1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 
24 #include "nic_reg.h"
25 #include "nic.h"
26 #include "nicvf_queues.h"
27 #include "thunder_bgx.h"
28 
29 #define DRV_NAME	"thunder-nicvf"
30 #define DRV_VERSION	"1.0"
31 
32 /* Supported devices */
33 static const struct pci_device_id nicvf_id_table[] = {
34 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
35 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
36 			 PCI_VENDOR_ID_CAVIUM,
37 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
38 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
39 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
40 			 PCI_VENDOR_ID_CAVIUM,
41 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
42 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
43 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
44 			 PCI_VENDOR_ID_CAVIUM,
45 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
46 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
47 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
48 			 PCI_VENDOR_ID_CAVIUM,
49 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
50 	{ 0, }  /* end of table */
51 };
52 
53 MODULE_AUTHOR("Sunil Goutham");
54 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
55 MODULE_LICENSE("GPL v2");
56 MODULE_VERSION(DRV_VERSION);
57 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
58 
59 static int debug = 0x00;
60 module_param(debug, int, 0644);
61 MODULE_PARM_DESC(debug, "Debug message level bitmap");
62 
63 static int cpi_alg = CPI_ALG_NONE;
64 module_param(cpi_alg, int, S_IRUGO);
65 MODULE_PARM_DESC(cpi_alg,
66 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
67 
68 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
69 {
70 	if (nic->sqs_mode)
71 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
72 	else
73 		return qidx;
74 }
75 
76 /* The Cavium ThunderX network controller can *only* be found in SoCs
77  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
78  * registers on this platform are implicitly strongly ordered with respect
79  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
80  * with no memory barriers in this driver.  The readq()/writeq() functions add
81  * explicit ordering operation which in this case are redundant, and only
82  * add overhead.
83  */
84 
85 /* Register read/write APIs */
86 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
87 {
88 	writeq_relaxed(val, nic->reg_base + offset);
89 }
90 
91 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
92 {
93 	return readq_relaxed(nic->reg_base + offset);
94 }
95 
96 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
97 			   u64 qidx, u64 val)
98 {
99 	void __iomem *addr = nic->reg_base + offset;
100 
101 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
102 }
103 
104 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
105 {
106 	void __iomem *addr = nic->reg_base + offset;
107 
108 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110 
111 /* VF -> PF mailbox communication */
112 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
113 {
114 	u64 *msg = (u64 *)mbx;
115 
116 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
117 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
118 }
119 
120 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
121 {
122 	int timeout = NIC_MBOX_MSG_TIMEOUT;
123 	int sleep = 10;
124 
125 	nic->pf_acked = false;
126 	nic->pf_nacked = false;
127 
128 	nicvf_write_to_mbx(nic, mbx);
129 
130 	/* Wait for previous message to be acked, timeout 2sec */
131 	while (!nic->pf_acked) {
132 		if (nic->pf_nacked) {
133 			netdev_err(nic->netdev,
134 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
135 				   (mbx->msg.msg & 0xFF), nic->vf_id);
136 			return -EINVAL;
137 		}
138 		msleep(sleep);
139 		if (nic->pf_acked)
140 			break;
141 		timeout -= sleep;
142 		if (!timeout) {
143 			netdev_err(nic->netdev,
144 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
145 				   (mbx->msg.msg & 0xFF), nic->vf_id);
146 			return -EBUSY;
147 		}
148 	}
149 	return 0;
150 }
151 
152 /* Checks if VF is able to comminicate with PF
153 * and also gets the VNIC number this VF is associated to.
154 */
155 static int nicvf_check_pf_ready(struct nicvf *nic)
156 {
157 	union nic_mbx mbx = {};
158 
159 	mbx.msg.msg = NIC_MBOX_MSG_READY;
160 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
161 		netdev_err(nic->netdev,
162 			   "PF didn't respond to READY msg\n");
163 		return 0;
164 	}
165 
166 	return 1;
167 }
168 
169 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
170 {
171 	if (bgx->rx)
172 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
173 	else
174 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
175 }
176 
177 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
178 {
179 	union nic_mbx mbx = {};
180 	u64 *mbx_data;
181 	u64 mbx_addr;
182 	int i;
183 
184 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
185 	mbx_data = (u64 *)&mbx;
186 
187 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
188 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
189 		mbx_data++;
190 		mbx_addr += sizeof(u64);
191 	}
192 
193 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
194 	switch (mbx.msg.msg) {
195 	case NIC_MBOX_MSG_READY:
196 		nic->pf_acked = true;
197 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
198 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
199 		nic->node = mbx.nic_cfg.node_id;
200 		if (!nic->set_mac_pending)
201 			ether_addr_copy(nic->netdev->dev_addr,
202 					mbx.nic_cfg.mac_addr);
203 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
204 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
205 		nic->link_up = false;
206 		nic->duplex = 0;
207 		nic->speed = 0;
208 		break;
209 	case NIC_MBOX_MSG_ACK:
210 		nic->pf_acked = true;
211 		break;
212 	case NIC_MBOX_MSG_NACK:
213 		nic->pf_nacked = true;
214 		break;
215 	case NIC_MBOX_MSG_RSS_SIZE:
216 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
217 		nic->pf_acked = true;
218 		break;
219 	case NIC_MBOX_MSG_BGX_STATS:
220 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
221 		nic->pf_acked = true;
222 		break;
223 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
224 		nic->pf_acked = true;
225 		nic->link_up = mbx.link_status.link_up;
226 		nic->duplex = mbx.link_status.duplex;
227 		nic->speed = mbx.link_status.speed;
228 		nic->mac_type = mbx.link_status.mac_type;
229 		if (nic->link_up) {
230 			netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n",
231 				    nic->speed,
232 				    nic->duplex == DUPLEX_FULL ?
233 				    "Full" : "Half");
234 			netif_carrier_on(nic->netdev);
235 			netif_tx_start_all_queues(nic->netdev);
236 		} else {
237 			netdev_info(nic->netdev, "Link is Down\n");
238 			netif_carrier_off(nic->netdev);
239 			netif_tx_stop_all_queues(nic->netdev);
240 		}
241 		break;
242 	case NIC_MBOX_MSG_ALLOC_SQS:
243 		nic->sqs_count = mbx.sqs_alloc.qs_count;
244 		nic->pf_acked = true;
245 		break;
246 	case NIC_MBOX_MSG_SNICVF_PTR:
247 		/* Primary VF: make note of secondary VF's pointer
248 		 * to be used while packet transmission.
249 		 */
250 		nic->snicvf[mbx.nicvf.sqs_id] =
251 			(struct nicvf *)mbx.nicvf.nicvf;
252 		nic->pf_acked = true;
253 		break;
254 	case NIC_MBOX_MSG_PNICVF_PTR:
255 		/* Secondary VF/Qset: make note of primary VF's pointer
256 		 * to be used while packet reception, to handover packet
257 		 * to primary VF's netdev.
258 		 */
259 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
260 		nic->pf_acked = true;
261 		break;
262 	case NIC_MBOX_MSG_PFC:
263 		nic->pfc.autoneg = mbx.pfc.autoneg;
264 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
265 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
266 		nic->pf_acked = true;
267 		break;
268 	default:
269 		netdev_err(nic->netdev,
270 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
271 		break;
272 	}
273 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
274 }
275 
276 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
277 {
278 	union nic_mbx mbx = {};
279 
280 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
281 	mbx.mac.vf_id = nic->vf_id;
282 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
283 
284 	return nicvf_send_msg_to_pf(nic, &mbx);
285 }
286 
287 static void nicvf_config_cpi(struct nicvf *nic)
288 {
289 	union nic_mbx mbx = {};
290 
291 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
292 	mbx.cpi_cfg.vf_id = nic->vf_id;
293 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
294 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
295 
296 	nicvf_send_msg_to_pf(nic, &mbx);
297 }
298 
299 static void nicvf_get_rss_size(struct nicvf *nic)
300 {
301 	union nic_mbx mbx = {};
302 
303 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
304 	mbx.rss_size.vf_id = nic->vf_id;
305 	nicvf_send_msg_to_pf(nic, &mbx);
306 }
307 
308 void nicvf_config_rss(struct nicvf *nic)
309 {
310 	union nic_mbx mbx = {};
311 	struct nicvf_rss_info *rss = &nic->rss_info;
312 	int ind_tbl_len = rss->rss_size;
313 	int i, nextq = 0;
314 
315 	mbx.rss_cfg.vf_id = nic->vf_id;
316 	mbx.rss_cfg.hash_bits = rss->hash_bits;
317 	while (ind_tbl_len) {
318 		mbx.rss_cfg.tbl_offset = nextq;
319 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
320 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
321 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
322 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
323 
324 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
325 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
326 
327 		nicvf_send_msg_to_pf(nic, &mbx);
328 
329 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
330 	}
331 }
332 
333 void nicvf_set_rss_key(struct nicvf *nic)
334 {
335 	struct nicvf_rss_info *rss = &nic->rss_info;
336 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
337 	int idx;
338 
339 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
340 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
341 		key_addr += sizeof(u64);
342 	}
343 }
344 
345 static int nicvf_rss_init(struct nicvf *nic)
346 {
347 	struct nicvf_rss_info *rss = &nic->rss_info;
348 	int idx;
349 
350 	nicvf_get_rss_size(nic);
351 
352 	if (cpi_alg != CPI_ALG_NONE) {
353 		rss->enable = false;
354 		rss->hash_bits = 0;
355 		return 0;
356 	}
357 
358 	rss->enable = true;
359 
360 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
361 	nicvf_set_rss_key(nic);
362 
363 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
364 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
365 
366 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
367 
368 	for (idx = 0; idx < rss->rss_size; idx++)
369 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
370 							       nic->rx_queues);
371 	nicvf_config_rss(nic);
372 	return 1;
373 }
374 
375 /* Request PF to allocate additional Qsets */
376 static void nicvf_request_sqs(struct nicvf *nic)
377 {
378 	union nic_mbx mbx = {};
379 	int sqs;
380 	int sqs_count = nic->sqs_count;
381 	int rx_queues = 0, tx_queues = 0;
382 
383 	/* Only primary VF should request */
384 	if (nic->sqs_mode ||  !nic->sqs_count)
385 		return;
386 
387 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
388 	mbx.sqs_alloc.vf_id = nic->vf_id;
389 	mbx.sqs_alloc.qs_count = nic->sqs_count;
390 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
391 		/* No response from PF */
392 		nic->sqs_count = 0;
393 		return;
394 	}
395 
396 	/* Return if no Secondary Qsets available */
397 	if (!nic->sqs_count)
398 		return;
399 
400 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
401 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
402 
403 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
404 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
405 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
406 
407 	/* Set no of Rx/Tx queues in each of the SQsets */
408 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
409 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
410 		mbx.nicvf.vf_id = nic->vf_id;
411 		mbx.nicvf.sqs_id = sqs;
412 		nicvf_send_msg_to_pf(nic, &mbx);
413 
414 		nic->snicvf[sqs]->sqs_id = sqs;
415 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
416 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
417 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
418 		} else {
419 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
420 			rx_queues = 0;
421 		}
422 
423 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
424 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
425 			tx_queues -= MAX_SND_QUEUES_PER_QS;
426 		} else {
427 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
428 			tx_queues = 0;
429 		}
430 
431 		nic->snicvf[sqs]->qs->cq_cnt =
432 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
433 
434 		/* Initialize secondary Qset's queues and its interrupts */
435 		nicvf_open(nic->snicvf[sqs]->netdev);
436 	}
437 
438 	/* Update stack with actual Rx/Tx queue count allocated */
439 	if (sqs_count != nic->sqs_count)
440 		nicvf_set_real_num_queues(nic->netdev,
441 					  nic->tx_queues, nic->rx_queues);
442 }
443 
444 /* Send this Qset's nicvf pointer to PF.
445  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
446  * so that packets received by these Qsets can use primary VF's netdev
447  */
448 static void nicvf_send_vf_struct(struct nicvf *nic)
449 {
450 	union nic_mbx mbx = {};
451 
452 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
453 	mbx.nicvf.sqs_mode = nic->sqs_mode;
454 	mbx.nicvf.nicvf = (u64)nic;
455 	nicvf_send_msg_to_pf(nic, &mbx);
456 }
457 
458 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
459 {
460 	union nic_mbx mbx = {};
461 
462 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
463 	nicvf_send_msg_to_pf(nic, &mbx);
464 }
465 
466 int nicvf_set_real_num_queues(struct net_device *netdev,
467 			      int tx_queues, int rx_queues)
468 {
469 	int err = 0;
470 
471 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
472 	if (err) {
473 		netdev_err(netdev,
474 			   "Failed to set no of Tx queues: %d\n", tx_queues);
475 		return err;
476 	}
477 
478 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
479 	if (err)
480 		netdev_err(netdev,
481 			   "Failed to set no of Rx queues: %d\n", rx_queues);
482 	return err;
483 }
484 
485 static int nicvf_init_resources(struct nicvf *nic)
486 {
487 	int err;
488 
489 	/* Enable Qset */
490 	nicvf_qset_config(nic, true);
491 
492 	/* Initialize queues and HW for data transfer */
493 	err = nicvf_config_data_transfer(nic, true);
494 	if (err) {
495 		netdev_err(nic->netdev,
496 			   "Failed to alloc/config VF's QSet resources\n");
497 		return err;
498 	}
499 
500 	return 0;
501 }
502 
503 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
504 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
505 				struct sk_buff **skb)
506 {
507 	struct xdp_buff xdp;
508 	struct page *page;
509 	u32 action;
510 	u16 len, offset = 0;
511 	u64 dma_addr, cpu_addr;
512 	void *orig_data;
513 
514 	/* Retrieve packet buffer's DMA address and length */
515 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
516 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
517 
518 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
519 	if (!cpu_addr)
520 		return false;
521 	cpu_addr = (u64)phys_to_virt(cpu_addr);
522 	page = virt_to_page((void *)cpu_addr);
523 
524 	xdp.data_hard_start = page_address(page);
525 	xdp.data = (void *)cpu_addr;
526 	xdp.data_end = xdp.data + len;
527 	orig_data = xdp.data;
528 
529 	rcu_read_lock();
530 	action = bpf_prog_run_xdp(prog, &xdp);
531 	rcu_read_unlock();
532 
533 	/* Check if XDP program has changed headers */
534 	if (orig_data != xdp.data) {
535 		len = xdp.data_end - xdp.data;
536 		offset = orig_data - xdp.data;
537 		dma_addr -= offset;
538 	}
539 
540 	switch (action) {
541 	case XDP_PASS:
542 		/* Check if it's a recycled page, if not
543 		 * unmap the DMA mapping.
544 		 *
545 		 * Recycled page holds an extra reference.
546 		 */
547 		if (page_ref_count(page) == 1) {
548 			dma_addr &= PAGE_MASK;
549 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
550 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
551 					     DMA_FROM_DEVICE,
552 					     DMA_ATTR_SKIP_CPU_SYNC);
553 		}
554 
555 		/* Build SKB and pass on packet to network stack */
556 		*skb = build_skb(xdp.data,
557 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
558 		if (!*skb)
559 			put_page(page);
560 		else
561 			skb_put(*skb, len);
562 		return false;
563 	case XDP_TX:
564 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
565 		return true;
566 	default:
567 		bpf_warn_invalid_xdp_action(action);
568 	case XDP_ABORTED:
569 		trace_xdp_exception(nic->netdev, prog, action);
570 	case XDP_DROP:
571 		/* Check if it's a recycled page, if not
572 		 * unmap the DMA mapping.
573 		 *
574 		 * Recycled page holds an extra reference.
575 		 */
576 		if (page_ref_count(page) == 1) {
577 			dma_addr &= PAGE_MASK;
578 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
579 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
580 					     DMA_FROM_DEVICE,
581 					     DMA_ATTR_SKIP_CPU_SYNC);
582 		}
583 		put_page(page);
584 		return true;
585 	}
586 	return false;
587 }
588 
589 static void nicvf_snd_pkt_handler(struct net_device *netdev,
590 				  struct cqe_send_t *cqe_tx,
591 				  int budget, int *subdesc_cnt,
592 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
593 {
594 	struct sk_buff *skb = NULL;
595 	struct page *page;
596 	struct nicvf *nic = netdev_priv(netdev);
597 	struct snd_queue *sq;
598 	struct sq_hdr_subdesc *hdr;
599 	struct sq_hdr_subdesc *tso_sqe;
600 
601 	sq = &nic->qs->sq[cqe_tx->sq_idx];
602 
603 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
604 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
605 		return;
606 
607 	/* Check for errors */
608 	if (cqe_tx->send_status)
609 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
610 
611 	/* Is this a XDP designated Tx queue */
612 	if (sq->is_xdp) {
613 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
614 		/* Check if it's recycled page or else unmap DMA mapping */
615 		if (page && (page_ref_count(page) == 1))
616 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
617 						 hdr->subdesc_cnt);
618 
619 		/* Release page reference for recycling */
620 		if (page)
621 			put_page(page);
622 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
623 		*subdesc_cnt += hdr->subdesc_cnt + 1;
624 		return;
625 	}
626 
627 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
628 	if (skb) {
629 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
630 		if (hdr->dont_send) {
631 			/* Get actual TSO descriptors and free them */
632 			tso_sqe =
633 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
634 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
635 						 tso_sqe->subdesc_cnt);
636 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
637 		} else {
638 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
639 						 hdr->subdesc_cnt);
640 		}
641 		*subdesc_cnt += hdr->subdesc_cnt + 1;
642 		prefetch(skb);
643 		(*tx_pkts)++;
644 		*tx_bytes += skb->len;
645 		napi_consume_skb(skb, budget);
646 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
647 	} else {
648 		/* In case of SW TSO on 88xx, only last segment will have
649 		 * a SKB attached, so just free SQEs here.
650 		 */
651 		if (!nic->hw_tso)
652 			*subdesc_cnt += hdr->subdesc_cnt + 1;
653 	}
654 }
655 
656 static inline void nicvf_set_rxhash(struct net_device *netdev,
657 				    struct cqe_rx_t *cqe_rx,
658 				    struct sk_buff *skb)
659 {
660 	u8 hash_type;
661 	u32 hash;
662 
663 	if (!(netdev->features & NETIF_F_RXHASH))
664 		return;
665 
666 	switch (cqe_rx->rss_alg) {
667 	case RSS_ALG_TCP_IP:
668 	case RSS_ALG_UDP_IP:
669 		hash_type = PKT_HASH_TYPE_L4;
670 		hash = cqe_rx->rss_tag;
671 		break;
672 	case RSS_ALG_IP:
673 		hash_type = PKT_HASH_TYPE_L3;
674 		hash = cqe_rx->rss_tag;
675 		break;
676 	default:
677 		hash_type = PKT_HASH_TYPE_NONE;
678 		hash = 0;
679 	}
680 
681 	skb_set_hash(skb, hash, hash_type);
682 }
683 
684 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
685 				  struct napi_struct *napi,
686 				  struct cqe_rx_t *cqe_rx, struct snd_queue *sq)
687 {
688 	struct sk_buff *skb = NULL;
689 	struct nicvf *nic = netdev_priv(netdev);
690 	struct nicvf *snic = nic;
691 	int err = 0;
692 	int rq_idx;
693 
694 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
695 
696 	if (nic->sqs_mode) {
697 		/* Use primary VF's 'nicvf' struct */
698 		nic = nic->pnicvf;
699 		netdev = nic->netdev;
700 	}
701 
702 	/* Check for errors */
703 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
704 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
705 		if (err && !cqe_rx->rb_cnt)
706 			return;
707 	}
708 
709 	/* For XDP, ignore pkts spanning multiple pages */
710 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
711 		/* Packet consumed by XDP */
712 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, &skb))
713 			return;
714 	} else {
715 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
716 					nic->xdp_prog ? true : false);
717 	}
718 
719 	if (!skb)
720 		return;
721 
722 	if (netif_msg_pktdata(nic)) {
723 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
724 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
725 			       skb->data, skb->len, true);
726 	}
727 
728 	/* If error packet, drop it here */
729 	if (err) {
730 		dev_kfree_skb_any(skb);
731 		return;
732 	}
733 
734 	nicvf_set_rxhash(netdev, cqe_rx, skb);
735 
736 	skb_record_rx_queue(skb, rq_idx);
737 	if (netdev->hw_features & NETIF_F_RXCSUM) {
738 		/* HW by default verifies TCP/UDP/SCTP checksums */
739 		skb->ip_summed = CHECKSUM_UNNECESSARY;
740 	} else {
741 		skb_checksum_none_assert(skb);
742 	}
743 
744 	skb->protocol = eth_type_trans(skb, netdev);
745 
746 	/* Check for stripped VLAN */
747 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
748 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
749 				       ntohs((__force __be16)cqe_rx->vlan_tci));
750 
751 	if (napi && (netdev->features & NETIF_F_GRO))
752 		napi_gro_receive(napi, skb);
753 	else
754 		netif_receive_skb(skb);
755 }
756 
757 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
758 				 struct napi_struct *napi, int budget)
759 {
760 	int processed_cqe, work_done = 0, tx_done = 0;
761 	int cqe_count, cqe_head;
762 	int subdesc_cnt = 0;
763 	struct nicvf *nic = netdev_priv(netdev);
764 	struct queue_set *qs = nic->qs;
765 	struct cmp_queue *cq = &qs->cq[cq_idx];
766 	struct cqe_rx_t *cq_desc;
767 	struct netdev_queue *txq;
768 	struct snd_queue *sq = &qs->sq[cq_idx];
769 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
770 
771 	spin_lock_bh(&cq->lock);
772 loop:
773 	processed_cqe = 0;
774 	/* Get no of valid CQ entries to process */
775 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
776 	cqe_count &= CQ_CQE_COUNT;
777 	if (!cqe_count)
778 		goto done;
779 
780 	/* Get head of the valid CQ entries */
781 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
782 	cqe_head &= 0xFFFF;
783 
784 	while (processed_cqe < cqe_count) {
785 		/* Get the CQ descriptor */
786 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
787 		cqe_head++;
788 		cqe_head &= (cq->dmem.q_len - 1);
789 		/* Initiate prefetch for next descriptor */
790 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
791 
792 		if ((work_done >= budget) && napi &&
793 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
794 			break;
795 		}
796 
797 		switch (cq_desc->cqe_type) {
798 		case CQE_TYPE_RX:
799 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq);
800 			work_done++;
801 		break;
802 		case CQE_TYPE_SEND:
803 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
804 					      budget, &subdesc_cnt,
805 					      &tx_pkts, &tx_bytes);
806 			tx_done++;
807 		break;
808 		case CQE_TYPE_INVALID:
809 		case CQE_TYPE_RX_SPLIT:
810 		case CQE_TYPE_RX_TCP:
811 		case CQE_TYPE_SEND_PTP:
812 			/* Ignore for now */
813 		break;
814 		}
815 		processed_cqe++;
816 	}
817 
818 	/* Ring doorbell to inform H/W to reuse processed CQEs */
819 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
820 			      cq_idx, processed_cqe);
821 
822 	if ((work_done < budget) && napi)
823 		goto loop;
824 
825 done:
826 	/* Update SQ's descriptor free count */
827 	if (subdesc_cnt)
828 		nicvf_put_sq_desc(sq, subdesc_cnt);
829 
830 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
831 	/* Handle XDP TX queues */
832 	if (nic->pnicvf->xdp_prog) {
833 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
834 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
835 			goto out;
836 		}
837 		nic = nic->pnicvf;
838 		txq_idx -= nic->pnicvf->xdp_tx_queues;
839 	}
840 
841 	/* Wakeup TXQ if its stopped earlier due to SQ full */
842 	if (tx_done ||
843 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
844 		netdev = nic->pnicvf->netdev;
845 		txq = netdev_get_tx_queue(netdev, txq_idx);
846 		if (tx_pkts)
847 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
848 
849 		/* To read updated queue and carrier status */
850 		smp_mb();
851 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
852 			netif_tx_wake_queue(txq);
853 			nic = nic->pnicvf;
854 			this_cpu_inc(nic->drv_stats->txq_wake);
855 			netif_warn(nic, tx_err, netdev,
856 				   "Transmit queue wakeup SQ%d\n", txq_idx);
857 		}
858 	}
859 
860 out:
861 	spin_unlock_bh(&cq->lock);
862 	return work_done;
863 }
864 
865 static int nicvf_poll(struct napi_struct *napi, int budget)
866 {
867 	u64  cq_head;
868 	int  work_done = 0;
869 	struct net_device *netdev = napi->dev;
870 	struct nicvf *nic = netdev_priv(netdev);
871 	struct nicvf_cq_poll *cq;
872 
873 	cq = container_of(napi, struct nicvf_cq_poll, napi);
874 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
875 
876 	if (work_done < budget) {
877 		/* Slow packet rate, exit polling */
878 		napi_complete_done(napi, work_done);
879 		/* Re-enable interrupts */
880 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
881 					       cq->cq_idx);
882 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
883 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
884 				      cq->cq_idx, cq_head);
885 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
886 	}
887 	return work_done;
888 }
889 
890 /* Qset error interrupt handler
891  *
892  * As of now only CQ errors are handled
893  */
894 static void nicvf_handle_qs_err(unsigned long data)
895 {
896 	struct nicvf *nic = (struct nicvf *)data;
897 	struct queue_set *qs = nic->qs;
898 	int qidx;
899 	u64 status;
900 
901 	netif_tx_disable(nic->netdev);
902 
903 	/* Check if it is CQ err */
904 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
905 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
906 					      qidx);
907 		if (!(status & CQ_ERR_MASK))
908 			continue;
909 		/* Process already queued CQEs and reconfig CQ */
910 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
911 		nicvf_sq_disable(nic, qidx);
912 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
913 		nicvf_cmp_queue_config(nic, qs, qidx, true);
914 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
915 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
916 
917 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
918 	}
919 
920 	netif_tx_start_all_queues(nic->netdev);
921 	/* Re-enable Qset error interrupt */
922 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
923 }
924 
925 static void nicvf_dump_intr_status(struct nicvf *nic)
926 {
927 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
928 		   nicvf_reg_read(nic, NIC_VF_INT));
929 }
930 
931 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
932 {
933 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
934 	u64 intr;
935 
936 	nicvf_dump_intr_status(nic);
937 
938 	intr = nicvf_reg_read(nic, NIC_VF_INT);
939 	/* Check for spurious interrupt */
940 	if (!(intr & NICVF_INTR_MBOX_MASK))
941 		return IRQ_HANDLED;
942 
943 	nicvf_handle_mbx_intr(nic);
944 
945 	return IRQ_HANDLED;
946 }
947 
948 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
949 {
950 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
951 	struct nicvf *nic = cq_poll->nicvf;
952 	int qidx = cq_poll->cq_idx;
953 
954 	nicvf_dump_intr_status(nic);
955 
956 	/* Disable interrupts */
957 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
958 
959 	/* Schedule NAPI */
960 	napi_schedule_irqoff(&cq_poll->napi);
961 
962 	/* Clear interrupt */
963 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
964 
965 	return IRQ_HANDLED;
966 }
967 
968 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
969 {
970 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
971 	u8 qidx;
972 
973 
974 	nicvf_dump_intr_status(nic);
975 
976 	/* Disable RBDR interrupt and schedule softirq */
977 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
978 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
979 			continue;
980 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
981 		tasklet_hi_schedule(&nic->rbdr_task);
982 		/* Clear interrupt */
983 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
984 	}
985 
986 	return IRQ_HANDLED;
987 }
988 
989 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
990 {
991 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
992 
993 	nicvf_dump_intr_status(nic);
994 
995 	/* Disable Qset err interrupt and schedule softirq */
996 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
997 	tasklet_hi_schedule(&nic->qs_err_task);
998 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
999 
1000 	return IRQ_HANDLED;
1001 }
1002 
1003 static void nicvf_set_irq_affinity(struct nicvf *nic)
1004 {
1005 	int vec, cpu;
1006 
1007 	for (vec = 0; vec < nic->num_vec; vec++) {
1008 		if (!nic->irq_allocated[vec])
1009 			continue;
1010 
1011 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1012 			return;
1013 		 /* CQ interrupts */
1014 		if (vec < NICVF_INTR_ID_SQ)
1015 			/* Leave CPU0 for RBDR and other interrupts */
1016 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1017 		else
1018 			cpu = 0;
1019 
1020 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1021 				nic->affinity_mask[vec]);
1022 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1023 				      nic->affinity_mask[vec]);
1024 	}
1025 }
1026 
1027 static int nicvf_register_interrupts(struct nicvf *nic)
1028 {
1029 	int irq, ret = 0;
1030 
1031 	for_each_cq_irq(irq)
1032 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1033 			nic->pnicvf->netdev->name,
1034 			nicvf_netdev_qidx(nic, irq));
1035 
1036 	for_each_sq_irq(irq)
1037 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1038 			nic->pnicvf->netdev->name,
1039 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1040 
1041 	for_each_rbdr_irq(irq)
1042 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1043 			nic->pnicvf->netdev->name,
1044 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1045 
1046 	/* Register CQ interrupts */
1047 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1048 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1049 				  nicvf_intr_handler,
1050 				  0, nic->irq_name[irq], nic->napi[irq]);
1051 		if (ret)
1052 			goto err;
1053 		nic->irq_allocated[irq] = true;
1054 	}
1055 
1056 	/* Register RBDR interrupt */
1057 	for (irq = NICVF_INTR_ID_RBDR;
1058 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1059 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1060 				  nicvf_rbdr_intr_handler,
1061 				  0, nic->irq_name[irq], nic);
1062 		if (ret)
1063 			goto err;
1064 		nic->irq_allocated[irq] = true;
1065 	}
1066 
1067 	/* Register QS error interrupt */
1068 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1069 		nic->pnicvf->netdev->name,
1070 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1071 	irq = NICVF_INTR_ID_QS_ERR;
1072 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1073 			  nicvf_qs_err_intr_handler,
1074 			  0, nic->irq_name[irq], nic);
1075 	if (ret)
1076 		goto err;
1077 
1078 	nic->irq_allocated[irq] = true;
1079 
1080 	/* Set IRQ affinities */
1081 	nicvf_set_irq_affinity(nic);
1082 
1083 err:
1084 	if (ret)
1085 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1086 
1087 	return ret;
1088 }
1089 
1090 static void nicvf_unregister_interrupts(struct nicvf *nic)
1091 {
1092 	struct pci_dev *pdev = nic->pdev;
1093 	int irq;
1094 
1095 	/* Free registered interrupts */
1096 	for (irq = 0; irq < nic->num_vec; irq++) {
1097 		if (!nic->irq_allocated[irq])
1098 			continue;
1099 
1100 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1101 		free_cpumask_var(nic->affinity_mask[irq]);
1102 
1103 		if (irq < NICVF_INTR_ID_SQ)
1104 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1105 		else
1106 			free_irq(pci_irq_vector(pdev, irq), nic);
1107 
1108 		nic->irq_allocated[irq] = false;
1109 	}
1110 
1111 	/* Disable MSI-X */
1112 	pci_free_irq_vectors(pdev);
1113 	nic->num_vec = 0;
1114 }
1115 
1116 /* Initialize MSIX vectors and register MISC interrupt.
1117  * Send READY message to PF to check if its alive
1118  */
1119 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1120 {
1121 	int ret = 0;
1122 	int irq = NICVF_INTR_ID_MISC;
1123 
1124 	/* Return if mailbox interrupt is already registered */
1125 	if (nic->pdev->msix_enabled)
1126 		return 0;
1127 
1128 	/* Enable MSI-X */
1129 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1130 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1131 				    PCI_IRQ_MSIX);
1132 	if (ret < 0) {
1133 		netdev_err(nic->netdev,
1134 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1135 		return 1;
1136 	}
1137 
1138 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1139 	/* Register Misc interrupt */
1140 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1141 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1142 
1143 	if (ret)
1144 		return ret;
1145 	nic->irq_allocated[irq] = true;
1146 
1147 	/* Enable mailbox interrupt */
1148 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1149 
1150 	/* Check if VF is able to communicate with PF */
1151 	if (!nicvf_check_pf_ready(nic)) {
1152 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1153 		nicvf_unregister_interrupts(nic);
1154 		return 1;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1161 {
1162 	struct nicvf *nic = netdev_priv(netdev);
1163 	int qid = skb_get_queue_mapping(skb);
1164 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1165 	struct nicvf *snic;
1166 	struct snd_queue *sq;
1167 	int tmp;
1168 
1169 	/* Check for minimum packet length */
1170 	if (skb->len <= ETH_HLEN) {
1171 		dev_kfree_skb(skb);
1172 		return NETDEV_TX_OK;
1173 	}
1174 
1175 	/* In XDP case, initial HW tx queues are used for XDP,
1176 	 * but stack's queue mapping starts at '0', so skip the
1177 	 * Tx queues attached to Rx queues for XDP.
1178 	 */
1179 	if (nic->xdp_prog)
1180 		qid += nic->xdp_tx_queues;
1181 
1182 	snic = nic;
1183 	/* Get secondary Qset's SQ structure */
1184 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1185 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1186 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1187 		if (!snic) {
1188 			netdev_warn(nic->netdev,
1189 				    "Secondary Qset#%d's ptr not initialized\n",
1190 				    tmp - 1);
1191 			dev_kfree_skb(skb);
1192 			return NETDEV_TX_OK;
1193 		}
1194 		qid = qid % MAX_SND_QUEUES_PER_QS;
1195 	}
1196 
1197 	sq = &snic->qs->sq[qid];
1198 	if (!netif_tx_queue_stopped(txq) &&
1199 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1200 		netif_tx_stop_queue(txq);
1201 
1202 		/* Barrier, so that stop_queue visible to other cpus */
1203 		smp_mb();
1204 
1205 		/* Check again, incase another cpu freed descriptors */
1206 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1207 			netif_tx_wake_queue(txq);
1208 		} else {
1209 			this_cpu_inc(nic->drv_stats->txq_stop);
1210 			netif_warn(nic, tx_err, netdev,
1211 				   "Transmit ring full, stopping SQ%d\n", qid);
1212 		}
1213 		return NETDEV_TX_BUSY;
1214 	}
1215 
1216 	return NETDEV_TX_OK;
1217 }
1218 
1219 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1220 {
1221 	struct nicvf_cq_poll *cq_poll;
1222 	int qidx;
1223 
1224 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1225 		cq_poll = nic->napi[qidx];
1226 		if (!cq_poll)
1227 			continue;
1228 		nic->napi[qidx] = NULL;
1229 		kfree(cq_poll);
1230 	}
1231 }
1232 
1233 int nicvf_stop(struct net_device *netdev)
1234 {
1235 	int irq, qidx;
1236 	struct nicvf *nic = netdev_priv(netdev);
1237 	struct queue_set *qs = nic->qs;
1238 	struct nicvf_cq_poll *cq_poll = NULL;
1239 	union nic_mbx mbx = {};
1240 
1241 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1242 	nicvf_send_msg_to_pf(nic, &mbx);
1243 
1244 	netif_carrier_off(netdev);
1245 	netif_tx_stop_all_queues(nic->netdev);
1246 	nic->link_up = false;
1247 
1248 	/* Teardown secondary qsets first */
1249 	if (!nic->sqs_mode) {
1250 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1251 			if (!nic->snicvf[qidx])
1252 				continue;
1253 			nicvf_stop(nic->snicvf[qidx]->netdev);
1254 			nic->snicvf[qidx] = NULL;
1255 		}
1256 	}
1257 
1258 	/* Disable RBDR & QS error interrupts */
1259 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1260 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1261 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1262 	}
1263 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1264 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1265 
1266 	/* Wait for pending IRQ handlers to finish */
1267 	for (irq = 0; irq < nic->num_vec; irq++)
1268 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1269 
1270 	tasklet_kill(&nic->rbdr_task);
1271 	tasklet_kill(&nic->qs_err_task);
1272 	if (nic->rb_work_scheduled)
1273 		cancel_delayed_work_sync(&nic->rbdr_work);
1274 
1275 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1276 		cq_poll = nic->napi[qidx];
1277 		if (!cq_poll)
1278 			continue;
1279 		napi_synchronize(&cq_poll->napi);
1280 		/* CQ intr is enabled while napi_complete,
1281 		 * so disable it now
1282 		 */
1283 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1284 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1285 		napi_disable(&cq_poll->napi);
1286 		netif_napi_del(&cq_poll->napi);
1287 	}
1288 
1289 	netif_tx_disable(netdev);
1290 
1291 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1292 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1293 
1294 	/* Free resources */
1295 	nicvf_config_data_transfer(nic, false);
1296 
1297 	/* Disable HW Qset */
1298 	nicvf_qset_config(nic, false);
1299 
1300 	/* disable mailbox interrupt */
1301 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1302 
1303 	nicvf_unregister_interrupts(nic);
1304 
1305 	nicvf_free_cq_poll(nic);
1306 
1307 	/* Clear multiqset info */
1308 	nic->pnicvf = nic;
1309 
1310 	return 0;
1311 }
1312 
1313 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1314 {
1315 	union nic_mbx mbx = {};
1316 
1317 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1318 	mbx.frs.max_frs = mtu;
1319 	mbx.frs.vf_id = nic->vf_id;
1320 
1321 	return nicvf_send_msg_to_pf(nic, &mbx);
1322 }
1323 
1324 int nicvf_open(struct net_device *netdev)
1325 {
1326 	int cpu, err, qidx;
1327 	struct nicvf *nic = netdev_priv(netdev);
1328 	struct queue_set *qs = nic->qs;
1329 	struct nicvf_cq_poll *cq_poll = NULL;
1330 	union nic_mbx mbx = {};
1331 
1332 	netif_carrier_off(netdev);
1333 
1334 	err = nicvf_register_misc_interrupt(nic);
1335 	if (err)
1336 		return err;
1337 
1338 	/* Register NAPI handler for processing CQEs */
1339 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1340 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1341 		if (!cq_poll) {
1342 			err = -ENOMEM;
1343 			goto napi_del;
1344 		}
1345 		cq_poll->cq_idx = qidx;
1346 		cq_poll->nicvf = nic;
1347 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1348 			       NAPI_POLL_WEIGHT);
1349 		napi_enable(&cq_poll->napi);
1350 		nic->napi[qidx] = cq_poll;
1351 	}
1352 
1353 	/* Check if we got MAC address from PF or else generate a radom MAC */
1354 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1355 		eth_hw_addr_random(netdev);
1356 		nicvf_hw_set_mac_addr(nic, netdev);
1357 	}
1358 
1359 	if (nic->set_mac_pending) {
1360 		nic->set_mac_pending = false;
1361 		nicvf_hw_set_mac_addr(nic, netdev);
1362 	}
1363 
1364 	/* Init tasklet for handling Qset err interrupt */
1365 	tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1366 		     (unsigned long)nic);
1367 
1368 	/* Init RBDR tasklet which will refill RBDR */
1369 	tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1370 		     (unsigned long)nic);
1371 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1372 
1373 	/* Configure CPI alorithm */
1374 	nic->cpi_alg = cpi_alg;
1375 	if (!nic->sqs_mode)
1376 		nicvf_config_cpi(nic);
1377 
1378 	nicvf_request_sqs(nic);
1379 	if (nic->sqs_mode)
1380 		nicvf_get_primary_vf_struct(nic);
1381 
1382 	/* Configure receive side scaling and MTU */
1383 	if (!nic->sqs_mode) {
1384 		nicvf_rss_init(nic);
1385 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1386 		if (err)
1387 			goto cleanup;
1388 
1389 		/* Clear percpu stats */
1390 		for_each_possible_cpu(cpu)
1391 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1392 			       sizeof(struct nicvf_drv_stats));
1393 	}
1394 
1395 	err = nicvf_register_interrupts(nic);
1396 	if (err)
1397 		goto cleanup;
1398 
1399 	/* Initialize the queues */
1400 	err = nicvf_init_resources(nic);
1401 	if (err)
1402 		goto cleanup;
1403 
1404 	/* Make sure queue initialization is written */
1405 	wmb();
1406 
1407 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1408 	/* Enable Qset err interrupt */
1409 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1410 
1411 	/* Enable completion queue interrupt */
1412 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1413 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1414 
1415 	/* Enable RBDR threshold interrupt */
1416 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1417 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1418 
1419 	/* Send VF config done msg to PF */
1420 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
1421 	nicvf_write_to_mbx(nic, &mbx);
1422 
1423 	return 0;
1424 cleanup:
1425 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1426 	nicvf_unregister_interrupts(nic);
1427 	tasklet_kill(&nic->qs_err_task);
1428 	tasklet_kill(&nic->rbdr_task);
1429 napi_del:
1430 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1431 		cq_poll = nic->napi[qidx];
1432 		if (!cq_poll)
1433 			continue;
1434 		napi_disable(&cq_poll->napi);
1435 		netif_napi_del(&cq_poll->napi);
1436 	}
1437 	nicvf_free_cq_poll(nic);
1438 	return err;
1439 }
1440 
1441 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1442 {
1443 	struct nicvf *nic = netdev_priv(netdev);
1444 	int orig_mtu = netdev->mtu;
1445 
1446 	netdev->mtu = new_mtu;
1447 
1448 	if (!netif_running(netdev))
1449 		return 0;
1450 
1451 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1452 		netdev->mtu = orig_mtu;
1453 		return -EINVAL;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1460 {
1461 	struct sockaddr *addr = p;
1462 	struct nicvf *nic = netdev_priv(netdev);
1463 
1464 	if (!is_valid_ether_addr(addr->sa_data))
1465 		return -EADDRNOTAVAIL;
1466 
1467 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1468 
1469 	if (nic->pdev->msix_enabled) {
1470 		if (nicvf_hw_set_mac_addr(nic, netdev))
1471 			return -EBUSY;
1472 	} else {
1473 		nic->set_mac_pending = true;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 void nicvf_update_lmac_stats(struct nicvf *nic)
1480 {
1481 	int stat = 0;
1482 	union nic_mbx mbx = {};
1483 
1484 	if (!netif_running(nic->netdev))
1485 		return;
1486 
1487 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1488 	mbx.bgx_stats.vf_id = nic->vf_id;
1489 	/* Rx stats */
1490 	mbx.bgx_stats.rx = 1;
1491 	while (stat < BGX_RX_STATS_COUNT) {
1492 		mbx.bgx_stats.idx = stat;
1493 		if (nicvf_send_msg_to_pf(nic, &mbx))
1494 			return;
1495 		stat++;
1496 	}
1497 
1498 	stat = 0;
1499 
1500 	/* Tx stats */
1501 	mbx.bgx_stats.rx = 0;
1502 	while (stat < BGX_TX_STATS_COUNT) {
1503 		mbx.bgx_stats.idx = stat;
1504 		if (nicvf_send_msg_to_pf(nic, &mbx))
1505 			return;
1506 		stat++;
1507 	}
1508 }
1509 
1510 void nicvf_update_stats(struct nicvf *nic)
1511 {
1512 	int qidx, cpu;
1513 	u64 tmp_stats = 0;
1514 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1515 	struct nicvf_drv_stats *drv_stats;
1516 	struct queue_set *qs = nic->qs;
1517 
1518 #define GET_RX_STATS(reg) \
1519 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1520 #define GET_TX_STATS(reg) \
1521 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1522 
1523 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1524 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1525 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1526 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1527 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1528 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1529 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1530 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1531 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1532 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1533 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1534 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1535 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1536 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1537 
1538 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1539 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1540 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1541 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1542 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1543 
1544 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1545 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1546 	 * pointed by dummy SQE and results in tx_drops counter being
1547 	 * incremented. Subtracting it from tx_tso counter will give
1548 	 * exact tx_drops counter.
1549 	 */
1550 	if (nic->t88 && nic->hw_tso) {
1551 		for_each_possible_cpu(cpu) {
1552 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1553 			tmp_stats += drv_stats->tx_tso;
1554 		}
1555 		stats->tx_drops = tmp_stats - stats->tx_drops;
1556 	}
1557 	stats->tx_frames = stats->tx_ucast_frames +
1558 			   stats->tx_bcast_frames +
1559 			   stats->tx_mcast_frames;
1560 	stats->rx_frames = stats->rx_ucast_frames +
1561 			   stats->rx_bcast_frames +
1562 			   stats->rx_mcast_frames;
1563 	stats->rx_drops = stats->rx_drop_red +
1564 			  stats->rx_drop_overrun;
1565 
1566 	/* Update RQ and SQ stats */
1567 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1568 		nicvf_update_rq_stats(nic, qidx);
1569 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1570 		nicvf_update_sq_stats(nic, qidx);
1571 }
1572 
1573 static void nicvf_get_stats64(struct net_device *netdev,
1574 			      struct rtnl_link_stats64 *stats)
1575 {
1576 	struct nicvf *nic = netdev_priv(netdev);
1577 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1578 
1579 	nicvf_update_stats(nic);
1580 
1581 	stats->rx_bytes = hw_stats->rx_bytes;
1582 	stats->rx_packets = hw_stats->rx_frames;
1583 	stats->rx_dropped = hw_stats->rx_drops;
1584 	stats->multicast = hw_stats->rx_mcast_frames;
1585 
1586 	stats->tx_bytes = hw_stats->tx_bytes;
1587 	stats->tx_packets = hw_stats->tx_frames;
1588 	stats->tx_dropped = hw_stats->tx_drops;
1589 
1590 }
1591 
1592 static void nicvf_tx_timeout(struct net_device *dev)
1593 {
1594 	struct nicvf *nic = netdev_priv(dev);
1595 
1596 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1597 
1598 	this_cpu_inc(nic->drv_stats->tx_timeout);
1599 	schedule_work(&nic->reset_task);
1600 }
1601 
1602 static void nicvf_reset_task(struct work_struct *work)
1603 {
1604 	struct nicvf *nic;
1605 
1606 	nic = container_of(work, struct nicvf, reset_task);
1607 
1608 	if (!netif_running(nic->netdev))
1609 		return;
1610 
1611 	nicvf_stop(nic->netdev);
1612 	nicvf_open(nic->netdev);
1613 	netif_trans_update(nic->netdev);
1614 }
1615 
1616 static int nicvf_config_loopback(struct nicvf *nic,
1617 				 netdev_features_t features)
1618 {
1619 	union nic_mbx mbx = {};
1620 
1621 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1622 	mbx.lbk.vf_id = nic->vf_id;
1623 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1624 
1625 	return nicvf_send_msg_to_pf(nic, &mbx);
1626 }
1627 
1628 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1629 					    netdev_features_t features)
1630 {
1631 	struct nicvf *nic = netdev_priv(netdev);
1632 
1633 	if ((features & NETIF_F_LOOPBACK) &&
1634 	    netif_running(netdev) && !nic->loopback_supported)
1635 		features &= ~NETIF_F_LOOPBACK;
1636 
1637 	return features;
1638 }
1639 
1640 static int nicvf_set_features(struct net_device *netdev,
1641 			      netdev_features_t features)
1642 {
1643 	struct nicvf *nic = netdev_priv(netdev);
1644 	netdev_features_t changed = features ^ netdev->features;
1645 
1646 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1647 		nicvf_config_vlan_stripping(nic, features);
1648 
1649 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1650 		return nicvf_config_loopback(nic, features);
1651 
1652 	return 0;
1653 }
1654 
1655 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1656 {
1657 	u8 cq_count, txq_count;
1658 
1659 	/* Set XDP Tx queue count same as Rx queue count */
1660 	if (!bpf_attached)
1661 		nic->xdp_tx_queues = 0;
1662 	else
1663 		nic->xdp_tx_queues = nic->rx_queues;
1664 
1665 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1666 	 * needs to be allocated, check how many.
1667 	 */
1668 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1669 	cq_count = max(nic->rx_queues, txq_count);
1670 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1671 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1672 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1673 	} else {
1674 		nic->sqs_count = 0;
1675 	}
1676 
1677 	/* Set primary Qset's resources */
1678 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1679 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1680 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1681 
1682 	/* Update stack */
1683 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1684 }
1685 
1686 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1687 {
1688 	struct net_device *dev = nic->netdev;
1689 	bool if_up = netif_running(nic->netdev);
1690 	struct bpf_prog *old_prog;
1691 	bool bpf_attached = false;
1692 
1693 	/* For now just support only the usual MTU sized frames */
1694 	if (prog && (dev->mtu > 1500)) {
1695 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1696 			    dev->mtu);
1697 		return -EOPNOTSUPP;
1698 	}
1699 
1700 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1701 	 * XDP Tx queues and more Tx queues are allocated for
1702 	 * network stack to send pkts out.
1703 	 *
1704 	 * No of Tx queues are either same as Rx queues or whatever
1705 	 * is left in max no of queues possible.
1706 	 */
1707 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1708 		netdev_warn(dev,
1709 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1710 			    nic->max_queues);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	if (if_up)
1715 		nicvf_stop(nic->netdev);
1716 
1717 	old_prog = xchg(&nic->xdp_prog, prog);
1718 	/* Detach old prog, if any */
1719 	if (old_prog)
1720 		bpf_prog_put(old_prog);
1721 
1722 	if (nic->xdp_prog) {
1723 		/* Attach BPF program */
1724 		nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1725 		if (!IS_ERR(nic->xdp_prog))
1726 			bpf_attached = true;
1727 	}
1728 
1729 	/* Calculate Tx queues needed for XDP and network stack */
1730 	nicvf_set_xdp_queues(nic, bpf_attached);
1731 
1732 	if (if_up) {
1733 		/* Reinitialize interface, clean slate */
1734 		nicvf_open(nic->netdev);
1735 		netif_trans_update(nic->netdev);
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static int nicvf_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
1742 {
1743 	struct nicvf *nic = netdev_priv(netdev);
1744 
1745 	/* To avoid checks while retrieving buffer address from CQE_RX,
1746 	 * do not support XDP for T88 pass1.x silicons which are anyway
1747 	 * not in use widely.
1748 	 */
1749 	if (pass1_silicon(nic->pdev))
1750 		return -EOPNOTSUPP;
1751 
1752 	switch (xdp->command) {
1753 	case XDP_SETUP_PROG:
1754 		return nicvf_xdp_setup(nic, xdp->prog);
1755 	case XDP_QUERY_PROG:
1756 		xdp->prog_attached = !!nic->xdp_prog;
1757 		xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1758 		return 0;
1759 	default:
1760 		return -EINVAL;
1761 	}
1762 }
1763 
1764 static const struct net_device_ops nicvf_netdev_ops = {
1765 	.ndo_open		= nicvf_open,
1766 	.ndo_stop		= nicvf_stop,
1767 	.ndo_start_xmit		= nicvf_xmit,
1768 	.ndo_change_mtu		= nicvf_change_mtu,
1769 	.ndo_set_mac_address	= nicvf_set_mac_address,
1770 	.ndo_get_stats64	= nicvf_get_stats64,
1771 	.ndo_tx_timeout         = nicvf_tx_timeout,
1772 	.ndo_fix_features       = nicvf_fix_features,
1773 	.ndo_set_features       = nicvf_set_features,
1774 	.ndo_xdp		= nicvf_xdp,
1775 };
1776 
1777 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1778 {
1779 	struct device *dev = &pdev->dev;
1780 	struct net_device *netdev;
1781 	struct nicvf *nic;
1782 	int    err, qcount;
1783 	u16    sdevid;
1784 
1785 	err = pci_enable_device(pdev);
1786 	if (err) {
1787 		dev_err(dev, "Failed to enable PCI device\n");
1788 		return err;
1789 	}
1790 
1791 	err = pci_request_regions(pdev, DRV_NAME);
1792 	if (err) {
1793 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
1794 		goto err_disable_device;
1795 	}
1796 
1797 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1798 	if (err) {
1799 		dev_err(dev, "Unable to get usable DMA configuration\n");
1800 		goto err_release_regions;
1801 	}
1802 
1803 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1804 	if (err) {
1805 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
1806 		goto err_release_regions;
1807 	}
1808 
1809 	qcount = netif_get_num_default_rss_queues();
1810 
1811 	/* Restrict multiqset support only for host bound VFs */
1812 	if (pdev->is_virtfn) {
1813 		/* Set max number of queues per VF */
1814 		qcount = min_t(int, num_online_cpus(),
1815 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
1816 	}
1817 
1818 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
1819 	if (!netdev) {
1820 		err = -ENOMEM;
1821 		goto err_release_regions;
1822 	}
1823 
1824 	pci_set_drvdata(pdev, netdev);
1825 
1826 	SET_NETDEV_DEV(netdev, &pdev->dev);
1827 
1828 	nic = netdev_priv(netdev);
1829 	nic->netdev = netdev;
1830 	nic->pdev = pdev;
1831 	nic->pnicvf = nic;
1832 	nic->max_queues = qcount;
1833 
1834 	/* MAP VF's configuration registers */
1835 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
1836 	if (!nic->reg_base) {
1837 		dev_err(dev, "Cannot map config register space, aborting\n");
1838 		err = -ENOMEM;
1839 		goto err_free_netdev;
1840 	}
1841 
1842 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
1843 	if (!nic->drv_stats) {
1844 		err = -ENOMEM;
1845 		goto err_free_netdev;
1846 	}
1847 
1848 	err = nicvf_set_qset_resources(nic);
1849 	if (err)
1850 		goto err_free_netdev;
1851 
1852 	/* Check if PF is alive and get MAC address for this VF */
1853 	err = nicvf_register_misc_interrupt(nic);
1854 	if (err)
1855 		goto err_free_netdev;
1856 
1857 	nicvf_send_vf_struct(nic);
1858 
1859 	if (!pass1_silicon(nic->pdev))
1860 		nic->hw_tso = true;
1861 
1862 	/* Get iommu domain for iova to physical addr conversion */
1863 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
1864 
1865 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
1866 	if (sdevid == 0xA134)
1867 		nic->t88 = true;
1868 
1869 	/* Check if this VF is in QS only mode */
1870 	if (nic->sqs_mode)
1871 		return 0;
1872 
1873 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
1874 	if (err)
1875 		goto err_unregister_interrupts;
1876 
1877 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
1878 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
1879 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1880 			       NETIF_F_HW_VLAN_CTAG_RX);
1881 
1882 	netdev->hw_features |= NETIF_F_RXHASH;
1883 
1884 	netdev->features |= netdev->hw_features;
1885 	netdev->hw_features |= NETIF_F_LOOPBACK;
1886 
1887 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1888 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
1889 
1890 	netdev->netdev_ops = &nicvf_netdev_ops;
1891 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
1892 
1893 	/* MTU range: 64 - 9200 */
1894 	netdev->min_mtu = NIC_HW_MIN_FRS;
1895 	netdev->max_mtu = NIC_HW_MAX_FRS;
1896 
1897 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
1898 
1899 	err = register_netdev(netdev);
1900 	if (err) {
1901 		dev_err(dev, "Failed to register netdevice\n");
1902 		goto err_unregister_interrupts;
1903 	}
1904 
1905 	nic->msg_enable = debug;
1906 
1907 	nicvf_set_ethtool_ops(netdev);
1908 
1909 	return 0;
1910 
1911 err_unregister_interrupts:
1912 	nicvf_unregister_interrupts(nic);
1913 err_free_netdev:
1914 	pci_set_drvdata(pdev, NULL);
1915 	if (nic->drv_stats)
1916 		free_percpu(nic->drv_stats);
1917 	free_netdev(netdev);
1918 err_release_regions:
1919 	pci_release_regions(pdev);
1920 err_disable_device:
1921 	pci_disable_device(pdev);
1922 	return err;
1923 }
1924 
1925 static void nicvf_remove(struct pci_dev *pdev)
1926 {
1927 	struct net_device *netdev = pci_get_drvdata(pdev);
1928 	struct nicvf *nic;
1929 	struct net_device *pnetdev;
1930 
1931 	if (!netdev)
1932 		return;
1933 
1934 	nic = netdev_priv(netdev);
1935 	pnetdev = nic->pnicvf->netdev;
1936 
1937 	/* Check if this Qset is assigned to different VF.
1938 	 * If yes, clean primary and all secondary Qsets.
1939 	 */
1940 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
1941 		unregister_netdev(pnetdev);
1942 	nicvf_unregister_interrupts(nic);
1943 	pci_set_drvdata(pdev, NULL);
1944 	if (nic->drv_stats)
1945 		free_percpu(nic->drv_stats);
1946 	free_netdev(netdev);
1947 	pci_release_regions(pdev);
1948 	pci_disable_device(pdev);
1949 }
1950 
1951 static void nicvf_shutdown(struct pci_dev *pdev)
1952 {
1953 	nicvf_remove(pdev);
1954 }
1955 
1956 static struct pci_driver nicvf_driver = {
1957 	.name = DRV_NAME,
1958 	.id_table = nicvf_id_table,
1959 	.probe = nicvf_probe,
1960 	.remove = nicvf_remove,
1961 	.shutdown = nicvf_shutdown,
1962 };
1963 
1964 static int __init nicvf_init_module(void)
1965 {
1966 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
1967 
1968 	return pci_register_driver(&nicvf_driver);
1969 }
1970 
1971 static void __exit nicvf_cleanup_module(void)
1972 {
1973 	pci_unregister_driver(&nicvf_driver);
1974 }
1975 
1976 module_init(nicvf_init_module);
1977 module_exit(nicvf_cleanup_module);
1978