for XDP and network stack */
1880 	nicvf_set_xdp_queues(nic, bpf_attached);
1881 
1882 	if (if_up) {
1883 		/* Reinitialize interface, clean slate */
1884 		nicvf_open(nic->netdev);
1885 		netif_trans_update(nic->netdev);
1886 	}
1887 
1888 	return ret;
1889 }
1890 
1891 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1892 {
1893 	struct nicvf *nic = netdev_priv(netdev);
1894 
1895 	/* To avoid checks while retrieving buffer address from CQE_RX,
1896 	 * do not support XDP for T88 pass1.x silicons which are anyway
1897 	 * not in use widely.
1898 	 */
1899 	if (pass1_silicon(nic->pdev))
1900 		return -EOPNOTSUPP;
1901 
1902 	switch (xdp->command) {
1903 	case XDP_SETUP_PROG:
1904 		return nicvf_xdp_setup(nic, xdp->prog);
1905 	default:
1906 		return -EINVAL;
1907 	}
1908 }
1909 
1910 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1911 {
1912 	struct hwtstamp_config config;
1913 	struct nicvf *nic = netdev_priv(netdev);
1914 
1915 	if (!nic->ptp_clock)
1916 		return -ENODEV;
1917 
1918 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1919 		return -EFAULT;
1920 
1921 	/* reserved for future extensions */
1922 	if (config.flags)
1923 		return -EINVAL;
1924 
1925 	switch (config.tx_type) {
1926 	case HWTSTAMP_TX_OFF:
1927 	case HWTSTAMP_TX_ON:
1928 		break;
1929 	default:
1930 		return -ERANGE;
1931 	}
1932 
1933 	switch (config.rx_filter) {
1934 	case HWTSTAMP_FILTER_NONE:
1935 		nic->hw_rx_tstamp = false;
1936 		break;
1937 	case HWTSTAMP_FILTER_ALL:
1938 	case HWTSTAMP_FILTER_SOME:
1939 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1940 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1941 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1942 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1943 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1944 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1945 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1946 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1947 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1948 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1949 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1950 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1951 		nic->hw_rx_tstamp = true;
1952 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1953 		break;
1954 	default:
1955 		return -ERANGE;
1956 	}
1957 
1958 	if (netif_running(netdev))
1959 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1960 
1961 	if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1962 		return -EFAULT;
1963 
1964 	return 0;
1965 }
1966 
1967 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1968 {
1969 	switch (cmd) {
1970 	case SIOCSHWTSTAMP:
1971 		return nicvf_config_hwtstamp(netdev, req);
1972 	default:
1973 		return -EOPNOTSUPP;
1974 	}
1975 }
1976 
1977 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1978 				     struct nicvf *nic)
1979 {
1980 	union nic_mbx mbx = {};
1981 	int idx;
1982 
1983 	/* From the inside of VM code flow we have only 128 bits memory
1984 	 * available to send message to host's PF, so send all mc addrs
1985 	 * one by one, starting from flush command in case if kernel
1986 	 * requests to configure specific MAC filtering
1987 	 */
1988 
1989 	/* flush DMAC filters and reset RX mode */
1990 	mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1991 	if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1992 		goto free_mc;
1993 
1994 	if (mode & BGX_XCAST_MCAST_FILTER) {
1995 		/* once enabling filtering, we need to signal to PF to add
1996 		 * its' own LMAC to the filter to accept packets for it.
1997 		 */
1998 		mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1999 		mbx.xcast.mac = 0;
2000 		if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2001 			goto free_mc;
2002 	}
2003 
2004 	/* check if we have any specific MACs to be added to PF DMAC filter */
2005 	if (mc_addrs) {
2006 		/* now go through kernel list of MACs and add them one by one */
2007 		for (idx = 0; idx < mc_addrs->count; idx++) {
2008 			mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2009 			mbx.xcast.mac = mc_addrs->mc[idx];
2010 			if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2011 				goto free_mc;
2012 		}
2013 	}
2014 
2015 	/* and finally set rx mode for PF accordingly */
2016 	mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2017 	mbx.xcast.mode = mode;
2018 
2019 	nicvf_send_msg_to_pf(nic, &mbx);
2020 free_mc:
2021 	kfree(mc_addrs);
2022 }
2023 
2024 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2025 {
2026 	struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2027 						  work);
2028 	struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2029 	u8 mode;
2030 	struct xcast_addr_list *mc;
2031 
2032 	if (!vf_work)
2033 		return;
2034 
2035 	/* Save message data locally to prevent them from
2036 	 * being overwritten by next ndo_set_rx_mode call().
2037 	 */
2038 	spin_lock_bh(&nic->rx_mode_wq_lock);
2039 	mode = vf_work->mode;
2040 	mc = vf_work->mc;
2041 	vf_work->mc = NULL;
2042 	spin_unlock_bh(&nic->rx_mode_wq_lock);
2043 
2044 	__nicvf_set_rx_mode_task(mode, mc, nic);
2045 }
2046 
2047 static void nicvf_set_rx_mode(struct net_device *netdev)
2048 {
2049 	struct nicvf *nic = netdev_priv(netdev);
2050 	struct netdev_hw_addr *ha;
2051 	struct xcast_addr_list *mc_list = NULL;
2052 	u8 mode = 0;
2053 
2054 	if (netdev->flags & IFF_PROMISC) {
2055 		mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2056 	} else {
2057 		if (netdev->flags & IFF_BROADCAST)
2058 			mode |= BGX_XCAST_BCAST_ACCEPT;
2059 
2060 		if (netdev->flags & IFF_ALLMULTI) {
2061 			mode |= BGX_XCAST_MCAST_ACCEPT;
2062 		} else if (netdev->flags & IFF_MULTICAST) {
2063 			mode |= BGX_XCAST_MCAST_FILTER;
2064 			/* here we need to copy mc addrs */
2065 			if (netdev_mc_count(netdev)) {
2066 				mc_list = kmalloc(struct_size(mc_list, mc,
2067 							      netdev_mc_count(netdev)),
2068 						  GFP_ATOMIC);
2069 				if (unlikely(!mc_list))
2070 					return;
2071 				mc_list->count = 0;
2072 				netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2073 					mc_list->mc[mc_list->count] =
2074 						ether_addr_to_u64(ha->addr);
2075 					mc_list->count++;
2076 				}
2077 			}
2078 		}
2079 	}
2080 	spin_lock(&nic->rx_mode_wq_lock);
2081 	kfree(nic->rx_mode_work.mc);
2082 	nic->rx_mode_work.mc = mc_list;
2083 	nic->rx_mode_work.mode = mode;
2084 	queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2085 	spin_unlock(&nic->rx_mode_wq_lock);
2086 }
2087 
2088 static const struct net_device_ops nicvf_netdev_ops = {
2089 	.ndo_open		= nicvf_open,
2090 	.ndo_stop		= nicvf_stop,
2091 	.ndo_start_xmit		= nicvf_xmit,
2092 	.ndo_change_mtu		= nicvf_change_mtu,
2093 	.ndo_set_mac_address	= nicvf_set_mac_address,
2094 	.ndo_get_stats64	= nicvf_get_stats64,
2095 	.ndo_tx_timeout         = nicvf_tx_timeout,
2096 	.ndo_fix_features       = nicvf_fix_features,
2097 	.ndo_set_features       = nicvf_set_features,
2098 	.ndo_bpf		= nicvf_xdp,
2099 	.ndo_do_ioctl           = nicvf_ioctl,
2100 	.ndo_set_rx_mode        = nicvf_set_rx_mode,
2101 };
2102 
2103 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2104 {
2105 	struct device *dev = &pdev->dev;
2106 	struct net_device *netdev;
2107 	struct nicvf *nic;
2108 	int    err, qcount;
2109 	u16    sdevid;
2110 	struct cavium_ptp *ptp_clock;
2111 
2112 	ptp_clock = cavium_ptp_get();
2113 	if (IS_ERR(ptp_clock)) {
2114 		if (PTR_ERR(ptp_clock) == -ENODEV)
2115 			/* In virtualized environment we proceed without ptp */
2116 			ptp_clock = NULL;
2117 		else
2118 			return PTR_ERR(ptp_clock);
2119 	}
2120 
2121 	err = pci_enable_device(pdev);
2122 	if (err) {
2123 		dev_err(dev, "Failed to enable PCI device\n");
2124 		return err;
2125 	}
2126 
2127 	err = pci_request_regions(pdev, DRV_NAME);
2128 	if (err) {
2129 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2130 		goto err_disable_device;
2131 	}
2132 
2133 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2134 	if (err) {
2135 		dev_err(dev, "Unable to get usable DMA configuration\n");
2136 		goto err_release_regions;
2137 	}
2138 
2139 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2140 	if (err) {
2141 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
2142 		goto err_release_regions;
2143 	}
2144 
2145 	qcount = netif_get_num_default_rss_queues();
2146 
2147 	/* Restrict multiqset support only for host bound VFs */
2148 	if (pdev->is_virtfn) {
2149 		/* Set max number of queues per VF */
2150 		qcount = min_t(int, num_online_cpus(),
2151 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2152 	}
2153 
2154 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2155 	if (!netdev) {
2156 		err = -ENOMEM;
2157 		goto err_release_regions;
2158 	}
2159 
2160 	pci_set_drvdata(pdev, netdev);
2161 
2162 	SET_NETDEV_DEV(netdev, &pdev->dev);
2163 
2164 	nic = netdev_priv(netdev);
2165 	nic->netdev = netdev;
2166 	nic->pdev = pdev;
2167 	nic->pnicvf = nic;
2168 	nic->max_queues = qcount;
2169 	/* If no of CPUs are too low, there won't be any queues left
2170 	 * for XDP_TX, hence double it.
2171 	 */
2172 	if (!nic->t88)
2173 		nic->max_queues *= 2;
2174 	nic->ptp_clock = ptp_clock;
2175 
2176 	/* Initialize mutex that serializes usage of VF's mailbox */
2177 	mutex_init(&nic->rx_mode_mtx);
2178 
2179 	/* MAP VF's configuration registers */
2180 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2181 	if (!nic->reg_base) {
2182 		dev_err(dev, "Cannot map config register space, aborting\n");
2183 		err = -ENOMEM;
2184 		goto err_free_netdev;
2185 	}
2186 
2187 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2188 	if (!nic->drv_stats) {
2189 		err = -ENOMEM;
2190 		goto err_free_netdev;
2191 	}
2192 
2193 	err = nicvf_set_qset_resources(nic);
2194 	if (err)
2195 		goto err_free_netdev;
2196 
2197 	/* Check if PF is alive and get MAC address for this VF */
2198 	err = nicvf_register_misc_interrupt(nic);
2199 	if (err)
2200 		goto err_free_netdev;
2201 
2202 	nicvf_send_vf_struct(nic);
2203 
2204 	if (!pass1_silicon(nic->pdev))
2205 		nic->hw_tso = true;
2206 
2207 	/* Get iommu domain for iova to physical addr conversion */
2208 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
2209 
2210 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2211 	if (sdevid == 0xA134)
2212 		nic->t88 = true;
2213 
2214 	/* Check if this VF is in QS only mode */
2215 	if (nic->sqs_mode)
2216 		return 0;
2217 
2218 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2219 	if (err)
2220 		goto err_unregister_interrupts;
2221 
2222 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2223 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2224 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2225 			       NETIF_F_HW_VLAN_CTAG_RX);
2226 
2227 	netdev->hw_features |= NETIF_F_RXHASH;
2228 
2229 	netdev->features |= netdev->hw_features;
2230 	netdev->hw_features |= NETIF_F_LOOPBACK;
2231 
2232 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2233 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2234 
2235 	netdev->netdev_ops = &nicvf_netdev_ops;
2236 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2237 
2238 	/* MTU range: 64 - 9200 */
2239 	netdev->min_mtu = NIC_HW_MIN_FRS;
2240 	netdev->max_mtu = NIC_HW_MAX_FRS;
2241 
2242 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
2243 
2244 	nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2245 							WQ_MEM_RECLAIM,
2246 							nic->vf_id);
2247 	if (!nic->nicvf_rx_mode_wq) {
2248 		err = -ENOMEM;
2249 		dev_err(dev, "Failed to allocate work queue\n");
2250 		goto err_unregister_interrupts;
2251 	}
2252 
2253 	INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2254 	spin_lock_init(&nic->rx_mode_wq_lock);
2255 
2256 	err = register_netdev(netdev);
2257 	if (err) {
2258 		dev_err(dev, "Failed to register netdevice\n");
2259 		goto err_unregister_interrupts;
2260 	}
2261 
2262 	nic->msg_enable = debug;
2263 
2264 	nicvf_set_ethtool_ops(netdev);
2265 
2266 	return 0;
2267 
2268 err_unregister_interrupts:
2269 	nicvf_unregister_interrupts(nic);
2270 err_free_netdev:
2271 	pci_set_drvdata(pdev, NULL);
2272 	if (nic->drv_stats)
2273 		free_percpu(nic->drv_stats);
2274 	free_netdev(netdev);
2275 err_release_regions:
2276 	pci_release_regions(pdev);
2277 err_disable_device:
2278 	pci_disable_device(pdev);
2279 	return err;
2280 }
2281 
2282 static void nicvf_remove(struct pci_dev *pdev)
2283 {
2284 	struct net_device *netdev = pci_get_drvdata(pdev);
2285 	struct nicvf *nic;
2286 	struct net_device *pnetdev;
2287 
2288 	if (!netdev)
2289 		return;
2290 
2291 	nic = netdev_priv(netdev);
2292 	pnetdev = nic->pnicvf->netdev;
2293 
2294 	/* Check if this Qset is assigned to different VF.
2295 	 * If yes, clean primary and all secondary Qsets.
2296 	 */
2297 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2298 		unregister_netdev(pnetdev);
2299 	if (nic->nicvf_rx_mode_wq) {
2300 		destroy_workqueue(nic->nicvf_rx_mode_wq);
2301 		nic->nicvf_rx_mode_wq = NULL;
2302 	}
2303 	nicvf_unregister_interrupts(nic);
2304 	pci_set_drvdata(pdev, NULL);
2305 	if (nic->drv_stats)
2306 		free_percpu(nic->drv_stats);
2307 	cavium_ptp_put(nic->ptp_clock);
2308 	free_netdev(netdev);
2309 	pci_release_regions(pdev);
2310 	pci_disable_device(pdev);
2311 }
2312 
2313 static void nicvf_shutdown(struct pci_dev *pdev)
2314 {
2315 	nicvf_remove(pdev);
2316 }
2317 
2318 static struct pci_driver nicvf_driver = {
2319 	.name = DRV_NAME,
2320 	.id_table = nicvf_id_table,
2321 	.probe = nicvf_probe,
2322 	.remove = nicvf_remove,
2323 	.shutdown = nicvf_shutdown,
2324 };
2325 
2326 static int __init nicvf_init_module(void)
2327 {
2328 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2329 	return pci_register_driver(&nicvf_driver);
2330 }
2331 
2332 static void __exit nicvf_cleanup_module(void)
2333 {
2334 	pci_unregister_driver(&nicvf_driver);
2335 }
2336 
2337 module_init(nicvf_init_module);
2338 module_exit(nicvf_cleanup_module);
2339