1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Cavium, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/interrupt.h>
8 #include <linux/pci.h>
9 #include <linux/netdevice.h>
10 #include <linux/if_vlan.h>
11 #include <linux/etherdevice.h>
12 #include <linux/ethtool.h>
13 #include <linux/log2.h>
14 #include <linux/prefetch.h>
15 #include <linux/irq.h>
16 #include <linux/iommu.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_trace.h>
19 #include <linux/filter.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/workqueue.h>
22 
23 #include "nic_reg.h"
24 #include "nic.h"
25 #include "nicvf_queues.h"
26 #include "thunder_bgx.h"
27 #include "../common/cavium_ptp.h"
28 
29 #define DRV_NAME	"nicvf"
30 #define DRV_VERSION	"1.0"
31 
32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
33  * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
34  * this value, keeping headroom for the 14 byte Ethernet header and two
35  * VLAN tags (for QinQ)
36  */
37 #define MAX_XDP_MTU	(1530 - ETH_HLEN - VLAN_HLEN * 2)
38 
39 /* Supported devices */
40 static const struct pci_device_id nicvf_id_table[] = {
41 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
43 			 PCI_VENDOR_ID_CAVIUM,
44 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
45 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
47 			 PCI_VENDOR_ID_CAVIUM,
48 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
49 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 			 PCI_VENDOR_ID_CAVIUM,
52 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
53 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
54 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
55 			 PCI_VENDOR_ID_CAVIUM,
56 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
57 	{ 0, }  /* end of table */
58 };
59 
60 MODULE_AUTHOR("Sunil Goutham");
61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
62 MODULE_LICENSE("GPL v2");
63 MODULE_VERSION(DRV_VERSION);
64 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
65 
66 static int debug = 0x00;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Debug message level bitmap");
69 
70 static int cpi_alg = CPI_ALG_NONE;
71 module_param(cpi_alg, int, 0444);
72 MODULE_PARM_DESC(cpi_alg,
73 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
74 
75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
76 {
77 	if (nic->sqs_mode)
78 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
79 	else
80 		return qidx;
81 }
82 
83 /* The Cavium ThunderX network controller can *only* be found in SoCs
84  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
85  * registers on this platform are implicitly strongly ordered with respect
86  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
87  * with no memory barriers in this driver.  The readq()/writeq() functions add
88  * explicit ordering operation which in this case are redundant, and only
89  * add overhead.
90  */
91 
92 /* Register read/write APIs */
93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
94 {
95 	writeq_relaxed(val, nic->reg_base + offset);
96 }
97 
98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
99 {
100 	return readq_relaxed(nic->reg_base + offset);
101 }
102 
103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
104 			   u64 qidx, u64 val)
105 {
106 	void __iomem *addr = nic->reg_base + offset;
107 
108 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110 
111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
112 {
113 	void __iomem *addr = nic->reg_base + offset;
114 
115 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
116 }
117 
118 /* VF -> PF mailbox communication */
119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
120 {
121 	u64 *msg = (u64 *)mbx;
122 
123 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
124 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
125 }
126 
127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
128 {
129 	unsigned long timeout;
130 	int ret = 0;
131 
132 	mutex_lock(&nic->rx_mode_mtx);
133 
134 	nic->pf_acked = false;
135 	nic->pf_nacked = false;
136 
137 	nicvf_write_to_mbx(nic, mbx);
138 
139 	timeout = jiffies + msecs_to_jiffies(NIC_MBOX_MSG_TIMEOUT);
140 	/* Wait for previous message to be acked, timeout 2sec */
141 	while (!nic->pf_acked) {
142 		if (nic->pf_nacked) {
143 			netdev_err(nic->netdev,
144 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
145 				   (mbx->msg.msg & 0xFF), nic->vf_id);
146 			ret = -EINVAL;
147 			break;
148 		}
149 		usleep_range(8000, 10000);
150 		if (nic->pf_acked)
151 			break;
152 		if (time_after(jiffies, timeout)) {
153 			netdev_err(nic->netdev,
154 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
155 				   (mbx->msg.msg & 0xFF), nic->vf_id);
156 			ret = -EBUSY;
157 			break;
158 		}
159 	}
160 	mutex_unlock(&nic->rx_mode_mtx);
161 	return ret;
162 }
163 
164 /* Checks if VF is able to comminicate with PF
165 * and also gets the VNIC number this VF is associated to.
166 */
167 static int nicvf_check_pf_ready(struct nicvf *nic)
168 {
169 	union nic_mbx mbx = {};
170 
171 	mbx.msg.msg = NIC_MBOX_MSG_READY;
172 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
173 		netdev_err(nic->netdev,
174 			   "PF didn't respond to READY msg\n");
175 		return 0;
176 	}
177 
178 	return 1;
179 }
180 
181 static void nicvf_send_cfg_done(struct nicvf *nic)
182 {
183 	union nic_mbx mbx = {};
184 
185 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
186 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
187 		netdev_err(nic->netdev,
188 			   "PF didn't respond to CFG DONE msg\n");
189 	}
190 }
191 
192 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
193 {
194 	if (bgx->rx)
195 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
196 	else
197 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
198 }
199 
200 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
201 {
202 	union nic_mbx mbx = {};
203 	u64 *mbx_data;
204 	u64 mbx_addr;
205 	int i;
206 
207 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
208 	mbx_data = (u64 *)&mbx;
209 
210 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
211 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
212 		mbx_data++;
213 		mbx_addr += sizeof(u64);
214 	}
215 
216 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
217 	switch (mbx.msg.msg) {
218 	case NIC_MBOX_MSG_READY:
219 		nic->pf_acked = true;
220 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
221 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
222 		nic->node = mbx.nic_cfg.node_id;
223 		if (!nic->set_mac_pending)
224 			eth_hw_addr_set(nic->netdev, mbx.nic_cfg.mac_addr);
225 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
226 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
227 		nic->link_up = false;
228 		nic->duplex = 0;
229 		nic->speed = 0;
230 		break;
231 	case NIC_MBOX_MSG_ACK:
232 		nic->pf_acked = true;
233 		break;
234 	case NIC_MBOX_MSG_NACK:
235 		nic->pf_nacked = true;
236 		break;
237 	case NIC_MBOX_MSG_RSS_SIZE:
238 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
239 		nic->pf_acked = true;
240 		break;
241 	case NIC_MBOX_MSG_BGX_STATS:
242 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
243 		nic->pf_acked = true;
244 		break;
245 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
246 		nic->pf_acked = true;
247 		if (nic->link_up != mbx.link_status.link_up) {
248 			nic->link_up = mbx.link_status.link_up;
249 			nic->duplex = mbx.link_status.duplex;
250 			nic->speed = mbx.link_status.speed;
251 			nic->mac_type = mbx.link_status.mac_type;
252 			if (nic->link_up) {
253 				netdev_info(nic->netdev,
254 					    "Link is Up %d Mbps %s duplex\n",
255 					    nic->speed,
256 					    nic->duplex == DUPLEX_FULL ?
257 					    "Full" : "Half");
258 				netif_carrier_on(nic->netdev);
259 				netif_tx_start_all_queues(nic->netdev);
260 			} else {
261 				netdev_info(nic->netdev, "Link is Down\n");
262 				netif_carrier_off(nic->netdev);
263 				netif_tx_stop_all_queues(nic->netdev);
264 			}
265 		}
266 		break;
267 	case NIC_MBOX_MSG_ALLOC_SQS:
268 		nic->sqs_count = mbx.sqs_alloc.qs_count;
269 		nic->pf_acked = true;
270 		break;
271 	case NIC_MBOX_MSG_SNICVF_PTR:
272 		/* Primary VF: make note of secondary VF's pointer
273 		 * to be used while packet transmission.
274 		 */
275 		nic->snicvf[mbx.nicvf.sqs_id] =
276 			(struct nicvf *)mbx.nicvf.nicvf;
277 		nic->pf_acked = true;
278 		break;
279 	case NIC_MBOX_MSG_PNICVF_PTR:
280 		/* Secondary VF/Qset: make note of primary VF's pointer
281 		 * to be used while packet reception, to handover packet
282 		 * to primary VF's netdev.
283 		 */
284 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
285 		nic->pf_acked = true;
286 		break;
287 	case NIC_MBOX_MSG_PFC:
288 		nic->pfc.autoneg = mbx.pfc.autoneg;
289 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
290 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
291 		nic->pf_acked = true;
292 		break;
293 	default:
294 		netdev_err(nic->netdev,
295 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
296 		break;
297 	}
298 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
299 }
300 
301 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
302 {
303 	union nic_mbx mbx = {};
304 
305 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
306 	mbx.mac.vf_id = nic->vf_id;
307 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
308 
309 	return nicvf_send_msg_to_pf(nic, &mbx);
310 }
311 
312 static void nicvf_config_cpi(struct nicvf *nic)
313 {
314 	union nic_mbx mbx = {};
315 
316 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
317 	mbx.cpi_cfg.vf_id = nic->vf_id;
318 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
319 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
320 
321 	nicvf_send_msg_to_pf(nic, &mbx);
322 }
323 
324 static void nicvf_get_rss_size(struct nicvf *nic)
325 {
326 	union nic_mbx mbx = {};
327 
328 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
329 	mbx.rss_size.vf_id = nic->vf_id;
330 	nicvf_send_msg_to_pf(nic, &mbx);
331 }
332 
333 void nicvf_config_rss(struct nicvf *nic)
334 {
335 	union nic_mbx mbx = {};
336 	struct nicvf_rss_info *rss = &nic->rss_info;
337 	int ind_tbl_len = rss->rss_size;
338 	int i, nextq = 0;
339 
340 	mbx.rss_cfg.vf_id = nic->vf_id;
341 	mbx.rss_cfg.hash_bits = rss->hash_bits;
342 	while (ind_tbl_len) {
343 		mbx.rss_cfg.tbl_offset = nextq;
344 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
345 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
346 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
347 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
348 
349 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
350 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
351 
352 		nicvf_send_msg_to_pf(nic, &mbx);
353 
354 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
355 	}
356 }
357 
358 void nicvf_set_rss_key(struct nicvf *nic)
359 {
360 	struct nicvf_rss_info *rss = &nic->rss_info;
361 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
362 	int idx;
363 
364 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
365 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
366 		key_addr += sizeof(u64);
367 	}
368 }
369 
370 static int nicvf_rss_init(struct nicvf *nic)
371 {
372 	struct nicvf_rss_info *rss = &nic->rss_info;
373 	int idx;
374 
375 	nicvf_get_rss_size(nic);
376 
377 	if (cpi_alg != CPI_ALG_NONE) {
378 		rss->enable = false;
379 		rss->hash_bits = 0;
380 		return 0;
381 	}
382 
383 	rss->enable = true;
384 
385 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
386 	nicvf_set_rss_key(nic);
387 
388 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
389 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
390 
391 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
392 
393 	for (idx = 0; idx < rss->rss_size; idx++)
394 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
395 							       nic->rx_queues);
396 	nicvf_config_rss(nic);
397 	return 1;
398 }
399 
400 /* Request PF to allocate additional Qsets */
401 static void nicvf_request_sqs(struct nicvf *nic)
402 {
403 	union nic_mbx mbx = {};
404 	int sqs;
405 	int sqs_count = nic->sqs_count;
406 	int rx_queues = 0, tx_queues = 0;
407 
408 	/* Only primary VF should request */
409 	if (nic->sqs_mode ||  !nic->sqs_count)
410 		return;
411 
412 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
413 	mbx.sqs_alloc.vf_id = nic->vf_id;
414 	mbx.sqs_alloc.qs_count = nic->sqs_count;
415 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
416 		/* No response from PF */
417 		nic->sqs_count = 0;
418 		return;
419 	}
420 
421 	/* Return if no Secondary Qsets available */
422 	if (!nic->sqs_count)
423 		return;
424 
425 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
426 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
427 
428 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
429 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
430 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
431 
432 	/* Set no of Rx/Tx queues in each of the SQsets */
433 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
434 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
435 		mbx.nicvf.vf_id = nic->vf_id;
436 		mbx.nicvf.sqs_id = sqs;
437 		nicvf_send_msg_to_pf(nic, &mbx);
438 
439 		nic->snicvf[sqs]->sqs_id = sqs;
440 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
441 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
442 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
443 		} else {
444 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
445 			rx_queues = 0;
446 		}
447 
448 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
449 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
450 			tx_queues -= MAX_SND_QUEUES_PER_QS;
451 		} else {
452 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
453 			tx_queues = 0;
454 		}
455 
456 		nic->snicvf[sqs]->qs->cq_cnt =
457 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
458 
459 		/* Initialize secondary Qset's queues and its interrupts */
460 		nicvf_open(nic->snicvf[sqs]->netdev);
461 	}
462 
463 	/* Update stack with actual Rx/Tx queue count allocated */
464 	if (sqs_count != nic->sqs_count)
465 		nicvf_set_real_num_queues(nic->netdev,
466 					  nic->tx_queues, nic->rx_queues);
467 }
468 
469 /* Send this Qset's nicvf pointer to PF.
470  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
471  * so that packets received by these Qsets can use primary VF's netdev
472  */
473 static void nicvf_send_vf_struct(struct nicvf *nic)
474 {
475 	union nic_mbx mbx = {};
476 
477 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
478 	mbx.nicvf.sqs_mode = nic->sqs_mode;
479 	mbx.nicvf.nicvf = (u64)nic;
480 	nicvf_send_msg_to_pf(nic, &mbx);
481 }
482 
483 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
484 {
485 	union nic_mbx mbx = {};
486 
487 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
488 	nicvf_send_msg_to_pf(nic, &mbx);
489 }
490 
491 int nicvf_set_real_num_queues(struct net_device *netdev,
492 			      int tx_queues, int rx_queues)
493 {
494 	int err = 0;
495 
496 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
497 	if (err) {
498 		netdev_err(netdev,
499 			   "Failed to set no of Tx queues: %d\n", tx_queues);
500 		return err;
501 	}
502 
503 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
504 	if (err)
505 		netdev_err(netdev,
506 			   "Failed to set no of Rx queues: %d\n", rx_queues);
507 	return err;
508 }
509 
510 static int nicvf_init_resources(struct nicvf *nic)
511 {
512 	int err;
513 
514 	/* Enable Qset */
515 	nicvf_qset_config(nic, true);
516 
517 	/* Initialize queues and HW for data transfer */
518 	err = nicvf_config_data_transfer(nic, true);
519 	if (err) {
520 		netdev_err(nic->netdev,
521 			   "Failed to alloc/config VF's QSet resources\n");
522 		return err;
523 	}
524 
525 	return 0;
526 }
527 
528 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
529 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
530 				struct rcv_queue *rq, struct sk_buff **skb)
531 {
532 	unsigned char *hard_start, *data;
533 	struct xdp_buff xdp;
534 	struct page *page;
535 	u32 action;
536 	u16 len, offset = 0;
537 	u64 dma_addr, cpu_addr;
538 	void *orig_data;
539 
540 	/* Retrieve packet buffer's DMA address and length */
541 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
542 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
543 
544 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
545 	if (!cpu_addr)
546 		return false;
547 	cpu_addr = (u64)phys_to_virt(cpu_addr);
548 	page = virt_to_page((void *)cpu_addr);
549 
550 	xdp_init_buff(&xdp, RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
551 		      &rq->xdp_rxq);
552 	hard_start = page_address(page);
553 	data = (unsigned char *)cpu_addr;
554 	xdp_prepare_buff(&xdp, hard_start, data - hard_start, len, false);
555 	orig_data = xdp.data;
556 
557 	action = bpf_prog_run_xdp(prog, &xdp);
558 
559 	len = xdp.data_end - xdp.data;
560 	/* Check if XDP program has changed headers */
561 	if (orig_data != xdp.data) {
562 		offset = orig_data - xdp.data;
563 		dma_addr -= offset;
564 	}
565 
566 	switch (action) {
567 	case XDP_PASS:
568 		/* Check if it's a recycled page, if not
569 		 * unmap the DMA mapping.
570 		 *
571 		 * Recycled page holds an extra reference.
572 		 */
573 		if (page_ref_count(page) == 1) {
574 			dma_addr &= PAGE_MASK;
575 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
576 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
577 					     DMA_FROM_DEVICE,
578 					     DMA_ATTR_SKIP_CPU_SYNC);
579 		}
580 
581 		/* Build SKB and pass on packet to network stack */
582 		*skb = build_skb(xdp.data,
583 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
584 		if (!*skb)
585 			put_page(page);
586 		else
587 			skb_put(*skb, len);
588 		return false;
589 	case XDP_TX:
590 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
591 		return true;
592 	default:
593 		bpf_warn_invalid_xdp_action(action);
594 		fallthrough;
595 	case XDP_ABORTED:
596 		trace_xdp_exception(nic->netdev, prog, action);
597 		fallthrough;
598 	case XDP_DROP:
599 		/* Check if it's a recycled page, if not
600 		 * unmap the DMA mapping.
601 		 *
602 		 * Recycled page holds an extra reference.
603 		 */
604 		if (page_ref_count(page) == 1) {
605 			dma_addr &= PAGE_MASK;
606 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
607 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
608 					     DMA_FROM_DEVICE,
609 					     DMA_ATTR_SKIP_CPU_SYNC);
610 		}
611 		put_page(page);
612 		return true;
613 	}
614 	return false;
615 }
616 
617 static void nicvf_snd_ptp_handler(struct net_device *netdev,
618 				  struct cqe_send_t *cqe_tx)
619 {
620 	struct nicvf *nic = netdev_priv(netdev);
621 	struct skb_shared_hwtstamps ts;
622 	u64 ns;
623 
624 	nic = nic->pnicvf;
625 
626 	/* Sync for 'ptp_skb' */
627 	smp_rmb();
628 
629 	/* New timestamp request can be queued now */
630 	atomic_set(&nic->tx_ptp_skbs, 0);
631 
632 	/* Check for timestamp requested skb */
633 	if (!nic->ptp_skb)
634 		return;
635 
636 	/* Check if timestamping is timedout, which is set to 10us */
637 	if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
638 	    cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
639 		goto no_tstamp;
640 
641 	/* Get the timestamp */
642 	memset(&ts, 0, sizeof(ts));
643 	ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
644 	ts.hwtstamp = ns_to_ktime(ns);
645 	skb_tstamp_tx(nic->ptp_skb, &ts);
646 
647 no_tstamp:
648 	/* Free the original skb */
649 	dev_kfree_skb_any(nic->ptp_skb);
650 	nic->ptp_skb = NULL;
651 	/* Sync 'ptp_skb' */
652 	smp_wmb();
653 }
654 
655 static void nicvf_snd_pkt_handler(struct net_device *netdev,
656 				  struct cqe_send_t *cqe_tx,
657 				  int budget, int *subdesc_cnt,
658 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
659 {
660 	struct sk_buff *skb = NULL;
661 	struct page *page;
662 	struct nicvf *nic = netdev_priv(netdev);
663 	struct snd_queue *sq;
664 	struct sq_hdr_subdesc *hdr;
665 	struct sq_hdr_subdesc *tso_sqe;
666 
667 	sq = &nic->qs->sq[cqe_tx->sq_idx];
668 
669 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
670 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
671 		return;
672 
673 	/* Check for errors */
674 	if (cqe_tx->send_status)
675 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
676 
677 	/* Is this a XDP designated Tx queue */
678 	if (sq->is_xdp) {
679 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
680 		/* Check if it's recycled page or else unmap DMA mapping */
681 		if (page && (page_ref_count(page) == 1))
682 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
683 						 hdr->subdesc_cnt);
684 
685 		/* Release page reference for recycling */
686 		if (page)
687 			put_page(page);
688 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
689 		*subdesc_cnt += hdr->subdesc_cnt + 1;
690 		return;
691 	}
692 
693 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
694 	if (skb) {
695 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
696 		if (hdr->dont_send) {
697 			/* Get actual TSO descriptors and free them */
698 			tso_sqe =
699 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
700 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
701 						 tso_sqe->subdesc_cnt);
702 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
703 		} else {
704 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
705 						 hdr->subdesc_cnt);
706 		}
707 		*subdesc_cnt += hdr->subdesc_cnt + 1;
708 		prefetch(skb);
709 		(*tx_pkts)++;
710 		*tx_bytes += skb->len;
711 		/* If timestamp is requested for this skb, don't free it */
712 		if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
713 		    !nic->pnicvf->ptp_skb)
714 			nic->pnicvf->ptp_skb = skb;
715 		else
716 			napi_consume_skb(skb, budget);
717 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
718 	} else {
719 		/* In case of SW TSO on 88xx, only last segment will have
720 		 * a SKB attached, so just free SQEs here.
721 		 */
722 		if (!nic->hw_tso)
723 			*subdesc_cnt += hdr->subdesc_cnt + 1;
724 	}
725 }
726 
727 static inline void nicvf_set_rxhash(struct net_device *netdev,
728 				    struct cqe_rx_t *cqe_rx,
729 				    struct sk_buff *skb)
730 {
731 	u8 hash_type;
732 	u32 hash;
733 
734 	if (!(netdev->features & NETIF_F_RXHASH))
735 		return;
736 
737 	switch (cqe_rx->rss_alg) {
738 	case RSS_ALG_TCP_IP:
739 	case RSS_ALG_UDP_IP:
740 		hash_type = PKT_HASH_TYPE_L4;
741 		hash = cqe_rx->rss_tag;
742 		break;
743 	case RSS_ALG_IP:
744 		hash_type = PKT_HASH_TYPE_L3;
745 		hash = cqe_rx->rss_tag;
746 		break;
747 	default:
748 		hash_type = PKT_HASH_TYPE_NONE;
749 		hash = 0;
750 	}
751 
752 	skb_set_hash(skb, hash, hash_type);
753 }
754 
755 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
756 {
757 	u64 ns;
758 
759 	if (!nic->ptp_clock || !nic->hw_rx_tstamp)
760 		return;
761 
762 	/* The first 8 bytes is the timestamp */
763 	ns = cavium_ptp_tstamp2time(nic->ptp_clock,
764 				    be64_to_cpu(*(__be64 *)skb->data));
765 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
766 
767 	__skb_pull(skb, 8);
768 }
769 
770 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
771 				  struct napi_struct *napi,
772 				  struct cqe_rx_t *cqe_rx,
773 				  struct snd_queue *sq, struct rcv_queue *rq)
774 {
775 	struct sk_buff *skb = NULL;
776 	struct nicvf *nic = netdev_priv(netdev);
777 	struct nicvf *snic = nic;
778 	int err = 0;
779 	int rq_idx;
780 
781 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
782 
783 	if (nic->sqs_mode) {
784 		/* Use primary VF's 'nicvf' struct */
785 		nic = nic->pnicvf;
786 		netdev = nic->netdev;
787 	}
788 
789 	/* Check for errors */
790 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
791 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
792 		if (err && !cqe_rx->rb_cnt)
793 			return;
794 	}
795 
796 	/* For XDP, ignore pkts spanning multiple pages */
797 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
798 		/* Packet consumed by XDP */
799 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
800 			return;
801 	} else {
802 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
803 					nic->xdp_prog ? true : false);
804 	}
805 
806 	if (!skb)
807 		return;
808 
809 	if (netif_msg_pktdata(nic)) {
810 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
811 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
812 			       skb->data, skb->len, true);
813 	}
814 
815 	/* If error packet, drop it here */
816 	if (err) {
817 		dev_kfree_skb_any(skb);
818 		return;
819 	}
820 
821 	nicvf_set_rxtstamp(nic, skb);
822 	nicvf_set_rxhash(netdev, cqe_rx, skb);
823 
824 	skb_record_rx_queue(skb, rq_idx);
825 	if (netdev->hw_features & NETIF_F_RXCSUM) {
826 		/* HW by default verifies TCP/UDP/SCTP checksums */
827 		skb->ip_summed = CHECKSUM_UNNECESSARY;
828 	} else {
829 		skb_checksum_none_assert(skb);
830 	}
831 
832 	skb->protocol = eth_type_trans(skb, netdev);
833 
834 	/* Check for stripped VLAN */
835 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
836 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
837 				       ntohs((__force __be16)cqe_rx->vlan_tci));
838 
839 	if (napi && (netdev->features & NETIF_F_GRO))
840 		napi_gro_receive(napi, skb);
841 	else
842 		netif_receive_skb(skb);
843 }
844 
845 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
846 				 struct napi_struct *napi, int budget)
847 {
848 	int processed_cqe, work_done = 0, tx_done = 0;
849 	int cqe_count, cqe_head;
850 	int subdesc_cnt = 0;
851 	struct nicvf *nic = netdev_priv(netdev);
852 	struct queue_set *qs = nic->qs;
853 	struct cmp_queue *cq = &qs->cq[cq_idx];
854 	struct cqe_rx_t *cq_desc;
855 	struct netdev_queue *txq;
856 	struct snd_queue *sq = &qs->sq[cq_idx];
857 	struct rcv_queue *rq = &qs->rq[cq_idx];
858 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
859 
860 	spin_lock_bh(&cq->lock);
861 loop:
862 	processed_cqe = 0;
863 	/* Get no of valid CQ entries to process */
864 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
865 	cqe_count &= CQ_CQE_COUNT;
866 	if (!cqe_count)
867 		goto done;
868 
869 	/* Get head of the valid CQ entries */
870 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
871 	cqe_head &= 0xFFFF;
872 
873 	while (processed_cqe < cqe_count) {
874 		/* Get the CQ descriptor */
875 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
876 		cqe_head++;
877 		cqe_head &= (cq->dmem.q_len - 1);
878 		/* Initiate prefetch for next descriptor */
879 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
880 
881 		if ((work_done >= budget) && napi &&
882 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
883 			break;
884 		}
885 
886 		switch (cq_desc->cqe_type) {
887 		case CQE_TYPE_RX:
888 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
889 			work_done++;
890 		break;
891 		case CQE_TYPE_SEND:
892 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
893 					      budget, &subdesc_cnt,
894 					      &tx_pkts, &tx_bytes);
895 			tx_done++;
896 		break;
897 		case CQE_TYPE_SEND_PTP:
898 			nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
899 		break;
900 		case CQE_TYPE_INVALID:
901 		case CQE_TYPE_RX_SPLIT:
902 		case CQE_TYPE_RX_TCP:
903 			/* Ignore for now */
904 		break;
905 		}
906 		processed_cqe++;
907 	}
908 
909 	/* Ring doorbell to inform H/W to reuse processed CQEs */
910 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
911 			      cq_idx, processed_cqe);
912 
913 	if ((work_done < budget) && napi)
914 		goto loop;
915 
916 done:
917 	/* Update SQ's descriptor free count */
918 	if (subdesc_cnt)
919 		nicvf_put_sq_desc(sq, subdesc_cnt);
920 
921 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
922 	/* Handle XDP TX queues */
923 	if (nic->pnicvf->xdp_prog) {
924 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
925 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
926 			goto out;
927 		}
928 		nic = nic->pnicvf;
929 		txq_idx -= nic->pnicvf->xdp_tx_queues;
930 	}
931 
932 	/* Wakeup TXQ if its stopped earlier due to SQ full */
933 	if (tx_done ||
934 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
935 		netdev = nic->pnicvf->netdev;
936 		txq = netdev_get_tx_queue(netdev, txq_idx);
937 		if (tx_pkts)
938 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
939 
940 		/* To read updated queue and carrier status */
941 		smp_mb();
942 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
943 			netif_tx_wake_queue(txq);
944 			nic = nic->pnicvf;
945 			this_cpu_inc(nic->drv_stats->txq_wake);
946 			netif_warn(nic, tx_err, netdev,
947 				   "Transmit queue wakeup SQ%d\n", txq_idx);
948 		}
949 	}
950 
951 out:
952 	spin_unlock_bh(&cq->lock);
953 	return work_done;
954 }
955 
956 static int nicvf_poll(struct napi_struct *napi, int budget)
957 {
958 	u64  cq_head;
959 	int  work_done = 0;
960 	struct net_device *netdev = napi->dev;
961 	struct nicvf *nic = netdev_priv(netdev);
962 	struct nicvf_cq_poll *cq;
963 
964 	cq = container_of(napi, struct nicvf_cq_poll, napi);
965 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
966 
967 	if (work_done < budget) {
968 		/* Slow packet rate, exit polling */
969 		napi_complete_done(napi, work_done);
970 		/* Re-enable interrupts */
971 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
972 					       cq->cq_idx);
973 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
974 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
975 				      cq->cq_idx, cq_head);
976 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
977 	}
978 	return work_done;
979 }
980 
981 /* Qset error interrupt handler
982  *
983  * As of now only CQ errors are handled
984  */
985 static void nicvf_handle_qs_err(struct tasklet_struct *t)
986 {
987 	struct nicvf *nic = from_tasklet(nic, t, qs_err_task);
988 	struct queue_set *qs = nic->qs;
989 	int qidx;
990 	u64 status;
991 
992 	netif_tx_disable(nic->netdev);
993 
994 	/* Check if it is CQ err */
995 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
996 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
997 					      qidx);
998 		if (!(status & CQ_ERR_MASK))
999 			continue;
1000 		/* Process already queued CQEs and reconfig CQ */
1001 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1002 		nicvf_sq_disable(nic, qidx);
1003 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1004 		nicvf_cmp_queue_config(nic, qs, qidx, true);
1005 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1006 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1007 
1008 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1009 	}
1010 
1011 	netif_tx_start_all_queues(nic->netdev);
1012 	/* Re-enable Qset error interrupt */
1013 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1014 }
1015 
1016 static void nicvf_dump_intr_status(struct nicvf *nic)
1017 {
1018 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1019 		   nicvf_reg_read(nic, NIC_VF_INT));
1020 }
1021 
1022 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1023 {
1024 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1025 	u64 intr;
1026 
1027 	nicvf_dump_intr_status(nic);
1028 
1029 	intr = nicvf_reg_read(nic, NIC_VF_INT);
1030 	/* Check for spurious interrupt */
1031 	if (!(intr & NICVF_INTR_MBOX_MASK))
1032 		return IRQ_HANDLED;
1033 
1034 	nicvf_handle_mbx_intr(nic);
1035 
1036 	return IRQ_HANDLED;
1037 }
1038 
1039 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1040 {
1041 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1042 	struct nicvf *nic = cq_poll->nicvf;
1043 	int qidx = cq_poll->cq_idx;
1044 
1045 	nicvf_dump_intr_status(nic);
1046 
1047 	/* Disable interrupts */
1048 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1049 
1050 	/* Schedule NAPI */
1051 	napi_schedule_irqoff(&cq_poll->napi);
1052 
1053 	/* Clear interrupt */
1054 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1055 
1056 	return IRQ_HANDLED;
1057 }
1058 
1059 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1060 {
1061 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1062 	u8 qidx;
1063 
1064 
1065 	nicvf_dump_intr_status(nic);
1066 
1067 	/* Disable RBDR interrupt and schedule softirq */
1068 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1069 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1070 			continue;
1071 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1072 		tasklet_hi_schedule(&nic->rbdr_task);
1073 		/* Clear interrupt */
1074 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1075 	}
1076 
1077 	return IRQ_HANDLED;
1078 }
1079 
1080 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1081 {
1082 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1083 
1084 	nicvf_dump_intr_status(nic);
1085 
1086 	/* Disable Qset err interrupt and schedule softirq */
1087 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1088 	tasklet_hi_schedule(&nic->qs_err_task);
1089 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1090 
1091 	return IRQ_HANDLED;
1092 }
1093 
1094 static void nicvf_set_irq_affinity(struct nicvf *nic)
1095 {
1096 	int vec, cpu;
1097 
1098 	for (vec = 0; vec < nic->num_vec; vec++) {
1099 		if (!nic->irq_allocated[vec])
1100 			continue;
1101 
1102 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1103 			return;
1104 		 /* CQ interrupts */
1105 		if (vec < NICVF_INTR_ID_SQ)
1106 			/* Leave CPU0 for RBDR and other interrupts */
1107 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1108 		else
1109 			cpu = 0;
1110 
1111 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1112 				nic->affinity_mask[vec]);
1113 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1114 				      nic->affinity_mask[vec]);
1115 	}
1116 }
1117 
1118 static int nicvf_register_interrupts(struct nicvf *nic)
1119 {
1120 	int irq, ret = 0;
1121 
1122 	for_each_cq_irq(irq)
1123 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1124 			nic->pnicvf->netdev->name,
1125 			nicvf_netdev_qidx(nic, irq));
1126 
1127 	for_each_sq_irq(irq)
1128 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1129 			nic->pnicvf->netdev->name,
1130 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1131 
1132 	for_each_rbdr_irq(irq)
1133 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1134 			nic->pnicvf->netdev->name,
1135 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1136 
1137 	/* Register CQ interrupts */
1138 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1139 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1140 				  nicvf_intr_handler,
1141 				  0, nic->irq_name[irq], nic->napi[irq]);
1142 		if (ret)
1143 			goto err;
1144 		nic->irq_allocated[irq] = true;
1145 	}
1146 
1147 	/* Register RBDR interrupt */
1148 	for (irq = NICVF_INTR_ID_RBDR;
1149 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1150 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1151 				  nicvf_rbdr_intr_handler,
1152 				  0, nic->irq_name[irq], nic);
1153 		if (ret)
1154 			goto err;
1155 		nic->irq_allocated[irq] = true;
1156 	}
1157 
1158 	/* Register QS error interrupt */
1159 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1160 		nic->pnicvf->netdev->name,
1161 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1162 	irq = NICVF_INTR_ID_QS_ERR;
1163 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1164 			  nicvf_qs_err_intr_handler,
1165 			  0, nic->irq_name[irq], nic);
1166 	if (ret)
1167 		goto err;
1168 
1169 	nic->irq_allocated[irq] = true;
1170 
1171 	/* Set IRQ affinities */
1172 	nicvf_set_irq_affinity(nic);
1173 
1174 err:
1175 	if (ret)
1176 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1177 
1178 	return ret;
1179 }
1180 
1181 static void nicvf_unregister_interrupts(struct nicvf *nic)
1182 {
1183 	struct pci_dev *pdev = nic->pdev;
1184 	int irq;
1185 
1186 	/* Free registered interrupts */
1187 	for (irq = 0; irq < nic->num_vec; irq++) {
1188 		if (!nic->irq_allocated[irq])
1189 			continue;
1190 
1191 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1192 		free_cpumask_var(nic->affinity_mask[irq]);
1193 
1194 		if (irq < NICVF_INTR_ID_SQ)
1195 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1196 		else
1197 			free_irq(pci_irq_vector(pdev, irq), nic);
1198 
1199 		nic->irq_allocated[irq] = false;
1200 	}
1201 
1202 	/* Disable MSI-X */
1203 	pci_free_irq_vectors(pdev);
1204 	nic->num_vec = 0;
1205 }
1206 
1207 /* Initialize MSIX vectors and register MISC interrupt.
1208  * Send READY message to PF to check if its alive
1209  */
1210 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1211 {
1212 	int ret = 0;
1213 	int irq = NICVF_INTR_ID_MISC;
1214 
1215 	/* Return if mailbox interrupt is already registered */
1216 	if (nic->pdev->msix_enabled)
1217 		return 0;
1218 
1219 	/* Enable MSI-X */
1220 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1221 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1222 				    PCI_IRQ_MSIX);
1223 	if (ret < 0) {
1224 		netdev_err(nic->netdev,
1225 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1226 		return ret;
1227 	}
1228 
1229 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1230 	/* Register Misc interrupt */
1231 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1232 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1233 
1234 	if (ret)
1235 		return ret;
1236 	nic->irq_allocated[irq] = true;
1237 
1238 	/* Enable mailbox interrupt */
1239 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1240 
1241 	/* Check if VF is able to communicate with PF */
1242 	if (!nicvf_check_pf_ready(nic)) {
1243 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1244 		nicvf_unregister_interrupts(nic);
1245 		return -EIO;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1252 {
1253 	struct nicvf *nic = netdev_priv(netdev);
1254 	int qid = skb_get_queue_mapping(skb);
1255 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1256 	struct nicvf *snic;
1257 	struct snd_queue *sq;
1258 	int tmp;
1259 
1260 	/* Check for minimum packet length */
1261 	if (skb->len <= ETH_HLEN) {
1262 		dev_kfree_skb(skb);
1263 		return NETDEV_TX_OK;
1264 	}
1265 
1266 	/* In XDP case, initial HW tx queues are used for XDP,
1267 	 * but stack's queue mapping starts at '0', so skip the
1268 	 * Tx queues attached to Rx queues for XDP.
1269 	 */
1270 	if (nic->xdp_prog)
1271 		qid += nic->xdp_tx_queues;
1272 
1273 	snic = nic;
1274 	/* Get secondary Qset's SQ structure */
1275 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1276 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1277 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1278 		if (!snic) {
1279 			netdev_warn(nic->netdev,
1280 				    "Secondary Qset#%d's ptr not initialized\n",
1281 				    tmp - 1);
1282 			dev_kfree_skb(skb);
1283 			return NETDEV_TX_OK;
1284 		}
1285 		qid = qid % MAX_SND_QUEUES_PER_QS;
1286 	}
1287 
1288 	sq = &snic->qs->sq[qid];
1289 	if (!netif_tx_queue_stopped(txq) &&
1290 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1291 		netif_tx_stop_queue(txq);
1292 
1293 		/* Barrier, so that stop_queue visible to other cpus */
1294 		smp_mb();
1295 
1296 		/* Check again, incase another cpu freed descriptors */
1297 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1298 			netif_tx_wake_queue(txq);
1299 		} else {
1300 			this_cpu_inc(nic->drv_stats->txq_stop);
1301 			netif_warn(nic, tx_err, netdev,
1302 				   "Transmit ring full, stopping SQ%d\n", qid);
1303 		}
1304 		return NETDEV_TX_BUSY;
1305 	}
1306 
1307 	return NETDEV_TX_OK;
1308 }
1309 
1310 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1311 {
1312 	struct nicvf_cq_poll *cq_poll;
1313 	int qidx;
1314 
1315 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1316 		cq_poll = nic->napi[qidx];
1317 		if (!cq_poll)
1318 			continue;
1319 		nic->napi[qidx] = NULL;
1320 		kfree(cq_poll);
1321 	}
1322 }
1323 
1324 int nicvf_stop(struct net_device *netdev)
1325 {
1326 	int irq, qidx;
1327 	struct nicvf *nic = netdev_priv(netdev);
1328 	struct queue_set *qs = nic->qs;
1329 	struct nicvf_cq_poll *cq_poll = NULL;
1330 	union nic_mbx mbx = {};
1331 
1332 	/* wait till all queued set_rx_mode tasks completes */
1333 	if (nic->nicvf_rx_mode_wq) {
1334 		cancel_delayed_work_sync(&nic->link_change_work);
1335 		drain_workqueue(nic->nicvf_rx_mode_wq);
1336 	}
1337 
1338 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1339 	nicvf_send_msg_to_pf(nic, &mbx);
1340 
1341 	netif_carrier_off(netdev);
1342 	netif_tx_stop_all_queues(nic->netdev);
1343 	nic->link_up = false;
1344 
1345 	/* Teardown secondary qsets first */
1346 	if (!nic->sqs_mode) {
1347 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1348 			if (!nic->snicvf[qidx])
1349 				continue;
1350 			nicvf_stop(nic->snicvf[qidx]->netdev);
1351 			nic->snicvf[qidx] = NULL;
1352 		}
1353 	}
1354 
1355 	/* Disable RBDR & QS error interrupts */
1356 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1357 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1358 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1359 	}
1360 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1361 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1362 
1363 	/* Wait for pending IRQ handlers to finish */
1364 	for (irq = 0; irq < nic->num_vec; irq++)
1365 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1366 
1367 	tasklet_kill(&nic->rbdr_task);
1368 	tasklet_kill(&nic->qs_err_task);
1369 	if (nic->rb_work_scheduled)
1370 		cancel_delayed_work_sync(&nic->rbdr_work);
1371 
1372 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1373 		cq_poll = nic->napi[qidx];
1374 		if (!cq_poll)
1375 			continue;
1376 		napi_synchronize(&cq_poll->napi);
1377 		/* CQ intr is enabled while napi_complete,
1378 		 * so disable it now
1379 		 */
1380 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1381 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1382 		napi_disable(&cq_poll->napi);
1383 		netif_napi_del(&cq_poll->napi);
1384 	}
1385 
1386 	netif_tx_disable(netdev);
1387 
1388 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1389 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1390 
1391 	/* Free resources */
1392 	nicvf_config_data_transfer(nic, false);
1393 
1394 	/* Disable HW Qset */
1395 	nicvf_qset_config(nic, false);
1396 
1397 	/* disable mailbox interrupt */
1398 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1399 
1400 	nicvf_unregister_interrupts(nic);
1401 
1402 	nicvf_free_cq_poll(nic);
1403 
1404 	/* Free any pending SKB saved to receive timestamp */
1405 	if (nic->ptp_skb) {
1406 		dev_kfree_skb_any(nic->ptp_skb);
1407 		nic->ptp_skb = NULL;
1408 	}
1409 
1410 	/* Clear multiqset info */
1411 	nic->pnicvf = nic;
1412 
1413 	return 0;
1414 }
1415 
1416 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1417 {
1418 	union nic_mbx mbx = {};
1419 
1420 	mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1421 	mbx.ptp.enable = enable;
1422 
1423 	return nicvf_send_msg_to_pf(nic, &mbx);
1424 }
1425 
1426 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1427 {
1428 	union nic_mbx mbx = {};
1429 
1430 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1431 	mbx.frs.max_frs = mtu;
1432 	mbx.frs.vf_id = nic->vf_id;
1433 
1434 	return nicvf_send_msg_to_pf(nic, &mbx);
1435 }
1436 
1437 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1438 {
1439 	struct nicvf *nic = container_of(work_arg,
1440 					 struct nicvf,
1441 					 link_change_work.work);
1442 	union nic_mbx mbx = {};
1443 	mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1444 	nicvf_send_msg_to_pf(nic, &mbx);
1445 	queue_delayed_work(nic->nicvf_rx_mode_wq,
1446 			   &nic->link_change_work, 2 * HZ);
1447 }
1448 
1449 int nicvf_open(struct net_device *netdev)
1450 {
1451 	int cpu, err, qidx;
1452 	struct nicvf *nic = netdev_priv(netdev);
1453 	struct queue_set *qs = nic->qs;
1454 	struct nicvf_cq_poll *cq_poll = NULL;
1455 
1456 	/* wait till all queued set_rx_mode tasks completes if any */
1457 	if (nic->nicvf_rx_mode_wq)
1458 		drain_workqueue(nic->nicvf_rx_mode_wq);
1459 
1460 	netif_carrier_off(netdev);
1461 
1462 	err = nicvf_register_misc_interrupt(nic);
1463 	if (err)
1464 		return err;
1465 
1466 	/* Register NAPI handler for processing CQEs */
1467 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1468 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1469 		if (!cq_poll) {
1470 			err = -ENOMEM;
1471 			goto napi_del;
1472 		}
1473 		cq_poll->cq_idx = qidx;
1474 		cq_poll->nicvf = nic;
1475 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1476 			       NAPI_POLL_WEIGHT);
1477 		napi_enable(&cq_poll->napi);
1478 		nic->napi[qidx] = cq_poll;
1479 	}
1480 
1481 	/* Check if we got MAC address from PF or else generate a radom MAC */
1482 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1483 		eth_hw_addr_random(netdev);
1484 		nicvf_hw_set_mac_addr(nic, netdev);
1485 	}
1486 
1487 	if (nic->set_mac_pending) {
1488 		nic->set_mac_pending = false;
1489 		nicvf_hw_set_mac_addr(nic, netdev);
1490 	}
1491 
1492 	/* Init tasklet for handling Qset err interrupt */
1493 	tasklet_setup(&nic->qs_err_task, nicvf_handle_qs_err);
1494 
1495 	/* Init RBDR tasklet which will refill RBDR */
1496 	tasklet_setup(&nic->rbdr_task, nicvf_rbdr_task);
1497 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1498 
1499 	/* Configure CPI alorithm */
1500 	nic->cpi_alg = cpi_alg;
1501 	if (!nic->sqs_mode)
1502 		nicvf_config_cpi(nic);
1503 
1504 	nicvf_request_sqs(nic);
1505 	if (nic->sqs_mode)
1506 		nicvf_get_primary_vf_struct(nic);
1507 
1508 	/* Configure PTP timestamp */
1509 	if (nic->ptp_clock)
1510 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1511 	atomic_set(&nic->tx_ptp_skbs, 0);
1512 	nic->ptp_skb = NULL;
1513 
1514 	/* Configure receive side scaling and MTU */
1515 	if (!nic->sqs_mode) {
1516 		nicvf_rss_init(nic);
1517 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1518 		if (err)
1519 			goto cleanup;
1520 
1521 		/* Clear percpu stats */
1522 		for_each_possible_cpu(cpu)
1523 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1524 			       sizeof(struct nicvf_drv_stats));
1525 	}
1526 
1527 	err = nicvf_register_interrupts(nic);
1528 	if (err)
1529 		goto cleanup;
1530 
1531 	/* Initialize the queues */
1532 	err = nicvf_init_resources(nic);
1533 	if (err)
1534 		goto cleanup;
1535 
1536 	/* Make sure queue initialization is written */
1537 	wmb();
1538 
1539 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1540 	/* Enable Qset err interrupt */
1541 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1542 
1543 	/* Enable completion queue interrupt */
1544 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1545 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1546 
1547 	/* Enable RBDR threshold interrupt */
1548 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1549 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1550 
1551 	/* Send VF config done msg to PF */
1552 	nicvf_send_cfg_done(nic);
1553 
1554 	if (nic->nicvf_rx_mode_wq) {
1555 		INIT_DELAYED_WORK(&nic->link_change_work,
1556 				  nicvf_link_status_check_task);
1557 		queue_delayed_work(nic->nicvf_rx_mode_wq,
1558 				   &nic->link_change_work, 0);
1559 	}
1560 
1561 	return 0;
1562 cleanup:
1563 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1564 	nicvf_unregister_interrupts(nic);
1565 	tasklet_kill(&nic->qs_err_task);
1566 	tasklet_kill(&nic->rbdr_task);
1567 napi_del:
1568 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1569 		cq_poll = nic->napi[qidx];
1570 		if (!cq_poll)
1571 			continue;
1572 		napi_disable(&cq_poll->napi);
1573 		netif_napi_del(&cq_poll->napi);
1574 	}
1575 	nicvf_free_cq_poll(nic);
1576 	return err;
1577 }
1578 
1579 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1580 {
1581 	struct nicvf *nic = netdev_priv(netdev);
1582 	int orig_mtu = netdev->mtu;
1583 
1584 	/* For now just support only the usual MTU sized frames,
1585 	 * plus some headroom for VLAN, QinQ.
1586 	 */
1587 	if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1588 		netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1589 			    netdev->mtu);
1590 		return -EINVAL;
1591 	}
1592 
1593 	netdev->mtu = new_mtu;
1594 
1595 	if (!netif_running(netdev))
1596 		return 0;
1597 
1598 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1599 		netdev->mtu = orig_mtu;
1600 		return -EINVAL;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1607 {
1608 	struct sockaddr *addr = p;
1609 	struct nicvf *nic = netdev_priv(netdev);
1610 
1611 	if (!is_valid_ether_addr(addr->sa_data))
1612 		return -EADDRNOTAVAIL;
1613 
1614 	eth_hw_addr_set(netdev, addr->sa_data);
1615 
1616 	if (nic->pdev->msix_enabled) {
1617 		if (nicvf_hw_set_mac_addr(nic, netdev))
1618 			return -EBUSY;
1619 	} else {
1620 		nic->set_mac_pending = true;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 void nicvf_update_lmac_stats(struct nicvf *nic)
1627 {
1628 	int stat = 0;
1629 	union nic_mbx mbx = {};
1630 
1631 	if (!netif_running(nic->netdev))
1632 		return;
1633 
1634 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1635 	mbx.bgx_stats.vf_id = nic->vf_id;
1636 	/* Rx stats */
1637 	mbx.bgx_stats.rx = 1;
1638 	while (stat < BGX_RX_STATS_COUNT) {
1639 		mbx.bgx_stats.idx = stat;
1640 		if (nicvf_send_msg_to_pf(nic, &mbx))
1641 			return;
1642 		stat++;
1643 	}
1644 
1645 	stat = 0;
1646 
1647 	/* Tx stats */
1648 	mbx.bgx_stats.rx = 0;
1649 	while (stat < BGX_TX_STATS_COUNT) {
1650 		mbx.bgx_stats.idx = stat;
1651 		if (nicvf_send_msg_to_pf(nic, &mbx))
1652 			return;
1653 		stat++;
1654 	}
1655 }
1656 
1657 void nicvf_update_stats(struct nicvf *nic)
1658 {
1659 	int qidx, cpu;
1660 	u64 tmp_stats = 0;
1661 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1662 	struct nicvf_drv_stats *drv_stats;
1663 	struct queue_set *qs = nic->qs;
1664 
1665 #define GET_RX_STATS(reg) \
1666 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1667 #define GET_TX_STATS(reg) \
1668 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1669 
1670 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1671 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1672 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1673 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1674 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1675 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1676 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1677 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1678 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1679 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1680 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1681 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1682 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1683 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1684 
1685 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1686 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1687 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1688 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1689 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1690 
1691 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1692 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1693 	 * pointed by dummy SQE and results in tx_drops counter being
1694 	 * incremented. Subtracting it from tx_tso counter will give
1695 	 * exact tx_drops counter.
1696 	 */
1697 	if (nic->t88 && nic->hw_tso) {
1698 		for_each_possible_cpu(cpu) {
1699 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1700 			tmp_stats += drv_stats->tx_tso;
1701 		}
1702 		stats->tx_drops = tmp_stats - stats->tx_drops;
1703 	}
1704 	stats->tx_frames = stats->tx_ucast_frames +
1705 			   stats->tx_bcast_frames +
1706 			   stats->tx_mcast_frames;
1707 	stats->rx_frames = stats->rx_ucast_frames +
1708 			   stats->rx_bcast_frames +
1709 			   stats->rx_mcast_frames;
1710 	stats->rx_drops = stats->rx_drop_red +
1711 			  stats->rx_drop_overrun;
1712 
1713 	/* Update RQ and SQ stats */
1714 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1715 		nicvf_update_rq_stats(nic, qidx);
1716 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1717 		nicvf_update_sq_stats(nic, qidx);
1718 }
1719 
1720 static void nicvf_get_stats64(struct net_device *netdev,
1721 			      struct rtnl_link_stats64 *stats)
1722 {
1723 	struct nicvf *nic = netdev_priv(netdev);
1724 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1725 
1726 	nicvf_update_stats(nic);
1727 
1728 	stats->rx_bytes = hw_stats->rx_bytes;
1729 	stats->rx_packets = hw_stats->rx_frames;
1730 	stats->rx_dropped = hw_stats->rx_drops;
1731 	stats->multicast = hw_stats->rx_mcast_frames;
1732 
1733 	stats->tx_bytes = hw_stats->tx_bytes;
1734 	stats->tx_packets = hw_stats->tx_frames;
1735 	stats->tx_dropped = hw_stats->tx_drops;
1736 
1737 }
1738 
1739 static void nicvf_tx_timeout(struct net_device *dev, unsigned int txqueue)
1740 {
1741 	struct nicvf *nic = netdev_priv(dev);
1742 
1743 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1744 
1745 	this_cpu_inc(nic->drv_stats->tx_timeout);
1746 	schedule_work(&nic->reset_task);
1747 }
1748 
1749 static void nicvf_reset_task(struct work_struct *work)
1750 {
1751 	struct nicvf *nic;
1752 
1753 	nic = container_of(work, struct nicvf, reset_task);
1754 
1755 	if (!netif_running(nic->netdev))
1756 		return;
1757 
1758 	nicvf_stop(nic->netdev);
1759 	nicvf_open(nic->netdev);
1760 	netif_trans_update(nic->netdev);
1761 }
1762 
1763 static int nicvf_config_loopback(struct nicvf *nic,
1764 				 netdev_features_t features)
1765 {
1766 	union nic_mbx mbx = {};
1767 
1768 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1769 	mbx.lbk.vf_id = nic->vf_id;
1770 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1771 
1772 	return nicvf_send_msg_to_pf(nic, &mbx);
1773 }
1774 
1775 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1776 					    netdev_features_t features)
1777 {
1778 	struct nicvf *nic = netdev_priv(netdev);
1779 
1780 	if ((features & NETIF_F_LOOPBACK) &&
1781 	    netif_running(netdev) && !nic->loopback_supported)
1782 		features &= ~NETIF_F_LOOPBACK;
1783 
1784 	return features;
1785 }
1786 
1787 static int nicvf_set_features(struct net_device *netdev,
1788 			      netdev_features_t features)
1789 {
1790 	struct nicvf *nic = netdev_priv(netdev);
1791 	netdev_features_t changed = features ^ netdev->features;
1792 
1793 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1794 		nicvf_config_vlan_stripping(nic, features);
1795 
1796 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1797 		return nicvf_config_loopback(nic, features);
1798 
1799 	return 0;
1800 }
1801 
1802 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1803 {
1804 	u8 cq_count, txq_count;
1805 
1806 	/* Set XDP Tx queue count same as Rx queue count */
1807 	if (!bpf_attached)
1808 		nic->xdp_tx_queues = 0;
1809 	else
1810 		nic->xdp_tx_queues = nic->rx_queues;
1811 
1812 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1813 	 * needs to be allocated, check how many.
1814 	 */
1815 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1816 	cq_count = max(nic->rx_queues, txq_count);
1817 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1818 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1819 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1820 	} else {
1821 		nic->sqs_count = 0;
1822 	}
1823 
1824 	/* Set primary Qset's resources */
1825 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1826 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1827 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1828 
1829 	/* Update stack */
1830 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1831 }
1832 
1833 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1834 {
1835 	struct net_device *dev = nic->netdev;
1836 	bool if_up = netif_running(nic->netdev);
1837 	struct bpf_prog *old_prog;
1838 	bool bpf_attached = false;
1839 	int ret = 0;
1840 
1841 	/* For now just support only the usual MTU sized frames,
1842 	 * plus some headroom for VLAN, QinQ.
1843 	 */
1844 	if (prog && dev->mtu > MAX_XDP_MTU) {
1845 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1846 			    dev->mtu);
1847 		return -EOPNOTSUPP;
1848 	}
1849 
1850 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1851 	 * XDP Tx queues and more Tx queues are allocated for
1852 	 * network stack to send pkts out.
1853 	 *
1854 	 * No of Tx queues are either same as Rx queues or whatever
1855 	 * is left in max no of queues possible.
1856 	 */
1857 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1858 		netdev_warn(dev,
1859 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1860 			    nic->max_queues);
1861 		return -ENOMEM;
1862 	}
1863 
1864 	if (if_up)
1865 		nicvf_stop(nic->netdev);
1866 
1867 	old_prog = xchg(&nic->xdp_prog, prog);
1868 	/* Detach old prog, if any */
1869 	if (old_prog)
1870 		bpf_prog_put(old_prog);
1871 
1872 	if (nic->xdp_prog) {
1873 		/* Attach BPF program */
1874 		bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1875 		bpf_attached = true;
1876 	}
1877 
1878 	/* Calculate Tx queues needed for XDP and network stack */
1879 	nicvf_set_xdp_queues(nic, bpf_attached);
1880 
1881 	if (if_up) {
1882 		/* Reinitialize interface, clean slate */
1883 		nicvf_open(nic->netdev);
1884 		netif_trans_update(nic->netdev);
1885 	}
1886 
1887 	return ret;
1888 }
1889 
1890 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1891 {
1892 	struct nicvf *nic = netdev_priv(netdev);
1893 
1894 	/* To avoid checks while retrieving buffer address from CQE_RX,
1895 	 * do not support XDP for T88 pass1.x silicons which are anyway
1896 	 * not in use widely.
1897 	 */
1898 	if (pass1_silicon(nic->pdev))
1899 		return -EOPNOTSUPP;
1900 
1901 	switch (xdp->command) {
1902 	case XDP_SETUP_PROG:
1903 		return nicvf_xdp_setup(nic, xdp->prog);
1904 	default:
1905 		return -EINVAL;
1906 	}
1907 }
1908 
1909 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1910 {
1911 	struct hwtstamp_config config;
1912 	struct nicvf *nic = netdev_priv(netdev);
1913 
1914 	if (!nic->ptp_clock)
1915 		return -ENODEV;
1916 
1917 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1918 		return -EFAULT;
1919 
1920 	/* reserved for future extensions */
1921 	if (config.flags)
1922 		return -EINVAL;
1923 
1924 	switch (config.tx_type) {
1925 	case HWTSTAMP_TX_OFF:
1926 	case HWTSTAMP_TX_ON:
1927 		break;
1928 	default:
1929 		return -ERANGE;
1930 	}
1931 
1932 	switch (config.rx_filter) {
1933 	case HWTSTAMP_FILTER_NONE:
1934 		nic->hw_rx_tstamp = false;
1935 		break;
1936 	case HWTSTAMP_FILTER_ALL:
1937 	case HWTSTAMP_FILTER_SOME:
1938 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1939 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1940 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1941 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1942 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1943 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1944 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1945 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1946 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1947 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1948 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1949 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1950 		nic->hw_rx_tstamp = true;
1951 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1952 		break;
1953 	default:
1954 		return -ERANGE;
1955 	}
1956 
1957 	if (netif_running(netdev))
1958 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1959 
1960 	if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1961 		return -EFAULT;
1962 
1963 	return 0;
1964 }
1965 
1966 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1967 {
1968 	switch (cmd) {
1969 	case SIOCSHWTSTAMP:
1970 		return nicvf_config_hwtstamp(netdev, req);
1971 	default:
1972 		return -EOPNOTSUPP;
1973 	}
1974 }
1975 
1976 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1977 				     struct nicvf *nic)
1978 {
1979 	union nic_mbx mbx = {};
1980 	int idx;
1981 
1982 	/* From the inside of VM code flow we have only 128 bits memory
1983 	 * available to send message to host's PF, so send all mc addrs
1984 	 * one by one, starting from flush command in case if kernel
1985 	 * requests to configure specific MAC filtering
1986 	 */
1987 
1988 	/* flush DMAC filters and reset RX mode */
1989 	mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1990 	if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1991 		goto free_mc;
1992 
1993 	if (mode & BGX_XCAST_MCAST_FILTER) {
1994 		/* once enabling filtering, we need to signal to PF to add
1995 		 * its' own LMAC to the filter to accept packets for it.
1996 		 */
1997 		mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1998 		mbx.xcast.mac = 0;
1999 		if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2000 			goto free_mc;
2001 	}
2002 
2003 	/* check if we have any specific MACs to be added to PF DMAC filter */
2004 	if (mc_addrs) {
2005 		/* now go through kernel list of MACs and add them one by one */
2006 		for (idx = 0; idx < mc_addrs->count; idx++) {
2007 			mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2008 			mbx.xcast.mac = mc_addrs->mc[idx];
2009 			if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2010 				goto free_mc;
2011 		}
2012 	}
2013 
2014 	/* and finally set rx mode for PF accordingly */
2015 	mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2016 	mbx.xcast.mode = mode;
2017 
2018 	nicvf_send_msg_to_pf(nic, &mbx);
2019 free_mc:
2020 	kfree(mc_addrs);
2021 }
2022 
2023 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2024 {
2025 	struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2026 						  work);
2027 	struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2028 	u8 mode;
2029 	struct xcast_addr_list *mc;
2030 
2031 	if (!vf_work)
2032 		return;
2033 
2034 	/* Save message data locally to prevent them from
2035 	 * being overwritten by next ndo_set_rx_mode call().
2036 	 */
2037 	spin_lock_bh(&nic->rx_mode_wq_lock);
2038 	mode = vf_work->mode;
2039 	mc = vf_work->mc;
2040 	vf_work->mc = NULL;
2041 	spin_unlock_bh(&nic->rx_mode_wq_lock);
2042 
2043 	__nicvf_set_rx_mode_task(mode, mc, nic);
2044 }
2045 
2046 static void nicvf_set_rx_mode(struct net_device *netdev)
2047 {
2048 	struct nicvf *nic = netdev_priv(netdev);
2049 	struct netdev_hw_addr *ha;
2050 	struct xcast_addr_list *mc_list = NULL;
2051 	u8 mode = 0;
2052 
2053 	if (netdev->flags & IFF_PROMISC) {
2054 		mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2055 	} else {
2056 		if (netdev->flags & IFF_BROADCAST)
2057 			mode |= BGX_XCAST_BCAST_ACCEPT;
2058 
2059 		if (netdev->flags & IFF_ALLMULTI) {
2060 			mode |= BGX_XCAST_MCAST_ACCEPT;
2061 		} else if (netdev->flags & IFF_MULTICAST) {
2062 			mode |= BGX_XCAST_MCAST_FILTER;
2063 			/* here we need to copy mc addrs */
2064 			if (netdev_mc_count(netdev)) {
2065 				mc_list = kmalloc(struct_size(mc_list, mc,
2066 							      netdev_mc_count(netdev)),
2067 						  GFP_ATOMIC);
2068 				if (unlikely(!mc_list))
2069 					return;
2070 				mc_list->count = 0;
2071 				netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2072 					mc_list->mc[mc_list->count] =
2073 						ether_addr_to_u64(ha->addr);
2074 					mc_list->count++;
2075 				}
2076 			}
2077 		}
2078 	}
2079 	spin_lock(&nic->rx_mode_wq_lock);
2080 	kfree(nic->rx_mode_work.mc);
2081 	nic->rx_mode_work.mc = mc_list;
2082 	nic->rx_mode_work.mode = mode;
2083 	queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2084 	spin_unlock(&nic->rx_mode_wq_lock);
2085 }
2086 
2087 static const struct net_device_ops nicvf_netdev_ops = {
2088 	.ndo_open		= nicvf_open,
2089 	.ndo_stop		= nicvf_stop,
2090 	.ndo_start_xmit		= nicvf_xmit,
2091 	.ndo_change_mtu		= nicvf_change_mtu,
2092 	.ndo_set_mac_address	= nicvf_set_mac_address,
2093 	.ndo_get_stats64	= nicvf_get_stats64,
2094 	.ndo_tx_timeout         = nicvf_tx_timeout,
2095 	.ndo_fix_features       = nicvf_fix_features,
2096 	.ndo_set_features       = nicvf_set_features,
2097 	.ndo_bpf		= nicvf_xdp,
2098 	.ndo_eth_ioctl           = nicvf_ioctl,
2099 	.ndo_set_rx_mode        = nicvf_set_rx_mode,
2100 };
2101 
2102 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2103 {
2104 	struct device *dev = &pdev->dev;
2105 	struct net_device *netdev;
2106 	struct nicvf *nic;
2107 	int    err, qcount;
2108 	u16    sdevid;
2109 	struct cavium_ptp *ptp_clock;
2110 
2111 	ptp_clock = cavium_ptp_get();
2112 	if (IS_ERR(ptp_clock)) {
2113 		if (PTR_ERR(ptp_clock) == -ENODEV)
2114 			/* In virtualized environment we proceed without ptp */
2115 			ptp_clock = NULL;
2116 		else
2117 			return PTR_ERR(ptp_clock);
2118 	}
2119 
2120 	err = pci_enable_device(pdev);
2121 	if (err)
2122 		return dev_err_probe(dev, err, "Failed to enable PCI device\n");
2123 
2124 	err = pci_request_regions(pdev, DRV_NAME);
2125 	if (err) {
2126 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2127 		goto err_disable_device;
2128 	}
2129 
2130 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2131 	if (err) {
2132 		dev_err(dev, "Unable to get usable DMA configuration\n");
2133 		goto err_release_regions;
2134 	}
2135 
2136 	qcount = netif_get_num_default_rss_queues();
2137 
2138 	/* Restrict multiqset support only for host bound VFs */
2139 	if (pdev->is_virtfn) {
2140 		/* Set max number of queues per VF */
2141 		qcount = min_t(int, num_online_cpus(),
2142 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2143 	}
2144 
2145 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2146 	if (!netdev) {
2147 		err = -ENOMEM;
2148 		goto err_release_regions;
2149 	}
2150 
2151 	pci_set_drvdata(pdev, netdev);
2152 
2153 	SET_NETDEV_DEV(netdev, &pdev->dev);
2154 
2155 	nic = netdev_priv(netdev);
2156 	nic->netdev = netdev;
2157 	nic->pdev = pdev;
2158 	nic->pnicvf = nic;
2159 	nic->max_queues = qcount;
2160 	/* If no of CPUs are too low, there won't be any queues left
2161 	 * for XDP_TX, hence double it.
2162 	 */
2163 	if (!nic->t88)
2164 		nic->max_queues *= 2;
2165 	nic->ptp_clock = ptp_clock;
2166 
2167 	/* Initialize mutex that serializes usage of VF's mailbox */
2168 	mutex_init(&nic->rx_mode_mtx);
2169 
2170 	/* MAP VF's configuration registers */
2171 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2172 	if (!nic->reg_base) {
2173 		dev_err(dev, "Cannot map config register space, aborting\n");
2174 		err = -ENOMEM;
2175 		goto err_free_netdev;
2176 	}
2177 
2178 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2179 	if (!nic->drv_stats) {
2180 		err = -ENOMEM;
2181 		goto err_free_netdev;
2182 	}
2183 
2184 	err = nicvf_set_qset_resources(nic);
2185 	if (err)
2186 		goto err_free_netdev;
2187 
2188 	/* Check if PF is alive and get MAC address for this VF */
2189 	err = nicvf_register_misc_interrupt(nic);
2190 	if (err)
2191 		goto err_free_netdev;
2192 
2193 	nicvf_send_vf_struct(nic);
2194 
2195 	if (!pass1_silicon(nic->pdev))
2196 		nic->hw_tso = true;
2197 
2198 	/* Get iommu domain for iova to physical addr conversion */
2199 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
2200 
2201 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2202 	if (sdevid == 0xA134)
2203 		nic->t88 = true;
2204 
2205 	/* Check if this VF is in QS only mode */
2206 	if (nic->sqs_mode)
2207 		return 0;
2208 
2209 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2210 	if (err)
2211 		goto err_unregister_interrupts;
2212 
2213 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2214 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2215 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2216 			       NETIF_F_HW_VLAN_CTAG_RX);
2217 
2218 	netdev->hw_features |= NETIF_F_RXHASH;
2219 
2220 	netdev->features |= netdev->hw_features;
2221 	netdev->hw_features |= NETIF_F_LOOPBACK;
2222 
2223 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2224 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2225 
2226 	netdev->netdev_ops = &nicvf_netdev_ops;
2227 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2228 
2229 	/* MTU range: 64 - 9200 */
2230 	netdev->min_mtu = NIC_HW_MIN_FRS;
2231 	netdev->max_mtu = NIC_HW_MAX_FRS;
2232 
2233 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
2234 
2235 	nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2236 							WQ_MEM_RECLAIM,
2237 							nic->vf_id);
2238 	if (!nic->nicvf_rx_mode_wq) {
2239 		err = -ENOMEM;
2240 		dev_err(dev, "Failed to allocate work queue\n");
2241 		goto err_unregister_interrupts;
2242 	}
2243 
2244 	INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2245 	spin_lock_init(&nic->rx_mode_wq_lock);
2246 
2247 	err = register_netdev(netdev);
2248 	if (err) {
2249 		dev_err(dev, "Failed to register netdevice\n");
2250 		goto err_unregister_interrupts;
2251 	}
2252 
2253 	nic->msg_enable = debug;
2254 
2255 	nicvf_set_ethtool_ops(netdev);
2256 
2257 	return 0;
2258 
2259 err_unregister_interrupts:
2260 	nicvf_unregister_interrupts(nic);
2261 err_free_netdev:
2262 	pci_set_drvdata(pdev, NULL);
2263 	if (nic->drv_stats)
2264 		free_percpu(nic->drv_stats);
2265 	free_netdev(netdev);
2266 err_release_regions:
2267 	pci_release_regions(pdev);
2268 err_disable_device:
2269 	pci_disable_device(pdev);
2270 	return err;
2271 }
2272 
2273 static void nicvf_remove(struct pci_dev *pdev)
2274 {
2275 	struct net_device *netdev = pci_get_drvdata(pdev);
2276 	struct nicvf *nic;
2277 	struct net_device *pnetdev;
2278 
2279 	if (!netdev)
2280 		return;
2281 
2282 	nic = netdev_priv(netdev);
2283 	pnetdev = nic->pnicvf->netdev;
2284 
2285 	/* Check if this Qset is assigned to different VF.
2286 	 * If yes, clean primary and all secondary Qsets.
2287 	 */
2288 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2289 		unregister_netdev(pnetdev);
2290 	if (nic->nicvf_rx_mode_wq) {
2291 		destroy_workqueue(nic->nicvf_rx_mode_wq);
2292 		nic->nicvf_rx_mode_wq = NULL;
2293 	}
2294 	nicvf_unregister_interrupts(nic);
2295 	pci_set_drvdata(pdev, NULL);
2296 	if (nic->drv_stats)
2297 		free_percpu(nic->drv_stats);
2298 	cavium_ptp_put(nic->ptp_clock);
2299 	free_netdev(netdev);
2300 	pci_release_regions(pdev);
2301 	pci_disable_device(pdev);
2302 }
2303 
2304 static void nicvf_shutdown(struct pci_dev *pdev)
2305 {
2306 	nicvf_remove(pdev);
2307 }
2308 
2309 static struct pci_driver nicvf_driver = {
2310 	.name = DRV_NAME,
2311 	.id_table = nicvf_id_table,
2312 	.probe = nicvf_probe,
2313 	.remove = nicvf_remove,
2314 	.shutdown = nicvf_shutdown,
2315 };
2316 
2317 static int __init nicvf_init_module(void)
2318 {
2319 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2320 	return pci_register_driver(&nicvf_driver);
2321 }
2322 
2323 static void __exit nicvf_cleanup_module(void)
2324 {
2325 	pci_unregister_driver(&nicvf_driver);
2326 }
2327 
2328 module_init(nicvf_init_module);
2329 module_exit(nicvf_cleanup_module);
2330