1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 #include <linux/net_tstamp.h>
24 #include <linux/workqueue.h>
25 
26 #include "nic_reg.h"
27 #include "nic.h"
28 #include "nicvf_queues.h"
29 #include "thunder_bgx.h"
30 #include "../common/cavium_ptp.h"
31 
32 #define DRV_NAME	"nicvf"
33 #define DRV_VERSION	"1.0"
34 
35 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
36  * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
37  * this value, keeping headroom for the 14 byte Ethernet header and two
38  * VLAN tags (for QinQ)
39  */
40 #define MAX_XDP_MTU	(1530 - ETH_HLEN - VLAN_HLEN * 2)
41 
42 /* Supported devices */
43 static const struct pci_device_id nicvf_id_table[] = {
44 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
45 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
46 			 PCI_VENDOR_ID_CAVIUM,
47 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
48 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
49 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
50 			 PCI_VENDOR_ID_CAVIUM,
51 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
52 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
53 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
54 			 PCI_VENDOR_ID_CAVIUM,
55 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
56 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
57 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
58 			 PCI_VENDOR_ID_CAVIUM,
59 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
60 	{ 0, }  /* end of table */
61 };
62 
63 MODULE_AUTHOR("Sunil Goutham");
64 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
65 MODULE_LICENSE("GPL v2");
66 MODULE_VERSION(DRV_VERSION);
67 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
68 
69 static int debug = 0x00;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Debug message level bitmap");
72 
73 static int cpi_alg = CPI_ALG_NONE;
74 module_param(cpi_alg, int, 0444);
75 MODULE_PARM_DESC(cpi_alg,
76 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
77 
78 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
79 {
80 	if (nic->sqs_mode)
81 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
82 	else
83 		return qidx;
84 }
85 
86 /* The Cavium ThunderX network controller can *only* be found in SoCs
87  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
88  * registers on this platform are implicitly strongly ordered with respect
89  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
90  * with no memory barriers in this driver.  The readq()/writeq() functions add
91  * explicit ordering operation which in this case are redundant, and only
92  * add overhead.
93  */
94 
95 /* Register read/write APIs */
96 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
97 {
98 	writeq_relaxed(val, nic->reg_base + offset);
99 }
100 
101 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
102 {
103 	return readq_relaxed(nic->reg_base + offset);
104 }
105 
106 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
107 			   u64 qidx, u64 val)
108 {
109 	void __iomem *addr = nic->reg_base + offset;
110 
111 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
112 }
113 
114 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
115 {
116 	void __iomem *addr = nic->reg_base + offset;
117 
118 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
119 }
120 
121 /* VF -> PF mailbox communication */
122 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
123 {
124 	u64 *msg = (u64 *)mbx;
125 
126 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
127 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
128 }
129 
130 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
131 {
132 	int timeout = NIC_MBOX_MSG_TIMEOUT;
133 	int sleep = 10;
134 	int ret = 0;
135 
136 	mutex_lock(&nic->rx_mode_mtx);
137 
138 	nic->pf_acked = false;
139 	nic->pf_nacked = false;
140 
141 	nicvf_write_to_mbx(nic, mbx);
142 
143 	/* Wait for previous message to be acked, timeout 2sec */
144 	while (!nic->pf_acked) {
145 		if (nic->pf_nacked) {
146 			netdev_err(nic->netdev,
147 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
148 				   (mbx->msg.msg & 0xFF), nic->vf_id);
149 			ret = -EINVAL;
150 			break;
151 		}
152 		msleep(sleep);
153 		if (nic->pf_acked)
154 			break;
155 		timeout -= sleep;
156 		if (!timeout) {
157 			netdev_err(nic->netdev,
158 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
159 				   (mbx->msg.msg & 0xFF), nic->vf_id);
160 			ret = -EBUSY;
161 			break;
162 		}
163 	}
164 	mutex_unlock(&nic->rx_mode_mtx);
165 	return ret;
166 }
167 
168 /* Checks if VF is able to comminicate with PF
169 * and also gets the VNIC number this VF is associated to.
170 */
171 static int nicvf_check_pf_ready(struct nicvf *nic)
172 {
173 	union nic_mbx mbx = {};
174 
175 	mbx.msg.msg = NIC_MBOX_MSG_READY;
176 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
177 		netdev_err(nic->netdev,
178 			   "PF didn't respond to READY msg\n");
179 		return 0;
180 	}
181 
182 	return 1;
183 }
184 
185 static void nicvf_send_cfg_done(struct nicvf *nic)
186 {
187 	union nic_mbx mbx = {};
188 
189 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
190 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
191 		netdev_err(nic->netdev,
192 			   "PF didn't respond to CFG DONE msg\n");
193 	}
194 }
195 
196 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
197 {
198 	if (bgx->rx)
199 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
200 	else
201 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
202 }
203 
204 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
205 {
206 	union nic_mbx mbx = {};
207 	u64 *mbx_data;
208 	u64 mbx_addr;
209 	int i;
210 
211 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
212 	mbx_data = (u64 *)&mbx;
213 
214 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
215 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
216 		mbx_data++;
217 		mbx_addr += sizeof(u64);
218 	}
219 
220 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
221 	switch (mbx.msg.msg) {
222 	case NIC_MBOX_MSG_READY:
223 		nic->pf_acked = true;
224 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
225 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
226 		nic->node = mbx.nic_cfg.node_id;
227 		if (!nic->set_mac_pending)
228 			ether_addr_copy(nic->netdev->dev_addr,
229 					mbx.nic_cfg.mac_addr);
230 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
231 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
232 		nic->link_up = false;
233 		nic->duplex = 0;
234 		nic->speed = 0;
235 		break;
236 	case NIC_MBOX_MSG_ACK:
237 		nic->pf_acked = true;
238 		break;
239 	case NIC_MBOX_MSG_NACK:
240 		nic->pf_nacked = true;
241 		break;
242 	case NIC_MBOX_MSG_RSS_SIZE:
243 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
244 		nic->pf_acked = true;
245 		break;
246 	case NIC_MBOX_MSG_BGX_STATS:
247 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
248 		nic->pf_acked = true;
249 		break;
250 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
251 		nic->pf_acked = true;
252 		if (nic->link_up != mbx.link_status.link_up) {
253 			nic->link_up = mbx.link_status.link_up;
254 			nic->duplex = mbx.link_status.duplex;
255 			nic->speed = mbx.link_status.speed;
256 			nic->mac_type = mbx.link_status.mac_type;
257 			if (nic->link_up) {
258 				netdev_info(nic->netdev,
259 					    "Link is Up %d Mbps %s duplex\n",
260 					    nic->speed,
261 					    nic->duplex == DUPLEX_FULL ?
262 					    "Full" : "Half");
263 				netif_carrier_on(nic->netdev);
264 				netif_tx_start_all_queues(nic->netdev);
265 			} else {
266 				netdev_info(nic->netdev, "Link is Down\n");
267 				netif_carrier_off(nic->netdev);
268 				netif_tx_stop_all_queues(nic->netdev);
269 			}
270 		}
271 		break;
272 	case NIC_MBOX_MSG_ALLOC_SQS:
273 		nic->sqs_count = mbx.sqs_alloc.qs_count;
274 		nic->pf_acked = true;
275 		break;
276 	case NIC_MBOX_MSG_SNICVF_PTR:
277 		/* Primary VF: make note of secondary VF's pointer
278 		 * to be used while packet transmission.
279 		 */
280 		nic->snicvf[mbx.nicvf.sqs_id] =
281 			(struct nicvf *)mbx.nicvf.nicvf;
282 		nic->pf_acked = true;
283 		break;
284 	case NIC_MBOX_MSG_PNICVF_PTR:
285 		/* Secondary VF/Qset: make note of primary VF's pointer
286 		 * to be used while packet reception, to handover packet
287 		 * to primary VF's netdev.
288 		 */
289 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
290 		nic->pf_acked = true;
291 		break;
292 	case NIC_MBOX_MSG_PFC:
293 		nic->pfc.autoneg = mbx.pfc.autoneg;
294 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
295 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
296 		nic->pf_acked = true;
297 		break;
298 	default:
299 		netdev_err(nic->netdev,
300 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
301 		break;
302 	}
303 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
304 }
305 
306 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
307 {
308 	union nic_mbx mbx = {};
309 
310 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
311 	mbx.mac.vf_id = nic->vf_id;
312 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
313 
314 	return nicvf_send_msg_to_pf(nic, &mbx);
315 }
316 
317 static void nicvf_config_cpi(struct nicvf *nic)
318 {
319 	union nic_mbx mbx = {};
320 
321 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
322 	mbx.cpi_cfg.vf_id = nic->vf_id;
323 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
324 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
325 
326 	nicvf_send_msg_to_pf(nic, &mbx);
327 }
328 
329 static void nicvf_get_rss_size(struct nicvf *nic)
330 {
331 	union nic_mbx mbx = {};
332 
333 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
334 	mbx.rss_size.vf_id = nic->vf_id;
335 	nicvf_send_msg_to_pf(nic, &mbx);
336 }
337 
338 void nicvf_config_rss(struct nicvf *nic)
339 {
340 	union nic_mbx mbx = {};
341 	struct nicvf_rss_info *rss = &nic->rss_info;
342 	int ind_tbl_len = rss->rss_size;
343 	int i, nextq = 0;
344 
345 	mbx.rss_cfg.vf_id = nic->vf_id;
346 	mbx.rss_cfg.hash_bits = rss->hash_bits;
347 	while (ind_tbl_len) {
348 		mbx.rss_cfg.tbl_offset = nextq;
349 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
350 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
351 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
352 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
353 
354 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
355 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
356 
357 		nicvf_send_msg_to_pf(nic, &mbx);
358 
359 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
360 	}
361 }
362 
363 void nicvf_set_rss_key(struct nicvf *nic)
364 {
365 	struct nicvf_rss_info *rss = &nic->rss_info;
366 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
367 	int idx;
368 
369 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
370 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
371 		key_addr += sizeof(u64);
372 	}
373 }
374 
375 static int nicvf_rss_init(struct nicvf *nic)
376 {
377 	struct nicvf_rss_info *rss = &nic->rss_info;
378 	int idx;
379 
380 	nicvf_get_rss_size(nic);
381 
382 	if (cpi_alg != CPI_ALG_NONE) {
383 		rss->enable = false;
384 		rss->hash_bits = 0;
385 		return 0;
386 	}
387 
388 	rss->enable = true;
389 
390 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
391 	nicvf_set_rss_key(nic);
392 
393 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
394 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
395 
396 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
397 
398 	for (idx = 0; idx < rss->rss_size; idx++)
399 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
400 							       nic->rx_queues);
401 	nicvf_config_rss(nic);
402 	return 1;
403 }
404 
405 /* Request PF to allocate additional Qsets */
406 static void nicvf_request_sqs(struct nicvf *nic)
407 {
408 	union nic_mbx mbx = {};
409 	int sqs;
410 	int sqs_count = nic->sqs_count;
411 	int rx_queues = 0, tx_queues = 0;
412 
413 	/* Only primary VF should request */
414 	if (nic->sqs_mode ||  !nic->sqs_count)
415 		return;
416 
417 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
418 	mbx.sqs_alloc.vf_id = nic->vf_id;
419 	mbx.sqs_alloc.qs_count = nic->sqs_count;
420 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
421 		/* No response from PF */
422 		nic->sqs_count = 0;
423 		return;
424 	}
425 
426 	/* Return if no Secondary Qsets available */
427 	if (!nic->sqs_count)
428 		return;
429 
430 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
431 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
432 
433 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
434 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
435 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
436 
437 	/* Set no of Rx/Tx queues in each of the SQsets */
438 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
439 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
440 		mbx.nicvf.vf_id = nic->vf_id;
441 		mbx.nicvf.sqs_id = sqs;
442 		nicvf_send_msg_to_pf(nic, &mbx);
443 
444 		nic->snicvf[sqs]->sqs_id = sqs;
445 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
446 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
447 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
448 		} else {
449 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
450 			rx_queues = 0;
451 		}
452 
453 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
454 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
455 			tx_queues -= MAX_SND_QUEUES_PER_QS;
456 		} else {
457 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
458 			tx_queues = 0;
459 		}
460 
461 		nic->snicvf[sqs]->qs->cq_cnt =
462 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
463 
464 		/* Initialize secondary Qset's queues and its interrupts */
465 		nicvf_open(nic->snicvf[sqs]->netdev);
466 	}
467 
468 	/* Update stack with actual Rx/Tx queue count allocated */
469 	if (sqs_count != nic->sqs_count)
470 		nicvf_set_real_num_queues(nic->netdev,
471 					  nic->tx_queues, nic->rx_queues);
472 }
473 
474 /* Send this Qset's nicvf pointer to PF.
475  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
476  * so that packets received by these Qsets can use primary VF's netdev
477  */
478 static void nicvf_send_vf_struct(struct nicvf *nic)
479 {
480 	union nic_mbx mbx = {};
481 
482 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
483 	mbx.nicvf.sqs_mode = nic->sqs_mode;
484 	mbx.nicvf.nicvf = (u64)nic;
485 	nicvf_send_msg_to_pf(nic, &mbx);
486 }
487 
488 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
489 {
490 	union nic_mbx mbx = {};
491 
492 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
493 	nicvf_send_msg_to_pf(nic, &mbx);
494 }
495 
496 int nicvf_set_real_num_queues(struct net_device *netdev,
497 			      int tx_queues, int rx_queues)
498 {
499 	int err = 0;
500 
501 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
502 	if (err) {
503 		netdev_err(netdev,
504 			   "Failed to set no of Tx queues: %d\n", tx_queues);
505 		return err;
506 	}
507 
508 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
509 	if (err)
510 		netdev_err(netdev,
511 			   "Failed to set no of Rx queues: %d\n", rx_queues);
512 	return err;
513 }
514 
515 static int nicvf_init_resources(struct nicvf *nic)
516 {
517 	int err;
518 
519 	/* Enable Qset */
520 	nicvf_qset_config(nic, true);
521 
522 	/* Initialize queues and HW for data transfer */
523 	err = nicvf_config_data_transfer(nic, true);
524 	if (err) {
525 		netdev_err(nic->netdev,
526 			   "Failed to alloc/config VF's QSet resources\n");
527 		return err;
528 	}
529 
530 	return 0;
531 }
532 
533 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
534 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
535 				struct rcv_queue *rq, struct sk_buff **skb)
536 {
537 	struct xdp_buff xdp;
538 	struct page *page;
539 	u32 action;
540 	u16 len, offset = 0;
541 	u64 dma_addr, cpu_addr;
542 	void *orig_data;
543 
544 	/* Retrieve packet buffer's DMA address and length */
545 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
546 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
547 
548 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
549 	if (!cpu_addr)
550 		return false;
551 	cpu_addr = (u64)phys_to_virt(cpu_addr);
552 	page = virt_to_page((void *)cpu_addr);
553 
554 	xdp.data_hard_start = page_address(page);
555 	xdp.data = (void *)cpu_addr;
556 	xdp_set_data_meta_invalid(&xdp);
557 	xdp.data_end = xdp.data + len;
558 	xdp.rxq = &rq->xdp_rxq;
559 	orig_data = xdp.data;
560 
561 	rcu_read_lock();
562 	action = bpf_prog_run_xdp(prog, &xdp);
563 	rcu_read_unlock();
564 
565 	len = xdp.data_end - xdp.data;
566 	/* Check if XDP program has changed headers */
567 	if (orig_data != xdp.data) {
568 		offset = orig_data - xdp.data;
569 		dma_addr -= offset;
570 	}
571 
572 	switch (action) {
573 	case XDP_PASS:
574 		/* Check if it's a recycled page, if not
575 		 * unmap the DMA mapping.
576 		 *
577 		 * Recycled page holds an extra reference.
578 		 */
579 		if (page_ref_count(page) == 1) {
580 			dma_addr &= PAGE_MASK;
581 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
582 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
583 					     DMA_FROM_DEVICE,
584 					     DMA_ATTR_SKIP_CPU_SYNC);
585 		}
586 
587 		/* Build SKB and pass on packet to network stack */
588 		*skb = build_skb(xdp.data,
589 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
590 		if (!*skb)
591 			put_page(page);
592 		else
593 			skb_put(*skb, len);
594 		return false;
595 	case XDP_TX:
596 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
597 		return true;
598 	default:
599 		bpf_warn_invalid_xdp_action(action);
600 		/* fall through */
601 	case XDP_ABORTED:
602 		trace_xdp_exception(nic->netdev, prog, action);
603 		/* fall through */
604 	case XDP_DROP:
605 		/* Check if it's a recycled page, if not
606 		 * unmap the DMA mapping.
607 		 *
608 		 * Recycled page holds an extra reference.
609 		 */
610 		if (page_ref_count(page) == 1) {
611 			dma_addr &= PAGE_MASK;
612 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
613 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
614 					     DMA_FROM_DEVICE,
615 					     DMA_ATTR_SKIP_CPU_SYNC);
616 		}
617 		put_page(page);
618 		return true;
619 	}
620 	return false;
621 }
622 
623 static void nicvf_snd_ptp_handler(struct net_device *netdev,
624 				  struct cqe_send_t *cqe_tx)
625 {
626 	struct nicvf *nic = netdev_priv(netdev);
627 	struct skb_shared_hwtstamps ts;
628 	u64 ns;
629 
630 	nic = nic->pnicvf;
631 
632 	/* Sync for 'ptp_skb' */
633 	smp_rmb();
634 
635 	/* New timestamp request can be queued now */
636 	atomic_set(&nic->tx_ptp_skbs, 0);
637 
638 	/* Check for timestamp requested skb */
639 	if (!nic->ptp_skb)
640 		return;
641 
642 	/* Check if timestamping is timedout, which is set to 10us */
643 	if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
644 	    cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
645 		goto no_tstamp;
646 
647 	/* Get the timestamp */
648 	memset(&ts, 0, sizeof(ts));
649 	ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
650 	ts.hwtstamp = ns_to_ktime(ns);
651 	skb_tstamp_tx(nic->ptp_skb, &ts);
652 
653 no_tstamp:
654 	/* Free the original skb */
655 	dev_kfree_skb_any(nic->ptp_skb);
656 	nic->ptp_skb = NULL;
657 	/* Sync 'ptp_skb' */
658 	smp_wmb();
659 }
660 
661 static void nicvf_snd_pkt_handler(struct net_device *netdev,
662 				  struct cqe_send_t *cqe_tx,
663 				  int budget, int *subdesc_cnt,
664 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
665 {
666 	struct sk_buff *skb = NULL;
667 	struct page *page;
668 	struct nicvf *nic = netdev_priv(netdev);
669 	struct snd_queue *sq;
670 	struct sq_hdr_subdesc *hdr;
671 	struct sq_hdr_subdesc *tso_sqe;
672 
673 	sq = &nic->qs->sq[cqe_tx->sq_idx];
674 
675 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
676 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
677 		return;
678 
679 	/* Check for errors */
680 	if (cqe_tx->send_status)
681 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
682 
683 	/* Is this a XDP designated Tx queue */
684 	if (sq->is_xdp) {
685 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
686 		/* Check if it's recycled page or else unmap DMA mapping */
687 		if (page && (page_ref_count(page) == 1))
688 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
689 						 hdr->subdesc_cnt);
690 
691 		/* Release page reference for recycling */
692 		if (page)
693 			put_page(page);
694 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
695 		*subdesc_cnt += hdr->subdesc_cnt + 1;
696 		return;
697 	}
698 
699 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
700 	if (skb) {
701 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
702 		if (hdr->dont_send) {
703 			/* Get actual TSO descriptors and free them */
704 			tso_sqe =
705 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
706 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
707 						 tso_sqe->subdesc_cnt);
708 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
709 		} else {
710 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
711 						 hdr->subdesc_cnt);
712 		}
713 		*subdesc_cnt += hdr->subdesc_cnt + 1;
714 		prefetch(skb);
715 		(*tx_pkts)++;
716 		*tx_bytes += skb->len;
717 		/* If timestamp is requested for this skb, don't free it */
718 		if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
719 		    !nic->pnicvf->ptp_skb)
720 			nic->pnicvf->ptp_skb = skb;
721 		else
722 			napi_consume_skb(skb, budget);
723 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
724 	} else {
725 		/* In case of SW TSO on 88xx, only last segment will have
726 		 * a SKB attached, so just free SQEs here.
727 		 */
728 		if (!nic->hw_tso)
729 			*subdesc_cnt += hdr->subdesc_cnt + 1;
730 	}
731 }
732 
733 static inline void nicvf_set_rxhash(struct net_device *netdev,
734 				    struct cqe_rx_t *cqe_rx,
735 				    struct sk_buff *skb)
736 {
737 	u8 hash_type;
738 	u32 hash;
739 
740 	if (!(netdev->features & NETIF_F_RXHASH))
741 		return;
742 
743 	switch (cqe_rx->rss_alg) {
744 	case RSS_ALG_TCP_IP:
745 	case RSS_ALG_UDP_IP:
746 		hash_type = PKT_HASH_TYPE_L4;
747 		hash = cqe_rx->rss_tag;
748 		break;
749 	case RSS_ALG_IP:
750 		hash_type = PKT_HASH_TYPE_L3;
751 		hash = cqe_rx->rss_tag;
752 		break;
753 	default:
754 		hash_type = PKT_HASH_TYPE_NONE;
755 		hash = 0;
756 	}
757 
758 	skb_set_hash(skb, hash, hash_type);
759 }
760 
761 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
762 {
763 	u64 ns;
764 
765 	if (!nic->ptp_clock || !nic->hw_rx_tstamp)
766 		return;
767 
768 	/* The first 8 bytes is the timestamp */
769 	ns = cavium_ptp_tstamp2time(nic->ptp_clock,
770 				    be64_to_cpu(*(__be64 *)skb->data));
771 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
772 
773 	__skb_pull(skb, 8);
774 }
775 
776 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
777 				  struct napi_struct *napi,
778 				  struct cqe_rx_t *cqe_rx,
779 				  struct snd_queue *sq, struct rcv_queue *rq)
780 {
781 	struct sk_buff *skb = NULL;
782 	struct nicvf *nic = netdev_priv(netdev);
783 	struct nicvf *snic = nic;
784 	int err = 0;
785 	int rq_idx;
786 
787 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
788 
789 	if (nic->sqs_mode) {
790 		/* Use primary VF's 'nicvf' struct */
791 		nic = nic->pnicvf;
792 		netdev = nic->netdev;
793 	}
794 
795 	/* Check for errors */
796 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
797 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
798 		if (err && !cqe_rx->rb_cnt)
799 			return;
800 	}
801 
802 	/* For XDP, ignore pkts spanning multiple pages */
803 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
804 		/* Packet consumed by XDP */
805 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
806 			return;
807 	} else {
808 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
809 					nic->xdp_prog ? true : false);
810 	}
811 
812 	if (!skb)
813 		return;
814 
815 	if (netif_msg_pktdata(nic)) {
816 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
817 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
818 			       skb->data, skb->len, true);
819 	}
820 
821 	/* If error packet, drop it here */
822 	if (err) {
823 		dev_kfree_skb_any(skb);
824 		return;
825 	}
826 
827 	nicvf_set_rxtstamp(nic, skb);
828 	nicvf_set_rxhash(netdev, cqe_rx, skb);
829 
830 	skb_record_rx_queue(skb, rq_idx);
831 	if (netdev->hw_features & NETIF_F_RXCSUM) {
832 		/* HW by default verifies TCP/UDP/SCTP checksums */
833 		skb->ip_summed = CHECKSUM_UNNECESSARY;
834 	} else {
835 		skb_checksum_none_assert(skb);
836 	}
837 
838 	skb->protocol = eth_type_trans(skb, netdev);
839 
840 	/* Check for stripped VLAN */
841 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
842 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
843 				       ntohs((__force __be16)cqe_rx->vlan_tci));
844 
845 	if (napi && (netdev->features & NETIF_F_GRO))
846 		napi_gro_receive(napi, skb);
847 	else
848 		netif_receive_skb(skb);
849 }
850 
851 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
852 				 struct napi_struct *napi, int budget)
853 {
854 	int processed_cqe, work_done = 0, tx_done = 0;
855 	int cqe_count, cqe_head;
856 	int subdesc_cnt = 0;
857 	struct nicvf *nic = netdev_priv(netdev);
858 	struct queue_set *qs = nic->qs;
859 	struct cmp_queue *cq = &qs->cq[cq_idx];
860 	struct cqe_rx_t *cq_desc;
861 	struct netdev_queue *txq;
862 	struct snd_queue *sq = &qs->sq[cq_idx];
863 	struct rcv_queue *rq = &qs->rq[cq_idx];
864 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
865 
866 	spin_lock_bh(&cq->lock);
867 loop:
868 	processed_cqe = 0;
869 	/* Get no of valid CQ entries to process */
870 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
871 	cqe_count &= CQ_CQE_COUNT;
872 	if (!cqe_count)
873 		goto done;
874 
875 	/* Get head of the valid CQ entries */
876 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
877 	cqe_head &= 0xFFFF;
878 
879 	while (processed_cqe < cqe_count) {
880 		/* Get the CQ descriptor */
881 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
882 		cqe_head++;
883 		cqe_head &= (cq->dmem.q_len - 1);
884 		/* Initiate prefetch for next descriptor */
885 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
886 
887 		if ((work_done >= budget) && napi &&
888 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
889 			break;
890 		}
891 
892 		switch (cq_desc->cqe_type) {
893 		case CQE_TYPE_RX:
894 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
895 			work_done++;
896 		break;
897 		case CQE_TYPE_SEND:
898 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
899 					      budget, &subdesc_cnt,
900 					      &tx_pkts, &tx_bytes);
901 			tx_done++;
902 		break;
903 		case CQE_TYPE_SEND_PTP:
904 			nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
905 		break;
906 		case CQE_TYPE_INVALID:
907 		case CQE_TYPE_RX_SPLIT:
908 		case CQE_TYPE_RX_TCP:
909 			/* Ignore for now */
910 		break;
911 		}
912 		processed_cqe++;
913 	}
914 
915 	/* Ring doorbell to inform H/W to reuse processed CQEs */
916 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
917 			      cq_idx, processed_cqe);
918 
919 	if ((work_done < budget) && napi)
920 		goto loop;
921 
922 done:
923 	/* Update SQ's descriptor free count */
924 	if (subdesc_cnt)
925 		nicvf_put_sq_desc(sq, subdesc_cnt);
926 
927 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
928 	/* Handle XDP TX queues */
929 	if (nic->pnicvf->xdp_prog) {
930 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
931 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
932 			goto out;
933 		}
934 		nic = nic->pnicvf;
935 		txq_idx -= nic->pnicvf->xdp_tx_queues;
936 	}
937 
938 	/* Wakeup TXQ if its stopped earlier due to SQ full */
939 	if (tx_done ||
940 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
941 		netdev = nic->pnicvf->netdev;
942 		txq = netdev_get_tx_queue(netdev, txq_idx);
943 		if (tx_pkts)
944 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
945 
946 		/* To read updated queue and carrier status */
947 		smp_mb();
948 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
949 			netif_tx_wake_queue(txq);
950 			nic = nic->pnicvf;
951 			this_cpu_inc(nic->drv_stats->txq_wake);
952 			netif_warn(nic, tx_err, netdev,
953 				   "Transmit queue wakeup SQ%d\n", txq_idx);
954 		}
955 	}
956 
957 out:
958 	spin_unlock_bh(&cq->lock);
959 	return work_done;
960 }
961 
962 static int nicvf_poll(struct napi_struct *napi, int budget)
963 {
964 	u64  cq_head;
965 	int  work_done = 0;
966 	struct net_device *netdev = napi->dev;
967 	struct nicvf *nic = netdev_priv(netdev);
968 	struct nicvf_cq_poll *cq;
969 
970 	cq = container_of(napi, struct nicvf_cq_poll, napi);
971 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
972 
973 	if (work_done < budget) {
974 		/* Slow packet rate, exit polling */
975 		napi_complete_done(napi, work_done);
976 		/* Re-enable interrupts */
977 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
978 					       cq->cq_idx);
979 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
980 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
981 				      cq->cq_idx, cq_head);
982 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
983 	}
984 	return work_done;
985 }
986 
987 /* Qset error interrupt handler
988  *
989  * As of now only CQ errors are handled
990  */
991 static void nicvf_handle_qs_err(unsigned long data)
992 {
993 	struct nicvf *nic = (struct nicvf *)data;
994 	struct queue_set *qs = nic->qs;
995 	int qidx;
996 	u64 status;
997 
998 	netif_tx_disable(nic->netdev);
999 
1000 	/* Check if it is CQ err */
1001 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1002 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
1003 					      qidx);
1004 		if (!(status & CQ_ERR_MASK))
1005 			continue;
1006 		/* Process already queued CQEs and reconfig CQ */
1007 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1008 		nicvf_sq_disable(nic, qidx);
1009 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1010 		nicvf_cmp_queue_config(nic, qs, qidx, true);
1011 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1012 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1013 
1014 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1015 	}
1016 
1017 	netif_tx_start_all_queues(nic->netdev);
1018 	/* Re-enable Qset error interrupt */
1019 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1020 }
1021 
1022 static void nicvf_dump_intr_status(struct nicvf *nic)
1023 {
1024 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1025 		   nicvf_reg_read(nic, NIC_VF_INT));
1026 }
1027 
1028 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1029 {
1030 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1031 	u64 intr;
1032 
1033 	nicvf_dump_intr_status(nic);
1034 
1035 	intr = nicvf_reg_read(nic, NIC_VF_INT);
1036 	/* Check for spurious interrupt */
1037 	if (!(intr & NICVF_INTR_MBOX_MASK))
1038 		return IRQ_HANDLED;
1039 
1040 	nicvf_handle_mbx_intr(nic);
1041 
1042 	return IRQ_HANDLED;
1043 }
1044 
1045 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1046 {
1047 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1048 	struct nicvf *nic = cq_poll->nicvf;
1049 	int qidx = cq_poll->cq_idx;
1050 
1051 	nicvf_dump_intr_status(nic);
1052 
1053 	/* Disable interrupts */
1054 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1055 
1056 	/* Schedule NAPI */
1057 	napi_schedule_irqoff(&cq_poll->napi);
1058 
1059 	/* Clear interrupt */
1060 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1061 
1062 	return IRQ_HANDLED;
1063 }
1064 
1065 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1066 {
1067 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1068 	u8 qidx;
1069 
1070 
1071 	nicvf_dump_intr_status(nic);
1072 
1073 	/* Disable RBDR interrupt and schedule softirq */
1074 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1075 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1076 			continue;
1077 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1078 		tasklet_hi_schedule(&nic->rbdr_task);
1079 		/* Clear interrupt */
1080 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1081 	}
1082 
1083 	return IRQ_HANDLED;
1084 }
1085 
1086 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1087 {
1088 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1089 
1090 	nicvf_dump_intr_status(nic);
1091 
1092 	/* Disable Qset err interrupt and schedule softirq */
1093 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1094 	tasklet_hi_schedule(&nic->qs_err_task);
1095 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1096 
1097 	return IRQ_HANDLED;
1098 }
1099 
1100 static void nicvf_set_irq_affinity(struct nicvf *nic)
1101 {
1102 	int vec, cpu;
1103 
1104 	for (vec = 0; vec < nic->num_vec; vec++) {
1105 		if (!nic->irq_allocated[vec])
1106 			continue;
1107 
1108 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1109 			return;
1110 		 /* CQ interrupts */
1111 		if (vec < NICVF_INTR_ID_SQ)
1112 			/* Leave CPU0 for RBDR and other interrupts */
1113 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1114 		else
1115 			cpu = 0;
1116 
1117 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1118 				nic->affinity_mask[vec]);
1119 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1120 				      nic->affinity_mask[vec]);
1121 	}
1122 }
1123 
1124 static int nicvf_register_interrupts(struct nicvf *nic)
1125 {
1126 	int irq, ret = 0;
1127 
1128 	for_each_cq_irq(irq)
1129 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1130 			nic->pnicvf->netdev->name,
1131 			nicvf_netdev_qidx(nic, irq));
1132 
1133 	for_each_sq_irq(irq)
1134 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1135 			nic->pnicvf->netdev->name,
1136 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1137 
1138 	for_each_rbdr_irq(irq)
1139 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1140 			nic->pnicvf->netdev->name,
1141 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1142 
1143 	/* Register CQ interrupts */
1144 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1145 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1146 				  nicvf_intr_handler,
1147 				  0, nic->irq_name[irq], nic->napi[irq]);
1148 		if (ret)
1149 			goto err;
1150 		nic->irq_allocated[irq] = true;
1151 	}
1152 
1153 	/* Register RBDR interrupt */
1154 	for (irq = NICVF_INTR_ID_RBDR;
1155 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1156 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1157 				  nicvf_rbdr_intr_handler,
1158 				  0, nic->irq_name[irq], nic);
1159 		if (ret)
1160 			goto err;
1161 		nic->irq_allocated[irq] = true;
1162 	}
1163 
1164 	/* Register QS error interrupt */
1165 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1166 		nic->pnicvf->netdev->name,
1167 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1168 	irq = NICVF_INTR_ID_QS_ERR;
1169 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1170 			  nicvf_qs_err_intr_handler,
1171 			  0, nic->irq_name[irq], nic);
1172 	if (ret)
1173 		goto err;
1174 
1175 	nic->irq_allocated[irq] = true;
1176 
1177 	/* Set IRQ affinities */
1178 	nicvf_set_irq_affinity(nic);
1179 
1180 err:
1181 	if (ret)
1182 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1183 
1184 	return ret;
1185 }
1186 
1187 static void nicvf_unregister_interrupts(struct nicvf *nic)
1188 {
1189 	struct pci_dev *pdev = nic->pdev;
1190 	int irq;
1191 
1192 	/* Free registered interrupts */
1193 	for (irq = 0; irq < nic->num_vec; irq++) {
1194 		if (!nic->irq_allocated[irq])
1195 			continue;
1196 
1197 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1198 		free_cpumask_var(nic->affinity_mask[irq]);
1199 
1200 		if (irq < NICVF_INTR_ID_SQ)
1201 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1202 		else
1203 			free_irq(pci_irq_vector(pdev, irq), nic);
1204 
1205 		nic->irq_allocated[irq] = false;
1206 	}
1207 
1208 	/* Disable MSI-X */
1209 	pci_free_irq_vectors(pdev);
1210 	nic->num_vec = 0;
1211 }
1212 
1213 /* Initialize MSIX vectors and register MISC interrupt.
1214  * Send READY message to PF to check if its alive
1215  */
1216 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1217 {
1218 	int ret = 0;
1219 	int irq = NICVF_INTR_ID_MISC;
1220 
1221 	/* Return if mailbox interrupt is already registered */
1222 	if (nic->pdev->msix_enabled)
1223 		return 0;
1224 
1225 	/* Enable MSI-X */
1226 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1227 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1228 				    PCI_IRQ_MSIX);
1229 	if (ret < 0) {
1230 		netdev_err(nic->netdev,
1231 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1232 		return 1;
1233 	}
1234 
1235 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1236 	/* Register Misc interrupt */
1237 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1238 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1239 
1240 	if (ret)
1241 		return ret;
1242 	nic->irq_allocated[irq] = true;
1243 
1244 	/* Enable mailbox interrupt */
1245 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1246 
1247 	/* Check if VF is able to communicate with PF */
1248 	if (!nicvf_check_pf_ready(nic)) {
1249 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1250 		nicvf_unregister_interrupts(nic);
1251 		return 1;
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1258 {
1259 	struct nicvf *nic = netdev_priv(netdev);
1260 	int qid = skb_get_queue_mapping(skb);
1261 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1262 	struct nicvf *snic;
1263 	struct snd_queue *sq;
1264 	int tmp;
1265 
1266 	/* Check for minimum packet length */
1267 	if (skb->len <= ETH_HLEN) {
1268 		dev_kfree_skb(skb);
1269 		return NETDEV_TX_OK;
1270 	}
1271 
1272 	/* In XDP case, initial HW tx queues are used for XDP,
1273 	 * but stack's queue mapping starts at '0', so skip the
1274 	 * Tx queues attached to Rx queues for XDP.
1275 	 */
1276 	if (nic->xdp_prog)
1277 		qid += nic->xdp_tx_queues;
1278 
1279 	snic = nic;
1280 	/* Get secondary Qset's SQ structure */
1281 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1282 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1283 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1284 		if (!snic) {
1285 			netdev_warn(nic->netdev,
1286 				    "Secondary Qset#%d's ptr not initialized\n",
1287 				    tmp - 1);
1288 			dev_kfree_skb(skb);
1289 			return NETDEV_TX_OK;
1290 		}
1291 		qid = qid % MAX_SND_QUEUES_PER_QS;
1292 	}
1293 
1294 	sq = &snic->qs->sq[qid];
1295 	if (!netif_tx_queue_stopped(txq) &&
1296 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1297 		netif_tx_stop_queue(txq);
1298 
1299 		/* Barrier, so that stop_queue visible to other cpus */
1300 		smp_mb();
1301 
1302 		/* Check again, incase another cpu freed descriptors */
1303 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1304 			netif_tx_wake_queue(txq);
1305 		} else {
1306 			this_cpu_inc(nic->drv_stats->txq_stop);
1307 			netif_warn(nic, tx_err, netdev,
1308 				   "Transmit ring full, stopping SQ%d\n", qid);
1309 		}
1310 		return NETDEV_TX_BUSY;
1311 	}
1312 
1313 	return NETDEV_TX_OK;
1314 }
1315 
1316 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1317 {
1318 	struct nicvf_cq_poll *cq_poll;
1319 	int qidx;
1320 
1321 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1322 		cq_poll = nic->napi[qidx];
1323 		if (!cq_poll)
1324 			continue;
1325 		nic->napi[qidx] = NULL;
1326 		kfree(cq_poll);
1327 	}
1328 }
1329 
1330 int nicvf_stop(struct net_device *netdev)
1331 {
1332 	int irq, qidx;
1333 	struct nicvf *nic = netdev_priv(netdev);
1334 	struct queue_set *qs = nic->qs;
1335 	struct nicvf_cq_poll *cq_poll = NULL;
1336 	union nic_mbx mbx = {};
1337 
1338 	/* wait till all queued set_rx_mode tasks completes */
1339 	if (nic->nicvf_rx_mode_wq) {
1340 		cancel_delayed_work_sync(&nic->link_change_work);
1341 		drain_workqueue(nic->nicvf_rx_mode_wq);
1342 	}
1343 
1344 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1345 	nicvf_send_msg_to_pf(nic, &mbx);
1346 
1347 	netif_carrier_off(netdev);
1348 	netif_tx_stop_all_queues(nic->netdev);
1349 	nic->link_up = false;
1350 
1351 	/* Teardown secondary qsets first */
1352 	if (!nic->sqs_mode) {
1353 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1354 			if (!nic->snicvf[qidx])
1355 				continue;
1356 			nicvf_stop(nic->snicvf[qidx]->netdev);
1357 			nic->snicvf[qidx] = NULL;
1358 		}
1359 	}
1360 
1361 	/* Disable RBDR & QS error interrupts */
1362 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1363 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1364 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1365 	}
1366 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1367 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1368 
1369 	/* Wait for pending IRQ handlers to finish */
1370 	for (irq = 0; irq < nic->num_vec; irq++)
1371 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1372 
1373 	tasklet_kill(&nic->rbdr_task);
1374 	tasklet_kill(&nic->qs_err_task);
1375 	if (nic->rb_work_scheduled)
1376 		cancel_delayed_work_sync(&nic->rbdr_work);
1377 
1378 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1379 		cq_poll = nic->napi[qidx];
1380 		if (!cq_poll)
1381 			continue;
1382 		napi_synchronize(&cq_poll->napi);
1383 		/* CQ intr is enabled while napi_complete,
1384 		 * so disable it now
1385 		 */
1386 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1387 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1388 		napi_disable(&cq_poll->napi);
1389 		netif_napi_del(&cq_poll->napi);
1390 	}
1391 
1392 	netif_tx_disable(netdev);
1393 
1394 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1395 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1396 
1397 	/* Free resources */
1398 	nicvf_config_data_transfer(nic, false);
1399 
1400 	/* Disable HW Qset */
1401 	nicvf_qset_config(nic, false);
1402 
1403 	/* disable mailbox interrupt */
1404 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1405 
1406 	nicvf_unregister_interrupts(nic);
1407 
1408 	nicvf_free_cq_poll(nic);
1409 
1410 	/* Free any pending SKB saved to receive timestamp */
1411 	if (nic->ptp_skb) {
1412 		dev_kfree_skb_any(nic->ptp_skb);
1413 		nic->ptp_skb = NULL;
1414 	}
1415 
1416 	/* Clear multiqset info */
1417 	nic->pnicvf = nic;
1418 
1419 	return 0;
1420 }
1421 
1422 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1423 {
1424 	union nic_mbx mbx = {};
1425 
1426 	mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1427 	mbx.ptp.enable = enable;
1428 
1429 	return nicvf_send_msg_to_pf(nic, &mbx);
1430 }
1431 
1432 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1433 {
1434 	union nic_mbx mbx = {};
1435 
1436 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1437 	mbx.frs.max_frs = mtu;
1438 	mbx.frs.vf_id = nic->vf_id;
1439 
1440 	return nicvf_send_msg_to_pf(nic, &mbx);
1441 }
1442 
1443 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1444 {
1445 	struct nicvf *nic = container_of(work_arg,
1446 					 struct nicvf,
1447 					 link_change_work.work);
1448 	union nic_mbx mbx = {};
1449 	mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1450 	nicvf_send_msg_to_pf(nic, &mbx);
1451 	queue_delayed_work(nic->nicvf_rx_mode_wq,
1452 			   &nic->link_change_work, 2 * HZ);
1453 }
1454 
1455 int nicvf_open(struct net_device *netdev)
1456 {
1457 	int cpu, err, qidx;
1458 	struct nicvf *nic = netdev_priv(netdev);
1459 	struct queue_set *qs = nic->qs;
1460 	struct nicvf_cq_poll *cq_poll = NULL;
1461 
1462 	/* wait till all queued set_rx_mode tasks completes if any */
1463 	if (nic->nicvf_rx_mode_wq)
1464 		drain_workqueue(nic->nicvf_rx_mode_wq);
1465 
1466 	netif_carrier_off(netdev);
1467 
1468 	err = nicvf_register_misc_interrupt(nic);
1469 	if (err)
1470 		return err;
1471 
1472 	/* Register NAPI handler for processing CQEs */
1473 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1474 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1475 		if (!cq_poll) {
1476 			err = -ENOMEM;
1477 			goto napi_del;
1478 		}
1479 		cq_poll->cq_idx = qidx;
1480 		cq_poll->nicvf = nic;
1481 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1482 			       NAPI_POLL_WEIGHT);
1483 		napi_enable(&cq_poll->napi);
1484 		nic->napi[qidx] = cq_poll;
1485 	}
1486 
1487 	/* Check if we got MAC address from PF or else generate a radom MAC */
1488 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1489 		eth_hw_addr_random(netdev);
1490 		nicvf_hw_set_mac_addr(nic, netdev);
1491 	}
1492 
1493 	if (nic->set_mac_pending) {
1494 		nic->set_mac_pending = false;
1495 		nicvf_hw_set_mac_addr(nic, netdev);
1496 	}
1497 
1498 	/* Init tasklet for handling Qset err interrupt */
1499 	tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1500 		     (unsigned long)nic);
1501 
1502 	/* Init RBDR tasklet which will refill RBDR */
1503 	tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1504 		     (unsigned long)nic);
1505 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1506 
1507 	/* Configure CPI alorithm */
1508 	nic->cpi_alg = cpi_alg;
1509 	if (!nic->sqs_mode)
1510 		nicvf_config_cpi(nic);
1511 
1512 	nicvf_request_sqs(nic);
1513 	if (nic->sqs_mode)
1514 		nicvf_get_primary_vf_struct(nic);
1515 
1516 	/* Configure PTP timestamp */
1517 	if (nic->ptp_clock)
1518 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1519 	atomic_set(&nic->tx_ptp_skbs, 0);
1520 	nic->ptp_skb = NULL;
1521 
1522 	/* Configure receive side scaling and MTU */
1523 	if (!nic->sqs_mode) {
1524 		nicvf_rss_init(nic);
1525 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1526 		if (err)
1527 			goto cleanup;
1528 
1529 		/* Clear percpu stats */
1530 		for_each_possible_cpu(cpu)
1531 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1532 			       sizeof(struct nicvf_drv_stats));
1533 	}
1534 
1535 	err = nicvf_register_interrupts(nic);
1536 	if (err)
1537 		goto cleanup;
1538 
1539 	/* Initialize the queues */
1540 	err = nicvf_init_resources(nic);
1541 	if (err)
1542 		goto cleanup;
1543 
1544 	/* Make sure queue initialization is written */
1545 	wmb();
1546 
1547 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1548 	/* Enable Qset err interrupt */
1549 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1550 
1551 	/* Enable completion queue interrupt */
1552 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1553 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1554 
1555 	/* Enable RBDR threshold interrupt */
1556 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1557 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1558 
1559 	/* Send VF config done msg to PF */
1560 	nicvf_send_cfg_done(nic);
1561 
1562 	if (nic->nicvf_rx_mode_wq) {
1563 		INIT_DELAYED_WORK(&nic->link_change_work,
1564 				  nicvf_link_status_check_task);
1565 		queue_delayed_work(nic->nicvf_rx_mode_wq,
1566 				   &nic->link_change_work, 0);
1567 	}
1568 
1569 	return 0;
1570 cleanup:
1571 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1572 	nicvf_unregister_interrupts(nic);
1573 	tasklet_kill(&nic->qs_err_task);
1574 	tasklet_kill(&nic->rbdr_task);
1575 napi_del:
1576 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1577 		cq_poll = nic->napi[qidx];
1578 		if (!cq_poll)
1579 			continue;
1580 		napi_disable(&cq_poll->napi);
1581 		netif_napi_del(&cq_poll->napi);
1582 	}
1583 	nicvf_free_cq_poll(nic);
1584 	return err;
1585 }
1586 
1587 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1588 {
1589 	struct nicvf *nic = netdev_priv(netdev);
1590 	int orig_mtu = netdev->mtu;
1591 
1592 	/* For now just support only the usual MTU sized frames,
1593 	 * plus some headroom for VLAN, QinQ.
1594 	 */
1595 	if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1596 		netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1597 			    netdev->mtu);
1598 		return -EINVAL;
1599 	}
1600 
1601 	netdev->mtu = new_mtu;
1602 
1603 	if (!netif_running(netdev))
1604 		return 0;
1605 
1606 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1607 		netdev->mtu = orig_mtu;
1608 		return -EINVAL;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1615 {
1616 	struct sockaddr *addr = p;
1617 	struct nicvf *nic = netdev_priv(netdev);
1618 
1619 	if (!is_valid_ether_addr(addr->sa_data))
1620 		return -EADDRNOTAVAIL;
1621 
1622 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1623 
1624 	if (nic->pdev->msix_enabled) {
1625 		if (nicvf_hw_set_mac_addr(nic, netdev))
1626 			return -EBUSY;
1627 	} else {
1628 		nic->set_mac_pending = true;
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 void nicvf_update_lmac_stats(struct nicvf *nic)
1635 {
1636 	int stat = 0;
1637 	union nic_mbx mbx = {};
1638 
1639 	if (!netif_running(nic->netdev))
1640 		return;
1641 
1642 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1643 	mbx.bgx_stats.vf_id = nic->vf_id;
1644 	/* Rx stats */
1645 	mbx.bgx_stats.rx = 1;
1646 	while (stat < BGX_RX_STATS_COUNT) {
1647 		mbx.bgx_stats.idx = stat;
1648 		if (nicvf_send_msg_to_pf(nic, &mbx))
1649 			return;
1650 		stat++;
1651 	}
1652 
1653 	stat = 0;
1654 
1655 	/* Tx stats */
1656 	mbx.bgx_stats.rx = 0;
1657 	while (stat < BGX_TX_STATS_COUNT) {
1658 		mbx.bgx_stats.idx = stat;
1659 		if (nicvf_send_msg_to_pf(nic, &mbx))
1660 			return;
1661 		stat++;
1662 	}
1663 }
1664 
1665 void nicvf_update_stats(struct nicvf *nic)
1666 {
1667 	int qidx, cpu;
1668 	u64 tmp_stats = 0;
1669 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1670 	struct nicvf_drv_stats *drv_stats;
1671 	struct queue_set *qs = nic->qs;
1672 
1673 #define GET_RX_STATS(reg) \
1674 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1675 #define GET_TX_STATS(reg) \
1676 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1677 
1678 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1679 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1680 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1681 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1682 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1683 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1684 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1685 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1686 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1687 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1688 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1689 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1690 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1691 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1692 
1693 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1694 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1695 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1696 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1697 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1698 
1699 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1700 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1701 	 * pointed by dummy SQE and results in tx_drops counter being
1702 	 * incremented. Subtracting it from tx_tso counter will give
1703 	 * exact tx_drops counter.
1704 	 */
1705 	if (nic->t88 && nic->hw_tso) {
1706 		for_each_possible_cpu(cpu) {
1707 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1708 			tmp_stats += drv_stats->tx_tso;
1709 		}
1710 		stats->tx_drops = tmp_stats - stats->tx_drops;
1711 	}
1712 	stats->tx_frames = stats->tx_ucast_frames +
1713 			   stats->tx_bcast_frames +
1714 			   stats->tx_mcast_frames;
1715 	stats->rx_frames = stats->rx_ucast_frames +
1716 			   stats->rx_bcast_frames +
1717 			   stats->rx_mcast_frames;
1718 	stats->rx_drops = stats->rx_drop_red +
1719 			  stats->rx_drop_overrun;
1720 
1721 	/* Update RQ and SQ stats */
1722 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1723 		nicvf_update_rq_stats(nic, qidx);
1724 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1725 		nicvf_update_sq_stats(nic, qidx);
1726 }
1727 
1728 static void nicvf_get_stats64(struct net_device *netdev,
1729 			      struct rtnl_link_stats64 *stats)
1730 {
1731 	struct nicvf *nic = netdev_priv(netdev);
1732 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1733 
1734 	nicvf_update_stats(nic);
1735 
1736 	stats->rx_bytes = hw_stats->rx_bytes;
1737 	stats->rx_packets = hw_stats->rx_frames;
1738 	stats->rx_dropped = hw_stats->rx_drops;
1739 	stats->multicast = hw_stats->rx_mcast_frames;
1740 
1741 	stats->tx_bytes = hw_stats->tx_bytes;
1742 	stats->tx_packets = hw_stats->tx_frames;
1743 	stats->tx_dropped = hw_stats->tx_drops;
1744 
1745 }
1746 
1747 static void nicvf_tx_timeout(struct net_device *dev)
1748 {
1749 	struct nicvf *nic = netdev_priv(dev);
1750 
1751 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1752 
1753 	this_cpu_inc(nic->drv_stats->tx_timeout);
1754 	schedule_work(&nic->reset_task);
1755 }
1756 
1757 static void nicvf_reset_task(struct work_struct *work)
1758 {
1759 	struct nicvf *nic;
1760 
1761 	nic = container_of(work, struct nicvf, reset_task);
1762 
1763 	if (!netif_running(nic->netdev))
1764 		return;
1765 
1766 	nicvf_stop(nic->netdev);
1767 	nicvf_open(nic->netdev);
1768 	netif_trans_update(nic->netdev);
1769 }
1770 
1771 static int nicvf_config_loopback(struct nicvf *nic,
1772 				 netdev_features_t features)
1773 {
1774 	union nic_mbx mbx = {};
1775 
1776 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1777 	mbx.lbk.vf_id = nic->vf_id;
1778 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1779 
1780 	return nicvf_send_msg_to_pf(nic, &mbx);
1781 }
1782 
1783 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1784 					    netdev_features_t features)
1785 {
1786 	struct nicvf *nic = netdev_priv(netdev);
1787 
1788 	if ((features & NETIF_F_LOOPBACK) &&
1789 	    netif_running(netdev) && !nic->loopback_supported)
1790 		features &= ~NETIF_F_LOOPBACK;
1791 
1792 	return features;
1793 }
1794 
1795 static int nicvf_set_features(struct net_device *netdev,
1796 			      netdev_features_t features)
1797 {
1798 	struct nicvf *nic = netdev_priv(netdev);
1799 	netdev_features_t changed = features ^ netdev->features;
1800 
1801 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1802 		nicvf_config_vlan_stripping(nic, features);
1803 
1804 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1805 		return nicvf_config_loopback(nic, features);
1806 
1807 	return 0;
1808 }
1809 
1810 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1811 {
1812 	u8 cq_count, txq_count;
1813 
1814 	/* Set XDP Tx queue count same as Rx queue count */
1815 	if (!bpf_attached)
1816 		nic->xdp_tx_queues = 0;
1817 	else
1818 		nic->xdp_tx_queues = nic->rx_queues;
1819 
1820 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1821 	 * needs to be allocated, check how many.
1822 	 */
1823 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1824 	cq_count = max(nic->rx_queues, txq_count);
1825 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1826 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1827 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1828 	} else {
1829 		nic->sqs_count = 0;
1830 	}
1831 
1832 	/* Set primary Qset's resources */
1833 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1834 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1835 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1836 
1837 	/* Update stack */
1838 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1839 }
1840 
1841 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1842 {
1843 	struct net_device *dev = nic->netdev;
1844 	bool if_up = netif_running(nic->netdev);
1845 	struct bpf_prog *old_prog;
1846 	bool bpf_attached = false;
1847 	int ret = 0;
1848 
1849 	/* For now just support only the usual MTU sized frames,
1850 	 * plus some headroom for VLAN, QinQ.
1851 	 */
1852 	if (prog && dev->mtu > MAX_XDP_MTU) {
1853 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1854 			    dev->mtu);
1855 		return -EOPNOTSUPP;
1856 	}
1857 
1858 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1859 	 * XDP Tx queues and more Tx queues are allocated for
1860 	 * network stack to send pkts out.
1861 	 *
1862 	 * No of Tx queues are either same as Rx queues or whatever
1863 	 * is left in max no of queues possible.
1864 	 */
1865 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1866 		netdev_warn(dev,
1867 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1868 			    nic->max_queues);
1869 		return -ENOMEM;
1870 	}
1871 
1872 	if (if_up)
1873 		nicvf_stop(nic->netdev);
1874 
1875 	old_prog = xchg(&nic->xdp_prog, prog);
1876 	/* Detach old prog, if any */
1877 	if (old_prog)
1878 		bpf_prog_put(old_prog);
1879 
1880 	if (nic->xdp_prog) {
1881 		/* Attach BPF program */
1882 		nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1883 		if (!IS_ERR(nic->xdp_prog)) {
1884 			bpf_attached = true;
1885 		} else {
1886 			ret = PTR_ERR(nic->xdp_prog);
1887 			nic->xdp_prog = NULL;
1888 		}
1889 	}
1890 
1891 	/* Calculate Tx queues needed for XDP and network stack */
1892 	nicvf_set_xdp_queues(nic, bpf_attached);
1893 
1894 	if (if_up) {
1895 		/* Reinitialize interface, clean slate */
1896 		nicvf_open(nic->netdev);
1897 		netif_trans_update(nic->netdev);
1898 	}
1899 
1900 	return ret;
1901 }
1902 
1903 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1904 {
1905 	struct nicvf *nic = netdev_priv(netdev);
1906 
1907 	/* To avoid checks while retrieving buffer address from CQE_RX,
1908 	 * do not support XDP for T88 pass1.x silicons which are anyway
1909 	 * not in use widely.
1910 	 */
1911 	if (pass1_silicon(nic->pdev))
1912 		return -EOPNOTSUPP;
1913 
1914 	switch (xdp->command) {
1915 	case XDP_SETUP_PROG:
1916 		return nicvf_xdp_setup(nic, xdp->prog);
1917 	case XDP_QUERY_PROG:
1918 		xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1919 		return 0;
1920 	default:
1921 		return -EINVAL;
1922 	}
1923 }
1924 
1925 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1926 {
1927 	struct hwtstamp_config config;
1928 	struct nicvf *nic = netdev_priv(netdev);
1929 
1930 	if (!nic->ptp_clock)
1931 		return -ENODEV;
1932 
1933 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1934 		return -EFAULT;
1935 
1936 	/* reserved for future extensions */
1937 	if (config.flags)
1938 		return -EINVAL;
1939 
1940 	switch (config.tx_type) {
1941 	case HWTSTAMP_TX_OFF:
1942 	case HWTSTAMP_TX_ON:
1943 		break;
1944 	default:
1945 		return -ERANGE;
1946 	}
1947 
1948 	switch (config.rx_filter) {
1949 	case HWTSTAMP_FILTER_NONE:
1950 		nic->hw_rx_tstamp = false;
1951 		break;
1952 	case HWTSTAMP_FILTER_ALL:
1953 	case HWTSTAMP_FILTER_SOME:
1954 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1955 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1956 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1957 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1958 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1959 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1960 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1961 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1962 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1963 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1964 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1965 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1966 		nic->hw_rx_tstamp = true;
1967 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1968 		break;
1969 	default:
1970 		return -ERANGE;
1971 	}
1972 
1973 	if (netif_running(netdev))
1974 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1975 
1976 	if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1977 		return -EFAULT;
1978 
1979 	return 0;
1980 }
1981 
1982 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1983 {
1984 	switch (cmd) {
1985 	case SIOCSHWTSTAMP:
1986 		return nicvf_config_hwtstamp(netdev, req);
1987 	default:
1988 		return -EOPNOTSUPP;
1989 	}
1990 }
1991 
1992 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1993 				     struct nicvf *nic)
1994 {
1995 	union nic_mbx mbx = {};
1996 	int idx;
1997 
1998 	/* From the inside of VM code flow we have only 128 bits memory
1999 	 * available to send message to host's PF, so send all mc addrs
2000 	 * one by one, starting from flush command in case if kernel
2001 	 * requests to configure specific MAC filtering
2002 	 */
2003 
2004 	/* flush DMAC filters and reset RX mode */
2005 	mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
2006 	if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2007 		goto free_mc;
2008 
2009 	if (mode & BGX_XCAST_MCAST_FILTER) {
2010 		/* once enabling filtering, we need to signal to PF to add
2011 		 * its' own LMAC to the filter to accept packets for it.
2012 		 */
2013 		mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2014 		mbx.xcast.mac = 0;
2015 		if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2016 			goto free_mc;
2017 	}
2018 
2019 	/* check if we have any specific MACs to be added to PF DMAC filter */
2020 	if (mc_addrs) {
2021 		/* now go through kernel list of MACs and add them one by one */
2022 		for (idx = 0; idx < mc_addrs->count; idx++) {
2023 			mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2024 			mbx.xcast.mac = mc_addrs->mc[idx];
2025 			if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2026 				goto free_mc;
2027 		}
2028 	}
2029 
2030 	/* and finally set rx mode for PF accordingly */
2031 	mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2032 	mbx.xcast.mode = mode;
2033 
2034 	nicvf_send_msg_to_pf(nic, &mbx);
2035 free_mc:
2036 	kfree(mc_addrs);
2037 }
2038 
2039 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2040 {
2041 	struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2042 						  work);
2043 	struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2044 	u8 mode;
2045 	struct xcast_addr_list *mc;
2046 
2047 	if (!vf_work)
2048 		return;
2049 
2050 	/* Save message data locally to prevent them from
2051 	 * being overwritten by next ndo_set_rx_mode call().
2052 	 */
2053 	spin_lock(&nic->rx_mode_wq_lock);
2054 	mode = vf_work->mode;
2055 	mc = vf_work->mc;
2056 	vf_work->mc = NULL;
2057 	spin_unlock(&nic->rx_mode_wq_lock);
2058 
2059 	__nicvf_set_rx_mode_task(mode, mc, nic);
2060 }
2061 
2062 static void nicvf_set_rx_mode(struct net_device *netdev)
2063 {
2064 	struct nicvf *nic = netdev_priv(netdev);
2065 	struct netdev_hw_addr *ha;
2066 	struct xcast_addr_list *mc_list = NULL;
2067 	u8 mode = 0;
2068 
2069 	if (netdev->flags & IFF_PROMISC) {
2070 		mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2071 	} else {
2072 		if (netdev->flags & IFF_BROADCAST)
2073 			mode |= BGX_XCAST_BCAST_ACCEPT;
2074 
2075 		if (netdev->flags & IFF_ALLMULTI) {
2076 			mode |= BGX_XCAST_MCAST_ACCEPT;
2077 		} else if (netdev->flags & IFF_MULTICAST) {
2078 			mode |= BGX_XCAST_MCAST_FILTER;
2079 			/* here we need to copy mc addrs */
2080 			if (netdev_mc_count(netdev)) {
2081 				mc_list = kmalloc(offsetof(typeof(*mc_list),
2082 							   mc[netdev_mc_count(netdev)]),
2083 						  GFP_ATOMIC);
2084 				if (unlikely(!mc_list))
2085 					return;
2086 				mc_list->count = 0;
2087 				netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2088 					mc_list->mc[mc_list->count] =
2089 						ether_addr_to_u64(ha->addr);
2090 					mc_list->count++;
2091 				}
2092 			}
2093 		}
2094 	}
2095 	spin_lock(&nic->rx_mode_wq_lock);
2096 	kfree(nic->rx_mode_work.mc);
2097 	nic->rx_mode_work.mc = mc_list;
2098 	nic->rx_mode_work.mode = mode;
2099 	queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2100 	spin_unlock(&nic->rx_mode_wq_lock);
2101 }
2102 
2103 static const struct net_device_ops nicvf_netdev_ops = {
2104 	.ndo_open		= nicvf_open,
2105 	.ndo_stop		= nicvf_stop,
2106 	.ndo_start_xmit		= nicvf_xmit,
2107 	.ndo_change_mtu		= nicvf_change_mtu,
2108 	.ndo_set_mac_address	= nicvf_set_mac_address,
2109 	.ndo_get_stats64	= nicvf_get_stats64,
2110 	.ndo_tx_timeout         = nicvf_tx_timeout,
2111 	.ndo_fix_features       = nicvf_fix_features,
2112 	.ndo_set_features       = nicvf_set_features,
2113 	.ndo_bpf		= nicvf_xdp,
2114 	.ndo_do_ioctl           = nicvf_ioctl,
2115 	.ndo_set_rx_mode        = nicvf_set_rx_mode,
2116 };
2117 
2118 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2119 {
2120 	struct device *dev = &pdev->dev;
2121 	struct net_device *netdev;
2122 	struct nicvf *nic;
2123 	int    err, qcount;
2124 	u16    sdevid;
2125 	struct cavium_ptp *ptp_clock;
2126 
2127 	ptp_clock = cavium_ptp_get();
2128 	if (IS_ERR(ptp_clock)) {
2129 		if (PTR_ERR(ptp_clock) == -ENODEV)
2130 			/* In virtualized environment we proceed without ptp */
2131 			ptp_clock = NULL;
2132 		else
2133 			return PTR_ERR(ptp_clock);
2134 	}
2135 
2136 	err = pci_enable_device(pdev);
2137 	if (err) {
2138 		dev_err(dev, "Failed to enable PCI device\n");
2139 		return err;
2140 	}
2141 
2142 	err = pci_request_regions(pdev, DRV_NAME);
2143 	if (err) {
2144 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2145 		goto err_disable_device;
2146 	}
2147 
2148 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2149 	if (err) {
2150 		dev_err(dev, "Unable to get usable DMA configuration\n");
2151 		goto err_release_regions;
2152 	}
2153 
2154 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2155 	if (err) {
2156 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
2157 		goto err_release_regions;
2158 	}
2159 
2160 	qcount = netif_get_num_default_rss_queues();
2161 
2162 	/* Restrict multiqset support only for host bound VFs */
2163 	if (pdev->is_virtfn) {
2164 		/* Set max number of queues per VF */
2165 		qcount = min_t(int, num_online_cpus(),
2166 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2167 	}
2168 
2169 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2170 	if (!netdev) {
2171 		err = -ENOMEM;
2172 		goto err_release_regions;
2173 	}
2174 
2175 	pci_set_drvdata(pdev, netdev);
2176 
2177 	SET_NETDEV_DEV(netdev, &pdev->dev);
2178 
2179 	nic = netdev_priv(netdev);
2180 	nic->netdev = netdev;
2181 	nic->pdev = pdev;
2182 	nic->pnicvf = nic;
2183 	nic->max_queues = qcount;
2184 	/* If no of CPUs are too low, there won't be any queues left
2185 	 * for XDP_TX, hence double it.
2186 	 */
2187 	if (!nic->t88)
2188 		nic->max_queues *= 2;
2189 	nic->ptp_clock = ptp_clock;
2190 
2191 	/* MAP VF's configuration registers */
2192 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2193 	if (!nic->reg_base) {
2194 		dev_err(dev, "Cannot map config register space, aborting\n");
2195 		err = -ENOMEM;
2196 		goto err_free_netdev;
2197 	}
2198 
2199 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2200 	if (!nic->drv_stats) {
2201 		err = -ENOMEM;
2202 		goto err_free_netdev;
2203 	}
2204 
2205 	err = nicvf_set_qset_resources(nic);
2206 	if (err)
2207 		goto err_free_netdev;
2208 
2209 	/* Check if PF is alive and get MAC address for this VF */
2210 	err = nicvf_register_misc_interrupt(nic);
2211 	if (err)
2212 		goto err_free_netdev;
2213 
2214 	nicvf_send_vf_struct(nic);
2215 
2216 	if (!pass1_silicon(nic->pdev))
2217 		nic->hw_tso = true;
2218 
2219 	/* Get iommu domain for iova to physical addr conversion */
2220 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
2221 
2222 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2223 	if (sdevid == 0xA134)
2224 		nic->t88 = true;
2225 
2226 	/* Check if this VF is in QS only mode */
2227 	if (nic->sqs_mode)
2228 		return 0;
2229 
2230 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2231 	if (err)
2232 		goto err_unregister_interrupts;
2233 
2234 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2235 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2236 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2237 			       NETIF_F_HW_VLAN_CTAG_RX);
2238 
2239 	netdev->hw_features |= NETIF_F_RXHASH;
2240 
2241 	netdev->features |= netdev->hw_features;
2242 	netdev->hw_features |= NETIF_F_LOOPBACK;
2243 
2244 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2245 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2246 
2247 	netdev->netdev_ops = &nicvf_netdev_ops;
2248 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2249 
2250 	/* MTU range: 64 - 9200 */
2251 	netdev->min_mtu = NIC_HW_MIN_FRS;
2252 	netdev->max_mtu = NIC_HW_MAX_FRS;
2253 
2254 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
2255 
2256 	nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2257 							WQ_MEM_RECLAIM,
2258 							nic->vf_id);
2259 	if (!nic->nicvf_rx_mode_wq) {
2260 		err = -ENOMEM;
2261 		dev_err(dev, "Failed to allocate work queue\n");
2262 		goto err_unregister_interrupts;
2263 	}
2264 
2265 	INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2266 	spin_lock_init(&nic->rx_mode_wq_lock);
2267 	mutex_init(&nic->rx_mode_mtx);
2268 
2269 	err = register_netdev(netdev);
2270 	if (err) {
2271 		dev_err(dev, "Failed to register netdevice\n");
2272 		goto err_unregister_interrupts;
2273 	}
2274 
2275 	nic->msg_enable = debug;
2276 
2277 	nicvf_set_ethtool_ops(netdev);
2278 
2279 	return 0;
2280 
2281 err_unregister_interrupts:
2282 	nicvf_unregister_interrupts(nic);
2283 err_free_netdev:
2284 	pci_set_drvdata(pdev, NULL);
2285 	if (nic->drv_stats)
2286 		free_percpu(nic->drv_stats);
2287 	free_netdev(netdev);
2288 err_release_regions:
2289 	pci_release_regions(pdev);
2290 err_disable_device:
2291 	pci_disable_device(pdev);
2292 	return err;
2293 }
2294 
2295 static void nicvf_remove(struct pci_dev *pdev)
2296 {
2297 	struct net_device *netdev = pci_get_drvdata(pdev);
2298 	struct nicvf *nic;
2299 	struct net_device *pnetdev;
2300 
2301 	if (!netdev)
2302 		return;
2303 
2304 	nic = netdev_priv(netdev);
2305 	pnetdev = nic->pnicvf->netdev;
2306 
2307 	/* Check if this Qset is assigned to different VF.
2308 	 * If yes, clean primary and all secondary Qsets.
2309 	 */
2310 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2311 		unregister_netdev(pnetdev);
2312 	if (nic->nicvf_rx_mode_wq) {
2313 		destroy_workqueue(nic->nicvf_rx_mode_wq);
2314 		nic->nicvf_rx_mode_wq = NULL;
2315 	}
2316 	nicvf_unregister_interrupts(nic);
2317 	pci_set_drvdata(pdev, NULL);
2318 	if (nic->drv_stats)
2319 		free_percpu(nic->drv_stats);
2320 	cavium_ptp_put(nic->ptp_clock);
2321 	free_netdev(netdev);
2322 	pci_release_regions(pdev);
2323 	pci_disable_device(pdev);
2324 }
2325 
2326 static void nicvf_shutdown(struct pci_dev *pdev)
2327 {
2328 	nicvf_remove(pdev);
2329 }
2330 
2331 static struct pci_driver nicvf_driver = {
2332 	.name = DRV_NAME,
2333 	.id_table = nicvf_id_table,
2334 	.probe = nicvf_probe,
2335 	.remove = nicvf_remove,
2336 	.shutdown = nicvf_shutdown,
2337 };
2338 
2339 static int __init nicvf_init_module(void)
2340 {
2341 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2342 	return pci_register_driver(&nicvf_driver);
2343 }
2344 
2345 static void __exit nicvf_cleanup_module(void)
2346 {
2347 	pci_unregister_driver(&nicvf_driver);
2348 }
2349 
2350 module_init(nicvf_init_module);
2351 module_exit(nicvf_cleanup_module);
2352