1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2009-2012 Cavium, Inc 7 */ 8 9 #include <linux/platform_device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/etherdevice.h> 12 #include <linux/capability.h> 13 #include <linux/net_tstamp.h> 14 #include <linux/interrupt.h> 15 #include <linux/netdevice.h> 16 #include <linux/spinlock.h> 17 #include <linux/if_vlan.h> 18 #include <linux/of_mdio.h> 19 #include <linux/module.h> 20 #include <linux/of_net.h> 21 #include <linux/init.h> 22 #include <linux/slab.h> 23 #include <linux/phy.h> 24 #include <linux/io.h> 25 26 #include <asm/octeon/octeon.h> 27 #include <asm/octeon/cvmx-mixx-defs.h> 28 #include <asm/octeon/cvmx-agl-defs.h> 29 30 #define DRV_NAME "octeon_mgmt" 31 #define DRV_VERSION "2.0" 32 #define DRV_DESCRIPTION \ 33 "Cavium Networks Octeon MII (management) port Network Driver" 34 35 #define OCTEON_MGMT_NAPI_WEIGHT 16 36 37 /* Ring sizes that are powers of two allow for more efficient modulo 38 * opertions. 39 */ 40 #define OCTEON_MGMT_RX_RING_SIZE 512 41 #define OCTEON_MGMT_TX_RING_SIZE 128 42 43 /* Allow 8 bytes for vlan and FCS. */ 44 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN) 45 46 union mgmt_port_ring_entry { 47 u64 d64; 48 struct { 49 #define RING_ENTRY_CODE_DONE 0xf 50 #define RING_ENTRY_CODE_MORE 0x10 51 #ifdef __BIG_ENDIAN_BITFIELD 52 u64 reserved_62_63:2; 53 /* Length of the buffer/packet in bytes */ 54 u64 len:14; 55 /* For TX, signals that the packet should be timestamped */ 56 u64 tstamp:1; 57 /* The RX error code */ 58 u64 code:7; 59 /* Physical address of the buffer */ 60 u64 addr:40; 61 #else 62 u64 addr:40; 63 u64 code:7; 64 u64 tstamp:1; 65 u64 len:14; 66 u64 reserved_62_63:2; 67 #endif 68 } s; 69 }; 70 71 #define MIX_ORING1 0x0 72 #define MIX_ORING2 0x8 73 #define MIX_IRING1 0x10 74 #define MIX_IRING2 0x18 75 #define MIX_CTL 0x20 76 #define MIX_IRHWM 0x28 77 #define MIX_IRCNT 0x30 78 #define MIX_ORHWM 0x38 79 #define MIX_ORCNT 0x40 80 #define MIX_ISR 0x48 81 #define MIX_INTENA 0x50 82 #define MIX_REMCNT 0x58 83 #define MIX_BIST 0x78 84 85 #define AGL_GMX_PRT_CFG 0x10 86 #define AGL_GMX_RX_FRM_CTL 0x18 87 #define AGL_GMX_RX_FRM_MAX 0x30 88 #define AGL_GMX_RX_JABBER 0x38 89 #define AGL_GMX_RX_STATS_CTL 0x50 90 91 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0 92 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8 93 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0 94 95 #define AGL_GMX_RX_ADR_CTL 0x100 96 #define AGL_GMX_RX_ADR_CAM_EN 0x108 97 #define AGL_GMX_RX_ADR_CAM0 0x180 98 #define AGL_GMX_RX_ADR_CAM1 0x188 99 #define AGL_GMX_RX_ADR_CAM2 0x190 100 #define AGL_GMX_RX_ADR_CAM3 0x198 101 #define AGL_GMX_RX_ADR_CAM4 0x1a0 102 #define AGL_GMX_RX_ADR_CAM5 0x1a8 103 104 #define AGL_GMX_TX_CLK 0x208 105 #define AGL_GMX_TX_STATS_CTL 0x268 106 #define AGL_GMX_TX_CTL 0x270 107 #define AGL_GMX_TX_STAT0 0x280 108 #define AGL_GMX_TX_STAT1 0x288 109 #define AGL_GMX_TX_STAT2 0x290 110 #define AGL_GMX_TX_STAT3 0x298 111 #define AGL_GMX_TX_STAT4 0x2a0 112 #define AGL_GMX_TX_STAT5 0x2a8 113 #define AGL_GMX_TX_STAT6 0x2b0 114 #define AGL_GMX_TX_STAT7 0x2b8 115 #define AGL_GMX_TX_STAT8 0x2c0 116 #define AGL_GMX_TX_STAT9 0x2c8 117 118 struct octeon_mgmt { 119 struct net_device *netdev; 120 u64 mix; 121 u64 agl; 122 u64 agl_prt_ctl; 123 int port; 124 int irq; 125 bool has_rx_tstamp; 126 u64 *tx_ring; 127 dma_addr_t tx_ring_handle; 128 unsigned int tx_next; 129 unsigned int tx_next_clean; 130 unsigned int tx_current_fill; 131 /* The tx_list lock also protects the ring related variables */ 132 struct sk_buff_head tx_list; 133 134 /* RX variables only touched in napi_poll. No locking necessary. */ 135 u64 *rx_ring; 136 dma_addr_t rx_ring_handle; 137 unsigned int rx_next; 138 unsigned int rx_next_fill; 139 unsigned int rx_current_fill; 140 struct sk_buff_head rx_list; 141 142 spinlock_t lock; 143 unsigned int last_duplex; 144 unsigned int last_link; 145 unsigned int last_speed; 146 struct device *dev; 147 struct napi_struct napi; 148 struct tasklet_struct tx_clean_tasklet; 149 struct device_node *phy_np; 150 resource_size_t mix_phys; 151 resource_size_t mix_size; 152 resource_size_t agl_phys; 153 resource_size_t agl_size; 154 resource_size_t agl_prt_ctl_phys; 155 resource_size_t agl_prt_ctl_size; 156 }; 157 158 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable) 159 { 160 union cvmx_mixx_intena mix_intena; 161 unsigned long flags; 162 163 spin_lock_irqsave(&p->lock, flags); 164 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 165 mix_intena.s.ithena = enable ? 1 : 0; 166 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 167 spin_unlock_irqrestore(&p->lock, flags); 168 } 169 170 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable) 171 { 172 union cvmx_mixx_intena mix_intena; 173 unsigned long flags; 174 175 spin_lock_irqsave(&p->lock, flags); 176 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 177 mix_intena.s.othena = enable ? 1 : 0; 178 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 179 spin_unlock_irqrestore(&p->lock, flags); 180 } 181 182 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p) 183 { 184 octeon_mgmt_set_rx_irq(p, 1); 185 } 186 187 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p) 188 { 189 octeon_mgmt_set_rx_irq(p, 0); 190 } 191 192 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p) 193 { 194 octeon_mgmt_set_tx_irq(p, 1); 195 } 196 197 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p) 198 { 199 octeon_mgmt_set_tx_irq(p, 0); 200 } 201 202 static unsigned int ring_max_fill(unsigned int ring_size) 203 { 204 return ring_size - 8; 205 } 206 207 static unsigned int ring_size_to_bytes(unsigned int ring_size) 208 { 209 return ring_size * sizeof(union mgmt_port_ring_entry); 210 } 211 212 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev) 213 { 214 struct octeon_mgmt *p = netdev_priv(netdev); 215 216 while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) { 217 unsigned int size; 218 union mgmt_port_ring_entry re; 219 struct sk_buff *skb; 220 221 /* CN56XX pass 1 needs 8 bytes of padding. */ 222 size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN; 223 224 skb = netdev_alloc_skb(netdev, size); 225 if (!skb) 226 break; 227 skb_reserve(skb, NET_IP_ALIGN); 228 __skb_queue_tail(&p->rx_list, skb); 229 230 re.d64 = 0; 231 re.s.len = size; 232 re.s.addr = dma_map_single(p->dev, skb->data, 233 size, 234 DMA_FROM_DEVICE); 235 236 /* Put it in the ring. */ 237 p->rx_ring[p->rx_next_fill] = re.d64; 238 dma_sync_single_for_device(p->dev, p->rx_ring_handle, 239 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 240 DMA_BIDIRECTIONAL); 241 p->rx_next_fill = 242 (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE; 243 p->rx_current_fill++; 244 /* Ring the bell. */ 245 cvmx_write_csr(p->mix + MIX_IRING2, 1); 246 } 247 } 248 249 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p) 250 { 251 union cvmx_mixx_orcnt mix_orcnt; 252 union mgmt_port_ring_entry re; 253 struct sk_buff *skb; 254 int cleaned = 0; 255 unsigned long flags; 256 257 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 258 while (mix_orcnt.s.orcnt) { 259 spin_lock_irqsave(&p->tx_list.lock, flags); 260 261 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 262 263 if (mix_orcnt.s.orcnt == 0) { 264 spin_unlock_irqrestore(&p->tx_list.lock, flags); 265 break; 266 } 267 268 dma_sync_single_for_cpu(p->dev, p->tx_ring_handle, 269 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 270 DMA_BIDIRECTIONAL); 271 272 re.d64 = p->tx_ring[p->tx_next_clean]; 273 p->tx_next_clean = 274 (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE; 275 skb = __skb_dequeue(&p->tx_list); 276 277 mix_orcnt.u64 = 0; 278 mix_orcnt.s.orcnt = 1; 279 280 /* Acknowledge to hardware that we have the buffer. */ 281 cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64); 282 p->tx_current_fill--; 283 284 spin_unlock_irqrestore(&p->tx_list.lock, flags); 285 286 dma_unmap_single(p->dev, re.s.addr, re.s.len, 287 DMA_TO_DEVICE); 288 289 /* Read the hardware TX timestamp if one was recorded */ 290 if (unlikely(re.s.tstamp)) { 291 struct skb_shared_hwtstamps ts; 292 u64 ns; 293 294 memset(&ts, 0, sizeof(ts)); 295 /* Read the timestamp */ 296 ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port)); 297 /* Remove the timestamp from the FIFO */ 298 cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0); 299 /* Tell the kernel about the timestamp */ 300 ts.hwtstamp = ns_to_ktime(ns); 301 skb_tstamp_tx(skb, &ts); 302 } 303 304 dev_kfree_skb_any(skb); 305 cleaned++; 306 307 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 308 } 309 310 if (cleaned && netif_queue_stopped(p->netdev)) 311 netif_wake_queue(p->netdev); 312 } 313 314 static void octeon_mgmt_clean_tx_tasklet(unsigned long arg) 315 { 316 struct octeon_mgmt *p = (struct octeon_mgmt *)arg; 317 octeon_mgmt_clean_tx_buffers(p); 318 octeon_mgmt_enable_tx_irq(p); 319 } 320 321 static void octeon_mgmt_update_rx_stats(struct net_device *netdev) 322 { 323 struct octeon_mgmt *p = netdev_priv(netdev); 324 unsigned long flags; 325 u64 drop, bad; 326 327 /* These reads also clear the count registers. */ 328 drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP); 329 bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD); 330 331 if (drop || bad) { 332 /* Do an atomic update. */ 333 spin_lock_irqsave(&p->lock, flags); 334 netdev->stats.rx_errors += bad; 335 netdev->stats.rx_dropped += drop; 336 spin_unlock_irqrestore(&p->lock, flags); 337 } 338 } 339 340 static void octeon_mgmt_update_tx_stats(struct net_device *netdev) 341 { 342 struct octeon_mgmt *p = netdev_priv(netdev); 343 unsigned long flags; 344 345 union cvmx_agl_gmx_txx_stat0 s0; 346 union cvmx_agl_gmx_txx_stat1 s1; 347 348 /* These reads also clear the count registers. */ 349 s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0); 350 s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1); 351 352 if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) { 353 /* Do an atomic update. */ 354 spin_lock_irqsave(&p->lock, flags); 355 netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol; 356 netdev->stats.collisions += s1.s.scol + s1.s.mcol; 357 spin_unlock_irqrestore(&p->lock, flags); 358 } 359 } 360 361 /* 362 * Dequeue a receive skb and its corresponding ring entry. The ring 363 * entry is returned, *pskb is updated to point to the skb. 364 */ 365 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p, 366 struct sk_buff **pskb) 367 { 368 union mgmt_port_ring_entry re; 369 370 dma_sync_single_for_cpu(p->dev, p->rx_ring_handle, 371 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 372 DMA_BIDIRECTIONAL); 373 374 re.d64 = p->rx_ring[p->rx_next]; 375 p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE; 376 p->rx_current_fill--; 377 *pskb = __skb_dequeue(&p->rx_list); 378 379 dma_unmap_single(p->dev, re.s.addr, 380 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM, 381 DMA_FROM_DEVICE); 382 383 return re.d64; 384 } 385 386 387 static int octeon_mgmt_receive_one(struct octeon_mgmt *p) 388 { 389 struct net_device *netdev = p->netdev; 390 union cvmx_mixx_ircnt mix_ircnt; 391 union mgmt_port_ring_entry re; 392 struct sk_buff *skb; 393 struct sk_buff *skb2; 394 struct sk_buff *skb_new; 395 union mgmt_port_ring_entry re2; 396 int rc = 1; 397 398 399 re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb); 400 if (likely(re.s.code == RING_ENTRY_CODE_DONE)) { 401 /* A good packet, send it up. */ 402 skb_put(skb, re.s.len); 403 good: 404 /* Process the RX timestamp if it was recorded */ 405 if (p->has_rx_tstamp) { 406 /* The first 8 bytes are the timestamp */ 407 u64 ns = *(u64 *)skb->data; 408 struct skb_shared_hwtstamps *ts; 409 ts = skb_hwtstamps(skb); 410 ts->hwtstamp = ns_to_ktime(ns); 411 __skb_pull(skb, 8); 412 } 413 skb->protocol = eth_type_trans(skb, netdev); 414 netdev->stats.rx_packets++; 415 netdev->stats.rx_bytes += skb->len; 416 netif_receive_skb(skb); 417 rc = 0; 418 } else if (re.s.code == RING_ENTRY_CODE_MORE) { 419 /* Packet split across skbs. This can happen if we 420 * increase the MTU. Buffers that are already in the 421 * rx ring can then end up being too small. As the rx 422 * ring is refilled, buffers sized for the new MTU 423 * will be used and we should go back to the normal 424 * non-split case. 425 */ 426 skb_put(skb, re.s.len); 427 do { 428 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 429 if (re2.s.code != RING_ENTRY_CODE_MORE 430 && re2.s.code != RING_ENTRY_CODE_DONE) 431 goto split_error; 432 skb_put(skb2, re2.s.len); 433 skb_new = skb_copy_expand(skb, 0, skb2->len, 434 GFP_ATOMIC); 435 if (!skb_new) 436 goto split_error; 437 if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new), 438 skb2->len)) 439 goto split_error; 440 skb_put(skb_new, skb2->len); 441 dev_kfree_skb_any(skb); 442 dev_kfree_skb_any(skb2); 443 skb = skb_new; 444 } while (re2.s.code == RING_ENTRY_CODE_MORE); 445 goto good; 446 } else { 447 /* Some other error, discard it. */ 448 dev_kfree_skb_any(skb); 449 /* Error statistics are accumulated in 450 * octeon_mgmt_update_rx_stats. 451 */ 452 } 453 goto done; 454 split_error: 455 /* Discard the whole mess. */ 456 dev_kfree_skb_any(skb); 457 dev_kfree_skb_any(skb2); 458 while (re2.s.code == RING_ENTRY_CODE_MORE) { 459 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 460 dev_kfree_skb_any(skb2); 461 } 462 netdev->stats.rx_errors++; 463 464 done: 465 /* Tell the hardware we processed a packet. */ 466 mix_ircnt.u64 = 0; 467 mix_ircnt.s.ircnt = 1; 468 cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64); 469 return rc; 470 } 471 472 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget) 473 { 474 unsigned int work_done = 0; 475 union cvmx_mixx_ircnt mix_ircnt; 476 int rc; 477 478 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 479 while (work_done < budget && mix_ircnt.s.ircnt) { 480 481 rc = octeon_mgmt_receive_one(p); 482 if (!rc) 483 work_done++; 484 485 /* Check for more packets. */ 486 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 487 } 488 489 octeon_mgmt_rx_fill_ring(p->netdev); 490 491 return work_done; 492 } 493 494 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget) 495 { 496 struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi); 497 struct net_device *netdev = p->netdev; 498 unsigned int work_done = 0; 499 500 work_done = octeon_mgmt_receive_packets(p, budget); 501 502 if (work_done < budget) { 503 /* We stopped because no more packets were available. */ 504 napi_complete_done(napi, work_done); 505 octeon_mgmt_enable_rx_irq(p); 506 } 507 octeon_mgmt_update_rx_stats(netdev); 508 509 return work_done; 510 } 511 512 /* Reset the hardware to clean state. */ 513 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p) 514 { 515 union cvmx_mixx_ctl mix_ctl; 516 union cvmx_mixx_bist mix_bist; 517 union cvmx_agl_gmx_bist agl_gmx_bist; 518 519 mix_ctl.u64 = 0; 520 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 521 do { 522 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 523 } while (mix_ctl.s.busy); 524 mix_ctl.s.reset = 1; 525 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 526 cvmx_read_csr(p->mix + MIX_CTL); 527 octeon_io_clk_delay(64); 528 529 mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST); 530 if (mix_bist.u64) 531 dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n", 532 (unsigned long long)mix_bist.u64); 533 534 agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST); 535 if (agl_gmx_bist.u64) 536 dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n", 537 (unsigned long long)agl_gmx_bist.u64); 538 } 539 540 struct octeon_mgmt_cam_state { 541 u64 cam[6]; 542 u64 cam_mask; 543 int cam_index; 544 }; 545 546 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs, 547 unsigned char *addr) 548 { 549 int i; 550 551 for (i = 0; i < 6; i++) 552 cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index)); 553 cs->cam_mask |= (1ULL << cs->cam_index); 554 cs->cam_index++; 555 } 556 557 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev) 558 { 559 struct octeon_mgmt *p = netdev_priv(netdev); 560 union cvmx_agl_gmx_rxx_adr_ctl adr_ctl; 561 union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx; 562 unsigned long flags; 563 unsigned int prev_packet_enable; 564 unsigned int cam_mode = 1; /* 1 - Accept on CAM match */ 565 unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */ 566 struct octeon_mgmt_cam_state cam_state; 567 struct netdev_hw_addr *ha; 568 int available_cam_entries; 569 570 memset(&cam_state, 0, sizeof(cam_state)); 571 572 if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) { 573 cam_mode = 0; 574 available_cam_entries = 8; 575 } else { 576 /* One CAM entry for the primary address, leaves seven 577 * for the secondary addresses. 578 */ 579 available_cam_entries = 7 - netdev->uc.count; 580 } 581 582 if (netdev->flags & IFF_MULTICAST) { 583 if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) || 584 netdev_mc_count(netdev) > available_cam_entries) 585 multicast_mode = 2; /* 2 - Accept all multicast. */ 586 else 587 multicast_mode = 0; /* 0 - Use CAM. */ 588 } 589 590 if (cam_mode == 1) { 591 /* Add primary address. */ 592 octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr); 593 netdev_for_each_uc_addr(ha, netdev) 594 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 595 } 596 if (multicast_mode == 0) { 597 netdev_for_each_mc_addr(ha, netdev) 598 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 599 } 600 601 spin_lock_irqsave(&p->lock, flags); 602 603 /* Disable packet I/O. */ 604 agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 605 prev_packet_enable = agl_gmx_prtx.s.en; 606 agl_gmx_prtx.s.en = 0; 607 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 608 609 adr_ctl.u64 = 0; 610 adr_ctl.s.cam_mode = cam_mode; 611 adr_ctl.s.mcst = multicast_mode; 612 adr_ctl.s.bcst = 1; /* Allow broadcast */ 613 614 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64); 615 616 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]); 617 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]); 618 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]); 619 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]); 620 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]); 621 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]); 622 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask); 623 624 /* Restore packet I/O. */ 625 agl_gmx_prtx.s.en = prev_packet_enable; 626 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 627 628 spin_unlock_irqrestore(&p->lock, flags); 629 } 630 631 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr) 632 { 633 int r = eth_mac_addr(netdev, addr); 634 635 if (r) 636 return r; 637 638 octeon_mgmt_set_rx_filtering(netdev); 639 640 return 0; 641 } 642 643 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu) 644 { 645 struct octeon_mgmt *p = netdev_priv(netdev); 646 int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN; 647 648 netdev->mtu = new_mtu; 649 650 /* HW lifts the limit if the frame is VLAN tagged 651 * (+4 bytes per each tag, up to two tags) 652 */ 653 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet); 654 /* Set the hardware to truncate packets larger than the MTU. The jabber 655 * register must be set to a multiple of 8 bytes, so round up. JABBER is 656 * an unconditional limit, so we need to account for two possible VLAN 657 * tags. 658 */ 659 cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER, 660 (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8); 661 662 return 0; 663 } 664 665 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id) 666 { 667 struct net_device *netdev = dev_id; 668 struct octeon_mgmt *p = netdev_priv(netdev); 669 union cvmx_mixx_isr mixx_isr; 670 671 mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR); 672 673 /* Clear any pending interrupts */ 674 cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64); 675 cvmx_read_csr(p->mix + MIX_ISR); 676 677 if (mixx_isr.s.irthresh) { 678 octeon_mgmt_disable_rx_irq(p); 679 napi_schedule(&p->napi); 680 } 681 if (mixx_isr.s.orthresh) { 682 octeon_mgmt_disable_tx_irq(p); 683 tasklet_schedule(&p->tx_clean_tasklet); 684 } 685 686 return IRQ_HANDLED; 687 } 688 689 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev, 690 struct ifreq *rq, int cmd) 691 { 692 struct octeon_mgmt *p = netdev_priv(netdev); 693 struct hwtstamp_config config; 694 union cvmx_mio_ptp_clock_cfg ptp; 695 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 696 bool have_hw_timestamps = false; 697 698 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 699 return -EFAULT; 700 701 if (config.flags) /* reserved for future extensions */ 702 return -EINVAL; 703 704 /* Check the status of hardware for tiemstamps */ 705 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 706 /* Get the current state of the PTP clock */ 707 ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG); 708 if (!ptp.s.ext_clk_en) { 709 /* The clock has not been configured to use an 710 * external source. Program it to use the main clock 711 * reference. 712 */ 713 u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate(); 714 if (!ptp.s.ptp_en) 715 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp); 716 netdev_info(netdev, 717 "PTP Clock using sclk reference @ %lldHz\n", 718 (NSEC_PER_SEC << 32) / clock_comp); 719 } else { 720 /* The clock is already programmed to use a GPIO */ 721 u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP); 722 netdev_info(netdev, 723 "PTP Clock using GPIO%d @ %lld Hz\n", 724 ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp); 725 } 726 727 /* Enable the clock if it wasn't done already */ 728 if (!ptp.s.ptp_en) { 729 ptp.s.ptp_en = 1; 730 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64); 731 } 732 have_hw_timestamps = true; 733 } 734 735 if (!have_hw_timestamps) 736 return -EINVAL; 737 738 switch (config.tx_type) { 739 case HWTSTAMP_TX_OFF: 740 case HWTSTAMP_TX_ON: 741 break; 742 default: 743 return -ERANGE; 744 } 745 746 switch (config.rx_filter) { 747 case HWTSTAMP_FILTER_NONE: 748 p->has_rx_tstamp = false; 749 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 750 rxx_frm_ctl.s.ptp_mode = 0; 751 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 752 break; 753 case HWTSTAMP_FILTER_ALL: 754 case HWTSTAMP_FILTER_SOME: 755 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 756 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 757 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 758 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 759 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 760 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 761 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 762 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 763 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 764 case HWTSTAMP_FILTER_PTP_V2_EVENT: 765 case HWTSTAMP_FILTER_PTP_V2_SYNC: 766 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 767 case HWTSTAMP_FILTER_NTP_ALL: 768 p->has_rx_tstamp = have_hw_timestamps; 769 config.rx_filter = HWTSTAMP_FILTER_ALL; 770 if (p->has_rx_tstamp) { 771 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 772 rxx_frm_ctl.s.ptp_mode = 1; 773 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 774 } 775 break; 776 default: 777 return -ERANGE; 778 } 779 780 if (copy_to_user(rq->ifr_data, &config, sizeof(config))) 781 return -EFAULT; 782 783 return 0; 784 } 785 786 static int octeon_mgmt_ioctl(struct net_device *netdev, 787 struct ifreq *rq, int cmd) 788 { 789 switch (cmd) { 790 case SIOCSHWTSTAMP: 791 return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd); 792 default: 793 if (netdev->phydev) 794 return phy_mii_ioctl(netdev->phydev, rq, cmd); 795 return -EINVAL; 796 } 797 } 798 799 static void octeon_mgmt_disable_link(struct octeon_mgmt *p) 800 { 801 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 802 803 /* Disable GMX before we make any changes. */ 804 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 805 prtx_cfg.s.en = 0; 806 prtx_cfg.s.tx_en = 0; 807 prtx_cfg.s.rx_en = 0; 808 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 809 810 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 811 int i; 812 for (i = 0; i < 10; i++) { 813 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 814 if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1) 815 break; 816 mdelay(1); 817 i++; 818 } 819 } 820 } 821 822 static void octeon_mgmt_enable_link(struct octeon_mgmt *p) 823 { 824 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 825 826 /* Restore the GMX enable state only if link is set */ 827 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 828 prtx_cfg.s.tx_en = 1; 829 prtx_cfg.s.rx_en = 1; 830 prtx_cfg.s.en = 1; 831 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 832 } 833 834 static void octeon_mgmt_update_link(struct octeon_mgmt *p) 835 { 836 struct net_device *ndev = p->netdev; 837 struct phy_device *phydev = ndev->phydev; 838 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 839 840 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 841 842 if (!phydev->link) 843 prtx_cfg.s.duplex = 1; 844 else 845 prtx_cfg.s.duplex = phydev->duplex; 846 847 switch (phydev->speed) { 848 case 10: 849 prtx_cfg.s.speed = 0; 850 prtx_cfg.s.slottime = 0; 851 852 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 853 prtx_cfg.s.burst = 1; 854 prtx_cfg.s.speed_msb = 1; 855 } 856 break; 857 case 100: 858 prtx_cfg.s.speed = 0; 859 prtx_cfg.s.slottime = 0; 860 861 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 862 prtx_cfg.s.burst = 1; 863 prtx_cfg.s.speed_msb = 0; 864 } 865 break; 866 case 1000: 867 /* 1000 MBits is only supported on 6XXX chips */ 868 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 869 prtx_cfg.s.speed = 1; 870 prtx_cfg.s.speed_msb = 0; 871 /* Only matters for half-duplex */ 872 prtx_cfg.s.slottime = 1; 873 prtx_cfg.s.burst = phydev->duplex; 874 } 875 break; 876 case 0: /* No link */ 877 default: 878 break; 879 } 880 881 /* Write the new GMX setting with the port still disabled. */ 882 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 883 884 /* Read GMX CFG again to make sure the config is completed. */ 885 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 886 887 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 888 union cvmx_agl_gmx_txx_clk agl_clk; 889 union cvmx_agl_prtx_ctl prtx_ctl; 890 891 prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 892 agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK); 893 /* MII (both speeds) and RGMII 1000 speed. */ 894 agl_clk.s.clk_cnt = 1; 895 if (prtx_ctl.s.mode == 0) { /* RGMII mode */ 896 if (phydev->speed == 10) 897 agl_clk.s.clk_cnt = 50; 898 else if (phydev->speed == 100) 899 agl_clk.s.clk_cnt = 5; 900 } 901 cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64); 902 } 903 } 904 905 static void octeon_mgmt_adjust_link(struct net_device *netdev) 906 { 907 struct octeon_mgmt *p = netdev_priv(netdev); 908 struct phy_device *phydev = netdev->phydev; 909 unsigned long flags; 910 int link_changed = 0; 911 912 if (!phydev) 913 return; 914 915 spin_lock_irqsave(&p->lock, flags); 916 917 918 if (!phydev->link && p->last_link) 919 link_changed = -1; 920 921 if (phydev->link && 922 (p->last_duplex != phydev->duplex || 923 p->last_link != phydev->link || 924 p->last_speed != phydev->speed)) { 925 octeon_mgmt_disable_link(p); 926 link_changed = 1; 927 octeon_mgmt_update_link(p); 928 octeon_mgmt_enable_link(p); 929 } 930 931 p->last_link = phydev->link; 932 p->last_speed = phydev->speed; 933 p->last_duplex = phydev->duplex; 934 935 spin_unlock_irqrestore(&p->lock, flags); 936 937 if (link_changed != 0) { 938 if (link_changed > 0) 939 netdev_info(netdev, "Link is up - %d/%s\n", 940 phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half"); 941 else 942 netdev_info(netdev, "Link is down\n"); 943 } 944 } 945 946 static int octeon_mgmt_init_phy(struct net_device *netdev) 947 { 948 struct octeon_mgmt *p = netdev_priv(netdev); 949 struct phy_device *phydev = NULL; 950 951 if (octeon_is_simulation() || p->phy_np == NULL) { 952 /* No PHYs in the simulator. */ 953 netif_carrier_on(netdev); 954 return 0; 955 } 956 957 phydev = of_phy_connect(netdev, p->phy_np, 958 octeon_mgmt_adjust_link, 0, 959 PHY_INTERFACE_MODE_MII); 960 961 if (!phydev) 962 return -ENODEV; 963 964 return 0; 965 } 966 967 static int octeon_mgmt_open(struct net_device *netdev) 968 { 969 struct octeon_mgmt *p = netdev_priv(netdev); 970 union cvmx_mixx_ctl mix_ctl; 971 union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode; 972 union cvmx_mixx_oring1 oring1; 973 union cvmx_mixx_iring1 iring1; 974 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 975 union cvmx_mixx_irhwm mix_irhwm; 976 union cvmx_mixx_orhwm mix_orhwm; 977 union cvmx_mixx_intena mix_intena; 978 struct sockaddr sa; 979 980 /* Allocate ring buffers. */ 981 p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 982 GFP_KERNEL); 983 if (!p->tx_ring) 984 return -ENOMEM; 985 p->tx_ring_handle = 986 dma_map_single(p->dev, p->tx_ring, 987 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 988 DMA_BIDIRECTIONAL); 989 p->tx_next = 0; 990 p->tx_next_clean = 0; 991 p->tx_current_fill = 0; 992 993 994 p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 995 GFP_KERNEL); 996 if (!p->rx_ring) 997 goto err_nomem; 998 p->rx_ring_handle = 999 dma_map_single(p->dev, p->rx_ring, 1000 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1001 DMA_BIDIRECTIONAL); 1002 1003 p->rx_next = 0; 1004 p->rx_next_fill = 0; 1005 p->rx_current_fill = 0; 1006 1007 octeon_mgmt_reset_hw(p); 1008 1009 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1010 1011 /* Bring it out of reset if needed. */ 1012 if (mix_ctl.s.reset) { 1013 mix_ctl.s.reset = 0; 1014 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1015 do { 1016 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1017 } while (mix_ctl.s.reset); 1018 } 1019 1020 if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { 1021 agl_gmx_inf_mode.u64 = 0; 1022 agl_gmx_inf_mode.s.en = 1; 1023 cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64); 1024 } 1025 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) 1026 || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { 1027 /* Force compensation values, as they are not 1028 * determined properly by HW 1029 */ 1030 union cvmx_agl_gmx_drv_ctl drv_ctl; 1031 1032 drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL); 1033 if (p->port) { 1034 drv_ctl.s.byp_en1 = 1; 1035 drv_ctl.s.nctl1 = 6; 1036 drv_ctl.s.pctl1 = 6; 1037 } else { 1038 drv_ctl.s.byp_en = 1; 1039 drv_ctl.s.nctl = 6; 1040 drv_ctl.s.pctl = 6; 1041 } 1042 cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64); 1043 } 1044 1045 oring1.u64 = 0; 1046 oring1.s.obase = p->tx_ring_handle >> 3; 1047 oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE; 1048 cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64); 1049 1050 iring1.u64 = 0; 1051 iring1.s.ibase = p->rx_ring_handle >> 3; 1052 iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE; 1053 cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64); 1054 1055 memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN); 1056 octeon_mgmt_set_mac_address(netdev, &sa); 1057 1058 octeon_mgmt_change_mtu(netdev, netdev->mtu); 1059 1060 /* Enable the port HW. Packets are not allowed until 1061 * cvmx_mgmt_port_enable() is called. 1062 */ 1063 mix_ctl.u64 = 0; 1064 mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */ 1065 mix_ctl.s.en = 1; /* Enable the port */ 1066 mix_ctl.s.nbtarb = 0; /* Arbitration mode */ 1067 /* MII CB-request FIFO programmable high watermark */ 1068 mix_ctl.s.mrq_hwm = 1; 1069 #ifdef __LITTLE_ENDIAN 1070 mix_ctl.s.lendian = 1; 1071 #endif 1072 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1073 1074 /* Read the PHY to find the mode of the interface. */ 1075 if (octeon_mgmt_init_phy(netdev)) { 1076 dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port); 1077 goto err_noirq; 1078 } 1079 1080 /* Set the mode of the interface, RGMII/MII. */ 1081 if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) { 1082 union cvmx_agl_prtx_ctl agl_prtx_ctl; 1083 int rgmii_mode = 1084 (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1085 netdev->phydev->supported) | 1086 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1087 netdev->phydev->supported)) != 0; 1088 1089 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1090 agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1; 1091 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1092 1093 /* MII clocks counts are based on the 125Mhz 1094 * reference, which has an 8nS period. So our delays 1095 * need to be multiplied by this factor. 1096 */ 1097 #define NS_PER_PHY_CLK 8 1098 1099 /* Take the DLL and clock tree out of reset */ 1100 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1101 agl_prtx_ctl.s.clkrst = 0; 1102 if (rgmii_mode) { 1103 agl_prtx_ctl.s.dllrst = 0; 1104 agl_prtx_ctl.s.clktx_byp = 0; 1105 } 1106 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1107 cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */ 1108 1109 /* Wait for the DLL to lock. External 125 MHz 1110 * reference clock must be stable at this point. 1111 */ 1112 ndelay(256 * NS_PER_PHY_CLK); 1113 1114 /* Enable the interface */ 1115 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1116 agl_prtx_ctl.s.enable = 1; 1117 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1118 1119 /* Read the value back to force the previous write */ 1120 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1121 1122 /* Enable the compensation controller */ 1123 agl_prtx_ctl.s.comp = 1; 1124 agl_prtx_ctl.s.drv_byp = 0; 1125 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1126 /* Force write out before wait. */ 1127 cvmx_read_csr(p->agl_prt_ctl); 1128 1129 /* For compensation state to lock. */ 1130 ndelay(1040 * NS_PER_PHY_CLK); 1131 1132 /* Default Interframe Gaps are too small. Recommended 1133 * workaround is. 1134 * 1135 * AGL_GMX_TX_IFG[IFG1]=14 1136 * AGL_GMX_TX_IFG[IFG2]=10 1137 */ 1138 cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae); 1139 } 1140 1141 octeon_mgmt_rx_fill_ring(netdev); 1142 1143 /* Clear statistics. */ 1144 /* Clear on read. */ 1145 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1); 1146 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0); 1147 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0); 1148 1149 cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1); 1150 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0); 1151 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0); 1152 1153 /* Clear any pending interrupts */ 1154 cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR)); 1155 1156 if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name, 1157 netdev)) { 1158 dev_err(p->dev, "request_irq(%d) failed.\n", p->irq); 1159 goto err_noirq; 1160 } 1161 1162 /* Interrupt every single RX packet */ 1163 mix_irhwm.u64 = 0; 1164 mix_irhwm.s.irhwm = 0; 1165 cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64); 1166 1167 /* Interrupt when we have 1 or more packets to clean. */ 1168 mix_orhwm.u64 = 0; 1169 mix_orhwm.s.orhwm = 0; 1170 cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64); 1171 1172 /* Enable receive and transmit interrupts */ 1173 mix_intena.u64 = 0; 1174 mix_intena.s.ithena = 1; 1175 mix_intena.s.othena = 1; 1176 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 1177 1178 /* Enable packet I/O. */ 1179 1180 rxx_frm_ctl.u64 = 0; 1181 rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0; 1182 rxx_frm_ctl.s.pre_align = 1; 1183 /* When set, disables the length check for non-min sized pkts 1184 * with padding in the client data. 1185 */ 1186 rxx_frm_ctl.s.pad_len = 1; 1187 /* When set, disables the length check for VLAN pkts */ 1188 rxx_frm_ctl.s.vlan_len = 1; 1189 /* When set, PREAMBLE checking is less strict */ 1190 rxx_frm_ctl.s.pre_free = 1; 1191 /* Control Pause Frames can match station SMAC */ 1192 rxx_frm_ctl.s.ctl_smac = 0; 1193 /* Control Pause Frames can match globally assign Multicast address */ 1194 rxx_frm_ctl.s.ctl_mcst = 1; 1195 /* Forward pause information to TX block */ 1196 rxx_frm_ctl.s.ctl_bck = 1; 1197 /* Drop Control Pause Frames */ 1198 rxx_frm_ctl.s.ctl_drp = 1; 1199 /* Strip off the preamble */ 1200 rxx_frm_ctl.s.pre_strp = 1; 1201 /* This port is configured to send PREAMBLE+SFD to begin every 1202 * frame. GMX checks that the PREAMBLE is sent correctly. 1203 */ 1204 rxx_frm_ctl.s.pre_chk = 1; 1205 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 1206 1207 /* Configure the port duplex, speed and enables */ 1208 octeon_mgmt_disable_link(p); 1209 if (netdev->phydev) 1210 octeon_mgmt_update_link(p); 1211 octeon_mgmt_enable_link(p); 1212 1213 p->last_link = 0; 1214 p->last_speed = 0; 1215 /* PHY is not present in simulator. The carrier is enabled 1216 * while initializing the phy for simulator, leave it enabled. 1217 */ 1218 if (netdev->phydev) { 1219 netif_carrier_off(netdev); 1220 phy_start_aneg(netdev->phydev); 1221 } 1222 1223 netif_wake_queue(netdev); 1224 napi_enable(&p->napi); 1225 1226 return 0; 1227 err_noirq: 1228 octeon_mgmt_reset_hw(p); 1229 dma_unmap_single(p->dev, p->rx_ring_handle, 1230 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1231 DMA_BIDIRECTIONAL); 1232 kfree(p->rx_ring); 1233 err_nomem: 1234 dma_unmap_single(p->dev, p->tx_ring_handle, 1235 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1236 DMA_BIDIRECTIONAL); 1237 kfree(p->tx_ring); 1238 return -ENOMEM; 1239 } 1240 1241 static int octeon_mgmt_stop(struct net_device *netdev) 1242 { 1243 struct octeon_mgmt *p = netdev_priv(netdev); 1244 1245 napi_disable(&p->napi); 1246 netif_stop_queue(netdev); 1247 1248 if (netdev->phydev) 1249 phy_disconnect(netdev->phydev); 1250 1251 netif_carrier_off(netdev); 1252 1253 octeon_mgmt_reset_hw(p); 1254 1255 free_irq(p->irq, netdev); 1256 1257 /* dma_unmap is a nop on Octeon, so just free everything. */ 1258 skb_queue_purge(&p->tx_list); 1259 skb_queue_purge(&p->rx_list); 1260 1261 dma_unmap_single(p->dev, p->rx_ring_handle, 1262 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1263 DMA_BIDIRECTIONAL); 1264 kfree(p->rx_ring); 1265 1266 dma_unmap_single(p->dev, p->tx_ring_handle, 1267 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1268 DMA_BIDIRECTIONAL); 1269 kfree(p->tx_ring); 1270 1271 return 0; 1272 } 1273 1274 static netdev_tx_t 1275 octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev) 1276 { 1277 struct octeon_mgmt *p = netdev_priv(netdev); 1278 union mgmt_port_ring_entry re; 1279 unsigned long flags; 1280 netdev_tx_t rv = NETDEV_TX_BUSY; 1281 1282 re.d64 = 0; 1283 re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0); 1284 re.s.len = skb->len; 1285 re.s.addr = dma_map_single(p->dev, skb->data, 1286 skb->len, 1287 DMA_TO_DEVICE); 1288 1289 spin_lock_irqsave(&p->tx_list.lock, flags); 1290 1291 if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) { 1292 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1293 netif_stop_queue(netdev); 1294 spin_lock_irqsave(&p->tx_list.lock, flags); 1295 } 1296 1297 if (unlikely(p->tx_current_fill >= 1298 ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) { 1299 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1300 dma_unmap_single(p->dev, re.s.addr, re.s.len, 1301 DMA_TO_DEVICE); 1302 goto out; 1303 } 1304 1305 __skb_queue_tail(&p->tx_list, skb); 1306 1307 /* Put it in the ring. */ 1308 p->tx_ring[p->tx_next] = re.d64; 1309 p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE; 1310 p->tx_current_fill++; 1311 1312 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1313 1314 dma_sync_single_for_device(p->dev, p->tx_ring_handle, 1315 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1316 DMA_BIDIRECTIONAL); 1317 1318 netdev->stats.tx_packets++; 1319 netdev->stats.tx_bytes += skb->len; 1320 1321 /* Ring the bell. */ 1322 cvmx_write_csr(p->mix + MIX_ORING2, 1); 1323 1324 netif_trans_update(netdev); 1325 rv = NETDEV_TX_OK; 1326 out: 1327 octeon_mgmt_update_tx_stats(netdev); 1328 return rv; 1329 } 1330 1331 #ifdef CONFIG_NET_POLL_CONTROLLER 1332 static void octeon_mgmt_poll_controller(struct net_device *netdev) 1333 { 1334 struct octeon_mgmt *p = netdev_priv(netdev); 1335 1336 octeon_mgmt_receive_packets(p, 16); 1337 octeon_mgmt_update_rx_stats(netdev); 1338 } 1339 #endif 1340 1341 static void octeon_mgmt_get_drvinfo(struct net_device *netdev, 1342 struct ethtool_drvinfo *info) 1343 { 1344 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1345 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1346 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1347 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info)); 1348 } 1349 1350 static int octeon_mgmt_nway_reset(struct net_device *dev) 1351 { 1352 if (!capable(CAP_NET_ADMIN)) 1353 return -EPERM; 1354 1355 if (dev->phydev) 1356 return phy_start_aneg(dev->phydev); 1357 1358 return -EOPNOTSUPP; 1359 } 1360 1361 static const struct ethtool_ops octeon_mgmt_ethtool_ops = { 1362 .get_drvinfo = octeon_mgmt_get_drvinfo, 1363 .nway_reset = octeon_mgmt_nway_reset, 1364 .get_link = ethtool_op_get_link, 1365 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1366 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1367 }; 1368 1369 static const struct net_device_ops octeon_mgmt_ops = { 1370 .ndo_open = octeon_mgmt_open, 1371 .ndo_stop = octeon_mgmt_stop, 1372 .ndo_start_xmit = octeon_mgmt_xmit, 1373 .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering, 1374 .ndo_set_mac_address = octeon_mgmt_set_mac_address, 1375 .ndo_do_ioctl = octeon_mgmt_ioctl, 1376 .ndo_change_mtu = octeon_mgmt_change_mtu, 1377 #ifdef CONFIG_NET_POLL_CONTROLLER 1378 .ndo_poll_controller = octeon_mgmt_poll_controller, 1379 #endif 1380 }; 1381 1382 static int octeon_mgmt_probe(struct platform_device *pdev) 1383 { 1384 struct net_device *netdev; 1385 struct octeon_mgmt *p; 1386 const __be32 *data; 1387 const u8 *mac; 1388 struct resource *res_mix; 1389 struct resource *res_agl; 1390 struct resource *res_agl_prt_ctl; 1391 int len; 1392 int result; 1393 1394 netdev = alloc_etherdev(sizeof(struct octeon_mgmt)); 1395 if (netdev == NULL) 1396 return -ENOMEM; 1397 1398 SET_NETDEV_DEV(netdev, &pdev->dev); 1399 1400 platform_set_drvdata(pdev, netdev); 1401 p = netdev_priv(netdev); 1402 netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll, 1403 OCTEON_MGMT_NAPI_WEIGHT); 1404 1405 p->netdev = netdev; 1406 p->dev = &pdev->dev; 1407 p->has_rx_tstamp = false; 1408 1409 data = of_get_property(pdev->dev.of_node, "cell-index", &len); 1410 if (data && len == sizeof(*data)) { 1411 p->port = be32_to_cpup(data); 1412 } else { 1413 dev_err(&pdev->dev, "no 'cell-index' property\n"); 1414 result = -ENXIO; 1415 goto err; 1416 } 1417 1418 snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port); 1419 1420 result = platform_get_irq(pdev, 0); 1421 if (result < 0) 1422 goto err; 1423 1424 p->irq = result; 1425 1426 res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1427 if (res_mix == NULL) { 1428 dev_err(&pdev->dev, "no 'reg' resource\n"); 1429 result = -ENXIO; 1430 goto err; 1431 } 1432 1433 res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1434 if (res_agl == NULL) { 1435 dev_err(&pdev->dev, "no 'reg' resource\n"); 1436 result = -ENXIO; 1437 goto err; 1438 } 1439 1440 res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1441 if (res_agl_prt_ctl == NULL) { 1442 dev_err(&pdev->dev, "no 'reg' resource\n"); 1443 result = -ENXIO; 1444 goto err; 1445 } 1446 1447 p->mix_phys = res_mix->start; 1448 p->mix_size = resource_size(res_mix); 1449 p->agl_phys = res_agl->start; 1450 p->agl_size = resource_size(res_agl); 1451 p->agl_prt_ctl_phys = res_agl_prt_ctl->start; 1452 p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl); 1453 1454 1455 if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size, 1456 res_mix->name)) { 1457 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1458 res_mix->name); 1459 result = -ENXIO; 1460 goto err; 1461 } 1462 1463 if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size, 1464 res_agl->name)) { 1465 result = -ENXIO; 1466 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1467 res_agl->name); 1468 goto err; 1469 } 1470 1471 if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys, 1472 p->agl_prt_ctl_size, res_agl_prt_ctl->name)) { 1473 result = -ENXIO; 1474 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1475 res_agl_prt_ctl->name); 1476 goto err; 1477 } 1478 1479 p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size); 1480 p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size); 1481 p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys, 1482 p->agl_prt_ctl_size); 1483 if (!p->mix || !p->agl || !p->agl_prt_ctl) { 1484 dev_err(&pdev->dev, "failed to map I/O memory\n"); 1485 result = -ENOMEM; 1486 goto err; 1487 } 1488 1489 spin_lock_init(&p->lock); 1490 1491 skb_queue_head_init(&p->tx_list); 1492 skb_queue_head_init(&p->rx_list); 1493 tasklet_init(&p->tx_clean_tasklet, 1494 octeon_mgmt_clean_tx_tasklet, (unsigned long)p); 1495 1496 netdev->priv_flags |= IFF_UNICAST_FLT; 1497 1498 netdev->netdev_ops = &octeon_mgmt_ops; 1499 netdev->ethtool_ops = &octeon_mgmt_ethtool_ops; 1500 1501 netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM; 1502 netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM; 1503 1504 mac = of_get_mac_address(pdev->dev.of_node); 1505 1506 if (!IS_ERR(mac)) 1507 ether_addr_copy(netdev->dev_addr, mac); 1508 else 1509 eth_hw_addr_random(netdev); 1510 1511 p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 1512 1513 result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1514 if (result) 1515 goto err; 1516 1517 netif_carrier_off(netdev); 1518 result = register_netdev(netdev); 1519 if (result) 1520 goto err; 1521 1522 dev_info(&pdev->dev, "Version " DRV_VERSION "\n"); 1523 return 0; 1524 1525 err: 1526 of_node_put(p->phy_np); 1527 free_netdev(netdev); 1528 return result; 1529 } 1530 1531 static int octeon_mgmt_remove(struct platform_device *pdev) 1532 { 1533 struct net_device *netdev = platform_get_drvdata(pdev); 1534 struct octeon_mgmt *p = netdev_priv(netdev); 1535 1536 unregister_netdev(netdev); 1537 of_node_put(p->phy_np); 1538 free_netdev(netdev); 1539 return 0; 1540 } 1541 1542 static const struct of_device_id octeon_mgmt_match[] = { 1543 { 1544 .compatible = "cavium,octeon-5750-mix", 1545 }, 1546 {}, 1547 }; 1548 MODULE_DEVICE_TABLE(of, octeon_mgmt_match); 1549 1550 static struct platform_driver octeon_mgmt_driver = { 1551 .driver = { 1552 .name = "octeon_mgmt", 1553 .of_match_table = octeon_mgmt_match, 1554 }, 1555 .probe = octeon_mgmt_probe, 1556 .remove = octeon_mgmt_remove, 1557 }; 1558 1559 extern void octeon_mdiobus_force_mod_depencency(void); 1560 1561 static int __init octeon_mgmt_mod_init(void) 1562 { 1563 /* Force our mdiobus driver module to be loaded first. */ 1564 octeon_mdiobus_force_mod_depencency(); 1565 return platform_driver_register(&octeon_mgmt_driver); 1566 } 1567 1568 static void __exit octeon_mgmt_mod_exit(void) 1569 { 1570 platform_driver_unregister(&octeon_mgmt_driver); 1571 } 1572 1573 module_init(octeon_mgmt_mod_init); 1574 module_exit(octeon_mgmt_mod_exit); 1575 1576 MODULE_DESCRIPTION(DRV_DESCRIPTION); 1577 MODULE_AUTHOR("David Daney"); 1578 MODULE_LICENSE("GPL"); 1579 MODULE_VERSION(DRV_VERSION); 1580