1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Cavium, Inc.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/interrupt.h>
8 #include <linux/pci.h>
9 #include <linux/netdevice.h>
10 #include <linux/if_vlan.h>
11 #include <linux/etherdevice.h>
12 #include <linux/ethtool.h>
13 #include <linux/log2.h>
14 #include <linux/prefetch.h>
15 #include <linux/irq.h>
16 #include <linux/iommu.h>
17 #include <linux/bpf.h>
18 #include <linux/bpf_trace.h>
19 #include <linux/filter.h>
20 #include <linux/net_tstamp.h>
21 #include <linux/workqueue.h>
22 
23 #include "nic_reg.h"
24 #include "nic.h"
25 #include "nicvf_queues.h"
26 #include "thunder_bgx.h"
27 #include "../common/cavium_ptp.h"
28 
29 #define DRV_NAME	"nicvf"
30 #define DRV_VERSION	"1.0"
31 
32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
33  * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
34  * this value, keeping headroom for the 14 byte Ethernet header and two
35  * VLAN tags (for QinQ)
36  */
37 #define MAX_XDP_MTU	(1530 - ETH_HLEN - VLAN_HLEN * 2)
38 
39 /* Supported devices */
40 static const struct pci_device_id nicvf_id_table[] = {
41 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
43 			 PCI_VENDOR_ID_CAVIUM,
44 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
45 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
47 			 PCI_VENDOR_ID_CAVIUM,
48 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
49 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 			 PCI_VENDOR_ID_CAVIUM,
52 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
53 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
54 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
55 			 PCI_VENDOR_ID_CAVIUM,
56 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
57 	{ 0, }  /* end of table */
58 };
59 
60 MODULE_AUTHOR("Sunil Goutham");
61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
62 MODULE_LICENSE("GPL v2");
63 MODULE_VERSION(DRV_VERSION);
64 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
65 
66 static int debug = 0x00;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Debug message level bitmap");
69 
70 static int cpi_alg = CPI_ALG_NONE;
71 module_param(cpi_alg, int, 0444);
72 MODULE_PARM_DESC(cpi_alg,
73 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
74 
75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
76 {
77 	if (nic->sqs_mode)
78 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
79 	else
80 		return qidx;
81 }
82 
83 /* The Cavium ThunderX network controller can *only* be found in SoCs
84  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
85  * registers on this platform are implicitly strongly ordered with respect
86  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
87  * with no memory barriers in this driver.  The readq()/writeq() functions add
88  * explicit ordering operation which in this case are redundant, and only
89  * add overhead.
90  */
91 
92 /* Register read/write APIs */
93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
94 {
95 	writeq_relaxed(val, nic->reg_base + offset);
96 }
97 
98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
99 {
100 	return readq_relaxed(nic->reg_base + offset);
101 }
102 
103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
104 			   u64 qidx, u64 val)
105 {
106 	void __iomem *addr = nic->reg_base + offset;
107 
108 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
109 }
110 
111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
112 {
113 	void __iomem *addr = nic->reg_base + offset;
114 
115 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
116 }
117 
118 /* VF -> PF mailbox communication */
119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
120 {
121 	u64 *msg = (u64 *)mbx;
122 
123 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
124 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
125 }
126 
127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
128 {
129 	unsigned long timeout;
130 	int ret = 0;
131 
132 	mutex_lock(&nic->rx_mode_mtx);
133 
134 	nic->pf_acked = false;
135 	nic->pf_nacked = false;
136 
137 	nicvf_write_to_mbx(nic, mbx);
138 
139 	timeout = jiffies + msecs_to_jiffies(NIC_MBOX_MSG_TIMEOUT);
140 	/* Wait for previous message to be acked, timeout 2sec */
141 	while (!nic->pf_acked) {
142 		if (nic->pf_nacked) {
143 			netdev_err(nic->netdev,
144 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
145 				   (mbx->msg.msg & 0xFF), nic->vf_id);
146 			ret = -EINVAL;
147 			break;
148 		}
149 		usleep_range(8000, 10000);
150 		if (nic->pf_acked)
151 			break;
152 		if (time_after(jiffies, timeout)) {
153 			netdev_err(nic->netdev,
154 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
155 				   (mbx->msg.msg & 0xFF), nic->vf_id);
156 			ret = -EBUSY;
157 			break;
158 		}
159 	}
160 	mutex_unlock(&nic->rx_mode_mtx);
161 	return ret;
162 }
163 
164 /* Checks if VF is able to comminicate with PF
165 * and also gets the VNIC number this VF is associated to.
166 */
167 static int nicvf_check_pf_ready(struct nicvf *nic)
168 {
169 	union nic_mbx mbx = {};
170 
171 	mbx.msg.msg = NIC_MBOX_MSG_READY;
172 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
173 		netdev_err(nic->netdev,
174 			   "PF didn't respond to READY msg\n");
175 		return 0;
176 	}
177 
178 	return 1;
179 }
180 
181 static void nicvf_send_cfg_done(struct nicvf *nic)
182 {
183 	union nic_mbx mbx = {};
184 
185 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
186 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
187 		netdev_err(nic->netdev,
188 			   "PF didn't respond to CFG DONE msg\n");
189 	}
190 }
191 
192 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
193 {
194 	if (bgx->rx)
195 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
196 	else
197 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
198 }
199 
200 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
201 {
202 	union nic_mbx mbx = {};
203 	u64 *mbx_data;
204 	u64 mbx_addr;
205 	int i;
206 
207 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
208 	mbx_data = (u64 *)&mbx;
209 
210 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
211 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
212 		mbx_data++;
213 		mbx_addr += sizeof(u64);
214 	}
215 
216 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
217 	switch (mbx.msg.msg) {
218 	case NIC_MBOX_MSG_READY:
219 		nic->pf_acked = true;
220 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
221 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
222 		nic->node = mbx.nic_cfg.node_id;
223 		if (!nic->set_mac_pending)
224 			ether_addr_copy(nic->netdev->dev_addr,
225 					mbx.nic_cfg.mac_addr);
226 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
227 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
228 		nic->link_up = false;
229 		nic->duplex = 0;
230 		nic->speed = 0;
231 		break;
232 	case NIC_MBOX_MSG_ACK:
233 		nic->pf_acked = true;
234 		break;
235 	case NIC_MBOX_MSG_NACK:
236 		nic->pf_nacked = true;
237 		break;
238 	case NIC_MBOX_MSG_RSS_SIZE:
239 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
240 		nic->pf_acked = true;
241 		break;
242 	case NIC_MBOX_MSG_BGX_STATS:
243 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
244 		nic->pf_acked = true;
245 		break;
246 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
247 		nic->pf_acked = true;
248 		if (nic->link_up != mbx.link_status.link_up) {
249 			nic->link_up = mbx.link_status.link_up;
250 			nic->duplex = mbx.link_status.duplex;
251 			nic->speed = mbx.link_status.speed;
252 			nic->mac_type = mbx.link_status.mac_type;
253 			if (nic->link_up) {
254 				netdev_info(nic->netdev,
255 					    "Link is Up %d Mbps %s duplex\n",
256 					    nic->speed,
257 					    nic->duplex == DUPLEX_FULL ?
258 					    "Full" : "Half");
259 				netif_carrier_on(nic->netdev);
260 				netif_tx_start_all_queues(nic->netdev);
261 			} else {
262 				netdev_info(nic->netdev, "Link is Down\n");
263 				netif_carrier_off(nic->netdev);
264 				netif_tx_stop_all_queues(nic->netdev);
265 			}
266 		}
267 		break;
268 	case NIC_MBOX_MSG_ALLOC_SQS:
269 		nic->sqs_count = mbx.sqs_alloc.qs_count;
270 		nic->pf_acked = true;
271 		break;
272 	case NIC_MBOX_MSG_SNICVF_PTR:
273 		/* Primary VF: make note of secondary VF's pointer
274 		 * to be used while packet transmission.
275 		 */
276 		nic->snicvf[mbx.nicvf.sqs_id] =
277 			(struct nicvf *)mbx.nicvf.nicvf;
278 		nic->pf_acked = true;
279 		break;
280 	case NIC_MBOX_MSG_PNICVF_PTR:
281 		/* Secondary VF/Qset: make note of primary VF's pointer
282 		 * to be used while packet reception, to handover packet
283 		 * to primary VF's netdev.
284 		 */
285 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
286 		nic->pf_acked = true;
287 		break;
288 	case NIC_MBOX_MSG_PFC:
289 		nic->pfc.autoneg = mbx.pfc.autoneg;
290 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
291 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
292 		nic->pf_acked = true;
293 		break;
294 	default:
295 		netdev_err(nic->netdev,
296 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
297 		break;
298 	}
299 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
300 }
301 
302 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
303 {
304 	union nic_mbx mbx = {};
305 
306 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
307 	mbx.mac.vf_id = nic->vf_id;
308 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
309 
310 	return nicvf_send_msg_to_pf(nic, &mbx);
311 }
312 
313 static void nicvf_config_cpi(struct nicvf *nic)
314 {
315 	union nic_mbx mbx = {};
316 
317 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
318 	mbx.cpi_cfg.vf_id = nic->vf_id;
319 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
320 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
321 
322 	nicvf_send_msg_to_pf(nic, &mbx);
323 }
324 
325 static void nicvf_get_rss_size(struct nicvf *nic)
326 {
327 	union nic_mbx mbx = {};
328 
329 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
330 	mbx.rss_size.vf_id = nic->vf_id;
331 	nicvf_send_msg_to_pf(nic, &mbx);
332 }
333 
334 void nicvf_config_rss(struct nicvf *nic)
335 {
336 	union nic_mbx mbx = {};
337 	struct nicvf_rss_info *rss = &nic->rss_info;
338 	int ind_tbl_len = rss->rss_size;
339 	int i, nextq = 0;
340 
341 	mbx.rss_cfg.vf_id = nic->vf_id;
342 	mbx.rss_cfg.hash_bits = rss->hash_bits;
343 	while (ind_tbl_len) {
344 		mbx.rss_cfg.tbl_offset = nextq;
345 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
346 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
347 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
348 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
349 
350 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
351 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
352 
353 		nicvf_send_msg_to_pf(nic, &mbx);
354 
355 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
356 	}
357 }
358 
359 void nicvf_set_rss_key(struct nicvf *nic)
360 {
361 	struct nicvf_rss_info *rss = &nic->rss_info;
362 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
363 	int idx;
364 
365 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
366 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
367 		key_addr += sizeof(u64);
368 	}
369 }
370 
371 static int nicvf_rss_init(struct nicvf *nic)
372 {
373 	struct nicvf_rss_info *rss = &nic->rss_info;
374 	int idx;
375 
376 	nicvf_get_rss_size(nic);
377 
378 	if (cpi_alg != CPI_ALG_NONE) {
379 		rss->enable = false;
380 		rss->hash_bits = 0;
381 		return 0;
382 	}
383 
384 	rss->enable = true;
385 
386 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
387 	nicvf_set_rss_key(nic);
388 
389 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
390 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
391 
392 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
393 
394 	for (idx = 0; idx < rss->rss_size; idx++)
395 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
396 							       nic->rx_queues);
397 	nicvf_config_rss(nic);
398 	return 1;
399 }
400 
401 /* Request PF to allocate additional Qsets */
402 static void nicvf_request_sqs(struct nicvf *nic)
403 {
404 	union nic_mbx mbx = {};
405 	int sqs;
406 	int sqs_count = nic->sqs_count;
407 	int rx_queues = 0, tx_queues = 0;
408 
409 	/* Only primary VF should request */
410 	if (nic->sqs_mode ||  !nic->sqs_count)
411 		return;
412 
413 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
414 	mbx.sqs_alloc.vf_id = nic->vf_id;
415 	mbx.sqs_alloc.qs_count = nic->sqs_count;
416 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
417 		/* No response from PF */
418 		nic->sqs_count = 0;
419 		return;
420 	}
421 
422 	/* Return if no Secondary Qsets available */
423 	if (!nic->sqs_count)
424 		return;
425 
426 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
427 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
428 
429 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
430 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
431 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
432 
433 	/* Set no of Rx/Tx queues in each of the SQsets */
434 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
435 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
436 		mbx.nicvf.vf_id = nic->vf_id;
437 		mbx.nicvf.sqs_id = sqs;
438 		nicvf_send_msg_to_pf(nic, &mbx);
439 
440 		nic->snicvf[sqs]->sqs_id = sqs;
441 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
442 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
443 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
444 		} else {
445 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
446 			rx_queues = 0;
447 		}
448 
449 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
450 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
451 			tx_queues -= MAX_SND_QUEUES_PER_QS;
452 		} else {
453 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
454 			tx_queues = 0;
455 		}
456 
457 		nic->snicvf[sqs]->qs->cq_cnt =
458 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
459 
460 		/* Initialize secondary Qset's queues and its interrupts */
461 		nicvf_open(nic->snicvf[sqs]->netdev);
462 	}
463 
464 	/* Update stack with actual Rx/Tx queue count allocated */
465 	if (sqs_count != nic->sqs_count)
466 		nicvf_set_real_num_queues(nic->netdev,
467 					  nic->tx_queues, nic->rx_queues);
468 }
469 
470 /* Send this Qset's nicvf pointer to PF.
471  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
472  * so that packets received by these Qsets can use primary VF's netdev
473  */
474 static void nicvf_send_vf_struct(struct nicvf *nic)
475 {
476 	union nic_mbx mbx = {};
477 
478 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
479 	mbx.nicvf.sqs_mode = nic->sqs_mode;
480 	mbx.nicvf.nicvf = (u64)nic;
481 	nicvf_send_msg_to_pf(nic, &mbx);
482 }
483 
484 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
485 {
486 	union nic_mbx mbx = {};
487 
488 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
489 	nicvf_send_msg_to_pf(nic, &mbx);
490 }
491 
492 int nicvf_set_real_num_queues(struct net_device *netdev,
493 			      int tx_queues, int rx_queues)
494 {
495 	int err = 0;
496 
497 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
498 	if (err) {
499 		netdev_err(netdev,
500 			   "Failed to set no of Tx queues: %d\n", tx_queues);
501 		return err;
502 	}
503 
504 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
505 	if (err)
506 		netdev_err(netdev,
507 			   "Failed to set no of Rx queues: %d\n", rx_queues);
508 	return err;
509 }
510 
511 static int nicvf_init_resources(struct nicvf *nic)
512 {
513 	int err;
514 
515 	/* Enable Qset */
516 	nicvf_qset_config(nic, true);
517 
518 	/* Initialize queues and HW for data transfer */
519 	err = nicvf_config_data_transfer(nic, true);
520 	if (err) {
521 		netdev_err(nic->netdev,
522 			   "Failed to alloc/config VF's QSet resources\n");
523 		return err;
524 	}
525 
526 	return 0;
527 }
528 
529 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
530 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
531 				struct rcv_queue *rq, struct sk_buff **skb)
532 {
533 	struct xdp_buff xdp;
534 	struct page *page;
535 	u32 action;
536 	u16 len, offset = 0;
537 	u64 dma_addr, cpu_addr;
538 	void *orig_data;
539 
540 	/* Retrieve packet buffer's DMA address and length */
541 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
542 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
543 
544 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
545 	if (!cpu_addr)
546 		return false;
547 	cpu_addr = (u64)phys_to_virt(cpu_addr);
548 	page = virt_to_page((void *)cpu_addr);
549 
550 	xdp.data_hard_start = page_address(page);
551 	xdp.data = (void *)cpu_addr;
552 	xdp_set_data_meta_invalid(&xdp);
553 	xdp.data_end = xdp.data + len;
554 	xdp.rxq = &rq->xdp_rxq;
555 	orig_data = xdp.data;
556 
557 	rcu_read_lock();
558 	action = bpf_prog_run_xdp(prog, &xdp);
559 	rcu_read_unlock();
560 
561 	len = xdp.data_end - xdp.data;
562 	/* Check if XDP program has changed headers */
563 	if (orig_data != xdp.data) {
564 		offset = orig_data - xdp.data;
565 		dma_addr -= offset;
566 	}
567 
568 	switch (action) {
569 	case XDP_PASS:
570 		/* Check if it's a recycled page, if not
571 		 * unmap the DMA mapping.
572 		 *
573 		 * Recycled page holds an extra reference.
574 		 */
575 		if (page_ref_count(page) == 1) {
576 			dma_addr &= PAGE_MASK;
577 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
578 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
579 					     DMA_FROM_DEVICE,
580 					     DMA_ATTR_SKIP_CPU_SYNC);
581 		}
582 
583 		/* Build SKB and pass on packet to network stack */
584 		*skb = build_skb(xdp.data,
585 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
586 		if (!*skb)
587 			put_page(page);
588 		else
589 			skb_put(*skb, len);
590 		return false;
591 	case XDP_TX:
592 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
593 		return true;
594 	default:
595 		bpf_warn_invalid_xdp_action(action);
596 		/* fall through */
597 	case XDP_ABORTED:
598 		trace_xdp_exception(nic->netdev, prog, action);
599 		/* fall through */
600 	case XDP_DROP:
601 		/* Check if it's a recycled page, if not
602 		 * unmap the DMA mapping.
603 		 *
604 		 * Recycled page holds an extra reference.
605 		 */
606 		if (page_ref_count(page) == 1) {
607 			dma_addr &= PAGE_MASK;
608 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
609 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
610 					     DMA_FROM_DEVICE,
611 					     DMA_ATTR_SKIP_CPU_SYNC);
612 		}
613 		put_page(page);
614 		return true;
615 	}
616 	return false;
617 }
618 
619 static void nicvf_snd_ptp_handler(struct net_device *netdev,
620 				  struct cqe_send_t *cqe_tx)
621 {
622 	struct nicvf *nic = netdev_priv(netdev);
623 	struct skb_shared_hwtstamps ts;
624 	u64 ns;
625 
626 	nic = nic->pnicvf;
627 
628 	/* Sync for 'ptp_skb' */
629 	smp_rmb();
630 
631 	/* New timestamp request can be queued now */
632 	atomic_set(&nic->tx_ptp_skbs, 0);
633 
634 	/* Check for timestamp requested skb */
635 	if (!nic->ptp_skb)
636 		return;
637 
638 	/* Check if timestamping is timedout, which is set to 10us */
639 	if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
640 	    cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
641 		goto no_tstamp;
642 
643 	/* Get the timestamp */
644 	memset(&ts, 0, sizeof(ts));
645 	ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
646 	ts.hwtstamp = ns_to_ktime(ns);
647 	skb_tstamp_tx(nic->ptp_skb, &ts);
648 
649 no_tstamp:
650 	/* Free the original skb */
651 	dev_kfree_skb_any(nic->ptp_skb);
652 	nic->ptp_skb = NULL;
653 	/* Sync 'ptp_skb' */
654 	smp_wmb();
655 }
656 
657 static void nicvf_snd_pkt_handler(struct net_device *netdev,
658 				  struct cqe_send_t *cqe_tx,
659 				  int budget, int *subdesc_cnt,
660 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
661 {
662 	struct sk_buff *skb = NULL;
663 	struct page *page;
664 	struct nicvf *nic = netdev_priv(netdev);
665 	struct snd_queue *sq;
666 	struct sq_hdr_subdesc *hdr;
667 	struct sq_hdr_subdesc *tso_sqe;
668 
669 	sq = &nic->qs->sq[cqe_tx->sq_idx];
670 
671 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
672 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
673 		return;
674 
675 	/* Check for errors */
676 	if (cqe_tx->send_status)
677 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
678 
679 	/* Is this a XDP designated Tx queue */
680 	if (sq->is_xdp) {
681 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
682 		/* Check if it's recycled page or else unmap DMA mapping */
683 		if (page && (page_ref_count(page) == 1))
684 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
685 						 hdr->subdesc_cnt);
686 
687 		/* Release page reference for recycling */
688 		if (page)
689 			put_page(page);
690 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
691 		*subdesc_cnt += hdr->subdesc_cnt + 1;
692 		return;
693 	}
694 
695 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
696 	if (skb) {
697 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
698 		if (hdr->dont_send) {
699 			/* Get actual TSO descriptors and free them */
700 			tso_sqe =
701 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
702 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
703 						 tso_sqe->subdesc_cnt);
704 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
705 		} else {
706 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
707 						 hdr->subdesc_cnt);
708 		}
709 		*subdesc_cnt += hdr->subdesc_cnt + 1;
710 		prefetch(skb);
711 		(*tx_pkts)++;
712 		*tx_bytes += skb->len;
713 		/* If timestamp is requested for this skb, don't free it */
714 		if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
715 		    !nic->pnicvf->ptp_skb)
716 			nic->pnicvf->ptp_skb = skb;
717 		else
718 			napi_consume_skb(skb, budget);
719 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
720 	} else {
721 		/* In case of SW TSO on 88xx, only last segment will have
722 		 * a SKB attached, so just free SQEs here.
723 		 */
724 		if (!nic->hw_tso)
725 			*subdesc_cnt += hdr->subdesc_cnt + 1;
726 	}
727 }
728 
729 static inline void nicvf_set_rxhash(struct net_device *netdev,
730 				    struct cqe_rx_t *cqe_rx,
731 				    struct sk_buff *skb)
732 {
733 	u8 hash_type;
734 	u32 hash;
735 
736 	if (!(netdev->features & NETIF_F_RXHASH))
737 		return;
738 
739 	switch (cqe_rx->rss_alg) {
740 	case RSS_ALG_TCP_IP:
741 	case RSS_ALG_UDP_IP:
742 		hash_type = PKT_HASH_TYPE_L4;
743 		hash = cqe_rx->rss_tag;
744 		break;
745 	case RSS_ALG_IP:
746 		hash_type = PKT_HASH_TYPE_L3;
747 		hash = cqe_rx->rss_tag;
748 		break;
749 	default:
750 		hash_type = PKT_HASH_TYPE_NONE;
751 		hash = 0;
752 	}
753 
754 	skb_set_hash(skb, hash, hash_type);
755 }
756 
757 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
758 {
759 	u64 ns;
760 
761 	if (!nic->ptp_clock || !nic->hw_rx_tstamp)
762 		return;
763 
764 	/* The first 8 bytes is the timestamp */
765 	ns = cavium_ptp_tstamp2time(nic->ptp_clock,
766 				    be64_to_cpu(*(__be64 *)skb->data));
767 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
768 
769 	__skb_pull(skb, 8);
770 }
771 
772 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
773 				  struct napi_struct *napi,
774 				  struct cqe_rx_t *cqe_rx,
775 				  struct snd_queue *sq, struct rcv_queue *rq)
776 {
777 	struct sk_buff *skb = NULL;
778 	struct nicvf *nic = netdev_priv(netdev);
779 	struct nicvf *snic = nic;
780 	int err = 0;
781 	int rq_idx;
782 
783 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
784 
785 	if (nic->sqs_mode) {
786 		/* Use primary VF's 'nicvf' struct */
787 		nic = nic->pnicvf;
788 		netdev = nic->netdev;
789 	}
790 
791 	/* Check for errors */
792 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
793 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
794 		if (err && !cqe_rx->rb_cnt)
795 			return;
796 	}
797 
798 	/* For XDP, ignore pkts spanning multiple pages */
799 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
800 		/* Packet consumed by XDP */
801 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
802 			return;
803 	} else {
804 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
805 					nic->xdp_prog ? true : false);
806 	}
807 
808 	if (!skb)
809 		return;
810 
811 	if (netif_msg_pktdata(nic)) {
812 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
813 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
814 			       skb->data, skb->len, true);
815 	}
816 
817 	/* If error packet, drop it here */
818 	if (err) {
819 		dev_kfree_skb_any(skb);
820 		return;
821 	}
822 
823 	nicvf_set_rxtstamp(nic, skb);
824 	nicvf_set_rxhash(netdev, cqe_rx, skb);
825 
826 	skb_record_rx_queue(skb, rq_idx);
827 	if (netdev->hw_features & NETIF_F_RXCSUM) {
828 		/* HW by default verifies TCP/UDP/SCTP checksums */
829 		skb->ip_summed = CHECKSUM_UNNECESSARY;
830 	} else {
831 		skb_checksum_none_assert(skb);
832 	}
833 
834 	skb->protocol = eth_type_trans(skb, netdev);
835 
836 	/* Check for stripped VLAN */
837 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
838 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
839 				       ntohs((__force __be16)cqe_rx->vlan_tci));
840 
841 	if (napi && (netdev->features & NETIF_F_GRO))
842 		napi_gro_receive(napi, skb);
843 	else
844 		netif_receive_skb(skb);
845 }
846 
847 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
848 				 struct napi_struct *napi, int budget)
849 {
850 	int processed_cqe, work_done = 0, tx_done = 0;
851 	int cqe_count, cqe_head;
852 	int subdesc_cnt = 0;
853 	struct nicvf *nic = netdev_priv(netdev);
854 	struct queue_set *qs = nic->qs;
855 	struct cmp_queue *cq = &qs->cq[cq_idx];
856 	struct cqe_rx_t *cq_desc;
857 	struct netdev_queue *txq;
858 	struct snd_queue *sq = &qs->sq[cq_idx];
859 	struct rcv_queue *rq = &qs->rq[cq_idx];
860 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
861 
862 	spin_lock_bh(&cq->lock);
863 loop:
864 	processed_cqe = 0;
865 	/* Get no of valid CQ entries to process */
866 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
867 	cqe_count &= CQ_CQE_COUNT;
868 	if (!cqe_count)
869 		goto done;
870 
871 	/* Get head of the valid CQ entries */
872 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
873 	cqe_head &= 0xFFFF;
874 
875 	while (processed_cqe < cqe_count) {
876 		/* Get the CQ descriptor */
877 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
878 		cqe_head++;
879 		cqe_head &= (cq->dmem.q_len - 1);
880 		/* Initiate prefetch for next descriptor */
881 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
882 
883 		if ((work_done >= budget) && napi &&
884 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
885 			break;
886 		}
887 
888 		switch (cq_desc->cqe_type) {
889 		case CQE_TYPE_RX:
890 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
891 			work_done++;
892 		break;
893 		case CQE_TYPE_SEND:
894 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
895 					      budget, &subdesc_cnt,
896 					      &tx_pkts, &tx_bytes);
897 			tx_done++;
898 		break;
899 		case CQE_TYPE_SEND_PTP:
900 			nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
901 		break;
902 		case CQE_TYPE_INVALID:
903 		case CQE_TYPE_RX_SPLIT:
904 		case CQE_TYPE_RX_TCP:
905 			/* Ignore for now */
906 		break;
907 		}
908 		processed_cqe++;
909 	}
910 
911 	/* Ring doorbell to inform H/W to reuse processed CQEs */
912 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
913 			      cq_idx, processed_cqe);
914 
915 	if ((work_done < budget) && napi)
916 		goto loop;
917 
918 done:
919 	/* Update SQ's descriptor free count */
920 	if (subdesc_cnt)
921 		nicvf_put_sq_desc(sq, subdesc_cnt);
922 
923 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
924 	/* Handle XDP TX queues */
925 	if (nic->pnicvf->xdp_prog) {
926 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
927 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
928 			goto out;
929 		}
930 		nic = nic->pnicvf;
931 		txq_idx -= nic->pnicvf->xdp_tx_queues;
932 	}
933 
934 	/* Wakeup TXQ if its stopped earlier due to SQ full */
935 	if (tx_done ||
936 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
937 		netdev = nic->pnicvf->netdev;
938 		txq = netdev_get_tx_queue(netdev, txq_idx);
939 		if (tx_pkts)
940 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
941 
942 		/* To read updated queue and carrier status */
943 		smp_mb();
944 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
945 			netif_tx_wake_queue(txq);
946 			nic = nic->pnicvf;
947 			this_cpu_inc(nic->drv_stats->txq_wake);
948 			netif_warn(nic, tx_err, netdev,
949 				   "Transmit queue wakeup SQ%d\n", txq_idx);
950 		}
951 	}
952 
953 out:
954 	spin_unlock_bh(&cq->lock);
955 	return work_done;
956 }
957 
958 static int nicvf_poll(struct napi_struct *napi, int budget)
959 {
960 	u64  cq_head;
961 	int  work_done = 0;
962 	struct net_device *netdev = napi->dev;
963 	struct nicvf *nic = netdev_priv(netdev);
964 	struct nicvf_cq_poll *cq;
965 
966 	cq = container_of(napi, struct nicvf_cq_poll, napi);
967 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
968 
969 	if (work_done < budget) {
970 		/* Slow packet rate, exit polling */
971 		napi_complete_done(napi, work_done);
972 		/* Re-enable interrupts */
973 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
974 					       cq->cq_idx);
975 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
976 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
977 				      cq->cq_idx, cq_head);
978 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
979 	}
980 	return work_done;
981 }
982 
983 /* Qset error interrupt handler
984  *
985  * As of now only CQ errors are handled
986  */
987 static void nicvf_handle_qs_err(unsigned long data)
988 {
989 	struct nicvf *nic = (struct nicvf *)data;
990 	struct queue_set *qs = nic->qs;
991 	int qidx;
992 	u64 status;
993 
994 	netif_tx_disable(nic->netdev);
995 
996 	/* Check if it is CQ err */
997 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
998 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
999 					      qidx);
1000 		if (!(status & CQ_ERR_MASK))
1001 			continue;
1002 		/* Process already queued CQEs and reconfig CQ */
1003 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1004 		nicvf_sq_disable(nic, qidx);
1005 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1006 		nicvf_cmp_queue_config(nic, qs, qidx, true);
1007 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1008 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1009 
1010 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1011 	}
1012 
1013 	netif_tx_start_all_queues(nic->netdev);
1014 	/* Re-enable Qset error interrupt */
1015 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1016 }
1017 
1018 static void nicvf_dump_intr_status(struct nicvf *nic)
1019 {
1020 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1021 		   nicvf_reg_read(nic, NIC_VF_INT));
1022 }
1023 
1024 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1025 {
1026 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1027 	u64 intr;
1028 
1029 	nicvf_dump_intr_status(nic);
1030 
1031 	intr = nicvf_reg_read(nic, NIC_VF_INT);
1032 	/* Check for spurious interrupt */
1033 	if (!(intr & NICVF_INTR_MBOX_MASK))
1034 		return IRQ_HANDLED;
1035 
1036 	nicvf_handle_mbx_intr(nic);
1037 
1038 	return IRQ_HANDLED;
1039 }
1040 
1041 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1042 {
1043 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1044 	struct nicvf *nic = cq_poll->nicvf;
1045 	int qidx = cq_poll->cq_idx;
1046 
1047 	nicvf_dump_intr_status(nic);
1048 
1049 	/* Disable interrupts */
1050 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1051 
1052 	/* Schedule NAPI */
1053 	napi_schedule_irqoff(&cq_poll->napi);
1054 
1055 	/* Clear interrupt */
1056 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1057 
1058 	return IRQ_HANDLED;
1059 }
1060 
1061 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1062 {
1063 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1064 	u8 qidx;
1065 
1066 
1067 	nicvf_dump_intr_status(nic);
1068 
1069 	/* Disable RBDR interrupt and schedule softirq */
1070 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1071 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1072 			continue;
1073 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1074 		tasklet_hi_schedule(&nic->rbdr_task);
1075 		/* Clear interrupt */
1076 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1077 	}
1078 
1079 	return IRQ_HANDLED;
1080 }
1081 
1082 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1083 {
1084 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1085 
1086 	nicvf_dump_intr_status(nic);
1087 
1088 	/* Disable Qset err interrupt and schedule softirq */
1089 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1090 	tasklet_hi_schedule(&nic->qs_err_task);
1091 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1092 
1093 	return IRQ_HANDLED;
1094 }
1095 
1096 static void nicvf_set_irq_affinity(struct nicvf *nic)
1097 {
1098 	int vec, cpu;
1099 
1100 	for (vec = 0; vec < nic->num_vec; vec++) {
1101 		if (!nic->irq_allocated[vec])
1102 			continue;
1103 
1104 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1105 			return;
1106 		 /* CQ interrupts */
1107 		if (vec < NICVF_INTR_ID_SQ)
1108 			/* Leave CPU0 for RBDR and other interrupts */
1109 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1110 		else
1111 			cpu = 0;
1112 
1113 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1114 				nic->affinity_mask[vec]);
1115 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1116 				      nic->affinity_mask[vec]);
1117 	}
1118 }
1119 
1120 static int nicvf_register_interrupts(struct nicvf *nic)
1121 {
1122 	int irq, ret = 0;
1123 
1124 	for_each_cq_irq(irq)
1125 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1126 			nic->pnicvf->netdev->name,
1127 			nicvf_netdev_qidx(nic, irq));
1128 
1129 	for_each_sq_irq(irq)
1130 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1131 			nic->pnicvf->netdev->name,
1132 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1133 
1134 	for_each_rbdr_irq(irq)
1135 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1136 			nic->pnicvf->netdev->name,
1137 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1138 
1139 	/* Register CQ interrupts */
1140 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1141 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1142 				  nicvf_intr_handler,
1143 				  0, nic->irq_name[irq], nic->napi[irq]);
1144 		if (ret)
1145 			goto err;
1146 		nic->irq_allocated[irq] = true;
1147 	}
1148 
1149 	/* Register RBDR interrupt */
1150 	for (irq = NICVF_INTR_ID_RBDR;
1151 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1152 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1153 				  nicvf_rbdr_intr_handler,
1154 				  0, nic->irq_name[irq], nic);
1155 		if (ret)
1156 			goto err;
1157 		nic->irq_allocated[irq] = true;
1158 	}
1159 
1160 	/* Register QS error interrupt */
1161 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1162 		nic->pnicvf->netdev->name,
1163 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1164 	irq = NICVF_INTR_ID_QS_ERR;
1165 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1166 			  nicvf_qs_err_intr_handler,
1167 			  0, nic->irq_name[irq], nic);
1168 	if (ret)
1169 		goto err;
1170 
1171 	nic->irq_allocated[irq] = true;
1172 
1173 	/* Set IRQ affinities */
1174 	nicvf_set_irq_affinity(nic);
1175 
1176 err:
1177 	if (ret)
1178 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1179 
1180 	return ret;
1181 }
1182 
1183 static void nicvf_unregister_interrupts(struct nicvf *nic)
1184 {
1185 	struct pci_dev *pdev = nic->pdev;
1186 	int irq;
1187 
1188 	/* Free registered interrupts */
1189 	for (irq = 0; irq < nic->num_vec; irq++) {
1190 		if (!nic->irq_allocated[irq])
1191 			continue;
1192 
1193 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1194 		free_cpumask_var(nic->affinity_mask[irq]);
1195 
1196 		if (irq < NICVF_INTR_ID_SQ)
1197 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1198 		else
1199 			free_irq(pci_irq_vector(pdev, irq), nic);
1200 
1201 		nic->irq_allocated[irq] = false;
1202 	}
1203 
1204 	/* Disable MSI-X */
1205 	pci_free_irq_vectors(pdev);
1206 	nic->num_vec = 0;
1207 }
1208 
1209 /* Initialize MSIX vectors and register MISC interrupt.
1210  * Send READY message to PF to check if its alive
1211  */
1212 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1213 {
1214 	int ret = 0;
1215 	int irq = NICVF_INTR_ID_MISC;
1216 
1217 	/* Return if mailbox interrupt is already registered */
1218 	if (nic->pdev->msix_enabled)
1219 		return 0;
1220 
1221 	/* Enable MSI-X */
1222 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1223 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1224 				    PCI_IRQ_MSIX);
1225 	if (ret < 0) {
1226 		netdev_err(nic->netdev,
1227 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1228 		return 1;
1229 	}
1230 
1231 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1232 	/* Register Misc interrupt */
1233 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1234 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1235 
1236 	if (ret)
1237 		return ret;
1238 	nic->irq_allocated[irq] = true;
1239 
1240 	/* Enable mailbox interrupt */
1241 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1242 
1243 	/* Check if VF is able to communicate with PF */
1244 	if (!nicvf_check_pf_ready(nic)) {
1245 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1246 		nicvf_unregister_interrupts(nic);
1247 		return 1;
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1254 {
1255 	struct nicvf *nic = netdev_priv(netdev);
1256 	int qid = skb_get_queue_mapping(skb);
1257 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1258 	struct nicvf *snic;
1259 	struct snd_queue *sq;
1260 	int tmp;
1261 
1262 	/* Check for minimum packet length */
1263 	if (skb->len <= ETH_HLEN) {
1264 		dev_kfree_skb(skb);
1265 		return NETDEV_TX_OK;
1266 	}
1267 
1268 	/* In XDP case, initial HW tx queues are used for XDP,
1269 	 * but stack's queue mapping starts at '0', so skip the
1270 	 * Tx queues attached to Rx queues for XDP.
1271 	 */
1272 	if (nic->xdp_prog)
1273 		qid += nic->xdp_tx_queues;
1274 
1275 	snic = nic;
1276 	/* Get secondary Qset's SQ structure */
1277 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1278 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1279 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1280 		if (!snic) {
1281 			netdev_warn(nic->netdev,
1282 				    "Secondary Qset#%d's ptr not initialized\n",
1283 				    tmp - 1);
1284 			dev_kfree_skb(skb);
1285 			return NETDEV_TX_OK;
1286 		}
1287 		qid = qid % MAX_SND_QUEUES_PER_QS;
1288 	}
1289 
1290 	sq = &snic->qs->sq[qid];
1291 	if (!netif_tx_queue_stopped(txq) &&
1292 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1293 		netif_tx_stop_queue(txq);
1294 
1295 		/* Barrier, so that stop_queue visible to other cpus */
1296 		smp_mb();
1297 
1298 		/* Check again, incase another cpu freed descriptors */
1299 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1300 			netif_tx_wake_queue(txq);
1301 		} else {
1302 			this_cpu_inc(nic->drv_stats->txq_stop);
1303 			netif_warn(nic, tx_err, netdev,
1304 				   "Transmit ring full, stopping SQ%d\n", qid);
1305 		}
1306 		return NETDEV_TX_BUSY;
1307 	}
1308 
1309 	return NETDEV_TX_OK;
1310 }
1311 
1312 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1313 {
1314 	struct nicvf_cq_poll *cq_poll;
1315 	int qidx;
1316 
1317 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1318 		cq_poll = nic->napi[qidx];
1319 		if (!cq_poll)
1320 			continue;
1321 		nic->napi[qidx] = NULL;
1322 		kfree(cq_poll);
1323 	}
1324 }
1325 
1326 int nicvf_stop(struct net_device *netdev)
1327 {
1328 	int irq, qidx;
1329 	struct nicvf *nic = netdev_priv(netdev);
1330 	struct queue_set *qs = nic->qs;
1331 	struct nicvf_cq_poll *cq_poll = NULL;
1332 	union nic_mbx mbx = {};
1333 
1334 	/* wait till all queued set_rx_mode tasks completes */
1335 	if (nic->nicvf_rx_mode_wq) {
1336 		cancel_delayed_work_sync(&nic->link_change_work);
1337 		drain_workqueue(nic->nicvf_rx_mode_wq);
1338 	}
1339 
1340 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1341 	nicvf_send_msg_to_pf(nic, &mbx);
1342 
1343 	netif_carrier_off(netdev);
1344 	netif_tx_stop_all_queues(nic->netdev);
1345 	nic->link_up = false;
1346 
1347 	/* Teardown secondary qsets first */
1348 	if (!nic->sqs_mode) {
1349 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1350 			if (!nic->snicvf[qidx])
1351 				continue;
1352 			nicvf_stop(nic->snicvf[qidx]->netdev);
1353 			nic->snicvf[qidx] = NULL;
1354 		}
1355 	}
1356 
1357 	/* Disable RBDR & QS error interrupts */
1358 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1359 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1360 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1361 	}
1362 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1363 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1364 
1365 	/* Wait for pending IRQ handlers to finish */
1366 	for (irq = 0; irq < nic->num_vec; irq++)
1367 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1368 
1369 	tasklet_kill(&nic->rbdr_task);
1370 	tasklet_kill(&nic->qs_err_task);
1371 	if (nic->rb_work_scheduled)
1372 		cancel_delayed_work_sync(&nic->rbdr_work);
1373 
1374 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1375 		cq_poll = nic->napi[qidx];
1376 		if (!cq_poll)
1377 			continue;
1378 		napi_synchronize(&cq_poll->napi);
1379 		/* CQ intr is enabled while napi_complete,
1380 		 * so disable it now
1381 		 */
1382 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1383 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1384 		napi_disable(&cq_poll->napi);
1385 		netif_napi_del(&cq_poll->napi);
1386 	}
1387 
1388 	netif_tx_disable(netdev);
1389 
1390 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1391 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1392 
1393 	/* Free resources */
1394 	nicvf_config_data_transfer(nic, false);
1395 
1396 	/* Disable HW Qset */
1397 	nicvf_qset_config(nic, false);
1398 
1399 	/* disable mailbox interrupt */
1400 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1401 
1402 	nicvf_unregister_interrupts(nic);
1403 
1404 	nicvf_free_cq_poll(nic);
1405 
1406 	/* Free any pending SKB saved to receive timestamp */
1407 	if (nic->ptp_skb) {
1408 		dev_kfree_skb_any(nic->ptp_skb);
1409 		nic->ptp_skb = NULL;
1410 	}
1411 
1412 	/* Clear multiqset info */
1413 	nic->pnicvf = nic;
1414 
1415 	return 0;
1416 }
1417 
1418 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1419 {
1420 	union nic_mbx mbx = {};
1421 
1422 	mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1423 	mbx.ptp.enable = enable;
1424 
1425 	return nicvf_send_msg_to_pf(nic, &mbx);
1426 }
1427 
1428 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1429 {
1430 	union nic_mbx mbx = {};
1431 
1432 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1433 	mbx.frs.max_frs = mtu;
1434 	mbx.frs.vf_id = nic->vf_id;
1435 
1436 	return nicvf_send_msg_to_pf(nic, &mbx);
1437 }
1438 
1439 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1440 {
1441 	struct nicvf *nic = container_of(work_arg,
1442 					 struct nicvf,
1443 					 link_change_work.work);
1444 	union nic_mbx mbx = {};
1445 	mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1446 	nicvf_send_msg_to_pf(nic, &mbx);
1447 	queue_delayed_work(nic->nicvf_rx_mode_wq,
1448 			   &nic->link_change_work, 2 * HZ);
1449 }
1450 
1451 int nicvf_open(struct net_device *netdev)
1452 {
1453 	int cpu, err, qidx;
1454 	struct nicvf *nic = netdev_priv(netdev);
1455 	struct queue_set *qs = nic->qs;
1456 	struct nicvf_cq_poll *cq_poll = NULL;
1457 
1458 	/* wait till all queued set_rx_mode tasks completes if any */
1459 	if (nic->nicvf_rx_mode_wq)
1460 		drain_workqueue(nic->nicvf_rx_mode_wq);
1461 
1462 	netif_carrier_off(netdev);
1463 
1464 	err = nicvf_register_misc_interrupt(nic);
1465 	if (err)
1466 		return err;
1467 
1468 	/* Register NAPI handler for processing CQEs */
1469 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1470 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1471 		if (!cq_poll) {
1472 			err = -ENOMEM;
1473 			goto napi_del;
1474 		}
1475 		cq_poll->cq_idx = qidx;
1476 		cq_poll->nicvf = nic;
1477 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1478 			       NAPI_POLL_WEIGHT);
1479 		napi_enable(&cq_poll->napi);
1480 		nic->napi[qidx] = cq_poll;
1481 	}
1482 
1483 	/* Check if we got MAC address from PF or else generate a radom MAC */
1484 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1485 		eth_hw_addr_random(netdev);
1486 		nicvf_hw_set_mac_addr(nic, netdev);
1487 	}
1488 
1489 	if (nic->set_mac_pending) {
1490 		nic->set_mac_pending = false;
1491 		nicvf_hw_set_mac_addr(nic, netdev);
1492 	}
1493 
1494 	/* Init tasklet for handling Qset err interrupt */
1495 	tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1496 		     (unsigned long)nic);
1497 
1498 	/* Init RBDR tasklet which will refill RBDR */
1499 	tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1500 		     (unsigned long)nic);
1501 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1502 
1503 	/* Configure CPI alorithm */
1504 	nic->cpi_alg = cpi_alg;
1505 	if (!nic->sqs_mode)
1506 		nicvf_config_cpi(nic);
1507 
1508 	nicvf_request_sqs(nic);
1509 	if (nic->sqs_mode)
1510 		nicvf_get_primary_vf_struct(nic);
1511 
1512 	/* Configure PTP timestamp */
1513 	if (nic->ptp_clock)
1514 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1515 	atomic_set(&nic->tx_ptp_skbs, 0);
1516 	nic->ptp_skb = NULL;
1517 
1518 	/* Configure receive side scaling and MTU */
1519 	if (!nic->sqs_mode) {
1520 		nicvf_rss_init(nic);
1521 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1522 		if (err)
1523 			goto cleanup;
1524 
1525 		/* Clear percpu stats */
1526 		for_each_possible_cpu(cpu)
1527 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1528 			       sizeof(struct nicvf_drv_stats));
1529 	}
1530 
1531 	err = nicvf_register_interrupts(nic);
1532 	if (err)
1533 		goto cleanup;
1534 
1535 	/* Initialize the queues */
1536 	err = nicvf_init_resources(nic);
1537 	if (err)
1538 		goto cleanup;
1539 
1540 	/* Make sure queue initialization is written */
1541 	wmb();
1542 
1543 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1544 	/* Enable Qset err interrupt */
1545 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1546 
1547 	/* Enable completion queue interrupt */
1548 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1549 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1550 
1551 	/* Enable RBDR threshold interrupt */
1552 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1553 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1554 
1555 	/* Send VF config done msg to PF */
1556 	nicvf_send_cfg_done(nic);
1557 
1558 	if (nic->nicvf_rx_mode_wq) {
1559 		INIT_DELAYED_WORK(&nic->link_change_work,
1560 				  nicvf_link_status_check_task);
1561 		queue_delayed_work(nic->nicvf_rx_mode_wq,
1562 				   &nic->link_change_work, 0);
1563 	}
1564 
1565 	return 0;
1566 cleanup:
1567 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1568 	nicvf_unregister_interrupts(nic);
1569 	tasklet_kill(&nic->qs_err_task);
1570 	tasklet_kill(&nic->rbdr_task);
1571 napi_del:
1572 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1573 		cq_poll = nic->napi[qidx];
1574 		if (!cq_poll)
1575 			continue;
1576 		napi_disable(&cq_poll->napi);
1577 		netif_napi_del(&cq_poll->napi);
1578 	}
1579 	nicvf_free_cq_poll(nic);
1580 	return err;
1581 }
1582 
1583 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1584 {
1585 	struct nicvf *nic = netdev_priv(netdev);
1586 	int orig_mtu = netdev->mtu;
1587 
1588 	/* For now just support only the usual MTU sized frames,
1589 	 * plus some headroom for VLAN, QinQ.
1590 	 */
1591 	if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1592 		netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1593 			    netdev->mtu);
1594 		return -EINVAL;
1595 	}
1596 
1597 	netdev->mtu = new_mtu;
1598 
1599 	if (!netif_running(netdev))
1600 		return 0;
1601 
1602 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1603 		netdev->mtu = orig_mtu;
1604 		return -EINVAL;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1611 {
1612 	struct sockaddr *addr = p;
1613 	struct nicvf *nic = netdev_priv(netdev);
1614 
1615 	if (!is_valid_ether_addr(addr->sa_data))
1616 		return -EADDRNOTAVAIL;
1617 
1618 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1619 
1620 	if (nic->pdev->msix_enabled) {
1621 		if (nicvf_hw_set_mac_addr(nic, netdev))
1622 			return -EBUSY;
1623 	} else {
1624 		nic->set_mac_pending = true;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 void nicvf_update_lmac_stats(struct nicvf *nic)
1631 {
1632 	int stat = 0;
1633 	union nic_mbx mbx = {};
1634 
1635 	if (!netif_running(nic->netdev))
1636 		return;
1637 
1638 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1639 	mbx.bgx_stats.vf_id = nic->vf_id;
1640 	/* Rx stats */
1641 	mbx.bgx_stats.rx = 1;
1642 	while (stat < BGX_RX_STATS_COUNT) {
1643 		mbx.bgx_stats.idx = stat;
1644 		if (nicvf_send_msg_to_pf(nic, &mbx))
1645 			return;
1646 		stat++;
1647 	}
1648 
1649 	stat = 0;
1650 
1651 	/* Tx stats */
1652 	mbx.bgx_stats.rx = 0;
1653 	while (stat < BGX_TX_STATS_COUNT) {
1654 		mbx.bgx_stats.idx = stat;
1655 		if (nicvf_send_msg_to_pf(nic, &mbx))
1656 			return;
1657 		stat++;
1658 	}
1659 }
1660 
1661 void nicvf_update_stats(struct nicvf *nic)
1662 {
1663 	int qidx, cpu;
1664 	u64 tmp_stats = 0;
1665 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1666 	struct nicvf_drv_stats *drv_stats;
1667 	struct queue_set *qs = nic->qs;
1668 
1669 #define GET_RX_STATS(reg) \
1670 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1671 #define GET_TX_STATS(reg) \
1672 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1673 
1674 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1675 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1676 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1677 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1678 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1679 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1680 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1681 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1682 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1683 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1684 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1685 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1686 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1687 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1688 
1689 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1690 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1691 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1692 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1693 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1694 
1695 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1696 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1697 	 * pointed by dummy SQE and results in tx_drops counter being
1698 	 * incremented. Subtracting it from tx_tso counter will give
1699 	 * exact tx_drops counter.
1700 	 */
1701 	if (nic->t88 && nic->hw_tso) {
1702 		for_each_possible_cpu(cpu) {
1703 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1704 			tmp_stats += drv_stats->tx_tso;
1705 		}
1706 		stats->tx_drops = tmp_stats - stats->tx_drops;
1707 	}
1708 	stats->tx_frames = stats->tx_ucast_frames +
1709 			   stats->tx_bcast_frames +
1710 			   stats->tx_mcast_frames;
1711 	stats->rx_frames = stats->rx_ucast_frames +
1712 			   stats->rx_bcast_frames +
1713 			   stats->rx_mcast_frames;
1714 	stats->rx_drops = stats->rx_drop_red +
1715 			  stats->rx_drop_overrun;
1716 
1717 	/* Update RQ and SQ stats */
1718 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1719 		nicvf_update_rq_stats(nic, qidx);
1720 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1721 		nicvf_update_sq_stats(nic, qidx);
1722 }
1723 
1724 static void nicvf_get_stats64(struct net_device *netdev,
1725 			      struct rtnl_link_stats64 *stats)
1726 {
1727 	struct nicvf *nic = netdev_priv(netdev);
1728 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1729 
1730 	nicvf_update_stats(nic);
1731 
1732 	stats->rx_bytes = hw_stats->rx_bytes;
1733 	stats->rx_packets = hw_stats->rx_frames;
1734 	stats->rx_dropped = hw_stats->rx_drops;
1735 	stats->multicast = hw_stats->rx_mcast_frames;
1736 
1737 	stats->tx_bytes = hw_stats->tx_bytes;
1738 	stats->tx_packets = hw_stats->tx_frames;
1739 	stats->tx_dropped = hw_stats->tx_drops;
1740 
1741 }
1742 
1743 static void nicvf_tx_timeout(struct net_device *dev, unsigned int txqueue)
1744 {
1745 	struct nicvf *nic = netdev_priv(dev);
1746 
1747 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1748 
1749 	this_cpu_inc(nic->drv_stats->tx_timeout);
1750 	schedule_work(&nic->reset_task);
1751 }
1752 
1753 static void nicvf_reset_task(struct work_struct *work)
1754 {
1755 	struct nicvf *nic;
1756 
1757 	nic = container_of(work, struct nicvf, reset_task);
1758 
1759 	if (!netif_running(nic->netdev))
1760 		return;
1761 
1762 	nicvf_stop(nic->netdev);
1763 	nicvf_open(nic->netdev);
1764 	netif_trans_update(nic->netdev);
1765 }
1766 
1767 static int nicvf_config_loopback(struct nicvf *nic,
1768 				 netdev_features_t features)
1769 {
1770 	union nic_mbx mbx = {};
1771 
1772 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1773 	mbx.lbk.vf_id = nic->vf_id;
1774 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1775 
1776 	return nicvf_send_msg_to_pf(nic, &mbx);
1777 }
1778 
1779 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1780 					    netdev_features_t features)
1781 {
1782 	struct nicvf *nic = netdev_priv(netdev);
1783 
1784 	if ((features & NETIF_F_LOOPBACK) &&
1785 	    netif_running(netdev) && !nic->loopback_supported)
1786 		features &= ~NETIF_F_LOOPBACK;
1787 
1788 	return features;
1789 }
1790 
1791 static int nicvf_set_features(struct net_device *netdev,
1792 			      netdev_features_t features)
1793 {
1794 	struct nicvf *nic = netdev_priv(netdev);
1795 	netdev_features_t changed = features ^ netdev->features;
1796 
1797 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1798 		nicvf_config_vlan_stripping(nic, features);
1799 
1800 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1801 		return nicvf_config_loopback(nic, features);
1802 
1803 	return 0;
1804 }
1805 
1806 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1807 {
1808 	u8 cq_count, txq_count;
1809 
1810 	/* Set XDP Tx queue count same as Rx queue count */
1811 	if (!bpf_attached)
1812 		nic->xdp_tx_queues = 0;
1813 	else
1814 		nic->xdp_tx_queues = nic->rx_queues;
1815 
1816 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1817 	 * needs to be allocated, check how many.
1818 	 */
1819 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1820 	cq_count = max(nic->rx_queues, txq_count);
1821 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1822 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1823 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1824 	} else {
1825 		nic->sqs_count = 0;
1826 	}
1827 
1828 	/* Set primary Qset's resources */
1829 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1830 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1831 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1832 
1833 	/* Update stack */
1834 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1835 }
1836 
1837 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1838 {
1839 	struct net_device *dev = nic->netdev;
1840 	bool if_up = netif_running(nic->netdev);
1841 	struct bpf_prog *old_prog;
1842 	bool bpf_attached = false;
1843 	int ret = 0;
1844 
1845 	/* For now just support only the usual MTU sized frames,
1846 	 * plus some headroom for VLAN, QinQ.
1847 	 */
1848 	if (prog && dev->mtu > MAX_XDP_MTU) {
1849 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1850 			    dev->mtu);
1851 		return -EOPNOTSUPP;
1852 	}
1853 
1854 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1855 	 * XDP Tx queues and more Tx queues are allocated for
1856 	 * network stack to send pkts out.
1857 	 *
1858 	 * No of Tx queues are either same as Rx queues or whatever
1859 	 * is left in max no of queues possible.
1860 	 */
1861 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1862 		netdev_warn(dev,
1863 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1864 			    nic->max_queues);
1865 		return -ENOMEM;
1866 	}
1867 
1868 	if (if_up)
1869 		nicvf_stop(nic->netdev);
1870 
1871 	old_prog = xchg(&nic->xdp_prog, prog);
1872 	/* Detach old prog, if any */
1873 	if (old_prog)
1874 		bpf_prog_put(old_prog);
1875 
1876 	if (nic->xdp_prog) {
1877 		/* Attach BPF program */
1878 		bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1879 		bpf_attached = true;
1880 	}
1881 
1882 	/* Calculate Tx queues needed for XDP and network stack */
1883 	nicvf_set_xdp_queues(nic, bpf_attached);
1884 
1885 	if (if_up) {
1886 		/* Reinitialize interface, clean slate */
1887 		nicvf_open(nic->netdev);
1888 		netif_trans_update(nic->netdev);
1889 	}
1890 
1891 	return ret;
1892 }
1893 
1894 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1895 {
1896 	struct nicvf *nic = netdev_priv(netdev);
1897 
1898 	/* To avoid checks while retrieving buffer address from CQE_RX,
1899 	 * do not support XDP for T88 pass1.x silicons which are anyway
1900 	 * not in use widely.
1901 	 */
1902 	if (pass1_silicon(nic->pdev))
1903 		return -EOPNOTSUPP;
1904 
1905 	switch (xdp->command) {
1906 	case XDP_SETUP_PROG:
1907 		return nicvf_xdp_setup(nic, xdp->prog);
1908 	case XDP_QUERY_PROG:
1909 		xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1910 		return 0;
1911 	default:
1912 		return -EINVAL;
1913 	}
1914 }
1915 
1916 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1917 {
1918 	struct hwtstamp_config config;
1919 	struct nicvf *nic = netdev_priv(netdev);
1920 
1921 	if (!nic->ptp_clock)
1922 		return -ENODEV;
1923 
1924 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1925 		return -EFAULT;
1926 
1927 	/* reserved for future extensions */
1928 	if (config.flags)
1929 		return -EINVAL;
1930 
1931 	switch (config.tx_type) {
1932 	case HWTSTAMP_TX_OFF:
1933 	case HWTSTAMP_TX_ON:
1934 		break;
1935 	default:
1936 		return -ERANGE;
1937 	}
1938 
1939 	switch (config.rx_filter) {
1940 	case HWTSTAMP_FILTER_NONE:
1941 		nic->hw_rx_tstamp = false;
1942 		break;
1943 	case HWTSTAMP_FILTER_ALL:
1944 	case HWTSTAMP_FILTER_SOME:
1945 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1946 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1947 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1948 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1949 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1950 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1951 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1952 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1953 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1954 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1955 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1956 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1957 		nic->hw_rx_tstamp = true;
1958 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1959 		break;
1960 	default:
1961 		return -ERANGE;
1962 	}
1963 
1964 	if (netif_running(netdev))
1965 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1966 
1967 	if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1968 		return -EFAULT;
1969 
1970 	return 0;
1971 }
1972 
1973 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1974 {
1975 	switch (cmd) {
1976 	case SIOCSHWTSTAMP:
1977 		return nicvf_config_hwtstamp(netdev, req);
1978 	default:
1979 		return -EOPNOTSUPP;
1980 	}
1981 }
1982 
1983 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1984 				     struct nicvf *nic)
1985 {
1986 	union nic_mbx mbx = {};
1987 	int idx;
1988 
1989 	/* From the inside of VM code flow we have only 128 bits memory
1990 	 * available to send message to host's PF, so send all mc addrs
1991 	 * one by one, starting from flush command in case if kernel
1992 	 * requests to configure specific MAC filtering
1993 	 */
1994 
1995 	/* flush DMAC filters and reset RX mode */
1996 	mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1997 	if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
1998 		goto free_mc;
1999 
2000 	if (mode & BGX_XCAST_MCAST_FILTER) {
2001 		/* once enabling filtering, we need to signal to PF to add
2002 		 * its' own LMAC to the filter to accept packets for it.
2003 		 */
2004 		mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2005 		mbx.xcast.mac = 0;
2006 		if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2007 			goto free_mc;
2008 	}
2009 
2010 	/* check if we have any specific MACs to be added to PF DMAC filter */
2011 	if (mc_addrs) {
2012 		/* now go through kernel list of MACs and add them one by one */
2013 		for (idx = 0; idx < mc_addrs->count; idx++) {
2014 			mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2015 			mbx.xcast.mac = mc_addrs->mc[idx];
2016 			if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2017 				goto free_mc;
2018 		}
2019 	}
2020 
2021 	/* and finally set rx mode for PF accordingly */
2022 	mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2023 	mbx.xcast.mode = mode;
2024 
2025 	nicvf_send_msg_to_pf(nic, &mbx);
2026 free_mc:
2027 	kfree(mc_addrs);
2028 }
2029 
2030 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2031 {
2032 	struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2033 						  work);
2034 	struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2035 	u8 mode;
2036 	struct xcast_addr_list *mc;
2037 
2038 	if (!vf_work)
2039 		return;
2040 
2041 	/* Save message data locally to prevent them from
2042 	 * being overwritten by next ndo_set_rx_mode call().
2043 	 */
2044 	spin_lock(&nic->rx_mode_wq_lock);
2045 	mode = vf_work->mode;
2046 	mc = vf_work->mc;
2047 	vf_work->mc = NULL;
2048 	spin_unlock(&nic->rx_mode_wq_lock);
2049 
2050 	__nicvf_set_rx_mode_task(mode, mc, nic);
2051 }
2052 
2053 static void nicvf_set_rx_mode(struct net_device *netdev)
2054 {
2055 	struct nicvf *nic = netdev_priv(netdev);
2056 	struct netdev_hw_addr *ha;
2057 	struct xcast_addr_list *mc_list = NULL;
2058 	u8 mode = 0;
2059 
2060 	if (netdev->flags & IFF_PROMISC) {
2061 		mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2062 	} else {
2063 		if (netdev->flags & IFF_BROADCAST)
2064 			mode |= BGX_XCAST_BCAST_ACCEPT;
2065 
2066 		if (netdev->flags & IFF_ALLMULTI) {
2067 			mode |= BGX_XCAST_MCAST_ACCEPT;
2068 		} else if (netdev->flags & IFF_MULTICAST) {
2069 			mode |= BGX_XCAST_MCAST_FILTER;
2070 			/* here we need to copy mc addrs */
2071 			if (netdev_mc_count(netdev)) {
2072 				mc_list = kmalloc(offsetof(typeof(*mc_list),
2073 							   mc[netdev_mc_count(netdev)]),
2074 						  GFP_ATOMIC);
2075 				if (unlikely(!mc_list))
2076 					return;
2077 				mc_list->count = 0;
2078 				netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2079 					mc_list->mc[mc_list->count] =
2080 						ether_addr_to_u64(ha->addr);
2081 					mc_list->count++;
2082 				}
2083 			}
2084 		}
2085 	}
2086 	spin_lock(&nic->rx_mode_wq_lock);
2087 	kfree(nic->rx_mode_work.mc);
2088 	nic->rx_mode_work.mc = mc_list;
2089 	nic->rx_mode_work.mode = mode;
2090 	queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2091 	spin_unlock(&nic->rx_mode_wq_lock);
2092 }
2093 
2094 static const struct net_device_ops nicvf_netdev_ops = {
2095 	.ndo_open		= nicvf_open,
2096 	.ndo_stop		= nicvf_stop,
2097 	.ndo_start_xmit		= nicvf_xmit,
2098 	.ndo_change_mtu		= nicvf_change_mtu,
2099 	.ndo_set_mac_address	= nicvf_set_mac_address,
2100 	.ndo_get_stats64	= nicvf_get_stats64,
2101 	.ndo_tx_timeout         = nicvf_tx_timeout,
2102 	.ndo_fix_features       = nicvf_fix_features,
2103 	.ndo_set_features       = nicvf_set_features,
2104 	.ndo_bpf		= nicvf_xdp,
2105 	.ndo_do_ioctl           = nicvf_ioctl,
2106 	.ndo_set_rx_mode        = nicvf_set_rx_mode,
2107 };
2108 
2109 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2110 {
2111 	struct device *dev = &pdev->dev;
2112 	struct net_device *netdev;
2113 	struct nicvf *nic;
2114 	int    err, qcount;
2115 	u16    sdevid;
2116 	struct cavium_ptp *ptp_clock;
2117 
2118 	ptp_clock = cavium_ptp_get();
2119 	if (IS_ERR(ptp_clock)) {
2120 		if (PTR_ERR(ptp_clock) == -ENODEV)
2121 			/* In virtualized environment we proceed without ptp */
2122 			ptp_clock = NULL;
2123 		else
2124 			return PTR_ERR(ptp_clock);
2125 	}
2126 
2127 	err = pci_enable_device(pdev);
2128 	if (err) {
2129 		dev_err(dev, "Failed to enable PCI device\n");
2130 		return err;
2131 	}
2132 
2133 	err = pci_request_regions(pdev, DRV_NAME);
2134 	if (err) {
2135 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2136 		goto err_disable_device;
2137 	}
2138 
2139 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2140 	if (err) {
2141 		dev_err(dev, "Unable to get usable DMA configuration\n");
2142 		goto err_release_regions;
2143 	}
2144 
2145 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2146 	if (err) {
2147 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
2148 		goto err_release_regions;
2149 	}
2150 
2151 	qcount = netif_get_num_default_rss_queues();
2152 
2153 	/* Restrict multiqset support only for host bound VFs */
2154 	if (pdev->is_virtfn) {
2155 		/* Set max number of queues per VF */
2156 		qcount = min_t(int, num_online_cpus(),
2157 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2158 	}
2159 
2160 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2161 	if (!netdev) {
2162 		err = -ENOMEM;
2163 		goto err_release_regions;
2164 	}
2165 
2166 	pci_set_drvdata(pdev, netdev);
2167 
2168 	SET_NETDEV_DEV(netdev, &pdev->dev);
2169 
2170 	nic = netdev_priv(netdev);
2171 	nic->netdev = netdev;
2172 	nic->pdev = pdev;
2173 	nic->pnicvf = nic;
2174 	nic->max_queues = qcount;
2175 	/* If no of CPUs are too low, there won't be any queues left
2176 	 * for XDP_TX, hence double it.
2177 	 */
2178 	if (!nic->t88)
2179 		nic->max_queues *= 2;
2180 	nic->ptp_clock = ptp_clock;
2181 
2182 	/* MAP VF's configuration registers */
2183 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2184 	if (!nic->reg_base) {
2185 		dev_err(dev, "Cannot map config register space, aborting\n");
2186 		err = -ENOMEM;
2187 		goto err_free_netdev;
2188 	}
2189 
2190 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2191 	if (!nic->drv_stats) {
2192 		err = -ENOMEM;
2193 		goto err_free_netdev;
2194 	}
2195 
2196 	err = nicvf_set_qset_resources(nic);
2197 	if (err)
2198 		goto err_free_netdev;
2199 
2200 	/* Check if PF is alive and get MAC address for this VF */
2201 	err = nicvf_register_misc_interrupt(nic);
2202 	if (err)
2203 		goto err_free_netdev;
2204 
2205 	nicvf_send_vf_struct(nic);
2206 
2207 	if (!pass1_silicon(nic->pdev))
2208 		nic->hw_tso = true;
2209 
2210 	/* Get iommu domain for iova to physical addr conversion */
2211 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
2212 
2213 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2214 	if (sdevid == 0xA134)
2215 		nic->t88 = true;
2216 
2217 	/* Check if this VF is in QS only mode */
2218 	if (nic->sqs_mode)
2219 		return 0;
2220 
2221 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2222 	if (err)
2223 		goto err_unregister_interrupts;
2224 
2225 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2226 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2227 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2228 			       NETIF_F_HW_VLAN_CTAG_RX);
2229 
2230 	netdev->hw_features |= NETIF_F_RXHASH;
2231 
2232 	netdev->features |= netdev->hw_features;
2233 	netdev->hw_features |= NETIF_F_LOOPBACK;
2234 
2235 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2236 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2237 
2238 	netdev->netdev_ops = &nicvf_netdev_ops;
2239 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2240 
2241 	/* MTU range: 64 - 9200 */
2242 	netdev->min_mtu = NIC_HW_MIN_FRS;
2243 	netdev->max_mtu = NIC_HW_MAX_FRS;
2244 
2245 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
2246 
2247 	nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2248 							WQ_MEM_RECLAIM,
2249 							nic->vf_id);
2250 	if (!nic->nicvf_rx_mode_wq) {
2251 		err = -ENOMEM;
2252 		dev_err(dev, "Failed to allocate work queue\n");
2253 		goto err_unregister_interrupts;
2254 	}
2255 
2256 	INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2257 	spin_lock_init(&nic->rx_mode_wq_lock);
2258 	mutex_init(&nic->rx_mode_mtx);
2259 
2260 	err = register_netdev(netdev);
2261 	if (err) {
2262 		dev_err(dev, "Failed to register netdevice\n");
2263 		goto err_unregister_interrupts;
2264 	}
2265 
2266 	nic->msg_enable = debug;
2267 
2268 	nicvf_set_ethtool_ops(netdev);
2269 
2270 	return 0;
2271 
2272 err_unregister_interrupts:
2273 	nicvf_unregister_interrupts(nic);
2274 err_free_netdev:
2275 	pci_set_drvdata(pdev, NULL);
2276 	if (nic->drv_stats)
2277 		free_percpu(nic->drv_stats);
2278 	free_netdev(netdev);
2279 err_release_regions:
2280 	pci_release_regions(pdev);
2281 err_disable_device:
2282 	pci_disable_device(pdev);
2283 	return err;
2284 }
2285 
2286 static void nicvf_remove(struct pci_dev *pdev)
2287 {
2288 	struct net_device *netdev = pci_get_drvdata(pdev);
2289 	struct nicvf *nic;
2290 	struct net_device *pnetdev;
2291 
2292 	if (!netdev)
2293 		return;
2294 
2295 	nic = netdev_priv(netdev);
2296 	pnetdev = nic->pnicvf->netdev;
2297 
2298 	/* Check if this Qset is assigned to different VF.
2299 	 * If yes, clean primary and all secondary Qsets.
2300 	 */
2301 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2302 		unregister_netdev(pnetdev);
2303 	if (nic->nicvf_rx_mode_wq) {
2304 		destroy_workqueue(nic->nicvf_rx_mode_wq);
2305 		nic->nicvf_rx_mode_wq = NULL;
2306 	}
2307 	nicvf_unregister_interrupts(nic);
2308 	pci_set_drvdata(pdev, NULL);
2309 	if (nic->drv_stats)
2310 		free_percpu(nic->drv_stats);
2311 	cavium_ptp_put(nic->ptp_clock);
2312 	free_netdev(netdev);
2313 	pci_release_regions(pdev);
2314 	pci_disable_device(pdev);
2315 }
2316 
2317 static void nicvf_shutdown(struct pci_dev *pdev)
2318 {
2319 	nicvf_remove(pdev);
2320 }
2321 
2322 static struct pci_driver nicvf_driver = {
2323 	.name = DRV_NAME,
2324 	.id_table = nicvf_id_table,
2325 	.probe = nicvf_probe,
2326 	.remove = nicvf_remove,
2327 	.shutdown = nicvf_shutdown,
2328 };
2329 
2330 static int __init nicvf_init_module(void)
2331 {
2332 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2333 	return pci_register_driver(&nicvf_driver);
2334 }
2335 
2336 static void __exit nicvf_cleanup_module(void)
2337 {
2338 	pci_unregister_driver(&nicvf_driver);
2339 }
2340 
2341 module_init(nicvf_init_module);
2342 module_exit(nicvf_cleanup_module);
2343