xref: /openbmc/linux/drivers/net/ethernet/cavium/thunder/nicvf_main.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 
24 #include "nic_reg.h"
25 #include "nic.h"
26 #include "nicvf_queues.h"
27 #include "thunder_bgx.h"
28 
29 #define DRV_NAME	"thunder-nicvf"
30 #define DRV_VERSION	"1.0"
31 
32 /* Supported devices */
33 static const struct pci_device_id nicvf_id_table[] = {
34 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
35 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
36 			 PCI_VENDOR_ID_CAVIUM,
37 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
38 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
39 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
40 			 PCI_VENDOR_ID_CAVIUM,
41 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
42 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
43 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
44 			 PCI_VENDOR_ID_CAVIUM,
45 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
46 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
47 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
48 			 PCI_VENDOR_ID_CAVIUM,
49 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
50 	{ 0, }  /* end of table */
51 };
52 
53 MODULE_AUTHOR("Sunil Goutham");
54 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
55 MODULE_LICENSE("GPL v2");
56 MODULE_VERSION(DRV_VERSION);
57 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
58 
59 static int debug = 0x00;
60 module_param(debug, int, 0644);
61 MODULE_PARM_DESC(debug, "Debug message level bitmap");
62 
63 static int cpi_alg = CPI_ALG_NONE;
64 module_param(cpi_alg, int, S_IRUGO);
65 MODULE_PARM_DESC(cpi_alg,
66 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
67 
68 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
69 {
70 	if (nic->sqs_mode)
71 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
72 	else
73 		return qidx;
74 }
75 
76 /* The Cavium ThunderX network controller can *only* be found in SoCs
77  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
78  * registers on this platform are implicitly strongly ordered with respect
79  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
80  * with no memory barriers in this driver.  The readq()/writeq() functions add
81  * explicit ordering operation which in this case are redundant, and only
82  * add overhead.
83  */
84 
85 /* Register read/write APIs */
86 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
87 {
88 	writeq_relaxed(val, nic->reg_base + offset);
89 }
90 
91 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
92 {
93 	return readq_relaxed(nic->reg_base + offset);
94 }
95 
96 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
97 			   u64 qidx, u64 val)
98 {
99 	void __iomem *addr = nic->reg_base + offset;
100 
101 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
102 }
103 
104 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
105 {
106 	void __iomem *addr = nic->reg_base + offset;
107 
108 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110 
111 /* VF -> PF mailbox communication */
112 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
113 {
114 	u64 *msg = (u64 *)mbx;
115 
116 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
117 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
118 }
119 
120 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
121 {
122 	int timeout = NIC_MBOX_MSG_TIMEOUT;
123 	int sleep = 10;
124 
125 	nic->pf_acked = false;
126 	nic->pf_nacked = false;
127 
128 	nicvf_write_to_mbx(nic, mbx);
129 
130 	/* Wait for previous message to be acked, timeout 2sec */
131 	while (!nic->pf_acked) {
132 		if (nic->pf_nacked) {
133 			netdev_err(nic->netdev,
134 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
135 				   (mbx->msg.msg & 0xFF), nic->vf_id);
136 			return -EINVAL;
137 		}
138 		msleep(sleep);
139 		if (nic->pf_acked)
140 			break;
141 		timeout -= sleep;
142 		if (!timeout) {
143 			netdev_err(nic->netdev,
144 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
145 				   (mbx->msg.msg & 0xFF), nic->vf_id);
146 			return -EBUSY;
147 		}
148 	}
149 	return 0;
150 }
151 
152 /* Checks if VF is able to comminicate with PF
153 * and also gets the VNIC number this VF is associated to.
154 */
155 static int nicvf_check_pf_ready(struct nicvf *nic)
156 {
157 	union nic_mbx mbx = {};
158 
159 	mbx.msg.msg = NIC_MBOX_MSG_READY;
160 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
161 		netdev_err(nic->netdev,
162 			   "PF didn't respond to READY msg\n");
163 		return 0;
164 	}
165 
166 	return 1;
167 }
168 
169 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
170 {
171 	if (bgx->rx)
172 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
173 	else
174 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
175 }
176 
177 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
178 {
179 	union nic_mbx mbx = {};
180 	u64 *mbx_data;
181 	u64 mbx_addr;
182 	int i;
183 
184 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
185 	mbx_data = (u64 *)&mbx;
186 
187 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
188 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
189 		mbx_data++;
190 		mbx_addr += sizeof(u64);
191 	}
192 
193 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
194 	switch (mbx.msg.msg) {
195 	case NIC_MBOX_MSG_READY:
196 		nic->pf_acked = true;
197 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
198 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
199 		nic->node = mbx.nic_cfg.node_id;
200 		if (!nic->set_mac_pending)
201 			ether_addr_copy(nic->netdev->dev_addr,
202 					mbx.nic_cfg.mac_addr);
203 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
204 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
205 		nic->link_up = false;
206 		nic->duplex = 0;
207 		nic->speed = 0;
208 		break;
209 	case NIC_MBOX_MSG_ACK:
210 		nic->pf_acked = true;
211 		break;
212 	case NIC_MBOX_MSG_NACK:
213 		nic->pf_nacked = true;
214 		break;
215 	case NIC_MBOX_MSG_RSS_SIZE:
216 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
217 		nic->pf_acked = true;
218 		break;
219 	case NIC_MBOX_MSG_BGX_STATS:
220 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
221 		nic->pf_acked = true;
222 		break;
223 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
224 		nic->pf_acked = true;
225 		nic->link_up = mbx.link_status.link_up;
226 		nic->duplex = mbx.link_status.duplex;
227 		nic->speed = mbx.link_status.speed;
228 		nic->mac_type = mbx.link_status.mac_type;
229 		if (nic->link_up) {
230 			netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n",
231 				    nic->speed,
232 				    nic->duplex == DUPLEX_FULL ?
233 				    "Full" : "Half");
234 			netif_carrier_on(nic->netdev);
235 			netif_tx_start_all_queues(nic->netdev);
236 		} else {
237 			netdev_info(nic->netdev, "Link is Down\n");
238 			netif_carrier_off(nic->netdev);
239 			netif_tx_stop_all_queues(nic->netdev);
240 		}
241 		break;
242 	case NIC_MBOX_MSG_ALLOC_SQS:
243 		nic->sqs_count = mbx.sqs_alloc.qs_count;
244 		nic->pf_acked = true;
245 		break;
246 	case NIC_MBOX_MSG_SNICVF_PTR:
247 		/* Primary VF: make note of secondary VF's pointer
248 		 * to be used while packet transmission.
249 		 */
250 		nic->snicvf[mbx.nicvf.sqs_id] =
251 			(struct nicvf *)mbx.nicvf.nicvf;
252 		nic->pf_acked = true;
253 		break;
254 	case NIC_MBOX_MSG_PNICVF_PTR:
255 		/* Secondary VF/Qset: make note of primary VF's pointer
256 		 * to be used while packet reception, to handover packet
257 		 * to primary VF's netdev.
258 		 */
259 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
260 		nic->pf_acked = true;
261 		break;
262 	case NIC_MBOX_MSG_PFC:
263 		nic->pfc.autoneg = mbx.pfc.autoneg;
264 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
265 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
266 		nic->pf_acked = true;
267 		break;
268 	default:
269 		netdev_err(nic->netdev,
270 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
271 		break;
272 	}
273 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
274 }
275 
276 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
277 {
278 	union nic_mbx mbx = {};
279 
280 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
281 	mbx.mac.vf_id = nic->vf_id;
282 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
283 
284 	return nicvf_send_msg_to_pf(nic, &mbx);
285 }
286 
287 static void nicvf_config_cpi(struct nicvf *nic)
288 {
289 	union nic_mbx mbx = {};
290 
291 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
292 	mbx.cpi_cfg.vf_id = nic->vf_id;
293 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
294 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
295 
296 	nicvf_send_msg_to_pf(nic, &mbx);
297 }
298 
299 static void nicvf_get_rss_size(struct nicvf *nic)
300 {
301 	union nic_mbx mbx = {};
302 
303 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
304 	mbx.rss_size.vf_id = nic->vf_id;
305 	nicvf_send_msg_to_pf(nic, &mbx);
306 }
307 
308 void nicvf_config_rss(struct nicvf *nic)
309 {
310 	union nic_mbx mbx = {};
311 	struct nicvf_rss_info *rss = &nic->rss_info;
312 	int ind_tbl_len = rss->rss_size;
313 	int i, nextq = 0;
314 
315 	mbx.rss_cfg.vf_id = nic->vf_id;
316 	mbx.rss_cfg.hash_bits = rss->hash_bits;
317 	while (ind_tbl_len) {
318 		mbx.rss_cfg.tbl_offset = nextq;
319 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
320 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
321 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
322 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
323 
324 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
325 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
326 
327 		nicvf_send_msg_to_pf(nic, &mbx);
328 
329 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
330 	}
331 }
332 
333 void nicvf_set_rss_key(struct nicvf *nic)
334 {
335 	struct nicvf_rss_info *rss = &nic->rss_info;
336 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
337 	int idx;
338 
339 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
340 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
341 		key_addr += sizeof(u64);
342 	}
343 }
344 
345 static int nicvf_rss_init(struct nicvf *nic)
346 {
347 	struct nicvf_rss_info *rss = &nic->rss_info;
348 	int idx;
349 
350 	nicvf_get_rss_size(nic);
351 
352 	if (cpi_alg != CPI_ALG_NONE) {
353 		rss->enable = false;
354 		rss->hash_bits = 0;
355 		return 0;
356 	}
357 
358 	rss->enable = true;
359 
360 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
361 	nicvf_set_rss_key(nic);
362 
363 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
364 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
365 
366 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
367 
368 	for (idx = 0; idx < rss->rss_size; idx++)
369 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
370 							       nic->rx_queues);
371 	nicvf_config_rss(nic);
372 	return 1;
373 }
374 
375 /* Request PF to allocate additional Qsets */
376 static void nicvf_request_sqs(struct nicvf *nic)
377 {
378 	union nic_mbx mbx = {};
379 	int sqs;
380 	int sqs_count = nic->sqs_count;
381 	int rx_queues = 0, tx_queues = 0;
382 
383 	/* Only primary VF should request */
384 	if (nic->sqs_mode ||  !nic->sqs_count)
385 		return;
386 
387 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
388 	mbx.sqs_alloc.vf_id = nic->vf_id;
389 	mbx.sqs_alloc.qs_count = nic->sqs_count;
390 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
391 		/* No response from PF */
392 		nic->sqs_count = 0;
393 		return;
394 	}
395 
396 	/* Return if no Secondary Qsets available */
397 	if (!nic->sqs_count)
398 		return;
399 
400 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
401 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
402 
403 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
404 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
405 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
406 
407 	/* Set no of Rx/Tx queues in each of the SQsets */
408 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
409 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
410 		mbx.nicvf.vf_id = nic->vf_id;
411 		mbx.nicvf.sqs_id = sqs;
412 		nicvf_send_msg_to_pf(nic, &mbx);
413 
414 		nic->snicvf[sqs]->sqs_id = sqs;
415 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
416 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
417 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
418 		} else {
419 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
420 			rx_queues = 0;
421 		}
422 
423 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
424 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
425 			tx_queues -= MAX_SND_QUEUES_PER_QS;
426 		} else {
427 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
428 			tx_queues = 0;
429 		}
430 
431 		nic->snicvf[sqs]->qs->cq_cnt =
432 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
433 
434 		/* Initialize secondary Qset's queues and its interrupts */
435 		nicvf_open(nic->snicvf[sqs]->netdev);
436 	}
437 
438 	/* Update stack with actual Rx/Tx queue count allocated */
439 	if (sqs_count != nic->sqs_count)
440 		nicvf_set_real_num_queues(nic->netdev,
441 					  nic->tx_queues, nic->rx_queues);
442 }
443 
444 /* Send this Qset's nicvf pointer to PF.
445  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
446  * so that packets received by these Qsets can use primary VF's netdev
447  */
448 static void nicvf_send_vf_struct(struct nicvf *nic)
449 {
450 	union nic_mbx mbx = {};
451 
452 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
453 	mbx.nicvf.sqs_mode = nic->sqs_mode;
454 	mbx.nicvf.nicvf = (u64)nic;
455 	nicvf_send_msg_to_pf(nic, &mbx);
456 }
457 
458 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
459 {
460 	union nic_mbx mbx = {};
461 
462 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
463 	nicvf_send_msg_to_pf(nic, &mbx);
464 }
465 
466 int nicvf_set_real_num_queues(struct net_device *netdev,
467 			      int tx_queues, int rx_queues)
468 {
469 	int err = 0;
470 
471 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
472 	if (err) {
473 		netdev_err(netdev,
474 			   "Failed to set no of Tx queues: %d\n", tx_queues);
475 		return err;
476 	}
477 
478 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
479 	if (err)
480 		netdev_err(netdev,
481 			   "Failed to set no of Rx queues: %d\n", rx_queues);
482 	return err;
483 }
484 
485 static int nicvf_init_resources(struct nicvf *nic)
486 {
487 	int err;
488 
489 	/* Enable Qset */
490 	nicvf_qset_config(nic, true);
491 
492 	/* Initialize queues and HW for data transfer */
493 	err = nicvf_config_data_transfer(nic, true);
494 	if (err) {
495 		netdev_err(nic->netdev,
496 			   "Failed to alloc/config VF's QSet resources\n");
497 		return err;
498 	}
499 
500 	return 0;
501 }
502 
503 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
504 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
505 				struct sk_buff **skb)
506 {
507 	struct xdp_buff xdp;
508 	struct page *page;
509 	u32 action;
510 	u16 len, offset = 0;
511 	u64 dma_addr, cpu_addr;
512 	void *orig_data;
513 
514 	/* Retrieve packet buffer's DMA address and length */
515 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
516 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
517 
518 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
519 	if (!cpu_addr)
520 		return false;
521 	cpu_addr = (u64)phys_to_virt(cpu_addr);
522 	page = virt_to_page((void *)cpu_addr);
523 
524 	xdp.data_hard_start = page_address(page);
525 	xdp.data = (void *)cpu_addr;
526 	xdp_set_data_meta_invalid(&xdp);
527 	xdp.data_end = xdp.data + len;
528 	orig_data = xdp.data;
529 
530 	rcu_read_lock();
531 	action = bpf_prog_run_xdp(prog, &xdp);
532 	rcu_read_unlock();
533 
534 	/* Check if XDP program has changed headers */
535 	if (orig_data != xdp.data) {
536 		len = xdp.data_end - xdp.data;
537 		offset = orig_data - xdp.data;
538 		dma_addr -= offset;
539 	}
540 
541 	switch (action) {
542 	case XDP_PASS:
543 		/* Check if it's a recycled page, if not
544 		 * unmap the DMA mapping.
545 		 *
546 		 * Recycled page holds an extra reference.
547 		 */
548 		if (page_ref_count(page) == 1) {
549 			dma_addr &= PAGE_MASK;
550 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
551 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
552 					     DMA_FROM_DEVICE,
553 					     DMA_ATTR_SKIP_CPU_SYNC);
554 		}
555 
556 		/* Build SKB and pass on packet to network stack */
557 		*skb = build_skb(xdp.data,
558 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
559 		if (!*skb)
560 			put_page(page);
561 		else
562 			skb_put(*skb, len);
563 		return false;
564 	case XDP_TX:
565 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
566 		return true;
567 	default:
568 		bpf_warn_invalid_xdp_action(action);
569 	case XDP_ABORTED:
570 		trace_xdp_exception(nic->netdev, prog, action);
571 	case XDP_DROP:
572 		/* Check if it's a recycled page, if not
573 		 * unmap the DMA mapping.
574 		 *
575 		 * Recycled page holds an extra reference.
576 		 */
577 		if (page_ref_count(page) == 1) {
578 			dma_addr &= PAGE_MASK;
579 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
580 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
581 					     DMA_FROM_DEVICE,
582 					     DMA_ATTR_SKIP_CPU_SYNC);
583 		}
584 		put_page(page);
585 		return true;
586 	}
587 	return false;
588 }
589 
590 static void nicvf_snd_pkt_handler(struct net_device *netdev,
591 				  struct cqe_send_t *cqe_tx,
592 				  int budget, int *subdesc_cnt,
593 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
594 {
595 	struct sk_buff *skb = NULL;
596 	struct page *page;
597 	struct nicvf *nic = netdev_priv(netdev);
598 	struct snd_queue *sq;
599 	struct sq_hdr_subdesc *hdr;
600 	struct sq_hdr_subdesc *tso_sqe;
601 
602 	sq = &nic->qs->sq[cqe_tx->sq_idx];
603 
604 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
605 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
606 		return;
607 
608 	/* Check for errors */
609 	if (cqe_tx->send_status)
610 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
611 
612 	/* Is this a XDP designated Tx queue */
613 	if (sq->is_xdp) {
614 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
615 		/* Check if it's recycled page or else unmap DMA mapping */
616 		if (page && (page_ref_count(page) == 1))
617 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
618 						 hdr->subdesc_cnt);
619 
620 		/* Release page reference for recycling */
621 		if (page)
622 			put_page(page);
623 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
624 		*subdesc_cnt += hdr->subdesc_cnt + 1;
625 		return;
626 	}
627 
628 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
629 	if (skb) {
630 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
631 		if (hdr->dont_send) {
632 			/* Get actual TSO descriptors and free them */
633 			tso_sqe =
634 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
635 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
636 						 tso_sqe->subdesc_cnt);
637 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
638 		} else {
639 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
640 						 hdr->subdesc_cnt);
641 		}
642 		*subdesc_cnt += hdr->subdesc_cnt + 1;
643 		prefetch(skb);
644 		(*tx_pkts)++;
645 		*tx_bytes += skb->len;
646 		napi_consume_skb(skb, budget);
647 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
648 	} else {
649 		/* In case of SW TSO on 88xx, only last segment will have
650 		 * a SKB attached, so just free SQEs here.
651 		 */
652 		if (!nic->hw_tso)
653 			*subdesc_cnt += hdr->subdesc_cnt + 1;
654 	}
655 }
656 
657 static inline void nicvf_set_rxhash(struct net_device *netdev,
658 				    struct cqe_rx_t *cqe_rx,
659 				    struct sk_buff *skb)
660 {
661 	u8 hash_type;
662 	u32 hash;
663 
664 	if (!(netdev->features & NETIF_F_RXHASH))
665 		return;
666 
667 	switch (cqe_rx->rss_alg) {
668 	case RSS_ALG_TCP_IP:
669 	case RSS_ALG_UDP_IP:
670 		hash_type = PKT_HASH_TYPE_L4;
671 		hash = cqe_rx->rss_tag;
672 		break;
673 	case RSS_ALG_IP:
674 		hash_type = PKT_HASH_TYPE_L3;
675 		hash = cqe_rx->rss_tag;
676 		break;
677 	default:
678 		hash_type = PKT_HASH_TYPE_NONE;
679 		hash = 0;
680 	}
681 
682 	skb_set_hash(skb, hash, hash_type);
683 }
684 
685 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
686 				  struct napi_struct *napi,
687 				  struct cqe_rx_t *cqe_rx, struct snd_queue *sq)
688 {
689 	struct sk_buff *skb = NULL;
690 	struct nicvf *nic = netdev_priv(netdev);
691 	struct nicvf *snic = nic;
692 	int err = 0;
693 	int rq_idx;
694 
695 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
696 
697 	if (nic->sqs_mode) {
698 		/* Use primary VF's 'nicvf' struct */
699 		nic = nic->pnicvf;
700 		netdev = nic->netdev;
701 	}
702 
703 	/* Check for errors */
704 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
705 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
706 		if (err && !cqe_rx->rb_cnt)
707 			return;
708 	}
709 
710 	/* For XDP, ignore pkts spanning multiple pages */
711 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
712 		/* Packet consumed by XDP */
713 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, &skb))
714 			return;
715 	} else {
716 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
717 					nic->xdp_prog ? true : false);
718 	}
719 
720 	if (!skb)
721 		return;
722 
723 	if (netif_msg_pktdata(nic)) {
724 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
725 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
726 			       skb->data, skb->len, true);
727 	}
728 
729 	/* If error packet, drop it here */
730 	if (err) {
731 		dev_kfree_skb_any(skb);
732 		return;
733 	}
734 
735 	nicvf_set_rxhash(netdev, cqe_rx, skb);
736 
737 	skb_record_rx_queue(skb, rq_idx);
738 	if (netdev->hw_features & NETIF_F_RXCSUM) {
739 		/* HW by default verifies TCP/UDP/SCTP checksums */
740 		skb->ip_summed = CHECKSUM_UNNECESSARY;
741 	} else {
742 		skb_checksum_none_assert(skb);
743 	}
744 
745 	skb->protocol = eth_type_trans(skb, netdev);
746 
747 	/* Check for stripped VLAN */
748 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
749 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
750 				       ntohs((__force __be16)cqe_rx->vlan_tci));
751 
752 	if (napi && (netdev->features & NETIF_F_GRO))
753 		napi_gro_receive(napi, skb);
754 	else
755 		netif_receive_skb(skb);
756 }
757 
758 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
759 				 struct napi_struct *napi, int budget)
760 {
761 	int processed_cqe, work_done = 0, tx_done = 0;
762 	int cqe_count, cqe_head;
763 	int subdesc_cnt = 0;
764 	struct nicvf *nic = netdev_priv(netdev);
765 	struct queue_set *qs = nic->qs;
766 	struct cmp_queue *cq = &qs->cq[cq_idx];
767 	struct cqe_rx_t *cq_desc;
768 	struct netdev_queue *txq;
769 	struct snd_queue *sq = &qs->sq[cq_idx];
770 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
771 
772 	spin_lock_bh(&cq->lock);
773 loop:
774 	processed_cqe = 0;
775 	/* Get no of valid CQ entries to process */
776 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
777 	cqe_count &= CQ_CQE_COUNT;
778 	if (!cqe_count)
779 		goto done;
780 
781 	/* Get head of the valid CQ entries */
782 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
783 	cqe_head &= 0xFFFF;
784 
785 	while (processed_cqe < cqe_count) {
786 		/* Get the CQ descriptor */
787 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
788 		cqe_head++;
789 		cqe_head &= (cq->dmem.q_len - 1);
790 		/* Initiate prefetch for next descriptor */
791 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
792 
793 		if ((work_done >= budget) && napi &&
794 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
795 			break;
796 		}
797 
798 		switch (cq_desc->cqe_type) {
799 		case CQE_TYPE_RX:
800 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq);
801 			work_done++;
802 		break;
803 		case CQE_TYPE_SEND:
804 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
805 					      budget, &subdesc_cnt,
806 					      &tx_pkts, &tx_bytes);
807 			tx_done++;
808 		break;
809 		case CQE_TYPE_INVALID:
810 		case CQE_TYPE_RX_SPLIT:
811 		case CQE_TYPE_RX_TCP:
812 		case CQE_TYPE_SEND_PTP:
813 			/* Ignore for now */
814 		break;
815 		}
816 		processed_cqe++;
817 	}
818 
819 	/* Ring doorbell to inform H/W to reuse processed CQEs */
820 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
821 			      cq_idx, processed_cqe);
822 
823 	if ((work_done < budget) && napi)
824 		goto loop;
825 
826 done:
827 	/* Update SQ's descriptor free count */
828 	if (subdesc_cnt)
829 		nicvf_put_sq_desc(sq, subdesc_cnt);
830 
831 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
832 	/* Handle XDP TX queues */
833 	if (nic->pnicvf->xdp_prog) {
834 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
835 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
836 			goto out;
837 		}
838 		nic = nic->pnicvf;
839 		txq_idx -= nic->pnicvf->xdp_tx_queues;
840 	}
841 
842 	/* Wakeup TXQ if its stopped earlier due to SQ full */
843 	if (tx_done ||
844 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
845 		netdev = nic->pnicvf->netdev;
846 		txq = netdev_get_tx_queue(netdev, txq_idx);
847 		if (tx_pkts)
848 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
849 
850 		/* To read updated queue and carrier status */
851 		smp_mb();
852 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
853 			netif_tx_wake_queue(txq);
854 			nic = nic->pnicvf;
855 			this_cpu_inc(nic->drv_stats->txq_wake);
856 			netif_warn(nic, tx_err, netdev,
857 				   "Transmit queue wakeup SQ%d\n", txq_idx);
858 		}
859 	}
860 
861 out:
862 	spin_unlock_bh(&cq->lock);
863 	return work_done;
864 }
865 
866 static int nicvf_poll(struct napi_struct *napi, int budget)
867 {
868 	u64  cq_head;
869 	int  work_done = 0;
870 	struct net_device *netdev = napi->dev;
871 	struct nicvf *nic = netdev_priv(netdev);
872 	struct nicvf_cq_poll *cq;
873 
874 	cq = container_of(napi, struct nicvf_cq_poll, napi);
875 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
876 
877 	if (work_done < budget) {
878 		/* Slow packet rate, exit polling */
879 		napi_complete_done(napi, work_done);
880 		/* Re-enable interrupts */
881 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
882 					       cq->cq_idx);
883 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
884 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
885 				      cq->cq_idx, cq_head);
886 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
887 	}
888 	return work_done;
889 }
890 
891 /* Qset error interrupt handler
892  *
893  * As of now only CQ errors are handled
894  */
895 static void nicvf_handle_qs_err(unsigned long data)
896 {
897 	struct nicvf *nic = (struct nicvf *)data;
898 	struct queue_set *qs = nic->qs;
899 	int qidx;
900 	u64 status;
901 
902 	netif_tx_disable(nic->netdev);
903 
904 	/* Check if it is CQ err */
905 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
906 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
907 					      qidx);
908 		if (!(status & CQ_ERR_MASK))
909 			continue;
910 		/* Process already queued CQEs and reconfig CQ */
911 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
912 		nicvf_sq_disable(nic, qidx);
913 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
914 		nicvf_cmp_queue_config(nic, qs, qidx, true);
915 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
916 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
917 
918 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
919 	}
920 
921 	netif_tx_start_all_queues(nic->netdev);
922 	/* Re-enable Qset error interrupt */
923 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
924 }
925 
926 static void nicvf_dump_intr_status(struct nicvf *nic)
927 {
928 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
929 		   nicvf_reg_read(nic, NIC_VF_INT));
930 }
931 
932 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
933 {
934 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
935 	u64 intr;
936 
937 	nicvf_dump_intr_status(nic);
938 
939 	intr = nicvf_reg_read(nic, NIC_VF_INT);
940 	/* Check for spurious interrupt */
941 	if (!(intr & NICVF_INTR_MBOX_MASK))
942 		return IRQ_HANDLED;
943 
944 	nicvf_handle_mbx_intr(nic);
945 
946 	return IRQ_HANDLED;
947 }
948 
949 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
950 {
951 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
952 	struct nicvf *nic = cq_poll->nicvf;
953 	int qidx = cq_poll->cq_idx;
954 
955 	nicvf_dump_intr_status(nic);
956 
957 	/* Disable interrupts */
958 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
959 
960 	/* Schedule NAPI */
961 	napi_schedule_irqoff(&cq_poll->napi);
962 
963 	/* Clear interrupt */
964 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
965 
966 	return IRQ_HANDLED;
967 }
968 
969 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
970 {
971 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
972 	u8 qidx;
973 
974 
975 	nicvf_dump_intr_status(nic);
976 
977 	/* Disable RBDR interrupt and schedule softirq */
978 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
979 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
980 			continue;
981 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
982 		tasklet_hi_schedule(&nic->rbdr_task);
983 		/* Clear interrupt */
984 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
985 	}
986 
987 	return IRQ_HANDLED;
988 }
989 
990 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
991 {
992 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
993 
994 	nicvf_dump_intr_status(nic);
995 
996 	/* Disable Qset err interrupt and schedule softirq */
997 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
998 	tasklet_hi_schedule(&nic->qs_err_task);
999 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1000 
1001 	return IRQ_HANDLED;
1002 }
1003 
1004 static void nicvf_set_irq_affinity(struct nicvf *nic)
1005 {
1006 	int vec, cpu;
1007 
1008 	for (vec = 0; vec < nic->num_vec; vec++) {
1009 		if (!nic->irq_allocated[vec])
1010 			continue;
1011 
1012 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1013 			return;
1014 		 /* CQ interrupts */
1015 		if (vec < NICVF_INTR_ID_SQ)
1016 			/* Leave CPU0 for RBDR and other interrupts */
1017 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1018 		else
1019 			cpu = 0;
1020 
1021 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1022 				nic->affinity_mask[vec]);
1023 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1024 				      nic->affinity_mask[vec]);
1025 	}
1026 }
1027 
1028 static int nicvf_register_interrupts(struct nicvf *nic)
1029 {
1030 	int irq, ret = 0;
1031 
1032 	for_each_cq_irq(irq)
1033 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1034 			nic->pnicvf->netdev->name,
1035 			nicvf_netdev_qidx(nic, irq));
1036 
1037 	for_each_sq_irq(irq)
1038 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1039 			nic->pnicvf->netdev->name,
1040 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1041 
1042 	for_each_rbdr_irq(irq)
1043 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1044 			nic->pnicvf->netdev->name,
1045 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1046 
1047 	/* Register CQ interrupts */
1048 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1049 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1050 				  nicvf_intr_handler,
1051 				  0, nic->irq_name[irq], nic->napi[irq]);
1052 		if (ret)
1053 			goto err;
1054 		nic->irq_allocated[irq] = true;
1055 	}
1056 
1057 	/* Register RBDR interrupt */
1058 	for (irq = NICVF_INTR_ID_RBDR;
1059 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1060 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1061 				  nicvf_rbdr_intr_handler,
1062 				  0, nic->irq_name[irq], nic);
1063 		if (ret)
1064 			goto err;
1065 		nic->irq_allocated[irq] = true;
1066 	}
1067 
1068 	/* Register QS error interrupt */
1069 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1070 		nic->pnicvf->netdev->name,
1071 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1072 	irq = NICVF_INTR_ID_QS_ERR;
1073 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1074 			  nicvf_qs_err_intr_handler,
1075 			  0, nic->irq_name[irq], nic);
1076 	if (ret)
1077 		goto err;
1078 
1079 	nic->irq_allocated[irq] = true;
1080 
1081 	/* Set IRQ affinities */
1082 	nicvf_set_irq_affinity(nic);
1083 
1084 err:
1085 	if (ret)
1086 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1087 
1088 	return ret;
1089 }
1090 
1091 static void nicvf_unregister_interrupts(struct nicvf *nic)
1092 {
1093 	struct pci_dev *pdev = nic->pdev;
1094 	int irq;
1095 
1096 	/* Free registered interrupts */
1097 	for (irq = 0; irq < nic->num_vec; irq++) {
1098 		if (!nic->irq_allocated[irq])
1099 			continue;
1100 
1101 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1102 		free_cpumask_var(nic->affinity_mask[irq]);
1103 
1104 		if (irq < NICVF_INTR_ID_SQ)
1105 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1106 		else
1107 			free_irq(pci_irq_vector(pdev, irq), nic);
1108 
1109 		nic->irq_allocated[irq] = false;
1110 	}
1111 
1112 	/* Disable MSI-X */
1113 	pci_free_irq_vectors(pdev);
1114 	nic->num_vec = 0;
1115 }
1116 
1117 /* Initialize MSIX vectors and register MISC interrupt.
1118  * Send READY message to PF to check if its alive
1119  */
1120 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1121 {
1122 	int ret = 0;
1123 	int irq = NICVF_INTR_ID_MISC;
1124 
1125 	/* Return if mailbox interrupt is already registered */
1126 	if (nic->pdev->msix_enabled)
1127 		return 0;
1128 
1129 	/* Enable MSI-X */
1130 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1131 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1132 				    PCI_IRQ_MSIX);
1133 	if (ret < 0) {
1134 		netdev_err(nic->netdev,
1135 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1136 		return 1;
1137 	}
1138 
1139 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1140 	/* Register Misc interrupt */
1141 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1142 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1143 
1144 	if (ret)
1145 		return ret;
1146 	nic->irq_allocated[irq] = true;
1147 
1148 	/* Enable mailbox interrupt */
1149 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1150 
1151 	/* Check if VF is able to communicate with PF */
1152 	if (!nicvf_check_pf_ready(nic)) {
1153 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1154 		nicvf_unregister_interrupts(nic);
1155 		return 1;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1162 {
1163 	struct nicvf *nic = netdev_priv(netdev);
1164 	int qid = skb_get_queue_mapping(skb);
1165 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1166 	struct nicvf *snic;
1167 	struct snd_queue *sq;
1168 	int tmp;
1169 
1170 	/* Check for minimum packet length */
1171 	if (skb->len <= ETH_HLEN) {
1172 		dev_kfree_skb(skb);
1173 		return NETDEV_TX_OK;
1174 	}
1175 
1176 	/* In XDP case, initial HW tx queues are used for XDP,
1177 	 * but stack's queue mapping starts at '0', so skip the
1178 	 * Tx queues attached to Rx queues for XDP.
1179 	 */
1180 	if (nic->xdp_prog)
1181 		qid += nic->xdp_tx_queues;
1182 
1183 	snic = nic;
1184 	/* Get secondary Qset's SQ structure */
1185 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1186 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1187 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1188 		if (!snic) {
1189 			netdev_warn(nic->netdev,
1190 				    "Secondary Qset#%d's ptr not initialized\n",
1191 				    tmp - 1);
1192 			dev_kfree_skb(skb);
1193 			return NETDEV_TX_OK;
1194 		}
1195 		qid = qid % MAX_SND_QUEUES_PER_QS;
1196 	}
1197 
1198 	sq = &snic->qs->sq[qid];
1199 	if (!netif_tx_queue_stopped(txq) &&
1200 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1201 		netif_tx_stop_queue(txq);
1202 
1203 		/* Barrier, so that stop_queue visible to other cpus */
1204 		smp_mb();
1205 
1206 		/* Check again, incase another cpu freed descriptors */
1207 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1208 			netif_tx_wake_queue(txq);
1209 		} else {
1210 			this_cpu_inc(nic->drv_stats->txq_stop);
1211 			netif_warn(nic, tx_err, netdev,
1212 				   "Transmit ring full, stopping SQ%d\n", qid);
1213 		}
1214 		return NETDEV_TX_BUSY;
1215 	}
1216 
1217 	return NETDEV_TX_OK;
1218 }
1219 
1220 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1221 {
1222 	struct nicvf_cq_poll *cq_poll;
1223 	int qidx;
1224 
1225 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1226 		cq_poll = nic->napi[qidx];
1227 		if (!cq_poll)
1228 			continue;
1229 		nic->napi[qidx] = NULL;
1230 		kfree(cq_poll);
1231 	}
1232 }
1233 
1234 int nicvf_stop(struct net_device *netdev)
1235 {
1236 	int irq, qidx;
1237 	struct nicvf *nic = netdev_priv(netdev);
1238 	struct queue_set *qs = nic->qs;
1239 	struct nicvf_cq_poll *cq_poll = NULL;
1240 	union nic_mbx mbx = {};
1241 
1242 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1243 	nicvf_send_msg_to_pf(nic, &mbx);
1244 
1245 	netif_carrier_off(netdev);
1246 	netif_tx_stop_all_queues(nic->netdev);
1247 	nic->link_up = false;
1248 
1249 	/* Teardown secondary qsets first */
1250 	if (!nic->sqs_mode) {
1251 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1252 			if (!nic->snicvf[qidx])
1253 				continue;
1254 			nicvf_stop(nic->snicvf[qidx]->netdev);
1255 			nic->snicvf[qidx] = NULL;
1256 		}
1257 	}
1258 
1259 	/* Disable RBDR & QS error interrupts */
1260 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1261 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1262 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1263 	}
1264 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1265 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1266 
1267 	/* Wait for pending IRQ handlers to finish */
1268 	for (irq = 0; irq < nic->num_vec; irq++)
1269 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1270 
1271 	tasklet_kill(&nic->rbdr_task);
1272 	tasklet_kill(&nic->qs_err_task);
1273 	if (nic->rb_work_scheduled)
1274 		cancel_delayed_work_sync(&nic->rbdr_work);
1275 
1276 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1277 		cq_poll = nic->napi[qidx];
1278 		if (!cq_poll)
1279 			continue;
1280 		napi_synchronize(&cq_poll->napi);
1281 		/* CQ intr is enabled while napi_complete,
1282 		 * so disable it now
1283 		 */
1284 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1285 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1286 		napi_disable(&cq_poll->napi);
1287 		netif_napi_del(&cq_poll->napi);
1288 	}
1289 
1290 	netif_tx_disable(netdev);
1291 
1292 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1293 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1294 
1295 	/* Free resources */
1296 	nicvf_config_data_transfer(nic, false);
1297 
1298 	/* Disable HW Qset */
1299 	nicvf_qset_config(nic, false);
1300 
1301 	/* disable mailbox interrupt */
1302 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1303 
1304 	nicvf_unregister_interrupts(nic);
1305 
1306 	nicvf_free_cq_poll(nic);
1307 
1308 	/* Clear multiqset info */
1309 	nic->pnicvf = nic;
1310 
1311 	return 0;
1312 }
1313 
1314 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1315 {
1316 	union nic_mbx mbx = {};
1317 
1318 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1319 	mbx.frs.max_frs = mtu;
1320 	mbx.frs.vf_id = nic->vf_id;
1321 
1322 	return nicvf_send_msg_to_pf(nic, &mbx);
1323 }
1324 
1325 int nicvf_open(struct net_device *netdev)
1326 {
1327 	int cpu, err, qidx;
1328 	struct nicvf *nic = netdev_priv(netdev);
1329 	struct queue_set *qs = nic->qs;
1330 	struct nicvf_cq_poll *cq_poll = NULL;
1331 	union nic_mbx mbx = {};
1332 
1333 	netif_carrier_off(netdev);
1334 
1335 	err = nicvf_register_misc_interrupt(nic);
1336 	if (err)
1337 		return err;
1338 
1339 	/* Register NAPI handler for processing CQEs */
1340 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1341 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1342 		if (!cq_poll) {
1343 			err = -ENOMEM;
1344 			goto napi_del;
1345 		}
1346 		cq_poll->cq_idx = qidx;
1347 		cq_poll->nicvf = nic;
1348 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1349 			       NAPI_POLL_WEIGHT);
1350 		napi_enable(&cq_poll->napi);
1351 		nic->napi[qidx] = cq_poll;
1352 	}
1353 
1354 	/* Check if we got MAC address from PF or else generate a radom MAC */
1355 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1356 		eth_hw_addr_random(netdev);
1357 		nicvf_hw_set_mac_addr(nic, netdev);
1358 	}
1359 
1360 	if (nic->set_mac_pending) {
1361 		nic->set_mac_pending = false;
1362 		nicvf_hw_set_mac_addr(nic, netdev);
1363 	}
1364 
1365 	/* Init tasklet for handling Qset err interrupt */
1366 	tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1367 		     (unsigned long)nic);
1368 
1369 	/* Init RBDR tasklet which will refill RBDR */
1370 	tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1371 		     (unsigned long)nic);
1372 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1373 
1374 	/* Configure CPI alorithm */
1375 	nic->cpi_alg = cpi_alg;
1376 	if (!nic->sqs_mode)
1377 		nicvf_config_cpi(nic);
1378 
1379 	nicvf_request_sqs(nic);
1380 	if (nic->sqs_mode)
1381 		nicvf_get_primary_vf_struct(nic);
1382 
1383 	/* Configure receive side scaling and MTU */
1384 	if (!nic->sqs_mode) {
1385 		nicvf_rss_init(nic);
1386 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1387 		if (err)
1388 			goto cleanup;
1389 
1390 		/* Clear percpu stats */
1391 		for_each_possible_cpu(cpu)
1392 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1393 			       sizeof(struct nicvf_drv_stats));
1394 	}
1395 
1396 	err = nicvf_register_interrupts(nic);
1397 	if (err)
1398 		goto cleanup;
1399 
1400 	/* Initialize the queues */
1401 	err = nicvf_init_resources(nic);
1402 	if (err)
1403 		goto cleanup;
1404 
1405 	/* Make sure queue initialization is written */
1406 	wmb();
1407 
1408 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1409 	/* Enable Qset err interrupt */
1410 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1411 
1412 	/* Enable completion queue interrupt */
1413 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1414 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1415 
1416 	/* Enable RBDR threshold interrupt */
1417 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1418 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1419 
1420 	/* Send VF config done msg to PF */
1421 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
1422 	nicvf_write_to_mbx(nic, &mbx);
1423 
1424 	return 0;
1425 cleanup:
1426 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1427 	nicvf_unregister_interrupts(nic);
1428 	tasklet_kill(&nic->qs_err_task);
1429 	tasklet_kill(&nic->rbdr_task);
1430 napi_del:
1431 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1432 		cq_poll = nic->napi[qidx];
1433 		if (!cq_poll)
1434 			continue;
1435 		napi_disable(&cq_poll->napi);
1436 		netif_napi_del(&cq_poll->napi);
1437 	}
1438 	nicvf_free_cq_poll(nic);
1439 	return err;
1440 }
1441 
1442 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1443 {
1444 	struct nicvf *nic = netdev_priv(netdev);
1445 	int orig_mtu = netdev->mtu;
1446 
1447 	netdev->mtu = new_mtu;
1448 
1449 	if (!netif_running(netdev))
1450 		return 0;
1451 
1452 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1453 		netdev->mtu = orig_mtu;
1454 		return -EINVAL;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1461 {
1462 	struct sockaddr *addr = p;
1463 	struct nicvf *nic = netdev_priv(netdev);
1464 
1465 	if (!is_valid_ether_addr(addr->sa_data))
1466 		return -EADDRNOTAVAIL;
1467 
1468 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1469 
1470 	if (nic->pdev->msix_enabled) {
1471 		if (nicvf_hw_set_mac_addr(nic, netdev))
1472 			return -EBUSY;
1473 	} else {
1474 		nic->set_mac_pending = true;
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 void nicvf_update_lmac_stats(struct nicvf *nic)
1481 {
1482 	int stat = 0;
1483 	union nic_mbx mbx = {};
1484 
1485 	if (!netif_running(nic->netdev))
1486 		return;
1487 
1488 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1489 	mbx.bgx_stats.vf_id = nic->vf_id;
1490 	/* Rx stats */
1491 	mbx.bgx_stats.rx = 1;
1492 	while (stat < BGX_RX_STATS_COUNT) {
1493 		mbx.bgx_stats.idx = stat;
1494 		if (nicvf_send_msg_to_pf(nic, &mbx))
1495 			return;
1496 		stat++;
1497 	}
1498 
1499 	stat = 0;
1500 
1501 	/* Tx stats */
1502 	mbx.bgx_stats.rx = 0;
1503 	while (stat < BGX_TX_STATS_COUNT) {
1504 		mbx.bgx_stats.idx = stat;
1505 		if (nicvf_send_msg_to_pf(nic, &mbx))
1506 			return;
1507 		stat++;
1508 	}
1509 }
1510 
1511 void nicvf_update_stats(struct nicvf *nic)
1512 {
1513 	int qidx, cpu;
1514 	u64 tmp_stats = 0;
1515 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1516 	struct nicvf_drv_stats *drv_stats;
1517 	struct queue_set *qs = nic->qs;
1518 
1519 #define GET_RX_STATS(reg) \
1520 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1521 #define GET_TX_STATS(reg) \
1522 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1523 
1524 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1525 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1526 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1527 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1528 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1529 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1530 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1531 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1532 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1533 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1534 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1535 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1536 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1537 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1538 
1539 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1540 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1541 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1542 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1543 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1544 
1545 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1546 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1547 	 * pointed by dummy SQE and results in tx_drops counter being
1548 	 * incremented. Subtracting it from tx_tso counter will give
1549 	 * exact tx_drops counter.
1550 	 */
1551 	if (nic->t88 && nic->hw_tso) {
1552 		for_each_possible_cpu(cpu) {
1553 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1554 			tmp_stats += drv_stats->tx_tso;
1555 		}
1556 		stats->tx_drops = tmp_stats - stats->tx_drops;
1557 	}
1558 	stats->tx_frames = stats->tx_ucast_frames +
1559 			   stats->tx_bcast_frames +
1560 			   stats->tx_mcast_frames;
1561 	stats->rx_frames = stats->rx_ucast_frames +
1562 			   stats->rx_bcast_frames +
1563 			   stats->rx_mcast_frames;
1564 	stats->rx_drops = stats->rx_drop_red +
1565 			  stats->rx_drop_overrun;
1566 
1567 	/* Update RQ and SQ stats */
1568 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1569 		nicvf_update_rq_stats(nic, qidx);
1570 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1571 		nicvf_update_sq_stats(nic, qidx);
1572 }
1573 
1574 static void nicvf_get_stats64(struct net_device *netdev,
1575 			      struct rtnl_link_stats64 *stats)
1576 {
1577 	struct nicvf *nic = netdev_priv(netdev);
1578 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1579 
1580 	nicvf_update_stats(nic);
1581 
1582 	stats->rx_bytes = hw_stats->rx_bytes;
1583 	stats->rx_packets = hw_stats->rx_frames;
1584 	stats->rx_dropped = hw_stats->rx_drops;
1585 	stats->multicast = hw_stats->rx_mcast_frames;
1586 
1587 	stats->tx_bytes = hw_stats->tx_bytes;
1588 	stats->tx_packets = hw_stats->tx_frames;
1589 	stats->tx_dropped = hw_stats->tx_drops;
1590 
1591 }
1592 
1593 static void nicvf_tx_timeout(struct net_device *dev)
1594 {
1595 	struct nicvf *nic = netdev_priv(dev);
1596 
1597 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1598 
1599 	this_cpu_inc(nic->drv_stats->tx_timeout);
1600 	schedule_work(&nic->reset_task);
1601 }
1602 
1603 static void nicvf_reset_task(struct work_struct *work)
1604 {
1605 	struct nicvf *nic;
1606 
1607 	nic = container_of(work, struct nicvf, reset_task);
1608 
1609 	if (!netif_running(nic->netdev))
1610 		return;
1611 
1612 	nicvf_stop(nic->netdev);
1613 	nicvf_open(nic->netdev);
1614 	netif_trans_update(nic->netdev);
1615 }
1616 
1617 static int nicvf_config_loopback(struct nicvf *nic,
1618 				 netdev_features_t features)
1619 {
1620 	union nic_mbx mbx = {};
1621 
1622 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1623 	mbx.lbk.vf_id = nic->vf_id;
1624 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1625 
1626 	return nicvf_send_msg_to_pf(nic, &mbx);
1627 }
1628 
1629 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1630 					    netdev_features_t features)
1631 {
1632 	struct nicvf *nic = netdev_priv(netdev);
1633 
1634 	if ((features & NETIF_F_LOOPBACK) &&
1635 	    netif_running(netdev) && !nic->loopback_supported)
1636 		features &= ~NETIF_F_LOOPBACK;
1637 
1638 	return features;
1639 }
1640 
1641 static int nicvf_set_features(struct net_device *netdev,
1642 			      netdev_features_t features)
1643 {
1644 	struct nicvf *nic = netdev_priv(netdev);
1645 	netdev_features_t changed = features ^ netdev->features;
1646 
1647 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1648 		nicvf_config_vlan_stripping(nic, features);
1649 
1650 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1651 		return nicvf_config_loopback(nic, features);
1652 
1653 	return 0;
1654 }
1655 
1656 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1657 {
1658 	u8 cq_count, txq_count;
1659 
1660 	/* Set XDP Tx queue count same as Rx queue count */
1661 	if (!bpf_attached)
1662 		nic->xdp_tx_queues = 0;
1663 	else
1664 		nic->xdp_tx_queues = nic->rx_queues;
1665 
1666 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1667 	 * needs to be allocated, check how many.
1668 	 */
1669 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1670 	cq_count = max(nic->rx_queues, txq_count);
1671 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1672 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1673 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1674 	} else {
1675 		nic->sqs_count = 0;
1676 	}
1677 
1678 	/* Set primary Qset's resources */
1679 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1680 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1681 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1682 
1683 	/* Update stack */
1684 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1685 }
1686 
1687 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1688 {
1689 	struct net_device *dev = nic->netdev;
1690 	bool if_up = netif_running(nic->netdev);
1691 	struct bpf_prog *old_prog;
1692 	bool bpf_attached = false;
1693 
1694 	/* For now just support only the usual MTU sized frames */
1695 	if (prog && (dev->mtu > 1500)) {
1696 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1697 			    dev->mtu);
1698 		return -EOPNOTSUPP;
1699 	}
1700 
1701 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1702 	 * XDP Tx queues and more Tx queues are allocated for
1703 	 * network stack to send pkts out.
1704 	 *
1705 	 * No of Tx queues are either same as Rx queues or whatever
1706 	 * is left in max no of queues possible.
1707 	 */
1708 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1709 		netdev_warn(dev,
1710 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1711 			    nic->max_queues);
1712 		return -ENOMEM;
1713 	}
1714 
1715 	if (if_up)
1716 		nicvf_stop(nic->netdev);
1717 
1718 	old_prog = xchg(&nic->xdp_prog, prog);
1719 	/* Detach old prog, if any */
1720 	if (old_prog)
1721 		bpf_prog_put(old_prog);
1722 
1723 	if (nic->xdp_prog) {
1724 		/* Attach BPF program */
1725 		nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1726 		if (!IS_ERR(nic->xdp_prog))
1727 			bpf_attached = true;
1728 	}
1729 
1730 	/* Calculate Tx queues needed for XDP and network stack */
1731 	nicvf_set_xdp_queues(nic, bpf_attached);
1732 
1733 	if (if_up) {
1734 		/* Reinitialize interface, clean slate */
1735 		nicvf_open(nic->netdev);
1736 		netif_trans_update(nic->netdev);
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static int nicvf_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
1743 {
1744 	struct nicvf *nic = netdev_priv(netdev);
1745 
1746 	/* To avoid checks while retrieving buffer address from CQE_RX,
1747 	 * do not support XDP for T88 pass1.x silicons which are anyway
1748 	 * not in use widely.
1749 	 */
1750 	if (pass1_silicon(nic->pdev))
1751 		return -EOPNOTSUPP;
1752 
1753 	switch (xdp->command) {
1754 	case XDP_SETUP_PROG:
1755 		return nicvf_xdp_setup(nic, xdp->prog);
1756 	case XDP_QUERY_PROG:
1757 		xdp->prog_attached = !!nic->xdp_prog;
1758 		xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1759 		return 0;
1760 	default:
1761 		return -EINVAL;
1762 	}
1763 }
1764 
1765 static const struct net_device_ops nicvf_netdev_ops = {
1766 	.ndo_open		= nicvf_open,
1767 	.ndo_stop		= nicvf_stop,
1768 	.ndo_start_xmit		= nicvf_xmit,
1769 	.ndo_change_mtu		= nicvf_change_mtu,
1770 	.ndo_set_mac_address	= nicvf_set_mac_address,
1771 	.ndo_get_stats64	= nicvf_get_stats64,
1772 	.ndo_tx_timeout         = nicvf_tx_timeout,
1773 	.ndo_fix_features       = nicvf_fix_features,
1774 	.ndo_set_features       = nicvf_set_features,
1775 	.ndo_xdp		= nicvf_xdp,
1776 };
1777 
1778 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1779 {
1780 	struct device *dev = &pdev->dev;
1781 	struct net_device *netdev;
1782 	struct nicvf *nic;
1783 	int    err, qcount;
1784 	u16    sdevid;
1785 
1786 	err = pci_enable_device(pdev);
1787 	if (err) {
1788 		dev_err(dev, "Failed to enable PCI device\n");
1789 		return err;
1790 	}
1791 
1792 	err = pci_request_regions(pdev, DRV_NAME);
1793 	if (err) {
1794 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
1795 		goto err_disable_device;
1796 	}
1797 
1798 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1799 	if (err) {
1800 		dev_err(dev, "Unable to get usable DMA configuration\n");
1801 		goto err_release_regions;
1802 	}
1803 
1804 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1805 	if (err) {
1806 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
1807 		goto err_release_regions;
1808 	}
1809 
1810 	qcount = netif_get_num_default_rss_queues();
1811 
1812 	/* Restrict multiqset support only for host bound VFs */
1813 	if (pdev->is_virtfn) {
1814 		/* Set max number of queues per VF */
1815 		qcount = min_t(int, num_online_cpus(),
1816 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
1817 	}
1818 
1819 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
1820 	if (!netdev) {
1821 		err = -ENOMEM;
1822 		goto err_release_regions;
1823 	}
1824 
1825 	pci_set_drvdata(pdev, netdev);
1826 
1827 	SET_NETDEV_DEV(netdev, &pdev->dev);
1828 
1829 	nic = netdev_priv(netdev);
1830 	nic->netdev = netdev;
1831 	nic->pdev = pdev;
1832 	nic->pnicvf = nic;
1833 	nic->max_queues = qcount;
1834 
1835 	/* MAP VF's configuration registers */
1836 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
1837 	if (!nic->reg_base) {
1838 		dev_err(dev, "Cannot map config register space, aborting\n");
1839 		err = -ENOMEM;
1840 		goto err_free_netdev;
1841 	}
1842 
1843 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
1844 	if (!nic->drv_stats) {
1845 		err = -ENOMEM;
1846 		goto err_free_netdev;
1847 	}
1848 
1849 	err = nicvf_set_qset_resources(nic);
1850 	if (err)
1851 		goto err_free_netdev;
1852 
1853 	/* Check if PF is alive and get MAC address for this VF */
1854 	err = nicvf_register_misc_interrupt(nic);
1855 	if (err)
1856 		goto err_free_netdev;
1857 
1858 	nicvf_send_vf_struct(nic);
1859 
1860 	if (!pass1_silicon(nic->pdev))
1861 		nic->hw_tso = true;
1862 
1863 	/* Get iommu domain for iova to physical addr conversion */
1864 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
1865 
1866 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
1867 	if (sdevid == 0xA134)
1868 		nic->t88 = true;
1869 
1870 	/* Check if this VF is in QS only mode */
1871 	if (nic->sqs_mode)
1872 		return 0;
1873 
1874 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
1875 	if (err)
1876 		goto err_unregister_interrupts;
1877 
1878 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
1879 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
1880 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1881 			       NETIF_F_HW_VLAN_CTAG_RX);
1882 
1883 	netdev->hw_features |= NETIF_F_RXHASH;
1884 
1885 	netdev->features |= netdev->hw_features;
1886 	netdev->hw_features |= NETIF_F_LOOPBACK;
1887 
1888 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
1889 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
1890 
1891 	netdev->netdev_ops = &nicvf_netdev_ops;
1892 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
1893 
1894 	/* MTU range: 64 - 9200 */
1895 	netdev->min_mtu = NIC_HW_MIN_FRS;
1896 	netdev->max_mtu = NIC_HW_MAX_FRS;
1897 
1898 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
1899 
1900 	err = register_netdev(netdev);
1901 	if (err) {
1902 		dev_err(dev, "Failed to register netdevice\n");
1903 		goto err_unregister_interrupts;
1904 	}
1905 
1906 	nic->msg_enable = debug;
1907 
1908 	nicvf_set_ethtool_ops(netdev);
1909 
1910 	return 0;
1911 
1912 err_unregister_interrupts:
1913 	nicvf_unregister_interrupts(nic);
1914 err_free_netdev:
1915 	pci_set_drvdata(pdev, NULL);
1916 	if (nic->drv_stats)
1917 		free_percpu(nic->drv_stats);
1918 	free_netdev(netdev);
1919 err_release_regions:
1920 	pci_release_regions(pdev);
1921 err_disable_device:
1922 	pci_disable_device(pdev);
1923 	return err;
1924 }
1925 
1926 static void nicvf_remove(struct pci_dev *pdev)
1927 {
1928 	struct net_device *netdev = pci_get_drvdata(pdev);
1929 	struct nicvf *nic;
1930 	struct net_device *pnetdev;
1931 
1932 	if (!netdev)
1933 		return;
1934 
1935 	nic = netdev_priv(netdev);
1936 	pnetdev = nic->pnicvf->netdev;
1937 
1938 	/* Check if this Qset is assigned to different VF.
1939 	 * If yes, clean primary and all secondary Qsets.
1940 	 */
1941 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
1942 		unregister_netdev(pnetdev);
1943 	nicvf_unregister_interrupts(nic);
1944 	pci_set_drvdata(pdev, NULL);
1945 	if (nic->drv_stats)
1946 		free_percpu(nic->drv_stats);
1947 	free_netdev(netdev);
1948 	pci_release_regions(pdev);
1949 	pci_disable_device(pdev);
1950 }
1951 
1952 static void nicvf_shutdown(struct pci_dev *pdev)
1953 {
1954 	nicvf_remove(pdev);
1955 }
1956 
1957 static struct pci_driver nicvf_driver = {
1958 	.name = DRV_NAME,
1959 	.id_table = nicvf_id_table,
1960 	.probe = nicvf_probe,
1961 	.remove = nicvf_remove,
1962 	.shutdown = nicvf_shutdown,
1963 };
1964 
1965 static int __init nicvf_init_module(void)
1966 {
1967 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
1968 
1969 	return pci_register_driver(&nicvf_driver);
1970 }
1971 
1972 static void __exit nicvf_cleanup_module(void)
1973 {
1974 	pci_unregister_driver(&nicvf_driver);
1975 }
1976 
1977 module_init(nicvf_init_module);
1978 module_exit(nicvf_cleanup_module);
1979