1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Cavium, Inc. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/interrupt.h> 8 #include <linux/pci.h> 9 #include <linux/netdevice.h> 10 #include <linux/if_vlan.h> 11 #include <linux/etherdevice.h> 12 #include <linux/ethtool.h> 13 #include <linux/log2.h> 14 #include <linux/prefetch.h> 15 #include <linux/irq.h> 16 #include <linux/iommu.h> 17 #include <linux/bpf.h> 18 #include <linux/bpf_trace.h> 19 #include <linux/filter.h> 20 #include <linux/net_tstamp.h> 21 #include <linux/workqueue.h> 22 23 #include "nic_reg.h" 24 #include "nic.h" 25 #include "nicvf_queues.h" 26 #include "thunder_bgx.h" 27 #include "../common/cavium_ptp.h" 28 29 #define DRV_NAME "nicvf" 30 #define DRV_VERSION "1.0" 31 32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs 33 * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed 34 * this value, keeping headroom for the 14 byte Ethernet header and two 35 * VLAN tags (for QinQ) 36 */ 37 #define MAX_XDP_MTU (1530 - ETH_HLEN - VLAN_HLEN * 2) 38 39 /* Supported devices */ 40 static const struct pci_device_id nicvf_id_table[] = { 41 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 42 PCI_DEVICE_ID_THUNDER_NIC_VF, 43 PCI_VENDOR_ID_CAVIUM, 44 PCI_SUBSYS_DEVID_88XX_NIC_VF) }, 45 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 46 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF, 47 PCI_VENDOR_ID_CAVIUM, 48 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) }, 49 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 50 PCI_DEVICE_ID_THUNDER_NIC_VF, 51 PCI_VENDOR_ID_CAVIUM, 52 PCI_SUBSYS_DEVID_81XX_NIC_VF) }, 53 { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, 54 PCI_DEVICE_ID_THUNDER_NIC_VF, 55 PCI_VENDOR_ID_CAVIUM, 56 PCI_SUBSYS_DEVID_83XX_NIC_VF) }, 57 { 0, } /* end of table */ 58 }; 59 60 MODULE_AUTHOR("Sunil Goutham"); 61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver"); 62 MODULE_LICENSE("GPL v2"); 63 MODULE_VERSION(DRV_VERSION); 64 MODULE_DEVICE_TABLE(pci, nicvf_id_table); 65 66 static int debug = 0x00; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "Debug message level bitmap"); 69 70 static int cpi_alg = CPI_ALG_NONE; 71 module_param(cpi_alg, int, 0444); 72 MODULE_PARM_DESC(cpi_alg, 73 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)"); 74 75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx) 76 { 77 if (nic->sqs_mode) 78 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS); 79 else 80 return qidx; 81 } 82 83 /* The Cavium ThunderX network controller can *only* be found in SoCs 84 * containing the ThunderX ARM64 CPU implementation. All accesses to the device 85 * registers on this platform are implicitly strongly ordered with respect 86 * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use 87 * with no memory barriers in this driver. The readq()/writeq() functions add 88 * explicit ordering operation which in this case are redundant, and only 89 * add overhead. 90 */ 91 92 /* Register read/write APIs */ 93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val) 94 { 95 writeq_relaxed(val, nic->reg_base + offset); 96 } 97 98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset) 99 { 100 return readq_relaxed(nic->reg_base + offset); 101 } 102 103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset, 104 u64 qidx, u64 val) 105 { 106 void __iomem *addr = nic->reg_base + offset; 107 108 writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT)); 109 } 110 111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx) 112 { 113 void __iomem *addr = nic->reg_base + offset; 114 115 return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT)); 116 } 117 118 /* VF -> PF mailbox communication */ 119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx) 120 { 121 u64 *msg = (u64 *)mbx; 122 123 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]); 124 nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]); 125 } 126 127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx) 128 { 129 unsigned long timeout; 130 int ret = 0; 131 132 mutex_lock(&nic->rx_mode_mtx); 133 134 nic->pf_acked = false; 135 nic->pf_nacked = false; 136 137 nicvf_write_to_mbx(nic, mbx); 138 139 timeout = jiffies + msecs_to_jiffies(NIC_MBOX_MSG_TIMEOUT); 140 /* Wait for previous message to be acked, timeout 2sec */ 141 while (!nic->pf_acked) { 142 if (nic->pf_nacked) { 143 netdev_err(nic->netdev, 144 "PF NACK to mbox msg 0x%02x from VF%d\n", 145 (mbx->msg.msg & 0xFF), nic->vf_id); 146 ret = -EINVAL; 147 break; 148 } 149 usleep_range(8000, 10000); 150 if (nic->pf_acked) 151 break; 152 if (time_after(jiffies, timeout)) { 153 netdev_err(nic->netdev, 154 "PF didn't ACK to mbox msg 0x%02x from VF%d\n", 155 (mbx->msg.msg & 0xFF), nic->vf_id); 156 ret = -EBUSY; 157 break; 158 } 159 } 160 mutex_unlock(&nic->rx_mode_mtx); 161 return ret; 162 } 163 164 /* Checks if VF is able to comminicate with PF 165 * and also gets the VNIC number this VF is associated to. 166 */ 167 static int nicvf_check_pf_ready(struct nicvf *nic) 168 { 169 union nic_mbx mbx = {}; 170 171 mbx.msg.msg = NIC_MBOX_MSG_READY; 172 if (nicvf_send_msg_to_pf(nic, &mbx)) { 173 netdev_err(nic->netdev, 174 "PF didn't respond to READY msg\n"); 175 return 0; 176 } 177 178 return 1; 179 } 180 181 static void nicvf_send_cfg_done(struct nicvf *nic) 182 { 183 union nic_mbx mbx = {}; 184 185 mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE; 186 if (nicvf_send_msg_to_pf(nic, &mbx)) { 187 netdev_err(nic->netdev, 188 "PF didn't respond to CFG DONE msg\n"); 189 } 190 } 191 192 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx) 193 { 194 if (bgx->rx) 195 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats; 196 else 197 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats; 198 } 199 200 static void nicvf_handle_mbx_intr(struct nicvf *nic) 201 { 202 union nic_mbx mbx = {}; 203 u64 *mbx_data; 204 u64 mbx_addr; 205 int i; 206 207 mbx_addr = NIC_VF_PF_MAILBOX_0_1; 208 mbx_data = (u64 *)&mbx; 209 210 for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) { 211 *mbx_data = nicvf_reg_read(nic, mbx_addr); 212 mbx_data++; 213 mbx_addr += sizeof(u64); 214 } 215 216 netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg); 217 switch (mbx.msg.msg) { 218 case NIC_MBOX_MSG_READY: 219 nic->pf_acked = true; 220 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F; 221 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F; 222 nic->node = mbx.nic_cfg.node_id; 223 if (!nic->set_mac_pending) 224 eth_hw_addr_set(nic->netdev, mbx.nic_cfg.mac_addr); 225 nic->sqs_mode = mbx.nic_cfg.sqs_mode; 226 nic->loopback_supported = mbx.nic_cfg.loopback_supported; 227 nic->link_up = false; 228 nic->duplex = 0; 229 nic->speed = 0; 230 break; 231 case NIC_MBOX_MSG_ACK: 232 nic->pf_acked = true; 233 break; 234 case NIC_MBOX_MSG_NACK: 235 nic->pf_nacked = true; 236 break; 237 case NIC_MBOX_MSG_RSS_SIZE: 238 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size; 239 nic->pf_acked = true; 240 break; 241 case NIC_MBOX_MSG_BGX_STATS: 242 nicvf_read_bgx_stats(nic, &mbx.bgx_stats); 243 nic->pf_acked = true; 244 break; 245 case NIC_MBOX_MSG_BGX_LINK_CHANGE: 246 nic->pf_acked = true; 247 if (nic->link_up != mbx.link_status.link_up) { 248 nic->link_up = mbx.link_status.link_up; 249 nic->duplex = mbx.link_status.duplex; 250 nic->speed = mbx.link_status.speed; 251 nic->mac_type = mbx.link_status.mac_type; 252 if (nic->link_up) { 253 netdev_info(nic->netdev, 254 "Link is Up %d Mbps %s duplex\n", 255 nic->speed, 256 nic->duplex == DUPLEX_FULL ? 257 "Full" : "Half"); 258 netif_carrier_on(nic->netdev); 259 netif_tx_start_all_queues(nic->netdev); 260 } else { 261 netdev_info(nic->netdev, "Link is Down\n"); 262 netif_carrier_off(nic->netdev); 263 netif_tx_stop_all_queues(nic->netdev); 264 } 265 } 266 break; 267 case NIC_MBOX_MSG_ALLOC_SQS: 268 nic->sqs_count = mbx.sqs_alloc.qs_count; 269 nic->pf_acked = true; 270 break; 271 case NIC_MBOX_MSG_SNICVF_PTR: 272 /* Primary VF: make note of secondary VF's pointer 273 * to be used while packet transmission. 274 */ 275 nic->snicvf[mbx.nicvf.sqs_id] = 276 (struct nicvf *)mbx.nicvf.nicvf; 277 nic->pf_acked = true; 278 break; 279 case NIC_MBOX_MSG_PNICVF_PTR: 280 /* Secondary VF/Qset: make note of primary VF's pointer 281 * to be used while packet reception, to handover packet 282 * to primary VF's netdev. 283 */ 284 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf; 285 nic->pf_acked = true; 286 break; 287 case NIC_MBOX_MSG_PFC: 288 nic->pfc.autoneg = mbx.pfc.autoneg; 289 nic->pfc.fc_rx = mbx.pfc.fc_rx; 290 nic->pfc.fc_tx = mbx.pfc.fc_tx; 291 nic->pf_acked = true; 292 break; 293 default: 294 netdev_err(nic->netdev, 295 "Invalid message from PF, msg 0x%x\n", mbx.msg.msg); 296 break; 297 } 298 nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0); 299 } 300 301 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev) 302 { 303 union nic_mbx mbx = {}; 304 305 mbx.mac.msg = NIC_MBOX_MSG_SET_MAC; 306 mbx.mac.vf_id = nic->vf_id; 307 ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr); 308 309 return nicvf_send_msg_to_pf(nic, &mbx); 310 } 311 312 static void nicvf_config_cpi(struct nicvf *nic) 313 { 314 union nic_mbx mbx = {}; 315 316 mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG; 317 mbx.cpi_cfg.vf_id = nic->vf_id; 318 mbx.cpi_cfg.cpi_alg = nic->cpi_alg; 319 mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt; 320 321 nicvf_send_msg_to_pf(nic, &mbx); 322 } 323 324 static void nicvf_get_rss_size(struct nicvf *nic) 325 { 326 union nic_mbx mbx = {}; 327 328 mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE; 329 mbx.rss_size.vf_id = nic->vf_id; 330 nicvf_send_msg_to_pf(nic, &mbx); 331 } 332 333 void nicvf_config_rss(struct nicvf *nic) 334 { 335 union nic_mbx mbx = {}; 336 struct nicvf_rss_info *rss = &nic->rss_info; 337 int ind_tbl_len = rss->rss_size; 338 int i, nextq = 0; 339 340 mbx.rss_cfg.vf_id = nic->vf_id; 341 mbx.rss_cfg.hash_bits = rss->hash_bits; 342 while (ind_tbl_len) { 343 mbx.rss_cfg.tbl_offset = nextq; 344 mbx.rss_cfg.tbl_len = min(ind_tbl_len, 345 RSS_IND_TBL_LEN_PER_MBX_MSG); 346 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ? 347 NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG; 348 349 for (i = 0; i < mbx.rss_cfg.tbl_len; i++) 350 mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++]; 351 352 nicvf_send_msg_to_pf(nic, &mbx); 353 354 ind_tbl_len -= mbx.rss_cfg.tbl_len; 355 } 356 } 357 358 void nicvf_set_rss_key(struct nicvf *nic) 359 { 360 struct nicvf_rss_info *rss = &nic->rss_info; 361 u64 key_addr = NIC_VNIC_RSS_KEY_0_4; 362 int idx; 363 364 for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) { 365 nicvf_reg_write(nic, key_addr, rss->key[idx]); 366 key_addr += sizeof(u64); 367 } 368 } 369 370 static int nicvf_rss_init(struct nicvf *nic) 371 { 372 struct nicvf_rss_info *rss = &nic->rss_info; 373 int idx; 374 375 nicvf_get_rss_size(nic); 376 377 if (cpi_alg != CPI_ALG_NONE) { 378 rss->enable = false; 379 rss->hash_bits = 0; 380 return 0; 381 } 382 383 rss->enable = true; 384 385 netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64)); 386 nicvf_set_rss_key(nic); 387 388 rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA; 389 nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg); 390 391 rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size)); 392 393 for (idx = 0; idx < rss->rss_size; idx++) 394 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx, 395 nic->rx_queues); 396 nicvf_config_rss(nic); 397 return 1; 398 } 399 400 /* Request PF to allocate additional Qsets */ 401 static void nicvf_request_sqs(struct nicvf *nic) 402 { 403 union nic_mbx mbx = {}; 404 int sqs; 405 int sqs_count = nic->sqs_count; 406 int rx_queues = 0, tx_queues = 0; 407 408 /* Only primary VF should request */ 409 if (nic->sqs_mode || !nic->sqs_count) 410 return; 411 412 mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS; 413 mbx.sqs_alloc.vf_id = nic->vf_id; 414 mbx.sqs_alloc.qs_count = nic->sqs_count; 415 if (nicvf_send_msg_to_pf(nic, &mbx)) { 416 /* No response from PF */ 417 nic->sqs_count = 0; 418 return; 419 } 420 421 /* Return if no Secondary Qsets available */ 422 if (!nic->sqs_count) 423 return; 424 425 if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS) 426 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS; 427 428 tx_queues = nic->tx_queues + nic->xdp_tx_queues; 429 if (tx_queues > MAX_SND_QUEUES_PER_QS) 430 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS; 431 432 /* Set no of Rx/Tx queues in each of the SQsets */ 433 for (sqs = 0; sqs < nic->sqs_count; sqs++) { 434 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR; 435 mbx.nicvf.vf_id = nic->vf_id; 436 mbx.nicvf.sqs_id = sqs; 437 nicvf_send_msg_to_pf(nic, &mbx); 438 439 nic->snicvf[sqs]->sqs_id = sqs; 440 if (rx_queues > MAX_RCV_QUEUES_PER_QS) { 441 nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS; 442 rx_queues -= MAX_RCV_QUEUES_PER_QS; 443 } else { 444 nic->snicvf[sqs]->qs->rq_cnt = rx_queues; 445 rx_queues = 0; 446 } 447 448 if (tx_queues > MAX_SND_QUEUES_PER_QS) { 449 nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS; 450 tx_queues -= MAX_SND_QUEUES_PER_QS; 451 } else { 452 nic->snicvf[sqs]->qs->sq_cnt = tx_queues; 453 tx_queues = 0; 454 } 455 456 nic->snicvf[sqs]->qs->cq_cnt = 457 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt); 458 459 /* Initialize secondary Qset's queues and its interrupts */ 460 nicvf_open(nic->snicvf[sqs]->netdev); 461 } 462 463 /* Update stack with actual Rx/Tx queue count allocated */ 464 if (sqs_count != nic->sqs_count) 465 nicvf_set_real_num_queues(nic->netdev, 466 nic->tx_queues, nic->rx_queues); 467 } 468 469 /* Send this Qset's nicvf pointer to PF. 470 * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs 471 * so that packets received by these Qsets can use primary VF's netdev 472 */ 473 static void nicvf_send_vf_struct(struct nicvf *nic) 474 { 475 union nic_mbx mbx = {}; 476 477 mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR; 478 mbx.nicvf.sqs_mode = nic->sqs_mode; 479 mbx.nicvf.nicvf = (u64)nic; 480 nicvf_send_msg_to_pf(nic, &mbx); 481 } 482 483 static void nicvf_get_primary_vf_struct(struct nicvf *nic) 484 { 485 union nic_mbx mbx = {}; 486 487 mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR; 488 nicvf_send_msg_to_pf(nic, &mbx); 489 } 490 491 int nicvf_set_real_num_queues(struct net_device *netdev, 492 int tx_queues, int rx_queues) 493 { 494 int err = 0; 495 496 err = netif_set_real_num_tx_queues(netdev, tx_queues); 497 if (err) { 498 netdev_err(netdev, 499 "Failed to set no of Tx queues: %d\n", tx_queues); 500 return err; 501 } 502 503 err = netif_set_real_num_rx_queues(netdev, rx_queues); 504 if (err) 505 netdev_err(netdev, 506 "Failed to set no of Rx queues: %d\n", rx_queues); 507 return err; 508 } 509 510 static int nicvf_init_resources(struct nicvf *nic) 511 { 512 int err; 513 514 /* Enable Qset */ 515 nicvf_qset_config(nic, true); 516 517 /* Initialize queues and HW for data transfer */ 518 err = nicvf_config_data_transfer(nic, true); 519 if (err) { 520 netdev_err(nic->netdev, 521 "Failed to alloc/config VF's QSet resources\n"); 522 return err; 523 } 524 525 return 0; 526 } 527 528 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog, 529 struct cqe_rx_t *cqe_rx, struct snd_queue *sq, 530 struct rcv_queue *rq, struct sk_buff **skb) 531 { 532 unsigned char *hard_start, *data; 533 struct xdp_buff xdp; 534 struct page *page; 535 u32 action; 536 u16 len, offset = 0; 537 u64 dma_addr, cpu_addr; 538 void *orig_data; 539 540 /* Retrieve packet buffer's DMA address and length */ 541 len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64)))); 542 dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64)))); 543 544 cpu_addr = nicvf_iova_to_phys(nic, dma_addr); 545 if (!cpu_addr) 546 return false; 547 cpu_addr = (u64)phys_to_virt(cpu_addr); 548 page = virt_to_page((void *)cpu_addr); 549 550 xdp_init_buff(&xdp, RCV_FRAG_LEN + XDP_PACKET_HEADROOM, 551 &rq->xdp_rxq); 552 hard_start = page_address(page); 553 data = (unsigned char *)cpu_addr; 554 xdp_prepare_buff(&xdp, hard_start, data - hard_start, len, false); 555 orig_data = xdp.data; 556 557 action = bpf_prog_run_xdp(prog, &xdp); 558 559 len = xdp.data_end - xdp.data; 560 /* Check if XDP program has changed headers */ 561 if (orig_data != xdp.data) { 562 offset = orig_data - xdp.data; 563 dma_addr -= offset; 564 } 565 566 switch (action) { 567 case XDP_PASS: 568 /* Check if it's a recycled page, if not 569 * unmap the DMA mapping. 570 * 571 * Recycled page holds an extra reference. 572 */ 573 if (page_ref_count(page) == 1) { 574 dma_addr &= PAGE_MASK; 575 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, 576 RCV_FRAG_LEN + XDP_PACKET_HEADROOM, 577 DMA_FROM_DEVICE, 578 DMA_ATTR_SKIP_CPU_SYNC); 579 } 580 581 /* Build SKB and pass on packet to network stack */ 582 *skb = build_skb(xdp.data, 583 RCV_FRAG_LEN - cqe_rx->align_pad + offset); 584 if (!*skb) 585 put_page(page); 586 else 587 skb_put(*skb, len); 588 return false; 589 case XDP_TX: 590 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len); 591 return true; 592 default: 593 bpf_warn_invalid_xdp_action(nic->netdev, prog, action); 594 fallthrough; 595 case XDP_ABORTED: 596 trace_xdp_exception(nic->netdev, prog, action); 597 fallthrough; 598 case XDP_DROP: 599 /* Check if it's a recycled page, if not 600 * unmap the DMA mapping. 601 * 602 * Recycled page holds an extra reference. 603 */ 604 if (page_ref_count(page) == 1) { 605 dma_addr &= PAGE_MASK; 606 dma_unmap_page_attrs(&nic->pdev->dev, dma_addr, 607 RCV_FRAG_LEN + XDP_PACKET_HEADROOM, 608 DMA_FROM_DEVICE, 609 DMA_ATTR_SKIP_CPU_SYNC); 610 } 611 put_page(page); 612 return true; 613 } 614 return false; 615 } 616 617 static void nicvf_snd_ptp_handler(struct net_device *netdev, 618 struct cqe_send_t *cqe_tx) 619 { 620 struct nicvf *nic = netdev_priv(netdev); 621 struct skb_shared_hwtstamps ts; 622 u64 ns; 623 624 nic = nic->pnicvf; 625 626 /* Sync for 'ptp_skb' */ 627 smp_rmb(); 628 629 /* New timestamp request can be queued now */ 630 atomic_set(&nic->tx_ptp_skbs, 0); 631 632 /* Check for timestamp requested skb */ 633 if (!nic->ptp_skb) 634 return; 635 636 /* Check if timestamping is timedout, which is set to 10us */ 637 if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT || 638 cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT) 639 goto no_tstamp; 640 641 /* Get the timestamp */ 642 memset(&ts, 0, sizeof(ts)); 643 ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp); 644 ts.hwtstamp = ns_to_ktime(ns); 645 skb_tstamp_tx(nic->ptp_skb, &ts); 646 647 no_tstamp: 648 /* Free the original skb */ 649 dev_kfree_skb_any(nic->ptp_skb); 650 nic->ptp_skb = NULL; 651 /* Sync 'ptp_skb' */ 652 smp_wmb(); 653 } 654 655 static void nicvf_snd_pkt_handler(struct net_device *netdev, 656 struct cqe_send_t *cqe_tx, 657 int budget, int *subdesc_cnt, 658 unsigned int *tx_pkts, unsigned int *tx_bytes) 659 { 660 struct sk_buff *skb = NULL; 661 struct page *page; 662 struct nicvf *nic = netdev_priv(netdev); 663 struct snd_queue *sq; 664 struct sq_hdr_subdesc *hdr; 665 struct sq_hdr_subdesc *tso_sqe; 666 667 sq = &nic->qs->sq[cqe_tx->sq_idx]; 668 669 hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr); 670 if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER) 671 return; 672 673 /* Check for errors */ 674 if (cqe_tx->send_status) 675 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx); 676 677 /* Is this a XDP designated Tx queue */ 678 if (sq->is_xdp) { 679 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr]; 680 /* Check if it's recycled page or else unmap DMA mapping */ 681 if (page && (page_ref_count(page) == 1)) 682 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr, 683 hdr->subdesc_cnt); 684 685 /* Release page reference for recycling */ 686 if (page) 687 put_page(page); 688 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL; 689 *subdesc_cnt += hdr->subdesc_cnt + 1; 690 return; 691 } 692 693 skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr]; 694 if (skb) { 695 /* Check for dummy descriptor used for HW TSO offload on 88xx */ 696 if (hdr->dont_send) { 697 /* Get actual TSO descriptors and free them */ 698 tso_sqe = 699 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2); 700 nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2, 701 tso_sqe->subdesc_cnt); 702 *subdesc_cnt += tso_sqe->subdesc_cnt + 1; 703 } else { 704 nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr, 705 hdr->subdesc_cnt); 706 } 707 *subdesc_cnt += hdr->subdesc_cnt + 1; 708 prefetch(skb); 709 (*tx_pkts)++; 710 *tx_bytes += skb->len; 711 /* If timestamp is requested for this skb, don't free it */ 712 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 713 !nic->pnicvf->ptp_skb) 714 nic->pnicvf->ptp_skb = skb; 715 else 716 napi_consume_skb(skb, budget); 717 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL; 718 } else { 719 /* In case of SW TSO on 88xx, only last segment will have 720 * a SKB attached, so just free SQEs here. 721 */ 722 if (!nic->hw_tso) 723 *subdesc_cnt += hdr->subdesc_cnt + 1; 724 } 725 } 726 727 static inline void nicvf_set_rxhash(struct net_device *netdev, 728 struct cqe_rx_t *cqe_rx, 729 struct sk_buff *skb) 730 { 731 u8 hash_type; 732 u32 hash; 733 734 if (!(netdev->features & NETIF_F_RXHASH)) 735 return; 736 737 switch (cqe_rx->rss_alg) { 738 case RSS_ALG_TCP_IP: 739 case RSS_ALG_UDP_IP: 740 hash_type = PKT_HASH_TYPE_L4; 741 hash = cqe_rx->rss_tag; 742 break; 743 case RSS_ALG_IP: 744 hash_type = PKT_HASH_TYPE_L3; 745 hash = cqe_rx->rss_tag; 746 break; 747 default: 748 hash_type = PKT_HASH_TYPE_NONE; 749 hash = 0; 750 } 751 752 skb_set_hash(skb, hash, hash_type); 753 } 754 755 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb) 756 { 757 u64 ns; 758 759 if (!nic->ptp_clock || !nic->hw_rx_tstamp) 760 return; 761 762 /* The first 8 bytes is the timestamp */ 763 ns = cavium_ptp_tstamp2time(nic->ptp_clock, 764 be64_to_cpu(*(__be64 *)skb->data)); 765 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 766 767 __skb_pull(skb, 8); 768 } 769 770 static void nicvf_rcv_pkt_handler(struct net_device *netdev, 771 struct napi_struct *napi, 772 struct cqe_rx_t *cqe_rx, 773 struct snd_queue *sq, struct rcv_queue *rq) 774 { 775 struct sk_buff *skb = NULL; 776 struct nicvf *nic = netdev_priv(netdev); 777 struct nicvf *snic = nic; 778 int err = 0; 779 int rq_idx; 780 781 rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx); 782 783 if (nic->sqs_mode) { 784 /* Use primary VF's 'nicvf' struct */ 785 nic = nic->pnicvf; 786 netdev = nic->netdev; 787 } 788 789 /* Check for errors */ 790 if (cqe_rx->err_level || cqe_rx->err_opcode) { 791 err = nicvf_check_cqe_rx_errs(nic, cqe_rx); 792 if (err && !cqe_rx->rb_cnt) 793 return; 794 } 795 796 /* For XDP, ignore pkts spanning multiple pages */ 797 if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) { 798 /* Packet consumed by XDP */ 799 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb)) 800 return; 801 } else { 802 skb = nicvf_get_rcv_skb(snic, cqe_rx, 803 nic->xdp_prog ? true : false); 804 } 805 806 if (!skb) 807 return; 808 809 if (netif_msg_pktdata(nic)) { 810 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len); 811 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1, 812 skb->data, skb->len, true); 813 } 814 815 /* If error packet, drop it here */ 816 if (err) { 817 dev_kfree_skb_any(skb); 818 return; 819 } 820 821 nicvf_set_rxtstamp(nic, skb); 822 nicvf_set_rxhash(netdev, cqe_rx, skb); 823 824 skb_record_rx_queue(skb, rq_idx); 825 if (netdev->hw_features & NETIF_F_RXCSUM) { 826 /* HW by default verifies TCP/UDP/SCTP checksums */ 827 skb->ip_summed = CHECKSUM_UNNECESSARY; 828 } else { 829 skb_checksum_none_assert(skb); 830 } 831 832 skb->protocol = eth_type_trans(skb, netdev); 833 834 /* Check for stripped VLAN */ 835 if (cqe_rx->vlan_found && cqe_rx->vlan_stripped) 836 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 837 ntohs((__force __be16)cqe_rx->vlan_tci)); 838 839 if (napi && (netdev->features & NETIF_F_GRO)) 840 napi_gro_receive(napi, skb); 841 else 842 netif_receive_skb(skb); 843 } 844 845 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx, 846 struct napi_struct *napi, int budget) 847 { 848 int processed_cqe, work_done = 0, tx_done = 0; 849 int cqe_count, cqe_head; 850 int subdesc_cnt = 0; 851 struct nicvf *nic = netdev_priv(netdev); 852 struct queue_set *qs = nic->qs; 853 struct cmp_queue *cq = &qs->cq[cq_idx]; 854 struct cqe_rx_t *cq_desc; 855 struct netdev_queue *txq; 856 struct snd_queue *sq = &qs->sq[cq_idx]; 857 struct rcv_queue *rq = &qs->rq[cq_idx]; 858 unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx; 859 860 spin_lock_bh(&cq->lock); 861 loop: 862 processed_cqe = 0; 863 /* Get no of valid CQ entries to process */ 864 cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx); 865 cqe_count &= CQ_CQE_COUNT; 866 if (!cqe_count) 867 goto done; 868 869 /* Get head of the valid CQ entries */ 870 cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9; 871 cqe_head &= 0xFFFF; 872 873 while (processed_cqe < cqe_count) { 874 /* Get the CQ descriptor */ 875 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head); 876 cqe_head++; 877 cqe_head &= (cq->dmem.q_len - 1); 878 /* Initiate prefetch for next descriptor */ 879 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head)); 880 881 if ((work_done >= budget) && napi && 882 (cq_desc->cqe_type != CQE_TYPE_SEND)) { 883 break; 884 } 885 886 switch (cq_desc->cqe_type) { 887 case CQE_TYPE_RX: 888 nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq); 889 work_done++; 890 break; 891 case CQE_TYPE_SEND: 892 nicvf_snd_pkt_handler(netdev, (void *)cq_desc, 893 budget, &subdesc_cnt, 894 &tx_pkts, &tx_bytes); 895 tx_done++; 896 break; 897 case CQE_TYPE_SEND_PTP: 898 nicvf_snd_ptp_handler(netdev, (void *)cq_desc); 899 break; 900 case CQE_TYPE_INVALID: 901 case CQE_TYPE_RX_SPLIT: 902 case CQE_TYPE_RX_TCP: 903 /* Ignore for now */ 904 break; 905 } 906 processed_cqe++; 907 } 908 909 /* Ring doorbell to inform H/W to reuse processed CQEs */ 910 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR, 911 cq_idx, processed_cqe); 912 913 if ((work_done < budget) && napi) 914 goto loop; 915 916 done: 917 /* Update SQ's descriptor free count */ 918 if (subdesc_cnt) 919 nicvf_put_sq_desc(sq, subdesc_cnt); 920 921 txq_idx = nicvf_netdev_qidx(nic, cq_idx); 922 /* Handle XDP TX queues */ 923 if (nic->pnicvf->xdp_prog) { 924 if (txq_idx < nic->pnicvf->xdp_tx_queues) { 925 nicvf_xdp_sq_doorbell(nic, sq, cq_idx); 926 goto out; 927 } 928 nic = nic->pnicvf; 929 txq_idx -= nic->pnicvf->xdp_tx_queues; 930 } 931 932 /* Wakeup TXQ if its stopped earlier due to SQ full */ 933 if (tx_done || 934 (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) { 935 netdev = nic->pnicvf->netdev; 936 txq = netdev_get_tx_queue(netdev, txq_idx); 937 if (tx_pkts) 938 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 939 940 /* To read updated queue and carrier status */ 941 smp_mb(); 942 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) { 943 netif_tx_wake_queue(txq); 944 nic = nic->pnicvf; 945 this_cpu_inc(nic->drv_stats->txq_wake); 946 netif_warn(nic, tx_err, netdev, 947 "Transmit queue wakeup SQ%d\n", txq_idx); 948 } 949 } 950 951 out: 952 spin_unlock_bh(&cq->lock); 953 return work_done; 954 } 955 956 static int nicvf_poll(struct napi_struct *napi, int budget) 957 { 958 u64 cq_head; 959 int work_done = 0; 960 struct net_device *netdev = napi->dev; 961 struct nicvf *nic = netdev_priv(netdev); 962 struct nicvf_cq_poll *cq; 963 964 cq = container_of(napi, struct nicvf_cq_poll, napi); 965 work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget); 966 967 if (work_done < budget) { 968 /* Slow packet rate, exit polling */ 969 napi_complete_done(napi, work_done); 970 /* Re-enable interrupts */ 971 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, 972 cq->cq_idx); 973 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx); 974 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD, 975 cq->cq_idx, cq_head); 976 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx); 977 } 978 return work_done; 979 } 980 981 /* Qset error interrupt handler 982 * 983 * As of now only CQ errors are handled 984 */ 985 static void nicvf_handle_qs_err(struct tasklet_struct *t) 986 { 987 struct nicvf *nic = from_tasklet(nic, t, qs_err_task); 988 struct queue_set *qs = nic->qs; 989 int qidx; 990 u64 status; 991 992 netif_tx_disable(nic->netdev); 993 994 /* Check if it is CQ err */ 995 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 996 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, 997 qidx); 998 if (!(status & CQ_ERR_MASK)) 999 continue; 1000 /* Process already queued CQEs and reconfig CQ */ 1001 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); 1002 nicvf_sq_disable(nic, qidx); 1003 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0); 1004 nicvf_cmp_queue_config(nic, qs, qidx, true); 1005 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx); 1006 nicvf_sq_enable(nic, &qs->sq[qidx], qidx); 1007 1008 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx); 1009 } 1010 1011 netif_tx_start_all_queues(nic->netdev); 1012 /* Re-enable Qset error interrupt */ 1013 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0); 1014 } 1015 1016 static void nicvf_dump_intr_status(struct nicvf *nic) 1017 { 1018 netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n", 1019 nicvf_reg_read(nic, NIC_VF_INT)); 1020 } 1021 1022 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq) 1023 { 1024 struct nicvf *nic = (struct nicvf *)nicvf_irq; 1025 u64 intr; 1026 1027 nicvf_dump_intr_status(nic); 1028 1029 intr = nicvf_reg_read(nic, NIC_VF_INT); 1030 /* Check for spurious interrupt */ 1031 if (!(intr & NICVF_INTR_MBOX_MASK)) 1032 return IRQ_HANDLED; 1033 1034 nicvf_handle_mbx_intr(nic); 1035 1036 return IRQ_HANDLED; 1037 } 1038 1039 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq) 1040 { 1041 struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq; 1042 struct nicvf *nic = cq_poll->nicvf; 1043 int qidx = cq_poll->cq_idx; 1044 1045 nicvf_dump_intr_status(nic); 1046 1047 /* Disable interrupts */ 1048 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); 1049 1050 /* Schedule NAPI */ 1051 napi_schedule_irqoff(&cq_poll->napi); 1052 1053 /* Clear interrupt */ 1054 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx); 1055 1056 return IRQ_HANDLED; 1057 } 1058 1059 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq) 1060 { 1061 struct nicvf *nic = (struct nicvf *)nicvf_irq; 1062 u8 qidx; 1063 1064 1065 nicvf_dump_intr_status(nic); 1066 1067 /* Disable RBDR interrupt and schedule softirq */ 1068 for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) { 1069 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx)) 1070 continue; 1071 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx); 1072 tasklet_hi_schedule(&nic->rbdr_task); 1073 /* Clear interrupt */ 1074 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx); 1075 } 1076 1077 return IRQ_HANDLED; 1078 } 1079 1080 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq) 1081 { 1082 struct nicvf *nic = (struct nicvf *)nicvf_irq; 1083 1084 nicvf_dump_intr_status(nic); 1085 1086 /* Disable Qset err interrupt and schedule softirq */ 1087 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0); 1088 tasklet_hi_schedule(&nic->qs_err_task); 1089 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0); 1090 1091 return IRQ_HANDLED; 1092 } 1093 1094 static void nicvf_set_irq_affinity(struct nicvf *nic) 1095 { 1096 int vec, cpu; 1097 1098 for (vec = 0; vec < nic->num_vec; vec++) { 1099 if (!nic->irq_allocated[vec]) 1100 continue; 1101 1102 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL)) 1103 return; 1104 /* CQ interrupts */ 1105 if (vec < NICVF_INTR_ID_SQ) 1106 /* Leave CPU0 for RBDR and other interrupts */ 1107 cpu = nicvf_netdev_qidx(nic, vec) + 1; 1108 else 1109 cpu = 0; 1110 1111 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node), 1112 nic->affinity_mask[vec]); 1113 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec), 1114 nic->affinity_mask[vec]); 1115 } 1116 } 1117 1118 static int nicvf_register_interrupts(struct nicvf *nic) 1119 { 1120 int irq, ret = 0; 1121 1122 for_each_cq_irq(irq) 1123 sprintf(nic->irq_name[irq], "%s-rxtx-%d", 1124 nic->pnicvf->netdev->name, 1125 nicvf_netdev_qidx(nic, irq)); 1126 1127 for_each_sq_irq(irq) 1128 sprintf(nic->irq_name[irq], "%s-sq-%d", 1129 nic->pnicvf->netdev->name, 1130 nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ)); 1131 1132 for_each_rbdr_irq(irq) 1133 sprintf(nic->irq_name[irq], "%s-rbdr-%d", 1134 nic->pnicvf->netdev->name, 1135 nic->sqs_mode ? (nic->sqs_id + 1) : 0); 1136 1137 /* Register CQ interrupts */ 1138 for (irq = 0; irq < nic->qs->cq_cnt; irq++) { 1139 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1140 nicvf_intr_handler, 1141 0, nic->irq_name[irq], nic->napi[irq]); 1142 if (ret) 1143 goto err; 1144 nic->irq_allocated[irq] = true; 1145 } 1146 1147 /* Register RBDR interrupt */ 1148 for (irq = NICVF_INTR_ID_RBDR; 1149 irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) { 1150 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1151 nicvf_rbdr_intr_handler, 1152 0, nic->irq_name[irq], nic); 1153 if (ret) 1154 goto err; 1155 nic->irq_allocated[irq] = true; 1156 } 1157 1158 /* Register QS error interrupt */ 1159 sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d", 1160 nic->pnicvf->netdev->name, 1161 nic->sqs_mode ? (nic->sqs_id + 1) : 0); 1162 irq = NICVF_INTR_ID_QS_ERR; 1163 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1164 nicvf_qs_err_intr_handler, 1165 0, nic->irq_name[irq], nic); 1166 if (ret) 1167 goto err; 1168 1169 nic->irq_allocated[irq] = true; 1170 1171 /* Set IRQ affinities */ 1172 nicvf_set_irq_affinity(nic); 1173 1174 err: 1175 if (ret) 1176 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq); 1177 1178 return ret; 1179 } 1180 1181 static void nicvf_unregister_interrupts(struct nicvf *nic) 1182 { 1183 struct pci_dev *pdev = nic->pdev; 1184 int irq; 1185 1186 /* Free registered interrupts */ 1187 for (irq = 0; irq < nic->num_vec; irq++) { 1188 if (!nic->irq_allocated[irq]) 1189 continue; 1190 1191 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL); 1192 free_cpumask_var(nic->affinity_mask[irq]); 1193 1194 if (irq < NICVF_INTR_ID_SQ) 1195 free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]); 1196 else 1197 free_irq(pci_irq_vector(pdev, irq), nic); 1198 1199 nic->irq_allocated[irq] = false; 1200 } 1201 1202 /* Disable MSI-X */ 1203 pci_free_irq_vectors(pdev); 1204 nic->num_vec = 0; 1205 } 1206 1207 /* Initialize MSIX vectors and register MISC interrupt. 1208 * Send READY message to PF to check if its alive 1209 */ 1210 static int nicvf_register_misc_interrupt(struct nicvf *nic) 1211 { 1212 int ret = 0; 1213 int irq = NICVF_INTR_ID_MISC; 1214 1215 /* Return if mailbox interrupt is already registered */ 1216 if (nic->pdev->msix_enabled) 1217 return 0; 1218 1219 /* Enable MSI-X */ 1220 nic->num_vec = pci_msix_vec_count(nic->pdev); 1221 ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec, 1222 PCI_IRQ_MSIX); 1223 if (ret < 0) { 1224 netdev_err(nic->netdev, 1225 "Req for #%d msix vectors failed\n", nic->num_vec); 1226 return ret; 1227 } 1228 1229 sprintf(nic->irq_name[irq], "%s Mbox", "NICVF"); 1230 /* Register Misc interrupt */ 1231 ret = request_irq(pci_irq_vector(nic->pdev, irq), 1232 nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic); 1233 1234 if (ret) 1235 return ret; 1236 nic->irq_allocated[irq] = true; 1237 1238 /* Enable mailbox interrupt */ 1239 nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0); 1240 1241 /* Check if VF is able to communicate with PF */ 1242 if (!nicvf_check_pf_ready(nic)) { 1243 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); 1244 nicvf_unregister_interrupts(nic); 1245 return -EIO; 1246 } 1247 1248 return 0; 1249 } 1250 1251 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev) 1252 { 1253 struct nicvf *nic = netdev_priv(netdev); 1254 int qid = skb_get_queue_mapping(skb); 1255 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid); 1256 struct nicvf *snic; 1257 struct snd_queue *sq; 1258 int tmp; 1259 1260 /* Check for minimum packet length */ 1261 if (skb->len <= ETH_HLEN) { 1262 dev_kfree_skb(skb); 1263 return NETDEV_TX_OK; 1264 } 1265 1266 /* In XDP case, initial HW tx queues are used for XDP, 1267 * but stack's queue mapping starts at '0', so skip the 1268 * Tx queues attached to Rx queues for XDP. 1269 */ 1270 if (nic->xdp_prog) 1271 qid += nic->xdp_tx_queues; 1272 1273 snic = nic; 1274 /* Get secondary Qset's SQ structure */ 1275 if (qid >= MAX_SND_QUEUES_PER_QS) { 1276 tmp = qid / MAX_SND_QUEUES_PER_QS; 1277 snic = (struct nicvf *)nic->snicvf[tmp - 1]; 1278 if (!snic) { 1279 netdev_warn(nic->netdev, 1280 "Secondary Qset#%d's ptr not initialized\n", 1281 tmp - 1); 1282 dev_kfree_skb(skb); 1283 return NETDEV_TX_OK; 1284 } 1285 qid = qid % MAX_SND_QUEUES_PER_QS; 1286 } 1287 1288 sq = &snic->qs->sq[qid]; 1289 if (!netif_tx_queue_stopped(txq) && 1290 !nicvf_sq_append_skb(snic, sq, skb, qid)) { 1291 netif_tx_stop_queue(txq); 1292 1293 /* Barrier, so that stop_queue visible to other cpus */ 1294 smp_mb(); 1295 1296 /* Check again, incase another cpu freed descriptors */ 1297 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) { 1298 netif_tx_wake_queue(txq); 1299 } else { 1300 this_cpu_inc(nic->drv_stats->txq_stop); 1301 netif_warn(nic, tx_err, netdev, 1302 "Transmit ring full, stopping SQ%d\n", qid); 1303 } 1304 return NETDEV_TX_BUSY; 1305 } 1306 1307 return NETDEV_TX_OK; 1308 } 1309 1310 static inline void nicvf_free_cq_poll(struct nicvf *nic) 1311 { 1312 struct nicvf_cq_poll *cq_poll; 1313 int qidx; 1314 1315 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) { 1316 cq_poll = nic->napi[qidx]; 1317 if (!cq_poll) 1318 continue; 1319 nic->napi[qidx] = NULL; 1320 kfree(cq_poll); 1321 } 1322 } 1323 1324 int nicvf_stop(struct net_device *netdev) 1325 { 1326 int irq, qidx; 1327 struct nicvf *nic = netdev_priv(netdev); 1328 struct queue_set *qs = nic->qs; 1329 struct nicvf_cq_poll *cq_poll = NULL; 1330 union nic_mbx mbx = {}; 1331 1332 /* wait till all queued set_rx_mode tasks completes */ 1333 if (nic->nicvf_rx_mode_wq) { 1334 cancel_delayed_work_sync(&nic->link_change_work); 1335 drain_workqueue(nic->nicvf_rx_mode_wq); 1336 } 1337 1338 mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN; 1339 nicvf_send_msg_to_pf(nic, &mbx); 1340 1341 netif_carrier_off(netdev); 1342 netif_tx_stop_all_queues(nic->netdev); 1343 nic->link_up = false; 1344 1345 /* Teardown secondary qsets first */ 1346 if (!nic->sqs_mode) { 1347 for (qidx = 0; qidx < nic->sqs_count; qidx++) { 1348 if (!nic->snicvf[qidx]) 1349 continue; 1350 nicvf_stop(nic->snicvf[qidx]->netdev); 1351 nic->snicvf[qidx] = NULL; 1352 } 1353 } 1354 1355 /* Disable RBDR & QS error interrupts */ 1356 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) { 1357 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx); 1358 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx); 1359 } 1360 nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0); 1361 nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0); 1362 1363 /* Wait for pending IRQ handlers to finish */ 1364 for (irq = 0; irq < nic->num_vec; irq++) 1365 synchronize_irq(pci_irq_vector(nic->pdev, irq)); 1366 1367 tasklet_kill(&nic->rbdr_task); 1368 tasklet_kill(&nic->qs_err_task); 1369 if (nic->rb_work_scheduled) 1370 cancel_delayed_work_sync(&nic->rbdr_work); 1371 1372 for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) { 1373 cq_poll = nic->napi[qidx]; 1374 if (!cq_poll) 1375 continue; 1376 napi_synchronize(&cq_poll->napi); 1377 /* CQ intr is enabled while napi_complete, 1378 * so disable it now 1379 */ 1380 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx); 1381 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx); 1382 napi_disable(&cq_poll->napi); 1383 netif_napi_del(&cq_poll->napi); 1384 } 1385 1386 netif_tx_disable(netdev); 1387 1388 for (qidx = 0; qidx < netdev->num_tx_queues; qidx++) 1389 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx)); 1390 1391 /* Free resources */ 1392 nicvf_config_data_transfer(nic, false); 1393 1394 /* Disable HW Qset */ 1395 nicvf_qset_config(nic, false); 1396 1397 /* disable mailbox interrupt */ 1398 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); 1399 1400 nicvf_unregister_interrupts(nic); 1401 1402 nicvf_free_cq_poll(nic); 1403 1404 /* Free any pending SKB saved to receive timestamp */ 1405 if (nic->ptp_skb) { 1406 dev_kfree_skb_any(nic->ptp_skb); 1407 nic->ptp_skb = NULL; 1408 } 1409 1410 /* Clear multiqset info */ 1411 nic->pnicvf = nic; 1412 1413 return 0; 1414 } 1415 1416 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable) 1417 { 1418 union nic_mbx mbx = {}; 1419 1420 mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG; 1421 mbx.ptp.enable = enable; 1422 1423 return nicvf_send_msg_to_pf(nic, &mbx); 1424 } 1425 1426 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu) 1427 { 1428 union nic_mbx mbx = {}; 1429 1430 mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS; 1431 mbx.frs.max_frs = mtu; 1432 mbx.frs.vf_id = nic->vf_id; 1433 1434 return nicvf_send_msg_to_pf(nic, &mbx); 1435 } 1436 1437 static void nicvf_link_status_check_task(struct work_struct *work_arg) 1438 { 1439 struct nicvf *nic = container_of(work_arg, 1440 struct nicvf, 1441 link_change_work.work); 1442 union nic_mbx mbx = {}; 1443 mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE; 1444 nicvf_send_msg_to_pf(nic, &mbx); 1445 queue_delayed_work(nic->nicvf_rx_mode_wq, 1446 &nic->link_change_work, 2 * HZ); 1447 } 1448 1449 int nicvf_open(struct net_device *netdev) 1450 { 1451 int cpu, err, qidx; 1452 struct nicvf *nic = netdev_priv(netdev); 1453 struct queue_set *qs = nic->qs; 1454 struct nicvf_cq_poll *cq_poll = NULL; 1455 1456 /* wait till all queued set_rx_mode tasks completes if any */ 1457 if (nic->nicvf_rx_mode_wq) 1458 drain_workqueue(nic->nicvf_rx_mode_wq); 1459 1460 netif_carrier_off(netdev); 1461 1462 err = nicvf_register_misc_interrupt(nic); 1463 if (err) 1464 return err; 1465 1466 /* Register NAPI handler for processing CQEs */ 1467 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 1468 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL); 1469 if (!cq_poll) { 1470 err = -ENOMEM; 1471 goto napi_del; 1472 } 1473 cq_poll->cq_idx = qidx; 1474 cq_poll->nicvf = nic; 1475 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll); 1476 napi_enable(&cq_poll->napi); 1477 nic->napi[qidx] = cq_poll; 1478 } 1479 1480 /* Check if we got MAC address from PF or else generate a radom MAC */ 1481 if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) { 1482 eth_hw_addr_random(netdev); 1483 nicvf_hw_set_mac_addr(nic, netdev); 1484 } 1485 1486 if (nic->set_mac_pending) { 1487 nic->set_mac_pending = false; 1488 nicvf_hw_set_mac_addr(nic, netdev); 1489 } 1490 1491 /* Init tasklet for handling Qset err interrupt */ 1492 tasklet_setup(&nic->qs_err_task, nicvf_handle_qs_err); 1493 1494 /* Init RBDR tasklet which will refill RBDR */ 1495 tasklet_setup(&nic->rbdr_task, nicvf_rbdr_task); 1496 INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work); 1497 1498 /* Configure CPI alorithm */ 1499 nic->cpi_alg = cpi_alg; 1500 if (!nic->sqs_mode) 1501 nicvf_config_cpi(nic); 1502 1503 nicvf_request_sqs(nic); 1504 if (nic->sqs_mode) 1505 nicvf_get_primary_vf_struct(nic); 1506 1507 /* Configure PTP timestamp */ 1508 if (nic->ptp_clock) 1509 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp); 1510 atomic_set(&nic->tx_ptp_skbs, 0); 1511 nic->ptp_skb = NULL; 1512 1513 /* Configure receive side scaling and MTU */ 1514 if (!nic->sqs_mode) { 1515 nicvf_rss_init(nic); 1516 err = nicvf_update_hw_max_frs(nic, netdev->mtu); 1517 if (err) 1518 goto cleanup; 1519 1520 /* Clear percpu stats */ 1521 for_each_possible_cpu(cpu) 1522 memset(per_cpu_ptr(nic->drv_stats, cpu), 0, 1523 sizeof(struct nicvf_drv_stats)); 1524 } 1525 1526 err = nicvf_register_interrupts(nic); 1527 if (err) 1528 goto cleanup; 1529 1530 /* Initialize the queues */ 1531 err = nicvf_init_resources(nic); 1532 if (err) 1533 goto cleanup; 1534 1535 /* Make sure queue initialization is written */ 1536 wmb(); 1537 1538 nicvf_reg_write(nic, NIC_VF_INT, -1); 1539 /* Enable Qset err interrupt */ 1540 nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0); 1541 1542 /* Enable completion queue interrupt */ 1543 for (qidx = 0; qidx < qs->cq_cnt; qidx++) 1544 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx); 1545 1546 /* Enable RBDR threshold interrupt */ 1547 for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) 1548 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx); 1549 1550 /* Send VF config done msg to PF */ 1551 nicvf_send_cfg_done(nic); 1552 1553 if (nic->nicvf_rx_mode_wq) { 1554 INIT_DELAYED_WORK(&nic->link_change_work, 1555 nicvf_link_status_check_task); 1556 queue_delayed_work(nic->nicvf_rx_mode_wq, 1557 &nic->link_change_work, 0); 1558 } 1559 1560 return 0; 1561 cleanup: 1562 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0); 1563 nicvf_unregister_interrupts(nic); 1564 tasklet_kill(&nic->qs_err_task); 1565 tasklet_kill(&nic->rbdr_task); 1566 napi_del: 1567 for (qidx = 0; qidx < qs->cq_cnt; qidx++) { 1568 cq_poll = nic->napi[qidx]; 1569 if (!cq_poll) 1570 continue; 1571 napi_disable(&cq_poll->napi); 1572 netif_napi_del(&cq_poll->napi); 1573 } 1574 nicvf_free_cq_poll(nic); 1575 return err; 1576 } 1577 1578 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu) 1579 { 1580 struct nicvf *nic = netdev_priv(netdev); 1581 int orig_mtu = netdev->mtu; 1582 1583 /* For now just support only the usual MTU sized frames, 1584 * plus some headroom for VLAN, QinQ. 1585 */ 1586 if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) { 1587 netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n", 1588 netdev->mtu); 1589 return -EINVAL; 1590 } 1591 1592 netdev->mtu = new_mtu; 1593 1594 if (!netif_running(netdev)) 1595 return 0; 1596 1597 if (nicvf_update_hw_max_frs(nic, new_mtu)) { 1598 netdev->mtu = orig_mtu; 1599 return -EINVAL; 1600 } 1601 1602 return 0; 1603 } 1604 1605 static int nicvf_set_mac_address(struct net_device *netdev, void *p) 1606 { 1607 struct sockaddr *addr = p; 1608 struct nicvf *nic = netdev_priv(netdev); 1609 1610 if (!is_valid_ether_addr(addr->sa_data)) 1611 return -EADDRNOTAVAIL; 1612 1613 eth_hw_addr_set(netdev, addr->sa_data); 1614 1615 if (nic->pdev->msix_enabled) { 1616 if (nicvf_hw_set_mac_addr(nic, netdev)) 1617 return -EBUSY; 1618 } else { 1619 nic->set_mac_pending = true; 1620 } 1621 1622 return 0; 1623 } 1624 1625 void nicvf_update_lmac_stats(struct nicvf *nic) 1626 { 1627 int stat = 0; 1628 union nic_mbx mbx = {}; 1629 1630 if (!netif_running(nic->netdev)) 1631 return; 1632 1633 mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS; 1634 mbx.bgx_stats.vf_id = nic->vf_id; 1635 /* Rx stats */ 1636 mbx.bgx_stats.rx = 1; 1637 while (stat < BGX_RX_STATS_COUNT) { 1638 mbx.bgx_stats.idx = stat; 1639 if (nicvf_send_msg_to_pf(nic, &mbx)) 1640 return; 1641 stat++; 1642 } 1643 1644 stat = 0; 1645 1646 /* Tx stats */ 1647 mbx.bgx_stats.rx = 0; 1648 while (stat < BGX_TX_STATS_COUNT) { 1649 mbx.bgx_stats.idx = stat; 1650 if (nicvf_send_msg_to_pf(nic, &mbx)) 1651 return; 1652 stat++; 1653 } 1654 } 1655 1656 void nicvf_update_stats(struct nicvf *nic) 1657 { 1658 int qidx, cpu; 1659 u64 tmp_stats = 0; 1660 struct nicvf_hw_stats *stats = &nic->hw_stats; 1661 struct nicvf_drv_stats *drv_stats; 1662 struct queue_set *qs = nic->qs; 1663 1664 #define GET_RX_STATS(reg) \ 1665 nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3)) 1666 #define GET_TX_STATS(reg) \ 1667 nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3)) 1668 1669 stats->rx_bytes = GET_RX_STATS(RX_OCTS); 1670 stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST); 1671 stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST); 1672 stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST); 1673 stats->rx_fcs_errors = GET_RX_STATS(RX_FCS); 1674 stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR); 1675 stats->rx_drop_red = GET_RX_STATS(RX_RED); 1676 stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS); 1677 stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN); 1678 stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS); 1679 stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST); 1680 stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST); 1681 stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST); 1682 stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST); 1683 1684 stats->tx_bytes = GET_TX_STATS(TX_OCTS); 1685 stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST); 1686 stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST); 1687 stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST); 1688 stats->tx_drops = GET_TX_STATS(TX_DROP); 1689 1690 /* On T88 pass 2.0, the dummy SQE added for TSO notification 1691 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed 1692 * pointed by dummy SQE and results in tx_drops counter being 1693 * incremented. Subtracting it from tx_tso counter will give 1694 * exact tx_drops counter. 1695 */ 1696 if (nic->t88 && nic->hw_tso) { 1697 for_each_possible_cpu(cpu) { 1698 drv_stats = per_cpu_ptr(nic->drv_stats, cpu); 1699 tmp_stats += drv_stats->tx_tso; 1700 } 1701 stats->tx_drops = tmp_stats - stats->tx_drops; 1702 } 1703 stats->tx_frames = stats->tx_ucast_frames + 1704 stats->tx_bcast_frames + 1705 stats->tx_mcast_frames; 1706 stats->rx_frames = stats->rx_ucast_frames + 1707 stats->rx_bcast_frames + 1708 stats->rx_mcast_frames; 1709 stats->rx_drops = stats->rx_drop_red + 1710 stats->rx_drop_overrun; 1711 1712 /* Update RQ and SQ stats */ 1713 for (qidx = 0; qidx < qs->rq_cnt; qidx++) 1714 nicvf_update_rq_stats(nic, qidx); 1715 for (qidx = 0; qidx < qs->sq_cnt; qidx++) 1716 nicvf_update_sq_stats(nic, qidx); 1717 } 1718 1719 static void nicvf_get_stats64(struct net_device *netdev, 1720 struct rtnl_link_stats64 *stats) 1721 { 1722 struct nicvf *nic = netdev_priv(netdev); 1723 struct nicvf_hw_stats *hw_stats = &nic->hw_stats; 1724 1725 nicvf_update_stats(nic); 1726 1727 stats->rx_bytes = hw_stats->rx_bytes; 1728 stats->rx_packets = hw_stats->rx_frames; 1729 stats->rx_dropped = hw_stats->rx_drops; 1730 stats->multicast = hw_stats->rx_mcast_frames; 1731 1732 stats->tx_bytes = hw_stats->tx_bytes; 1733 stats->tx_packets = hw_stats->tx_frames; 1734 stats->tx_dropped = hw_stats->tx_drops; 1735 1736 } 1737 1738 static void nicvf_tx_timeout(struct net_device *dev, unsigned int txqueue) 1739 { 1740 struct nicvf *nic = netdev_priv(dev); 1741 1742 netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n"); 1743 1744 this_cpu_inc(nic->drv_stats->tx_timeout); 1745 schedule_work(&nic->reset_task); 1746 } 1747 1748 static void nicvf_reset_task(struct work_struct *work) 1749 { 1750 struct nicvf *nic; 1751 1752 nic = container_of(work, struct nicvf, reset_task); 1753 1754 if (!netif_running(nic->netdev)) 1755 return; 1756 1757 nicvf_stop(nic->netdev); 1758 nicvf_open(nic->netdev); 1759 netif_trans_update(nic->netdev); 1760 } 1761 1762 static int nicvf_config_loopback(struct nicvf *nic, 1763 netdev_features_t features) 1764 { 1765 union nic_mbx mbx = {}; 1766 1767 mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK; 1768 mbx.lbk.vf_id = nic->vf_id; 1769 mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0; 1770 1771 return nicvf_send_msg_to_pf(nic, &mbx); 1772 } 1773 1774 static netdev_features_t nicvf_fix_features(struct net_device *netdev, 1775 netdev_features_t features) 1776 { 1777 struct nicvf *nic = netdev_priv(netdev); 1778 1779 if ((features & NETIF_F_LOOPBACK) && 1780 netif_running(netdev) && !nic->loopback_supported) 1781 features &= ~NETIF_F_LOOPBACK; 1782 1783 return features; 1784 } 1785 1786 static int nicvf_set_features(struct net_device *netdev, 1787 netdev_features_t features) 1788 { 1789 struct nicvf *nic = netdev_priv(netdev); 1790 netdev_features_t changed = features ^ netdev->features; 1791 1792 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 1793 nicvf_config_vlan_stripping(nic, features); 1794 1795 if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev)) 1796 return nicvf_config_loopback(nic, features); 1797 1798 return 0; 1799 } 1800 1801 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached) 1802 { 1803 u8 cq_count, txq_count; 1804 1805 /* Set XDP Tx queue count same as Rx queue count */ 1806 if (!bpf_attached) 1807 nic->xdp_tx_queues = 0; 1808 else 1809 nic->xdp_tx_queues = nic->rx_queues; 1810 1811 /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets 1812 * needs to be allocated, check how many. 1813 */ 1814 txq_count = nic->xdp_tx_queues + nic->tx_queues; 1815 cq_count = max(nic->rx_queues, txq_count); 1816 if (cq_count > MAX_CMP_QUEUES_PER_QS) { 1817 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS); 1818 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1; 1819 } else { 1820 nic->sqs_count = 0; 1821 } 1822 1823 /* Set primary Qset's resources */ 1824 nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS); 1825 nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS); 1826 nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt); 1827 1828 /* Update stack */ 1829 nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues); 1830 } 1831 1832 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog) 1833 { 1834 struct net_device *dev = nic->netdev; 1835 bool if_up = netif_running(nic->netdev); 1836 struct bpf_prog *old_prog; 1837 bool bpf_attached = false; 1838 int ret = 0; 1839 1840 /* For now just support only the usual MTU sized frames, 1841 * plus some headroom for VLAN, QinQ. 1842 */ 1843 if (prog && dev->mtu > MAX_XDP_MTU) { 1844 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n", 1845 dev->mtu); 1846 return -EOPNOTSUPP; 1847 } 1848 1849 /* ALL SQs attached to CQs i.e same as RQs, are treated as 1850 * XDP Tx queues and more Tx queues are allocated for 1851 * network stack to send pkts out. 1852 * 1853 * No of Tx queues are either same as Rx queues or whatever 1854 * is left in max no of queues possible. 1855 */ 1856 if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) { 1857 netdev_warn(dev, 1858 "Failed to attach BPF prog, RXQs + TXQs > Max %d\n", 1859 nic->max_queues); 1860 return -ENOMEM; 1861 } 1862 1863 if (if_up) 1864 nicvf_stop(nic->netdev); 1865 1866 old_prog = xchg(&nic->xdp_prog, prog); 1867 /* Detach old prog, if any */ 1868 if (old_prog) 1869 bpf_prog_put(old_prog); 1870 1871 if (nic->xdp_prog) { 1872 /* Attach BPF program */ 1873 bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1); 1874 bpf_attached = true; 1875 } 1876 1877 /* Calculate Tx queues needed for XDP and network stack */ 1878 nicvf_set_xdp_queues(nic, bpf_attached); 1879 1880 if (if_up) { 1881 /* Reinitialize interface, clean slate */ 1882 nicvf_open(nic->netdev); 1883 netif_trans_update(nic->netdev); 1884 } 1885 1886 return ret; 1887 } 1888 1889 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp) 1890 { 1891 struct nicvf *nic = netdev_priv(netdev); 1892 1893 /* To avoid checks while retrieving buffer address from CQE_RX, 1894 * do not support XDP for T88 pass1.x silicons which are anyway 1895 * not in use widely. 1896 */ 1897 if (pass1_silicon(nic->pdev)) 1898 return -EOPNOTSUPP; 1899 1900 switch (xdp->command) { 1901 case XDP_SETUP_PROG: 1902 return nicvf_xdp_setup(nic, xdp->prog); 1903 default: 1904 return -EINVAL; 1905 } 1906 } 1907 1908 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr) 1909 { 1910 struct hwtstamp_config config; 1911 struct nicvf *nic = netdev_priv(netdev); 1912 1913 if (!nic->ptp_clock) 1914 return -ENODEV; 1915 1916 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1917 return -EFAULT; 1918 1919 switch (config.tx_type) { 1920 case HWTSTAMP_TX_OFF: 1921 case HWTSTAMP_TX_ON: 1922 break; 1923 default: 1924 return -ERANGE; 1925 } 1926 1927 switch (config.rx_filter) { 1928 case HWTSTAMP_FILTER_NONE: 1929 nic->hw_rx_tstamp = false; 1930 break; 1931 case HWTSTAMP_FILTER_ALL: 1932 case HWTSTAMP_FILTER_SOME: 1933 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1934 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1935 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1936 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1937 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1938 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1939 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1940 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1941 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1942 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1943 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1944 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1945 nic->hw_rx_tstamp = true; 1946 config.rx_filter = HWTSTAMP_FILTER_ALL; 1947 break; 1948 default: 1949 return -ERANGE; 1950 } 1951 1952 if (netif_running(netdev)) 1953 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp); 1954 1955 if (copy_to_user(ifr->ifr_data, &config, sizeof(config))) 1956 return -EFAULT; 1957 1958 return 0; 1959 } 1960 1961 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd) 1962 { 1963 switch (cmd) { 1964 case SIOCSHWTSTAMP: 1965 return nicvf_config_hwtstamp(netdev, req); 1966 default: 1967 return -EOPNOTSUPP; 1968 } 1969 } 1970 1971 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs, 1972 struct nicvf *nic) 1973 { 1974 union nic_mbx mbx = {}; 1975 int idx; 1976 1977 /* From the inside of VM code flow we have only 128 bits memory 1978 * available to send message to host's PF, so send all mc addrs 1979 * one by one, starting from flush command in case if kernel 1980 * requests to configure specific MAC filtering 1981 */ 1982 1983 /* flush DMAC filters and reset RX mode */ 1984 mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST; 1985 if (nicvf_send_msg_to_pf(nic, &mbx) < 0) 1986 goto free_mc; 1987 1988 if (mode & BGX_XCAST_MCAST_FILTER) { 1989 /* once enabling filtering, we need to signal to PF to add 1990 * its' own LMAC to the filter to accept packets for it. 1991 */ 1992 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST; 1993 mbx.xcast.mac = 0; 1994 if (nicvf_send_msg_to_pf(nic, &mbx) < 0) 1995 goto free_mc; 1996 } 1997 1998 /* check if we have any specific MACs to be added to PF DMAC filter */ 1999 if (mc_addrs) { 2000 /* now go through kernel list of MACs and add them one by one */ 2001 for (idx = 0; idx < mc_addrs->count; idx++) { 2002 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST; 2003 mbx.xcast.mac = mc_addrs->mc[idx]; 2004 if (nicvf_send_msg_to_pf(nic, &mbx) < 0) 2005 goto free_mc; 2006 } 2007 } 2008 2009 /* and finally set rx mode for PF accordingly */ 2010 mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST; 2011 mbx.xcast.mode = mode; 2012 2013 nicvf_send_msg_to_pf(nic, &mbx); 2014 free_mc: 2015 kfree(mc_addrs); 2016 } 2017 2018 static void nicvf_set_rx_mode_task(struct work_struct *work_arg) 2019 { 2020 struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work, 2021 work); 2022 struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work); 2023 u8 mode; 2024 struct xcast_addr_list *mc; 2025 2026 /* Save message data locally to prevent them from 2027 * being overwritten by next ndo_set_rx_mode call(). 2028 */ 2029 spin_lock_bh(&nic->rx_mode_wq_lock); 2030 mode = vf_work->mode; 2031 mc = vf_work->mc; 2032 vf_work->mc = NULL; 2033 spin_unlock_bh(&nic->rx_mode_wq_lock); 2034 2035 __nicvf_set_rx_mode_task(mode, mc, nic); 2036 } 2037 2038 static void nicvf_set_rx_mode(struct net_device *netdev) 2039 { 2040 struct nicvf *nic = netdev_priv(netdev); 2041 struct netdev_hw_addr *ha; 2042 struct xcast_addr_list *mc_list = NULL; 2043 u8 mode = 0; 2044 2045 if (netdev->flags & IFF_PROMISC) { 2046 mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT; 2047 } else { 2048 if (netdev->flags & IFF_BROADCAST) 2049 mode |= BGX_XCAST_BCAST_ACCEPT; 2050 2051 if (netdev->flags & IFF_ALLMULTI) { 2052 mode |= BGX_XCAST_MCAST_ACCEPT; 2053 } else if (netdev->flags & IFF_MULTICAST) { 2054 mode |= BGX_XCAST_MCAST_FILTER; 2055 /* here we need to copy mc addrs */ 2056 if (netdev_mc_count(netdev)) { 2057 mc_list = kmalloc(struct_size(mc_list, mc, 2058 netdev_mc_count(netdev)), 2059 GFP_ATOMIC); 2060 if (unlikely(!mc_list)) 2061 return; 2062 mc_list->count = 0; 2063 netdev_hw_addr_list_for_each(ha, &netdev->mc) { 2064 mc_list->mc[mc_list->count] = 2065 ether_addr_to_u64(ha->addr); 2066 mc_list->count++; 2067 } 2068 } 2069 } 2070 } 2071 spin_lock(&nic->rx_mode_wq_lock); 2072 kfree(nic->rx_mode_work.mc); 2073 nic->rx_mode_work.mc = mc_list; 2074 nic->rx_mode_work.mode = mode; 2075 queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work); 2076 spin_unlock(&nic->rx_mode_wq_lock); 2077 } 2078 2079 static const struct net_device_ops nicvf_netdev_ops = { 2080 .ndo_open = nicvf_open, 2081 .ndo_stop = nicvf_stop, 2082 .ndo_start_xmit = nicvf_xmit, 2083 .ndo_change_mtu = nicvf_change_mtu, 2084 .ndo_set_mac_address = nicvf_set_mac_address, 2085 .ndo_get_stats64 = nicvf_get_stats64, 2086 .ndo_tx_timeout = nicvf_tx_timeout, 2087 .ndo_fix_features = nicvf_fix_features, 2088 .ndo_set_features = nicvf_set_features, 2089 .ndo_bpf = nicvf_xdp, 2090 .ndo_eth_ioctl = nicvf_ioctl, 2091 .ndo_set_rx_mode = nicvf_set_rx_mode, 2092 }; 2093 2094 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2095 { 2096 struct device *dev = &pdev->dev; 2097 struct net_device *netdev; 2098 struct nicvf *nic; 2099 int err, qcount; 2100 u16 sdevid; 2101 struct cavium_ptp *ptp_clock; 2102 2103 ptp_clock = cavium_ptp_get(); 2104 if (IS_ERR(ptp_clock)) { 2105 if (PTR_ERR(ptp_clock) == -ENODEV) 2106 /* In virtualized environment we proceed without ptp */ 2107 ptp_clock = NULL; 2108 else 2109 return PTR_ERR(ptp_clock); 2110 } 2111 2112 err = pci_enable_device(pdev); 2113 if (err) 2114 return dev_err_probe(dev, err, "Failed to enable PCI device\n"); 2115 2116 err = pci_request_regions(pdev, DRV_NAME); 2117 if (err) { 2118 dev_err(dev, "PCI request regions failed 0x%x\n", err); 2119 goto err_disable_device; 2120 } 2121 2122 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); 2123 if (err) { 2124 dev_err(dev, "Unable to get usable DMA configuration\n"); 2125 goto err_release_regions; 2126 } 2127 2128 qcount = netif_get_num_default_rss_queues(); 2129 2130 /* Restrict multiqset support only for host bound VFs */ 2131 if (pdev->is_virtfn) { 2132 /* Set max number of queues per VF */ 2133 qcount = min_t(int, num_online_cpus(), 2134 (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS); 2135 } 2136 2137 netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount); 2138 if (!netdev) { 2139 err = -ENOMEM; 2140 goto err_release_regions; 2141 } 2142 2143 pci_set_drvdata(pdev, netdev); 2144 2145 SET_NETDEV_DEV(netdev, &pdev->dev); 2146 2147 nic = netdev_priv(netdev); 2148 nic->netdev = netdev; 2149 nic->pdev = pdev; 2150 nic->pnicvf = nic; 2151 nic->max_queues = qcount; 2152 /* If no of CPUs are too low, there won't be any queues left 2153 * for XDP_TX, hence double it. 2154 */ 2155 if (!nic->t88) 2156 nic->max_queues *= 2; 2157 nic->ptp_clock = ptp_clock; 2158 2159 /* Initialize mutex that serializes usage of VF's mailbox */ 2160 mutex_init(&nic->rx_mode_mtx); 2161 2162 /* MAP VF's configuration registers */ 2163 nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0); 2164 if (!nic->reg_base) { 2165 dev_err(dev, "Cannot map config register space, aborting\n"); 2166 err = -ENOMEM; 2167 goto err_free_netdev; 2168 } 2169 2170 nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats); 2171 if (!nic->drv_stats) { 2172 err = -ENOMEM; 2173 goto err_free_netdev; 2174 } 2175 2176 err = nicvf_set_qset_resources(nic); 2177 if (err) 2178 goto err_free_netdev; 2179 2180 /* Check if PF is alive and get MAC address for this VF */ 2181 err = nicvf_register_misc_interrupt(nic); 2182 if (err) 2183 goto err_free_netdev; 2184 2185 nicvf_send_vf_struct(nic); 2186 2187 if (!pass1_silicon(nic->pdev)) 2188 nic->hw_tso = true; 2189 2190 /* Get iommu domain for iova to physical addr conversion */ 2191 nic->iommu_domain = iommu_get_domain_for_dev(dev); 2192 2193 pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid); 2194 if (sdevid == 0xA134) 2195 nic->t88 = true; 2196 2197 /* Check if this VF is in QS only mode */ 2198 if (nic->sqs_mode) 2199 return 0; 2200 2201 err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues); 2202 if (err) 2203 goto err_unregister_interrupts; 2204 2205 netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG | 2206 NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 | 2207 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2208 NETIF_F_HW_VLAN_CTAG_RX); 2209 2210 netdev->hw_features |= NETIF_F_RXHASH; 2211 2212 netdev->features |= netdev->hw_features; 2213 netdev->hw_features |= NETIF_F_LOOPBACK; 2214 2215 netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | 2216 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6; 2217 2218 netdev->netdev_ops = &nicvf_netdev_ops; 2219 netdev->watchdog_timeo = NICVF_TX_TIMEOUT; 2220 2221 netdev->xdp_features = NETDEV_XDP_ACT_BASIC; 2222 2223 /* MTU range: 64 - 9200 */ 2224 netdev->min_mtu = NIC_HW_MIN_FRS; 2225 netdev->max_mtu = NIC_HW_MAX_FRS; 2226 2227 INIT_WORK(&nic->reset_task, nicvf_reset_task); 2228 2229 nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d", 2230 WQ_MEM_RECLAIM, 2231 nic->vf_id); 2232 if (!nic->nicvf_rx_mode_wq) { 2233 err = -ENOMEM; 2234 dev_err(dev, "Failed to allocate work queue\n"); 2235 goto err_unregister_interrupts; 2236 } 2237 2238 INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task); 2239 spin_lock_init(&nic->rx_mode_wq_lock); 2240 2241 err = register_netdev(netdev); 2242 if (err) { 2243 dev_err(dev, "Failed to register netdevice\n"); 2244 goto err_destroy_workqueue; 2245 } 2246 2247 nic->msg_enable = debug; 2248 2249 nicvf_set_ethtool_ops(netdev); 2250 2251 return 0; 2252 2253 err_destroy_workqueue: 2254 destroy_workqueue(nic->nicvf_rx_mode_wq); 2255 err_unregister_interrupts: 2256 nicvf_unregister_interrupts(nic); 2257 err_free_netdev: 2258 pci_set_drvdata(pdev, NULL); 2259 if (nic->drv_stats) 2260 free_percpu(nic->drv_stats); 2261 free_netdev(netdev); 2262 err_release_regions: 2263 pci_release_regions(pdev); 2264 err_disable_device: 2265 pci_disable_device(pdev); 2266 return err; 2267 } 2268 2269 static void nicvf_remove(struct pci_dev *pdev) 2270 { 2271 struct net_device *netdev = pci_get_drvdata(pdev); 2272 struct nicvf *nic; 2273 struct net_device *pnetdev; 2274 2275 if (!netdev) 2276 return; 2277 2278 nic = netdev_priv(netdev); 2279 pnetdev = nic->pnicvf->netdev; 2280 2281 /* Check if this Qset is assigned to different VF. 2282 * If yes, clean primary and all secondary Qsets. 2283 */ 2284 if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED)) 2285 unregister_netdev(pnetdev); 2286 if (nic->nicvf_rx_mode_wq) { 2287 destroy_workqueue(nic->nicvf_rx_mode_wq); 2288 nic->nicvf_rx_mode_wq = NULL; 2289 } 2290 nicvf_unregister_interrupts(nic); 2291 pci_set_drvdata(pdev, NULL); 2292 if (nic->drv_stats) 2293 free_percpu(nic->drv_stats); 2294 cavium_ptp_put(nic->ptp_clock); 2295 free_netdev(netdev); 2296 pci_release_regions(pdev); 2297 pci_disable_device(pdev); 2298 } 2299 2300 static void nicvf_shutdown(struct pci_dev *pdev) 2301 { 2302 nicvf_remove(pdev); 2303 } 2304 2305 static struct pci_driver nicvf_driver = { 2306 .name = DRV_NAME, 2307 .id_table = nicvf_id_table, 2308 .probe = nicvf_probe, 2309 .remove = nicvf_remove, 2310 .shutdown = nicvf_shutdown, 2311 }; 2312 2313 static int __init nicvf_init_module(void) 2314 { 2315 pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION); 2316 return pci_register_driver(&nicvf_driver); 2317 } 2318 2319 static void __exit nicvf_cleanup_module(void) 2320 { 2321 pci_unregister_driver(&nicvf_driver); 2322 } 2323 2324 module_init(nicvf_init_module); 2325 module_exit(nicvf_cleanup_module); 2326