1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 
24 #include "nic_reg.h"
25 #include "nic.h"
26 #include "nicvf_queues.h"
27 #include "thunder_bgx.h"
28 
29 #define DRV_NAME	"thunder-nicvf"
30 #define DRV_VERSION	"1.0"
31 
32 /* Supported devices */
33 static const struct pci_device_id nicvf_id_table[] = {
34 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
35 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
36 			 PCI_VENDOR_ID_CAVIUM,
37 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
38 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
39 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
40 			 PCI_VENDOR_ID_CAVIUM,
41 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
42 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
43 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
44 			 PCI_VENDOR_ID_CAVIUM,
45 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
46 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
47 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
48 			 PCI_VENDOR_ID_CAVIUM,
49 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
50 	{ 0, }  /* end of table */
51 };
52 
53 MODULE_AUTHOR("Sunil Goutham");
54 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
55 MODULE_LICENSE("GPL v2");
56 MODULE_VERSION(DRV_VERSION);
57 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
58 
59 static int debug = 0x00;
60 module_param(debug, int, 0644);
61 MODULE_PARM_DESC(debug, "Debug message level bitmap");
62 
63 static int cpi_alg = CPI_ALG_NONE;
64 module_param(cpi_alg, int, S_IRUGO);
65 MODULE_PARM_DESC(cpi_alg,
66 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
67 
68 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
69 {
70 	if (nic->sqs_mode)
71 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
72 	else
73 		return qidx;
74 }
75 
76 /* The Cavium ThunderX network controller can *only* be found in SoCs
77  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
78  * registers on this platform are implicitly strongly ordered with respect
79  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
80  * with no memory barriers in this driver.  The readq()/writeq() functions add
81  * explicit ordering operation which in this case are redundant, and only
82  * add overhead.
83  */
84 
85 /* Register read/write APIs */
86 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
87 {
88 	writeq_relaxed(val, nic->reg_base + offset);
89 }
90 
91 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
92 {
93 	return readq_relaxed(nic->reg_base + offset);
94 }
95 
96 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
97 			   u64 qidx, u64 val)
98 {
99 	void __iomem *addr = nic->reg_base + offset;
100 
101 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
102 }
103 
104 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
105 {
106 	void __iomem *addr = nic->reg_base + offset;
107 
108 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110 
111 /* VF -> PF mailbox communication */
112 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
113 {
114 	u64 *msg = (u64 *)mbx;
115 
116 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
117 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
118 }
119 
120 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
121 {
122 	int timeout = NIC_MBOX_MSG_TIMEOUT;
123 	int sleep = 10;
124 
125 	nic->pf_acked = false;
126 	nic->pf_nacked = false;
127 
128 	nicvf_write_to_mbx(nic, mbx);
129 
130 	/* Wait for previous message to be acked, timeout 2sec */
131 	while (!nic->pf_acked) {
132 		if (nic->pf_nacked) {
133 			netdev_err(nic->netdev,
134 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
135 				   (mbx->msg.msg & 0xFF), nic->vf_id);
136 			return -EINVAL;
137 		}
138 		msleep(sleep);
139 		if (nic->pf_acked)
140 			break;
141 		timeout -= sleep;
142 		if (!timeout) {
143 			netdev_err(nic->netdev,
144 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
145 				   (mbx->msg.msg & 0xFF), nic->vf_id);
146 			return -EBUSY;
147 		}
148 	}
149 	return 0;
150 }
151 
152 /* Checks if VF is able to comminicate with PF
153 * and also gets the VNIC number this VF is associated to.
154 */
155 static int nicvf_check_pf_ready(struct nicvf *nic)
156 {
157 	union nic_mbx mbx = {};
158 
159 	mbx.msg.msg = NIC_MBOX_MSG_READY;
160 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
161 		netdev_err(nic->netdev,
162 			   "PF didn't respond to READY msg\n");
163 		return 0;
164 	}
165 
166 	return 1;
167 }
168 
169 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
170 {
171 	if (bgx->rx)
172 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
173 	else
174 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
175 }
176 
177 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
178 {
179 	union nic_mbx mbx = {};
180 	u64 *mbx_data;
181 	u64 mbx_addr;
182 	int i;
183 
184 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
185 	mbx_data = (u64 *)&mbx;
186 
187 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
188 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
189 		mbx_data++;
190 		mbx_addr += sizeof(u64);
191 	}
192 
193 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
194 	switch (mbx.msg.msg) {
195 	case NIC_MBOX_MSG_READY:
196 		nic->pf_acked = true;
197 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
198 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
199 		nic->node = mbx.nic_cfg.node_id;
200 		if (!nic->set_mac_pending)
201 			ether_addr_copy(nic->netdev->dev_addr,
202 					mbx.nic_cfg.mac_addr);
203 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
204 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
205 		nic->link_up = false;
206 		nic->duplex = 0;
207 		nic->speed = 0;
208 		break;
209 	case NIC_MBOX_MSG_ACK:
210 		nic->pf_acked = true;
211 		break;
212 	case NIC_MBOX_MSG_NACK:
213 		nic->pf_nacked = true;
214 		break;
215 	case NIC_MBOX_MSG_RSS_SIZE:
216 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
217 		nic->pf_acked = true;
218 		break;
219 	case NIC_MBOX_MSG_BGX_STATS:
220 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
221 		nic->pf_acked = true;
222 		break;
223 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
224 		nic->pf_acked = true;
225 		nic->link_up = mbx.link_status.link_up;
226 		nic->duplex = mbx.link_status.duplex;
227 		nic->speed = mbx.link_status.speed;
228 		nic->mac_type = mbx.link_status.mac_type;
229 		if (nic->link_up) {
230 			netdev_info(nic->netdev, "%s: Link is Up %d Mbps %s\n",
231 				    nic->netdev->name, nic->speed,
232 				    nic->duplex == DUPLEX_FULL ?
233 				"Full duplex" : "Half duplex");
234 			netif_carrier_on(nic->netdev);
235 			netif_tx_start_all_queues(nic->netdev);
236 		} else {
237 			netdev_info(nic->netdev, "%s: Link is Down\n",
238 				    nic->netdev->name);
239 			netif_carrier_off(nic->netdev);
240 			netif_tx_stop_all_queues(nic->netdev);
241 		}
242 		break;
243 	case NIC_MBOX_MSG_ALLOC_SQS:
244 		nic->sqs_count = mbx.sqs_alloc.qs_count;
245 		nic->pf_acked = true;
246 		break;
247 	case NIC_MBOX_MSG_SNICVF_PTR:
248 		/* Primary VF: make note of secondary VF's pointer
249 		 * to be used while packet transmission.
250 		 */
251 		nic->snicvf[mbx.nicvf.sqs_id] =
252 			(struct nicvf *)mbx.nicvf.nicvf;
253 		nic->pf_acked = true;
254 		break;
255 	case NIC_MBOX_MSG_PNICVF_PTR:
256 		/* Secondary VF/Qset: make note of primary VF's pointer
257 		 * to be used while packet reception, to handover packet
258 		 * to primary VF's netdev.
259 		 */
260 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
261 		nic->pf_acked = true;
262 		break;
263 	case NIC_MBOX_MSG_PFC:
264 		nic->pfc.autoneg = mbx.pfc.autoneg;
265 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
266 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
267 		nic->pf_acked = true;
268 		break;
269 	default:
270 		netdev_err(nic->netdev,
271 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
272 		break;
273 	}
274 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
275 }
276 
277 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
278 {
279 	union nic_mbx mbx = {};
280 
281 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
282 	mbx.mac.vf_id = nic->vf_id;
283 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
284 
285 	return nicvf_send_msg_to_pf(nic, &mbx);
286 }
287 
288 static void nicvf_config_cpi(struct nicvf *nic)
289 {
290 	union nic_mbx mbx = {};
291 
292 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
293 	mbx.cpi_cfg.vf_id = nic->vf_id;
294 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
295 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
296 
297 	nicvf_send_msg_to_pf(nic, &mbx);
298 }
299 
300 static void nicvf_get_rss_size(struct nicvf *nic)
301 {
302 	union nic_mbx mbx = {};
303 
304 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
305 	mbx.rss_size.vf_id = nic->vf_id;
306 	nicvf_send_msg_to_pf(nic, &mbx);
307 }
308 
309 void nicvf_config_rss(struct nicvf *nic)
310 {
311 	union nic_mbx mbx = {};
312 	struct nicvf_rss_info *rss = &nic->rss_info;
313 	int ind_tbl_len = rss->rss_size;
314 	int i, nextq = 0;
315 
316 	mbx.rss_cfg.vf_id = nic->vf_id;
317 	mbx.rss_cfg.hash_bits = rss->hash_bits;
318 	while (ind_tbl_len) {
319 		mbx.rss_cfg.tbl_offset = nextq;
320 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
321 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
322 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
323 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
324 
325 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
326 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
327 
328 		nicvf_send_msg_to_pf(nic, &mbx);
329 
330 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
331 	}
332 }
333 
334 void nicvf_set_rss_key(struct nicvf *nic)
335 {
336 	struct nicvf_rss_info *rss = &nic->rss_info;
337 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
338 	int idx;
339 
340 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
341 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
342 		key_addr += sizeof(u64);
343 	}
344 }
345 
346 static int nicvf_rss_init(struct nicvf *nic)
347 {
348 	struct nicvf_rss_info *rss = &nic->rss_info;
349 	int idx;
350 
351 	nicvf_get_rss_size(nic);
352 
353 	if (cpi_alg != CPI_ALG_NONE) {
354 		rss->enable = false;
355 		rss->hash_bits = 0;
356 		return 0;
357 	}
358 
359 	rss->enable = true;
360 
361 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
362 	nicvf_set_rss_key(nic);
363 
364 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
365 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
366 
367 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
368 
369 	for (idx = 0; idx < rss->rss_size; idx++)
370 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
371 							       nic->rx_queues);
372 	nicvf_config_rss(nic);
373 	return 1;
374 }
375 
376 /* Request PF to allocate additional Qsets */
377 static void nicvf_request_sqs(struct nicvf *nic)
378 {
379 	union nic_mbx mbx = {};
380 	int sqs;
381 	int sqs_count = nic->sqs_count;
382 	int rx_queues = 0, tx_queues = 0;
383 
384 	/* Only primary VF should request */
385 	if (nic->sqs_mode ||  !nic->sqs_count)
386 		return;
387 
388 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
389 	mbx.sqs_alloc.vf_id = nic->vf_id;
390 	mbx.sqs_alloc.qs_count = nic->sqs_count;
391 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
392 		/* No response from PF */
393 		nic->sqs_count = 0;
394 		return;
395 	}
396 
397 	/* Return if no Secondary Qsets available */
398 	if (!nic->sqs_count)
399 		return;
400 
401 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
402 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
403 
404 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
405 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
406 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
407 
408 	/* Set no of Rx/Tx queues in each of the SQsets */
409 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
410 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
411 		mbx.nicvf.vf_id = nic->vf_id;
412 		mbx.nicvf.sqs_id = sqs;
413 		nicvf_send_msg_to_pf(nic, &mbx);
414 
415 		nic->snicvf[sqs]->sqs_id = sqs;
416 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
417 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
418 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
419 		} else {
420 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
421 			rx_queues = 0;
422 		}
423 
424 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
425 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
426 			tx_queues -= MAX_SND_QUEUES_PER_QS;
427 		} else {
428 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
429 			tx_queues = 0;
430 		}
431 
432 		nic->snicvf[sqs]->qs->cq_cnt =
433 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
434 
435 		/* Initialize secondary Qset's queues and its interrupts */
436 		nicvf_open(nic->snicvf[sqs]->netdev);
437 	}
438 
439 	/* Update stack with actual Rx/Tx queue count allocated */
440 	if (sqs_count != nic->sqs_count)
441 		nicvf_set_real_num_queues(nic->netdev,
442 					  nic->tx_queues, nic->rx_queues);
443 }
444 
445 /* Send this Qset's nicvf pointer to PF.
446  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
447  * so that packets received by these Qsets can use primary VF's netdev
448  */
449 static void nicvf_send_vf_struct(struct nicvf *nic)
450 {
451 	union nic_mbx mbx = {};
452 
453 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
454 	mbx.nicvf.sqs_mode = nic->sqs_mode;
455 	mbx.nicvf.nicvf = (u64)nic;
456 	nicvf_send_msg_to_pf(nic, &mbx);
457 }
458 
459 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
460 {
461 	union nic_mbx mbx = {};
462 
463 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
464 	nicvf_send_msg_to_pf(nic, &mbx);
465 }
466 
467 int nicvf_set_real_num_queues(struct net_device *netdev,
468 			      int tx_queues, int rx_queues)
469 {
470 	int err = 0;
471 
472 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
473 	if (err) {
474 		netdev_err(netdev,
475 			   "Failed to set no of Tx queues: %d\n", tx_queues);
476 		return err;
477 	}
478 
479 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
480 	if (err)
481 		netdev_err(netdev,
482 			   "Failed to set no of Rx queues: %d\n", rx_queues);
483 	return err;
484 }
485 
486 static int nicvf_init_resources(struct nicvf *nic)
487 {
488 	int err;
489 
490 	/* Enable Qset */
491 	nicvf_qset_config(nic, true);
492 
493 	/* Initialize queues and HW for data transfer */
494 	err = nicvf_config_data_transfer(nic, true);
495 	if (err) {
496 		netdev_err(nic->netdev,
497 			   "Failed to alloc/config VF's QSet resources\n");
498 		return err;
499 	}
500 
501 	return 0;
502 }
503 
504 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
505 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
506 				struct sk_buff **skb)
507 {
508 	struct xdp_buff xdp;
509 	struct page *page;
510 	u32 action;
511 	u16 len, offset = 0;
512 	u64 dma_addr, cpu_addr;
513 	void *orig_data;
514 
515 	/* Retrieve packet buffer's DMA address and length */
516 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
517 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
518 
519 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
520 	if (!cpu_addr)
521 		return false;
522 	cpu_addr = (u64)phys_to_virt(cpu_addr);
523 	page = virt_to_page((void *)cpu_addr);
524 
525 	xdp.data_hard_start = page_address(page);
526 	xdp.data = (void *)cpu_addr;
527 	xdp.data_end = xdp.data + len;
528 	orig_data = xdp.data;
529 
530 	rcu_read_lock();
531 	action = bpf_prog_run_xdp(prog, &xdp);
532 	rcu_read_unlock();
533 
534 	/* Check if XDP program has changed headers */
535 	if (orig_data != xdp.data) {
536 		len = xdp.data_end - xdp.data;
537 		offset = orig_data - xdp.data;
538 		dma_addr -= offset;
539 	}
540 
541 	switch (action) {
542 	case XDP_PASS:
543 		/* Check if it's a recycled page, if not
544 		 * unmap the DMA mapping.
545 		 *
546 		 * Recycled page holds an extra reference.
547 		 */
548 		if (page_ref_count(page) == 1) {
549 			dma_addr &= PAGE_MASK;
550 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
551 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
552 					     DMA_FROM_DEVICE,
553 					     DMA_ATTR_SKIP_CPU_SYNC);
554 		}
555 
556 		/* Build SKB and pass on packet to network stack */
557 		*skb = build_skb(xdp.data,
558 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
559 		if (!*skb)
560 			put_page(page);
561 		else
562 			skb_put(*skb, len);
563 		return false;
564 	case XDP_TX:
565 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
566 		return true;
567 	default:
568 		bpf_warn_invalid_xdp_action(action);
569 	case XDP_ABORTED:
570 		trace_xdp_exception(nic->netdev, prog, action);
571 	case XDP_DROP:
572 		/* Check if it's a recycled page, if not
573 		 * unmap the DMA mapping.
574 		 *
575 		 * Recycled page holds an extra reference.
576 		 */
577 		if (page_ref_count(page) == 1) {
578 			dma_addr &= PAGE_MASK;
579 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
580 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
581 					     DMA_FROM_DEVICE,
582 					     DMA_ATTR_SKIP_CPU_SYNC);
583 		}
584 		put_page(page);
585 		return true;
586 	}
587 	return false;
588 }
589 
590 static void nicvf_snd_pkt_handler(struct net_device *netdev,
591 				  struct cqe_send_t *cqe_tx,
592 				  int budget, int *subdesc_cnt,
593 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
594 {
595 	struct sk_buff *skb = NULL;
596 	struct page *page;
597 	struct nicvf *nic = netdev_priv(netdev);
598 	struct snd_queue *sq;
599 	struct sq_hdr_subdesc *hdr;
600 	struct sq_hdr_subdesc *tso_sqe;
601 
602 	sq = &nic->qs->sq[cqe_tx->sq_idx];
603 
604 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
605 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
606 		return;
607 
608 	/* Check for errors */
609 	if (cqe_tx->send_status)
610 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
611 
612 	/* Is this a XDP designated Tx queue */
613 	if (sq->is_xdp) {
614 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
615 		/* Check if it's recycled page or else unmap DMA mapping */
616 		if (page && (page_ref_count(page) == 1))
617 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
618 						 hdr->subdesc_cnt);
619 
620 		/* Release page reference for recycling */
621 		if (page)
622 			put_page(page);
623 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
624 		*subdesc_cnt += hdr->subdesc_cnt + 1;
625 		return;
626 	}
627 
628 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
629 	if (skb) {
630 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
631 		if (hdr->dont_send) {
632 			/* Get actual TSO descriptors and free them */
633 			tso_sqe =
634 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
635 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
636 						 tso_sqe->subdesc_cnt);
637 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
638 		} else {
639 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
640 						 hdr->subdesc_cnt);
641 		}
642 		*subdesc_cnt += hdr->subdesc_cnt + 1;
643 		prefetch(skb);
644 		(*tx_pkts)++;
645 		*tx_bytes += skb->len;
646 		napi_consume_skb(skb, budget);
647 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
648 	} else {
649 		/* In case of SW TSO on 88xx, only last segment will have
650 		 * a SKB attached, so just free SQEs here.
651 		 */
652 		if (!nic->hw_tso)
653 			*subdesc_cnt += hdr->subdesc_cnt + 1;
654 	}
655 }
656 
657 static inline void nicvf_set_rxhash(struct net_device *netdev,
658 				    struct cqe_rx_t *cqe_rx,
659 				    struct sk_buff *skb)
660 {
661 	u8 hash_type;
662 	u32 hash;
663 
664 	if (!(netdev->features & NETIF_F_RXHASH))
665 		return;
666 
667 	switch (cqe_rx->rss_alg) {
668 	case RSS_ALG_TCP_IP:
669 	case RSS_ALG_UDP_IP:
670 		hash_type = PKT_HASH_TYPE_L4;
671 		hash = cqe_rx->rss_tag;
672 		break;
673 	case RSS_ALG_IP:
674 		hash_type = PKT_HASH_TYPE_L3;
675 		hash = cqe_rx->rss_tag;
676 		break;
677 	default:
678 		hash_type = PKT_HASH_TYPE_NONE;
679 		hash = 0;
680 	}
681 
682 	skb_set_hash(skb, hash, hash_type);
683 }
684 
685 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
686 				  struct napi_struct *napi,
687 				  struct cqe_rx_t *cqe_rx, struct snd_queue *sq)
688 {
689 	struct sk_buff *skb = NULL;
690 	struct nicvf *nic = netdev_priv(netdev);
691 	struct nicvf *snic = nic;
692 	int err = 0;
693 	int rq_idx;
694 
695 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
696 
697 	if (nic->sqs_mode) {
698 		/* Use primary VF's 'nicvf' struct */
699 		nic = nic->pnicvf;
700 		netdev = nic->netdev;
701 	}
702 
703 	/* Check for errors */
704 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
705 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
706 		if (err && !cqe_rx->rb_cnt)
707 			return;
708 	}
709 
710 	/* For XDP, ignore pkts spanning multiple pages */
711 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
712 		/* Packet consumed by XDP */
713 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, &skb))
714 			return;
715 	} else {
716 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
717 					nic->xdp_prog ? true : false);
718 	}
719 
720 	if (!skb)
721 		return;
722 
723 	if (netif_msg_pktdata(nic)) {
724 		netdev_info(nic->netdev, "%s: skb 0x%p, len=%d\n", netdev->name,
725 			    skb, skb->len);
726 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
727 			       skb->data, skb->len, true);
728 	}
729 
730 	/* If error packet, drop it here */
731 	if (err) {
732 		dev_kfree_skb_any(skb);
733 		return;
734 	}
735 
736 	nicvf_set_rxhash(netdev, cqe_rx, skb);
737 
738 	skb_record_rx_queue(skb, rq_idx);
739 	if (netdev->hw_features & NETIF_F_RXCSUM) {
740 		/* HW by default verifies TCP/UDP/SCTP checksums */
741 		skb->ip_summed = CHECKSUM_UNNECESSARY;
742 	} else {
743 		skb_checksum_none_assert(skb);
744 	}
745 
746 	skb->protocol = eth_type_trans(skb, netdev);
747 
748 	/* Check for stripped VLAN */
749 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
750 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
751 				       ntohs((__force __be16)cqe_rx->vlan_tci));
752 
753 	if (napi && (netdev->features & NETIF_F_GRO))
754 		napi_gro_receive(napi, skb);
755 	else
756 		netif_receive_skb(skb);
757 }
758 
759 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
760 				 struct napi_struct *napi, int budget)
761 {
762 	int processed_cqe, work_done = 0, tx_done = 0;
763 	int cqe_count, cqe_head;
764 	int subdesc_cnt = 0;
765 	struct nicvf *nic = netdev_priv(netdev);
766 	struct queue_set *qs = nic->qs;
767 	struct cmp_queue *cq = &qs->cq[cq_idx];
768 	struct cqe_rx_t *cq_desc;
769 	struct netdev_queue *txq;
770 	struct snd_queue *sq = &qs->sq[cq_idx];
771 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
772 
773 	spin_lock_bh(&cq->lock);
774 loop:
775 	processed_cqe = 0;
776 	/* Get no of valid CQ entries to process */
777 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
778 	cqe_count &= CQ_CQE_COUNT;
779 	if (!cqe_count)
780 		goto done;
781 
782 	/* Get head of the valid CQ entries */
783 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
784 	cqe_head &= 0xFFFF;
785 
786 	while (processed_cqe < cqe_count) {
787 		/* Get the CQ descriptor */
788 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
789 		cqe_head++;
790 		cqe_head &= (cq->dmem.q_len - 1);
791 		/* Initiate prefetch for next descriptor */
792 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
793 
794 		if ((work_done >= budget) && napi &&
795 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
796 			break;
797 		}
798 
799 		switch (cq_desc->cqe_type) {
800 		case CQE_TYPE_RX:
801 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq);
802 			work_done++;
803 		break;
804 		case CQE_TYPE_SEND:
805 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
806 					      budget, &subdesc_cnt,
807 					      &tx_pkts, &tx_bytes);
808 			tx_done++;
809 		break;
810 		case CQE_TYPE_INVALID:
811 		case CQE_TYPE_RX_SPLIT:
812 		case CQE_TYPE_RX_TCP:
813 		case CQE_TYPE_SEND_PTP:
814 			/* Ignore for now */
815 		break;
816 		}
817 		processed_cqe++;
818 	}
819 
820 	/* Ring doorbell to inform H/W to reuse processed CQEs */
821 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
822 			      cq_idx, processed_cqe);
823 
824 	if ((work_done < budget) && napi)
825 		goto loop;
826 
827 done:
828 	/* Update SQ's descriptor free count */
829 	if (subdesc_cnt)
830 		nicvf_put_sq_desc(sq, subdesc_cnt);
831 
832 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
833 	/* Handle XDP TX queues */
834 	if (nic->pnicvf->xdp_prog) {
835 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
836 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
837 			goto out;
838 		}
839 		nic = nic->pnicvf;
840 		txq_idx -= nic->pnicvf->xdp_tx_queues;
841 	}
842 
843 	/* Wakeup TXQ if its stopped earlier due to SQ full */
844 	if (tx_done ||
845 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
846 		netdev = nic->pnicvf->netdev;
847 		txq = netdev_get_tx_queue(netdev, txq_idx);
848 		if (tx_pkts)
849 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
850 
851 		/* To read updated queue and carrier status */
852 		smp_mb();
853 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
854 			netif_tx_wake_queue(txq);
855 			nic = nic->pnicvf;
856 			this_cpu_inc(nic->drv_stats->txq_wake);
857 			if (netif_msg_tx_err(nic))
858 				netdev_warn(netdev,
859 					    "%s: Transmit queue wakeup SQ%d\n",
860 					    netdev->name, txq_idx);
861 		}
862 	}
863 
864 out:
865 	spin_unlock_bh(&cq->lock);
866 	return work_done;
867 }
868 
869 static int nicvf_poll(struct napi_struct *napi, int budget)
870 {
871 	u64  cq_head;
872 	int  work_done = 0;
873 	struct net_device *netdev = napi->dev;
874 	struct nicvf *nic = netdev_priv(netdev);
875 	struct nicvf_cq_poll *cq;
876 
877 	cq = container_of(napi, struct nicvf_cq_poll, napi);
878 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
879 
880 	if (work_done < budget) {
881 		/* Slow packet rate, exit polling */
882 		napi_complete_done(napi, work_done);
883 		/* Re-enable interrupts */
884 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
885 					       cq->cq_idx);
886 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
887 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
888 				      cq->cq_idx, cq_head);
889 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
890 	}
891 	return work_done;
892 }
893 
894 /* Qset error interrupt handler
895  *
896  * As of now only CQ errors are handled
897  */
898 static void nicvf_handle_qs_err(unsigned long data)
899 {
900 	struct nicvf *nic = (struct nicvf *)data;
901 	struct queue_set *qs = nic->qs;
902 	int qidx;
903 	u64 status;
904 
905 	netif_tx_disable(nic->netdev);
906 
907 	/* Check if it is CQ err */
908 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
909 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
910 					      qidx);
911 		if (!(status & CQ_ERR_MASK))
912 			continue;
913 		/* Process already queued CQEs and reconfig CQ */
914 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
915 		nicvf_sq_disable(nic, qidx);
916 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
917 		nicvf_cmp_queue_config(nic, qs, qidx, true);
918 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
919 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
920 
921 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
922 	}
923 
924 	netif_tx_start_all_queues(nic->netdev);
925 	/* Re-enable Qset error interrupt */
926 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
927 }
928 
929 static void nicvf_dump_intr_status(struct nicvf *nic)
930 {
931 	if (netif_msg_intr(nic))
932 		netdev_info(nic->netdev, "%s: interrupt status 0x%llx\n",
933 			    nic->netdev->name, nicvf_reg_read(nic, NIC_VF_INT));
934 }
935 
936 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
937 {
938 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
939 	u64 intr;
940 
941 	nicvf_dump_intr_status(nic);
942 
943 	intr = nicvf_reg_read(nic, NIC_VF_INT);
944 	/* Check for spurious interrupt */
945 	if (!(intr & NICVF_INTR_MBOX_MASK))
946 		return IRQ_HANDLED;
947 
948 	nicvf_handle_mbx_intr(nic);
949 
950 	return IRQ_HANDLED;
951 }
952 
953 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
954 {
955 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
956 	struct nicvf *nic = cq_poll->nicvf;
957 	int qidx = cq_poll->cq_idx;
958 
959 	nicvf_dump_intr_status(nic);
960 
961 	/* Disable interrupts */
962 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
963 
964 	/* Schedule NAPI */
965 	napi_schedule_irqoff(&cq_poll->napi);
966 
967 	/* Clear interrupt */
968 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
969 
970 	return IRQ_HANDLED;
971 }
972 
973 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
974 {
975 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
976 	u8 qidx;
977 
978 
979 	nicvf_dump_intr_status(nic);
980 
981 	/* Disable RBDR interrupt and schedule softirq */
982 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
983 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
984 			continue;
985 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
986 		tasklet_hi_schedule(&nic->rbdr_task);
987 		/* Clear interrupt */
988 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
989 	}
990 
991 	return IRQ_HANDLED;
992 }
993 
994 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
995 {
996 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
997 
998 	nicvf_dump_intr_status(nic);
999 
1000 	/* Disable Qset err interrupt and schedule softirq */
1001 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1002 	tasklet_hi_schedule(&nic->qs_err_task);
1003 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1004 
1005 	return IRQ_HANDLED;
1006 }
1007 
1008 static void nicvf_set_irq_affinity(struct nicvf *nic)
1009 {
1010 	int vec, cpu;
1011 
1012 	for (vec = 0; vec < nic->num_vec; vec++) {
1013 		if (!nic->irq_allocated[vec])
1014 			continue;
1015 
1016 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1017 			return;
1018 		 /* CQ interrupts */
1019 		if (vec < NICVF_INTR_ID_SQ)
1020 			/* Leave CPU0 for RBDR and other interrupts */
1021 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1022 		else
1023 			cpu = 0;
1024 
1025 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1026 				nic->affinity_mask[vec]);
1027 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1028 				      nic->affinity_mask[vec]);
1029 	}
1030 }
1031 
1032 static int nicvf_register_interrupts(struct nicvf *nic)
1033 {
1034 	int irq, ret = 0;
1035 
1036 	for_each_cq_irq(irq)
1037 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1038 			nic->pnicvf->netdev->name,
1039 			nicvf_netdev_qidx(nic, irq));
1040 
1041 	for_each_sq_irq(irq)
1042 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1043 			nic->pnicvf->netdev->name,
1044 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1045 
1046 	for_each_rbdr_irq(irq)
1047 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1048 			nic->pnicvf->netdev->name,
1049 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1050 
1051 	/* Register CQ interrupts */
1052 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1053 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1054 				  nicvf_intr_handler,
1055 				  0, nic->irq_name[irq], nic->napi[irq]);
1056 		if (ret)
1057 			goto err;
1058 		nic->irq_allocated[irq] = true;
1059 	}
1060 
1061 	/* Register RBDR interrupt */
1062 	for (irq = NICVF_INTR_ID_RBDR;
1063 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1064 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1065 				  nicvf_rbdr_intr_handler,
1066 				  0, nic->irq_name[irq], nic);
1067 		if (ret)
1068 			goto err;
1069 		nic->irq_allocated[irq] = true;
1070 	}
1071 
1072 	/* Register QS error interrupt */
1073 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1074 		nic->pnicvf->netdev->name,
1075 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1076 	irq = NICVF_INTR_ID_QS_ERR;
1077 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1078 			  nicvf_qs_err_intr_handler,
1079 			  0, nic->irq_name[irq], nic);
1080 	if (ret)
1081 		goto err;
1082 
1083 	nic->irq_allocated[irq] = true;
1084 
1085 	/* Set IRQ affinities */
1086 	nicvf_set_irq_affinity(nic);
1087 
1088 err:
1089 	if (ret)
1090 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1091 
1092 	return ret;
1093 }
1094 
1095 static void nicvf_unregister_interrupts(struct nicvf *nic)
1096 {
1097 	struct pci_dev *pdev = nic->pdev;
1098 	int irq;
1099 
1100 	/* Free registered interrupts */
1101 	for (irq = 0; irq < nic->num_vec; irq++) {
1102 		if (!nic->irq_allocated[irq])
1103 			continue;
1104 
1105 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1106 		free_cpumask_var(nic->affinity_mask[irq]);
1107 
1108 		if (irq < NICVF_INTR_ID_SQ)
1109 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1110 		else
1111 			free_irq(pci_irq_vector(pdev, irq), nic);
1112 
1113 		nic->irq_allocated[irq] = false;
1114 	}
1115 
1116 	/* Disable MSI-X */
1117 	pci_free_irq_vectors(pdev);
1118 	nic->num_vec = 0;
1119 }
1120 
1121 /* Initialize MSIX vectors and register MISC interrupt.
1122  * Send READY message to PF to check if its alive
1123  */
1124 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1125 {
1126 	int ret = 0;
1127 	int irq = NICVF_INTR_ID_MISC;
1128 
1129 	/* Return if mailbox interrupt is already registered */
1130 	if (nic->pdev->msix_enabled)
1131 		return 0;
1132 
1133 	/* Enable MSI-X */
1134 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1135 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1136 				    PCI_IRQ_MSIX);
1137 	if (ret < 0) {
1138 		netdev_err(nic->netdev,
1139 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1140 		return 1;
1141 	}
1142 
1143 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1144 	/* Register Misc interrupt */
1145 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1146 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1147 
1148 	if (ret)
1149 		return ret;
1150 	nic->irq_allocated[irq] = true;
1151 
1152 	/* Enable mailbox interrupt */
1153 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1154 
1155 	/* Check if VF is able to communicate with PF */
1156 	if (!nicvf_check_pf_ready(nic)) {
1157 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1158 		nicvf_unregister_interrupts(nic);
1159 		return 1;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1166 {
1167 	struct nicvf *nic = netdev_priv(netdev);
1168 	int qid = skb_get_queue_mapping(skb);
1169 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1170 	struct nicvf *snic;
1171 	struct snd_queue *sq;
1172 	int tmp;
1173 
1174 	/* Check for minimum packet length */
1175 	if (skb->len <= ETH_HLEN) {
1176 		dev_kfree_skb(skb);
1177 		return NETDEV_TX_OK;
1178 	}
1179 
1180 	/* In XDP case, initial HW tx queues are used for XDP,
1181 	 * but stack's queue mapping starts at '0', so skip the
1182 	 * Tx queues attached to Rx queues for XDP.
1183 	 */
1184 	if (nic->xdp_prog)
1185 		qid += nic->xdp_tx_queues;
1186 
1187 	snic = nic;
1188 	/* Get secondary Qset's SQ structure */
1189 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1190 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1191 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1192 		if (!snic) {
1193 			netdev_warn(nic->netdev,
1194 				    "Secondary Qset#%d's ptr not initialized\n",
1195 				    tmp - 1);
1196 			dev_kfree_skb(skb);
1197 			return NETDEV_TX_OK;
1198 		}
1199 		qid = qid % MAX_SND_QUEUES_PER_QS;
1200 	}
1201 
1202 	sq = &snic->qs->sq[qid];
1203 	if (!netif_tx_queue_stopped(txq) &&
1204 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1205 		netif_tx_stop_queue(txq);
1206 
1207 		/* Barrier, so that stop_queue visible to other cpus */
1208 		smp_mb();
1209 
1210 		/* Check again, incase another cpu freed descriptors */
1211 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1212 			netif_tx_wake_queue(txq);
1213 		} else {
1214 			this_cpu_inc(nic->drv_stats->txq_stop);
1215 			if (netif_msg_tx_err(nic))
1216 				netdev_warn(netdev,
1217 					    "%s: Transmit ring full, stopping SQ%d\n",
1218 					    netdev->name, qid);
1219 		}
1220 		return NETDEV_TX_BUSY;
1221 	}
1222 
1223 	return NETDEV_TX_OK;
1224 }
1225 
1226 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1227 {
1228 	struct nicvf_cq_poll *cq_poll;
1229 	int qidx;
1230 
1231 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1232 		cq_poll = nic->napi[qidx];
1233 		if (!cq_poll)
1234 			continue;
1235 		nic->napi[qidx] = NULL;
1236 		kfree(cq_poll);
1237 	}
1238 }
1239 
1240 int nicvf_stop(struct net_device *netdev)
1241 {
1242 	int irq, qidx;
1243 	struct nicvf *nic = netdev_priv(netdev);
1244 	struct queue_set *qs = nic->qs;
1245 	struct nicvf_cq_poll *cq_poll = NULL;
1246 	union nic_mbx mbx = {};
1247 
1248 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1249 	nicvf_send_msg_to_pf(nic, &mbx);
1250 
1251 	netif_carrier_off(netdev);
1252 	netif_tx_stop_all_queues(nic->netdev);
1253 	nic->link_up = false;
1254 
1255 	/* Teardown secondary qsets first */
1256 	if (!nic->sqs_mode) {
1257 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1258 			if (!nic->snicvf[qidx])
1259 				continue;
1260 			nicvf_stop(nic->snicvf[qidx]->netdev);
1261 			nic->snicvf[qidx] = NULL;
1262 		}
1263 	}
1264 
1265 	/* Disable RBDR & QS error interrupts */
1266 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1267 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1268 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1269 	}
1270 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1271 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1272 
1273 	/* Wait for pending IRQ handlers to finish */
1274 	for (irq = 0; irq < nic->num_vec; irq++)
1275 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1276 
1277 	tasklet_kill(&nic->rbdr_task);
1278 	tasklet_kill(&nic->qs_err_task);
1279 	if (nic->rb_work_scheduled)
1280 		cancel_delayed_work_sync(&nic->rbdr_work);
1281 
1282 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1283 		cq_poll = nic->napi[qidx];
1284 		if (!cq_poll)
1285 			continue;
1286 		napi_synchronize(&cq_poll->napi);
1287 		/* CQ intr is enabled while napi_complete,
1288 		 * so disable it now
1289 		 */
1290 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1291 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1292 		napi_disable(&cq_poll->napi);
1293 		netif_napi_del(&cq_poll->napi);
1294 	}
1295 
1296 	netif_tx_disable(netdev);
1297 
1298 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1299 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1300 
1301 	/* Free resources */
1302 	nicvf_config_data_transfer(nic, false);
1303 
1304 	/* Disable HW Qset */
1305 	nicvf_qset_config(nic, false);
1306 
1307 	/* disable mailbox interrupt */
1308 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1309 
1310 	nicvf_unregister_interrupts(nic);
1311 
1312 	nicvf_free_cq_poll(nic);
1313 
1314 	/* Clear multiqset info */
1315 	nic->pnicvf = nic;
1316 
1317 	return 0;
1318 }
1319 
1320 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1321 {
1322 	union nic_mbx mbx = {};
1323 
1324 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1325 	mbx.frs.max_frs = mtu;
1326 	mbx.frs.vf_id = nic->vf_id;
1327 
1328 	return nicvf_send_msg_to_pf(nic, &mbx);
1329 }
1330 
1331 int nicvf_open(struct net_device *netdev)
1332 {
1333 	int cpu, err, qidx;
1334 	struct nicvf *nic = netdev_priv(netdev);
1335 	struct queue_set *qs = nic->qs;
1336 	struct nicvf_cq_poll *cq_poll = NULL;
1337 	union nic_mbx mbx = {};
1338 
1339 	netif_carrier_off(netdev);
1340 
1341 	err = nicvf_register_misc_interrupt(nic);
1342 	if (err)
1343 		return err;
1344 
1345 	/* Register NAPI handler for processing CQEs */
1346 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1347 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1348 		if (!cq_poll) {
1349 			err = -ENOMEM;
1350 			goto napi_del;
1351 		}
1352 		cq_poll->cq_idx = qidx;
1353 		cq_poll->nicvf = nic;
1354 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1355 			       NAPI_POLL_WEIGHT);
1356 		napi_enable(&cq_poll->napi);
1357 		nic->napi[qidx] = cq_poll;
1358 	}
1359 
1360 	/* Check if we got MAC address from PF or else generate a radom MAC */
1361 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1362 		eth_hw_addr_random(netdev);
1363 		nicvf_hw_set_mac_addr(nic, netdev);
1364 	}
1365 
1366 	if (nic->set_mac_pending) {
1367 		nic->set_mac_pending = false;
1368 		nicvf_hw_set_mac_addr(nic, netdev);
1369 	}
1370 
1371 	/* Init tasklet for handling Qset err interrupt */
1372 	tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1373 		     (unsigned long)nic);
1374 
1375 	/* Init RBDR tasklet which will refill RBDR */
1376 	tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1377 		     (unsigned long)nic);
1378 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1379 
1380 	/* Configure CPI alorithm */
1381 	nic->cpi_alg = cpi_alg;
1382 	if (!nic->sqs_mode)
1383 		nicvf_config_cpi(nic);
1384 
1385 	nicvf_request_sqs(nic);
1386 	if (nic->sqs_mode)
1387 		nicvf_get_primary_vf_struct(nic);
1388 
1389 	/* Configure receive side scaling and MTU */
1390 	if (!nic->sqs_mode) {
1391 		nicvf_rss_init(nic);
1392 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1393 		if (err)
1394 			goto cleanup;
1395 
1396 		/* Clear percpu stats */
1397 		for_each_possible_cpu(cpu)
1398 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1399 			       sizeof(struct nicvf_drv_stats));
1400 	}
1401 
1402 	err = nicvf_register_interrupts(nic);
1403 	if (err)
1404 		goto cleanup;
1405 
1406 	/* Initialize the queues */
1407 	err = nicvf_init_resources(nic);
1408 	if (err)
1409 		goto cleanup;
1410 
1411 	/* Make sure queue initialization is written */
1412 	wmb();
1413 
1414 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1415 	/* Enable Qset err interrupt */
1416 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1417 
1418 	/* Enable completion queue interrupt */
1419 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1420 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1421 
1422 	/* Enable RBDR threshold interrupt */
1423 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1424 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1425 
1426 	/* Send VF config done msg to PF */
1427 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
1428 	nicvf_write_to_mbx(nic, &mbx);
1429 
1430 	return 0;
1431 cleanup:
1432 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1433 	nicvf_unregister_interrupts(nic);
1434 	tasklet_kill(&nic->qs_err_task);
1435 	tasklet_kill(&nic->rbdr_task);
1436 napi_del:
1437 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1438 		cq_poll = nic->napi[qidx];
1439 		if (!cq_poll)
1440 			continue;
1441 		napi_disable(&cq_poll->napi);
1442 		netif_napi_del(&cq_poll->napi);
1443 	}
1444 	nicvf_free_cq_poll(nic);
1445 	return err;
1446 }
1447 
1448 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1449 {
1450 	struct nicvf *nic = netdev_priv(netdev);
1451 	int orig_mtu = netdev->mtu;
1452 
1453 	netdev->mtu = new_mtu;
1454 
1455 	if (!netif_running(netdev))
1456 		return 0;
1457 
1458 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1459 		netdev->mtu = orig_mtu;
1460 		return -EINVAL;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1467 {
1468 	struct sockaddr *addr = p;
1469 	struct nicvf *nic = netdev_priv(netdev);
1470 
1471 	if (!is_valid_ether_addr(addr->sa_data))
1472 		return -EADDRNOTAVAIL;
1473 
1474 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1475 
1476 	if (nic->pdev->msix_enabled) {
1477 		if (nicvf_hw_set_mac_addr(nic, netdev))
1478 			return -EBUSY;
1479 	} else {
1480 		nic->set_mac_pending = true;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 void nicvf_update_lmac_stats(struct nicvf *nic)
1487 {
1488 	int stat = 0;
1489 	union nic_mbx mbx = {};
1490 
1491 	if (!netif_running(nic->netdev))
1492 		return;
1493 
1494 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1495 	mbx.bgx_stats.vf_id = nic->vf_id;
1496 	/* Rx stats */
1497 	mbx.bgx_stats.rx = 1;
1498 	while (stat < BGX_RX_STATS_COUNT) {
1499 		mbx.bgx_stats.idx = stat;
1500 		if (nicvf_send_msg_to_pf(nic, &mbx))
1501 			return;
1502 		stat++;
1503 	}
1504 
1505 	stat = 0;
1506 
1507 	/* Tx stats */
1508 	mbx.bgx_stats.rx = 0;
1509 	while (stat < BGX_TX_STATS_COUNT) {
1510 		mbx.bgx_stats.idx = stat;
1511 		if (nicvf_send_msg_to_pf(nic, &mbx))
1512 			return;
1513 		stat++;
1514 	}
1515 }
1516 
1517 void nicvf_update_stats(struct nicvf *nic)
1518 {
1519 	int qidx, cpu;
1520 	u64 tmp_stats = 0;
1521 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1522 	struct nicvf_drv_stats *drv_stats;
1523 	struct queue_set *qs = nic->qs;
1524 
1525 #define GET_RX_STATS(reg) \
1526 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1527 #define GET_TX_STATS(reg) \
1528 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1529 
1530 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1531 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1532 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1533 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1534 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1535 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1536 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1537 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1538 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1539 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1540 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1541 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1542 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1543 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1544 
1545 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1546 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1547 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1548 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1549 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1550 
1551 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1552 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1553 	 * pointed by dummy SQE and results in tx_drops counter being
1554 	 * incremented. Subtracting it from tx_tso counter will give
1555 	 * exact tx_drops counter.
1556 	 */
1557 	if (nic->t88 && nic->hw_tso) {
1558 		for_each_possible_cpu(cpu) {
1559 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1560 			tmp_stats += drv_stats->tx_tso;
1561 		}
1562 		stats->tx_drops = tmp_stats - stats->tx_drops;
1563 	}
1564 	stats->tx_frames = stats->tx_ucast_frames +
1565 			   stats->tx_bcast_frames +
1566 			   stats->tx_mcast_frames;
1567 	stats->rx_frames = stats->rx_ucast_frames +
1568 			   stats->rx_bcast_frames +
1569 			   stats->rx_mcast_frames;
1570 	stats->rx_drops = stats->rx_drop_red +
1571 			  stats->rx_drop_overrun;
1572 
1573 	/* Update RQ and SQ stats */
1574 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1575 		nicvf_update_rq_stats(nic, qidx);
1576 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1577 		nicvf_update_sq_stats(nic, qidx);
1578 }
1579 
1580 static void nicvf_get_stats64(struct net_device *netdev,
1581 			      struct rtnl_link_stats64 *stats)
1582 {
1583 	struct nicvf *nic = netdev_priv(netdev);
1584 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1585 
1586 	nicvf_update_stats(nic);
1587 
1588 	stats->rx_bytes = hw_stats->rx_bytes;
1589 	stats->rx_packets = hw_stats->rx_frames;
1590 	stats->rx_dropped = hw_stats->rx_drops;
1591 	stats->multicast = hw_stats->rx_mcast_frames;
1592 
1593 	stats->tx_bytes = hw_stats->tx_bytes;
1594 	stats->tx_packets = hw_stats->tx_frames;
1595 	stats->tx_dropped = hw_stats->tx_drops;
1596 
1597 }
1598 
1599 static void nicvf_tx_timeout(struct net_device *dev)
1600 {
1601 	struct nicvf *nic = netdev_priv(dev);
1602 
1603 	if (netif_msg_tx_err(nic))
1604 		netdev_warn(dev, "%s: Transmit timed out, resetting\n",
1605 			    dev->name);
1606 
1607 	this_cpu_inc(nic->drv_stats->tx_timeout);
1608 	schedule_work(&nic->reset_task);
1609 }
1610 
1611 static void nicvf_reset_task(struct work_struct *work)
1612 {
1613 	struct nicvf *nic;
1614 
1615 	nic = container_of(work, struct nicvf, reset_task);
1616 
1617 	if (!netif_running(nic->netdev))
1618 		return;
1619 
1620 	nicvf_stop(nic->netdev);
1621 	nicvf_open(nic->netdev);
1622 	netif_trans_update(nic->netdev);
1623 }
1624 
1625 static int nicvf_config_loopback(struct nicvf *nic,
1626 				 netdev_features_t features)
1627 {
1628 	union nic_mbx mbx = {};
1629 
1630 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1631 	mbx.lbk.vf_id = nic->vf_id;
1632 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1633 
1634 	return nicvf_send_msg_to_pf(nic, &mbx);
1635 }
1636 
1637 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1638 					    netdev_features_t features)
1639 {
1640 	struct nicvf *nic = netdev_priv(netdev);
1641 
1642 	if ((features & NETIF_F_LOOPBACK) &&
1643 	    netif_running(netdev) && !nic->loopback_supported)
1644 		features &= ~NETIF_F_LOOPBACK;
1645 
1646 	return features;
1647 }
1648 
1649 static int nicvf_set_features(struct net_device *netdev,
1650 			      netdev_features_t features)
1651 {
1652 	struct nicvf *nic = netdev_priv(netdev);
1653 	netdev_features_t changed = features ^ netdev->features;
1654 
1655 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1656 		nicvf_config_vlan_stripping(nic, features);
1657 
1658 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1659 		return nicvf_config_loopback(nic, features);
1660 
1661 	return 0;
1662 }
1663 
1664 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1665 {
1666 	u8 cq_count, txq_count;
1667 
1668 	/* Set XDP Tx queue count same as Rx queue count */
1669 	if (!bpf_attached)
1670 		nic->xdp_tx_queues = 0;
1671 	else
1672 		nic->xdp_tx_queues = nic->rx_queues;
1673 
1674 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1675 	 * needs to be allocated, check how many.
1676 	 */
1677 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1678 	cq_count = max(nic->rx_queues, txq_count);
1679 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1680 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1681 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1682 	} else {
1683 		nic->sqs_count = 0;
1684 	}
1685 
1686 	/* Set primary Qset's resources */
1687 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1688 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1689 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1690 
1691 	/* Update stack */
1692 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1693 }
1694 
1695 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1696 {
1697 	struct net_device *dev = nic->netdev;
1698 	bool if_up = netif_running(nic->netdev);
1699 	struct bpf_prog *old_prog;
1700 	bool bpf_attached = false;
1701 
1702 	/* For now just support only the usual MTU sized frames */
1703 	if (prog && (dev->mtu > 1500)) {
1704 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1705 			    dev->mtu);
1706 		return -EOPNOTSUPP;
1707 	}
1708 
1709 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1710 	 * XDP Tx queues and more Tx queues are allocated for
1711 	 * network stack to send pkts out.
1712 	 *
1713 	 * No of Tx queues are either same as Rx queues or whatever
1714 	 * is left in max no of queues possible.
1715 	 */
1716 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1717 		netdev_warn(dev,
1718 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1719 			    nic->max_queues);
1720 		return -ENOMEM;
1721 	}
1722 
1723 	if (if_up)
1724 		nicvf_stop(nic->netdev);
1725 
1726 	old_prog = xchg(&nic->xdp_prog, prog);
1727 	/* Detach old prog, if any */
1728 	if (old_prog)
1729 		bpf_prog_put(old_prog);
1730 
1731 	if (nic->xdp_prog) {
1732 		/* Attach BPF program */
1733 		nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1734 		if (!IS_ERR(nic->xdp_prog))
1735 			bpf_attached = true;
1736 	}
1737 
1738 	/* Calculate Tx queues needed for XDP and network stack */
1739 	nicvf_set_xdp_queues(nic, bpf_attached);
1740 
1741 	if (if_up) {
1742 		/* Reinitialize interface, clean slate */
1743 		nicvf_open(nic->netdev);
1744 		netif_trans_update(nic->netdev);
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 static int nicvf_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
1751 {
1752 	struct nicvf *nic = netdev_priv(netdev);
1753 
1754 	/* To avoid checks while retrieving buffer address from CQE_RX,
1755 	 * do not support XDP for T88 pass1.x silicons which are anyway
1756 	 * not in use widely.
1757 	 */
1758 	if (pass1_silicon(nic->pdev))
1759 		return -EOPNOTSUPP;
1760 
1761 	switch (xdp->command) {
1762 	case XDP_SETUP_PROG:
1763 		return nicvf_xdp_setup(nic, xdp->prog);
1764 	case XDP_QUERY_PROG:
1765 		xdp->prog_attached = !!nic->xdp_prog;
1766 		return 0;
1767 	default:
1768 		return -EINVAL;
1769 	}
1770 }
1771 
1772 static const struct net_device_ops nicvf_netdev_ops = {
1773 	.ndo_open		= nicvf_open,
1774 	.ndo_stop		= nicvf_stop,
1775 	.ndo_start_xmit		= nicvf_xmit,
1776 	.ndo_change_mtu		= nicvf_change_mtu,
1777 	.ndo_set_mac_address	= nicvf_set_mac_address,
1778 	.ndo_get_stats64	= nicvf_get_stats64,
1779 	.ndo_tx_timeout         = nicvf_tx_timeout,
1780 	.ndo_fix_features       = nicvf_fix_features,
1781 	.ndo_set_features       = nicvf_set_features,
1782 	.ndo_xdp		= nicvf_xdp,
1783 };
1784 
1785 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1786 {
1787 	struct device *dev = &pdev->dev;
1788 	struct net_device *netdev;
1789 	struct nicvf *nic;
1790 	int    err, qcount;
1791 	u16    sdevid;
1792 
1793 	err = pci_enable_device(pdev);
1794 	if (err) {
1795 		dev_err(dev, "Failed to enable PCI device\n");
1796 		return err;
1797 	}
1798 
1799 	err = pci_request_regions(pdev, DRV_NAME);
1800 	if (err) {
1801 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
1802 		goto err_disable_device;
1803 	}
1804 
1805 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1806 	if (err) {
1807 		dev_err(dev, "Unable to get usable DMA configuration\n");
1808 		goto err_release_regions;
1809 	}
1810 
1811 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1812 	if (err) {
1813 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
1814 		goto err_release_regions;
1815 	}
1816 
1817 	qcount = netif_get_num_default_rss_queues();
1818 
1819 	/* Restrict multiqset support only for host bound VFs */
1820 	if (pdev->is_virtfn) {
1821 		/* Set max number of queues per VF */
1822 		qcount = min_t(int, num_online_cpus(),
1823 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
1824 	}
1825 
1826 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
1827 	if (!netdev) {
1828 		err = -ENOMEM;
1829 		goto err_release_regions;
1830 	}
1831 
1832 	pci_set_drvdata(pdev, netdev);
1833 
1834 	SET_NETDEV_DEV(netdev, &pdev->dev);
1835 
1836 	nic = netdev_priv(netdev);
1837 	nic->netdev = netdev;
1838 	nic->pdev = pdev;
1839 	nic->pnicvf = nic;
1840 	nic->max_queues = qcount;
1841 
1842 	/* MAP VF's configuration registers */
1843 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
1844 	if (!nic->reg_base) {
1845 		dev_err(dev, "Cannot map config register space, aborting\n");
1846 		err = -ENOMEM;
1847 		goto err_free_netdev;
1848 	}
1849 
1850 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
1851 	if (!nic->drv_stats) {
1852 		err = -ENOMEM;
1853 		goto err_free_netdev;
1854 	}
1855 
1856 	err = nicvf_set_qset_resources(nic);
1857 	if (err)
1858 		goto err_free_netdev;
1859 
1860 	/* Check if PF is alive and get MAC address for this VF */
1861 	err = nicvf_register_misc_interrupt(nic);
1862 	if (err)
1863 		goto err_free_netdev;
1864 
1865 	nicvf_send_vf_struct(nic);
1866 
1867 	if (!pass1_silicon(nic->pdev))
1868 		nic->hw_tso = true;
1869 
1870 	/* Get iommu domain for iova to physical addr conversion */
1871 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
1872 
1873 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
1874 	if (sdevid == 0xA134)
1875 		nic->t88 = true;
1876 
1877 	/* Check if this VF is in QS only mode */
1878 	if (nic->sqs_mode)
1879 		return 0;
1880 
1881 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
1882 	if (err)
1883 		goto err_unregister_interrupts;
1884 
1885 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
1886 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
1887 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1888 			       NETIF_F_HW_VLAN_CTAG_RX);
1889 
1890 	netdev->hw_features |= NETIF_F_RXHASH;
1891 
1892 	netdev->features |= netdev->hw_features;
1893 	netdev->hw_features |= NETIF_F_LOOPBACK;
1894 
1895 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1896 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
1897 
1898 	netdev->netdev_ops = &nicvf_netdev_ops;
1899 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
1900 
1901 	/* MTU range: 64 - 9200 */
1902 	netdev->min_mtu = NIC_HW_MIN_FRS;
1903 	netdev->max_mtu = NIC_HW_MAX_FRS;
1904 
1905 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
1906 
1907 	err = register_netdev(netdev);
1908 	if (err) {
1909 		dev_err(dev, "Failed to register netdevice\n");
1910 		goto err_unregister_interrupts;
1911 	}
1912 
1913 	nic->msg_enable = debug;
1914 
1915 	nicvf_set_ethtool_ops(netdev);
1916 
1917 	return 0;
1918 
1919 err_unregister_interrupts:
1920 	nicvf_unregister_interrupts(nic);
1921 err_free_netdev:
1922 	pci_set_drvdata(pdev, NULL);
1923 	if (nic->drv_stats)
1924 		free_percpu(nic->drv_stats);
1925 	free_netdev(netdev);
1926 err_release_regions:
1927 	pci_release_regions(pdev);
1928 err_disable_device:
1929 	pci_disable_device(pdev);
1930 	return err;
1931 }
1932 
1933 static void nicvf_remove(struct pci_dev *pdev)
1934 {
1935 	struct net_device *netdev = pci_get_drvdata(pdev);
1936 	struct nicvf *nic;
1937 	struct net_device *pnetdev;
1938 
1939 	if (!netdev)
1940 		return;
1941 
1942 	nic = netdev_priv(netdev);
1943 	pnetdev = nic->pnicvf->netdev;
1944 
1945 	/* Check if this Qset is assigned to different VF.
1946 	 * If yes, clean primary and all secondary Qsets.
1947 	 */
1948 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
1949 		unregister_netdev(pnetdev);
1950 	nicvf_unregister_interrupts(nic);
1951 	pci_set_drvdata(pdev, NULL);
1952 	if (nic->drv_stats)
1953 		free_percpu(nic->drv_stats);
1954 	free_netdev(netdev);
1955 	pci_release_regions(pdev);
1956 	pci_disable_device(pdev);
1957 }
1958 
1959 static void nicvf_shutdown(struct pci_dev *pdev)
1960 {
1961 	nicvf_remove(pdev);
1962 }
1963 
1964 static struct pci_driver nicvf_driver = {
1965 	.name = DRV_NAME,
1966 	.id_table = nicvf_id_table,
1967 	.probe = nicvf_probe,
1968 	.remove = nicvf_remove,
1969 	.shutdown = nicvf_shutdown,
1970 };
1971 
1972 static int __init nicvf_init_module(void)
1973 {
1974 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
1975 
1976 	return pci_register_driver(&nicvf_driver);
1977 }
1978 
1979 static void __exit nicvf_cleanup_module(void)
1980 {
1981 	pci_unregister_driver(&nicvf_driver);
1982 }
1983 
1984 module_init(nicvf_init_module);
1985 module_exit(nicvf_cleanup_module);
1986