1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2009-2012 Cavium, Inc 7 */ 8 9 #include <linux/platform_device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/etherdevice.h> 12 #include <linux/capability.h> 13 #include <linux/net_tstamp.h> 14 #include <linux/interrupt.h> 15 #include <linux/netdevice.h> 16 #include <linux/spinlock.h> 17 #include <linux/if_vlan.h> 18 #include <linux/of_mdio.h> 19 #include <linux/module.h> 20 #include <linux/of_net.h> 21 #include <linux/init.h> 22 #include <linux/slab.h> 23 #include <linux/phy.h> 24 #include <linux/io.h> 25 26 #include <asm/octeon/octeon.h> 27 #include <asm/octeon/cvmx-mixx-defs.h> 28 #include <asm/octeon/cvmx-agl-defs.h> 29 30 #define DRV_NAME "octeon_mgmt" 31 #define DRV_DESCRIPTION \ 32 "Cavium Networks Octeon MII (management) port Network Driver" 33 34 #define OCTEON_MGMT_NAPI_WEIGHT 16 35 36 /* Ring sizes that are powers of two allow for more efficient modulo 37 * opertions. 38 */ 39 #define OCTEON_MGMT_RX_RING_SIZE 512 40 #define OCTEON_MGMT_TX_RING_SIZE 128 41 42 /* Allow 8 bytes for vlan and FCS. */ 43 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN) 44 45 union mgmt_port_ring_entry { 46 u64 d64; 47 struct { 48 #define RING_ENTRY_CODE_DONE 0xf 49 #define RING_ENTRY_CODE_MORE 0x10 50 #ifdef __BIG_ENDIAN_BITFIELD 51 u64 reserved_62_63:2; 52 /* Length of the buffer/packet in bytes */ 53 u64 len:14; 54 /* For TX, signals that the packet should be timestamped */ 55 u64 tstamp:1; 56 /* The RX error code */ 57 u64 code:7; 58 /* Physical address of the buffer */ 59 u64 addr:40; 60 #else 61 u64 addr:40; 62 u64 code:7; 63 u64 tstamp:1; 64 u64 len:14; 65 u64 reserved_62_63:2; 66 #endif 67 } s; 68 }; 69 70 #define MIX_ORING1 0x0 71 #define MIX_ORING2 0x8 72 #define MIX_IRING1 0x10 73 #define MIX_IRING2 0x18 74 #define MIX_CTL 0x20 75 #define MIX_IRHWM 0x28 76 #define MIX_IRCNT 0x30 77 #define MIX_ORHWM 0x38 78 #define MIX_ORCNT 0x40 79 #define MIX_ISR 0x48 80 #define MIX_INTENA 0x50 81 #define MIX_REMCNT 0x58 82 #define MIX_BIST 0x78 83 84 #define AGL_GMX_PRT_CFG 0x10 85 #define AGL_GMX_RX_FRM_CTL 0x18 86 #define AGL_GMX_RX_FRM_MAX 0x30 87 #define AGL_GMX_RX_JABBER 0x38 88 #define AGL_GMX_RX_STATS_CTL 0x50 89 90 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0 91 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8 92 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0 93 94 #define AGL_GMX_RX_ADR_CTL 0x100 95 #define AGL_GMX_RX_ADR_CAM_EN 0x108 96 #define AGL_GMX_RX_ADR_CAM0 0x180 97 #define AGL_GMX_RX_ADR_CAM1 0x188 98 #define AGL_GMX_RX_ADR_CAM2 0x190 99 #define AGL_GMX_RX_ADR_CAM3 0x198 100 #define AGL_GMX_RX_ADR_CAM4 0x1a0 101 #define AGL_GMX_RX_ADR_CAM5 0x1a8 102 103 #define AGL_GMX_TX_CLK 0x208 104 #define AGL_GMX_TX_STATS_CTL 0x268 105 #define AGL_GMX_TX_CTL 0x270 106 #define AGL_GMX_TX_STAT0 0x280 107 #define AGL_GMX_TX_STAT1 0x288 108 #define AGL_GMX_TX_STAT2 0x290 109 #define AGL_GMX_TX_STAT3 0x298 110 #define AGL_GMX_TX_STAT4 0x2a0 111 #define AGL_GMX_TX_STAT5 0x2a8 112 #define AGL_GMX_TX_STAT6 0x2b0 113 #define AGL_GMX_TX_STAT7 0x2b8 114 #define AGL_GMX_TX_STAT8 0x2c0 115 #define AGL_GMX_TX_STAT9 0x2c8 116 117 struct octeon_mgmt { 118 struct net_device *netdev; 119 u64 mix; 120 u64 agl; 121 u64 agl_prt_ctl; 122 int port; 123 int irq; 124 bool has_rx_tstamp; 125 u64 *tx_ring; 126 dma_addr_t tx_ring_handle; 127 unsigned int tx_next; 128 unsigned int tx_next_clean; 129 unsigned int tx_current_fill; 130 /* The tx_list lock also protects the ring related variables */ 131 struct sk_buff_head tx_list; 132 133 /* RX variables only touched in napi_poll. No locking necessary. */ 134 u64 *rx_ring; 135 dma_addr_t rx_ring_handle; 136 unsigned int rx_next; 137 unsigned int rx_next_fill; 138 unsigned int rx_current_fill; 139 struct sk_buff_head rx_list; 140 141 spinlock_t lock; 142 unsigned int last_duplex; 143 unsigned int last_link; 144 unsigned int last_speed; 145 struct device *dev; 146 struct napi_struct napi; 147 struct tasklet_struct tx_clean_tasklet; 148 struct device_node *phy_np; 149 resource_size_t mix_phys; 150 resource_size_t mix_size; 151 resource_size_t agl_phys; 152 resource_size_t agl_size; 153 resource_size_t agl_prt_ctl_phys; 154 resource_size_t agl_prt_ctl_size; 155 }; 156 157 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable) 158 { 159 union cvmx_mixx_intena mix_intena; 160 unsigned long flags; 161 162 spin_lock_irqsave(&p->lock, flags); 163 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 164 mix_intena.s.ithena = enable ? 1 : 0; 165 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 166 spin_unlock_irqrestore(&p->lock, flags); 167 } 168 169 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable) 170 { 171 union cvmx_mixx_intena mix_intena; 172 unsigned long flags; 173 174 spin_lock_irqsave(&p->lock, flags); 175 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 176 mix_intena.s.othena = enable ? 1 : 0; 177 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 178 spin_unlock_irqrestore(&p->lock, flags); 179 } 180 181 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p) 182 { 183 octeon_mgmt_set_rx_irq(p, 1); 184 } 185 186 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p) 187 { 188 octeon_mgmt_set_rx_irq(p, 0); 189 } 190 191 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p) 192 { 193 octeon_mgmt_set_tx_irq(p, 1); 194 } 195 196 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p) 197 { 198 octeon_mgmt_set_tx_irq(p, 0); 199 } 200 201 static unsigned int ring_max_fill(unsigned int ring_size) 202 { 203 return ring_size - 8; 204 } 205 206 static unsigned int ring_size_to_bytes(unsigned int ring_size) 207 { 208 return ring_size * sizeof(union mgmt_port_ring_entry); 209 } 210 211 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev) 212 { 213 struct octeon_mgmt *p = netdev_priv(netdev); 214 215 while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) { 216 unsigned int size; 217 union mgmt_port_ring_entry re; 218 struct sk_buff *skb; 219 220 /* CN56XX pass 1 needs 8 bytes of padding. */ 221 size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN; 222 223 skb = netdev_alloc_skb(netdev, size); 224 if (!skb) 225 break; 226 skb_reserve(skb, NET_IP_ALIGN); 227 __skb_queue_tail(&p->rx_list, skb); 228 229 re.d64 = 0; 230 re.s.len = size; 231 re.s.addr = dma_map_single(p->dev, skb->data, 232 size, 233 DMA_FROM_DEVICE); 234 235 /* Put it in the ring. */ 236 p->rx_ring[p->rx_next_fill] = re.d64; 237 /* Make sure there is no reorder of filling the ring and ringing 238 * the bell 239 */ 240 wmb(); 241 242 dma_sync_single_for_device(p->dev, p->rx_ring_handle, 243 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 244 DMA_BIDIRECTIONAL); 245 p->rx_next_fill = 246 (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE; 247 p->rx_current_fill++; 248 /* Ring the bell. */ 249 cvmx_write_csr(p->mix + MIX_IRING2, 1); 250 } 251 } 252 253 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p) 254 { 255 union cvmx_mixx_orcnt mix_orcnt; 256 union mgmt_port_ring_entry re; 257 struct sk_buff *skb; 258 int cleaned = 0; 259 unsigned long flags; 260 261 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 262 while (mix_orcnt.s.orcnt) { 263 spin_lock_irqsave(&p->tx_list.lock, flags); 264 265 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 266 267 if (mix_orcnt.s.orcnt == 0) { 268 spin_unlock_irqrestore(&p->tx_list.lock, flags); 269 break; 270 } 271 272 dma_sync_single_for_cpu(p->dev, p->tx_ring_handle, 273 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 274 DMA_BIDIRECTIONAL); 275 276 re.d64 = p->tx_ring[p->tx_next_clean]; 277 p->tx_next_clean = 278 (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE; 279 skb = __skb_dequeue(&p->tx_list); 280 281 mix_orcnt.u64 = 0; 282 mix_orcnt.s.orcnt = 1; 283 284 /* Acknowledge to hardware that we have the buffer. */ 285 cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64); 286 p->tx_current_fill--; 287 288 spin_unlock_irqrestore(&p->tx_list.lock, flags); 289 290 dma_unmap_single(p->dev, re.s.addr, re.s.len, 291 DMA_TO_DEVICE); 292 293 /* Read the hardware TX timestamp if one was recorded */ 294 if (unlikely(re.s.tstamp)) { 295 struct skb_shared_hwtstamps ts; 296 u64 ns; 297 298 memset(&ts, 0, sizeof(ts)); 299 /* Read the timestamp */ 300 ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port)); 301 /* Remove the timestamp from the FIFO */ 302 cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0); 303 /* Tell the kernel about the timestamp */ 304 ts.hwtstamp = ns_to_ktime(ns); 305 skb_tstamp_tx(skb, &ts); 306 } 307 308 dev_kfree_skb_any(skb); 309 cleaned++; 310 311 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 312 } 313 314 if (cleaned && netif_queue_stopped(p->netdev)) 315 netif_wake_queue(p->netdev); 316 } 317 318 static void octeon_mgmt_clean_tx_tasklet(struct tasklet_struct *t) 319 { 320 struct octeon_mgmt *p = from_tasklet(p, t, tx_clean_tasklet); 321 octeon_mgmt_clean_tx_buffers(p); 322 octeon_mgmt_enable_tx_irq(p); 323 } 324 325 static void octeon_mgmt_update_rx_stats(struct net_device *netdev) 326 { 327 struct octeon_mgmt *p = netdev_priv(netdev); 328 unsigned long flags; 329 u64 drop, bad; 330 331 /* These reads also clear the count registers. */ 332 drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP); 333 bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD); 334 335 if (drop || bad) { 336 /* Do an atomic update. */ 337 spin_lock_irqsave(&p->lock, flags); 338 netdev->stats.rx_errors += bad; 339 netdev->stats.rx_dropped += drop; 340 spin_unlock_irqrestore(&p->lock, flags); 341 } 342 } 343 344 static void octeon_mgmt_update_tx_stats(struct net_device *netdev) 345 { 346 struct octeon_mgmt *p = netdev_priv(netdev); 347 unsigned long flags; 348 349 union cvmx_agl_gmx_txx_stat0 s0; 350 union cvmx_agl_gmx_txx_stat1 s1; 351 352 /* These reads also clear the count registers. */ 353 s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0); 354 s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1); 355 356 if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) { 357 /* Do an atomic update. */ 358 spin_lock_irqsave(&p->lock, flags); 359 netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol; 360 netdev->stats.collisions += s1.s.scol + s1.s.mcol; 361 spin_unlock_irqrestore(&p->lock, flags); 362 } 363 } 364 365 /* 366 * Dequeue a receive skb and its corresponding ring entry. The ring 367 * entry is returned, *pskb is updated to point to the skb. 368 */ 369 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p, 370 struct sk_buff **pskb) 371 { 372 union mgmt_port_ring_entry re; 373 374 dma_sync_single_for_cpu(p->dev, p->rx_ring_handle, 375 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 376 DMA_BIDIRECTIONAL); 377 378 re.d64 = p->rx_ring[p->rx_next]; 379 p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE; 380 p->rx_current_fill--; 381 *pskb = __skb_dequeue(&p->rx_list); 382 383 dma_unmap_single(p->dev, re.s.addr, 384 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM, 385 DMA_FROM_DEVICE); 386 387 return re.d64; 388 } 389 390 391 static int octeon_mgmt_receive_one(struct octeon_mgmt *p) 392 { 393 struct net_device *netdev = p->netdev; 394 union cvmx_mixx_ircnt mix_ircnt; 395 union mgmt_port_ring_entry re; 396 struct sk_buff *skb; 397 struct sk_buff *skb2; 398 struct sk_buff *skb_new; 399 union mgmt_port_ring_entry re2; 400 int rc = 1; 401 402 403 re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb); 404 if (likely(re.s.code == RING_ENTRY_CODE_DONE)) { 405 /* A good packet, send it up. */ 406 skb_put(skb, re.s.len); 407 good: 408 /* Process the RX timestamp if it was recorded */ 409 if (p->has_rx_tstamp) { 410 /* The first 8 bytes are the timestamp */ 411 u64 ns = *(u64 *)skb->data; 412 struct skb_shared_hwtstamps *ts; 413 ts = skb_hwtstamps(skb); 414 ts->hwtstamp = ns_to_ktime(ns); 415 __skb_pull(skb, 8); 416 } 417 skb->protocol = eth_type_trans(skb, netdev); 418 netdev->stats.rx_packets++; 419 netdev->stats.rx_bytes += skb->len; 420 netif_receive_skb(skb); 421 rc = 0; 422 } else if (re.s.code == RING_ENTRY_CODE_MORE) { 423 /* Packet split across skbs. This can happen if we 424 * increase the MTU. Buffers that are already in the 425 * rx ring can then end up being too small. As the rx 426 * ring is refilled, buffers sized for the new MTU 427 * will be used and we should go back to the normal 428 * non-split case. 429 */ 430 skb_put(skb, re.s.len); 431 do { 432 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 433 if (re2.s.code != RING_ENTRY_CODE_MORE 434 && re2.s.code != RING_ENTRY_CODE_DONE) 435 goto split_error; 436 skb_put(skb2, re2.s.len); 437 skb_new = skb_copy_expand(skb, 0, skb2->len, 438 GFP_ATOMIC); 439 if (!skb_new) 440 goto split_error; 441 if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new), 442 skb2->len)) 443 goto split_error; 444 skb_put(skb_new, skb2->len); 445 dev_kfree_skb_any(skb); 446 dev_kfree_skb_any(skb2); 447 skb = skb_new; 448 } while (re2.s.code == RING_ENTRY_CODE_MORE); 449 goto good; 450 } else { 451 /* Some other error, discard it. */ 452 dev_kfree_skb_any(skb); 453 /* Error statistics are accumulated in 454 * octeon_mgmt_update_rx_stats. 455 */ 456 } 457 goto done; 458 split_error: 459 /* Discard the whole mess. */ 460 dev_kfree_skb_any(skb); 461 dev_kfree_skb_any(skb2); 462 while (re2.s.code == RING_ENTRY_CODE_MORE) { 463 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 464 dev_kfree_skb_any(skb2); 465 } 466 netdev->stats.rx_errors++; 467 468 done: 469 /* Tell the hardware we processed a packet. */ 470 mix_ircnt.u64 = 0; 471 mix_ircnt.s.ircnt = 1; 472 cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64); 473 return rc; 474 } 475 476 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget) 477 { 478 unsigned int work_done = 0; 479 union cvmx_mixx_ircnt mix_ircnt; 480 int rc; 481 482 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 483 while (work_done < budget && mix_ircnt.s.ircnt) { 484 485 rc = octeon_mgmt_receive_one(p); 486 if (!rc) 487 work_done++; 488 489 /* Check for more packets. */ 490 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 491 } 492 493 octeon_mgmt_rx_fill_ring(p->netdev); 494 495 return work_done; 496 } 497 498 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget) 499 { 500 struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi); 501 struct net_device *netdev = p->netdev; 502 unsigned int work_done = 0; 503 504 work_done = octeon_mgmt_receive_packets(p, budget); 505 506 if (work_done < budget) { 507 /* We stopped because no more packets were available. */ 508 napi_complete_done(napi, work_done); 509 octeon_mgmt_enable_rx_irq(p); 510 } 511 octeon_mgmt_update_rx_stats(netdev); 512 513 return work_done; 514 } 515 516 /* Reset the hardware to clean state. */ 517 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p) 518 { 519 union cvmx_mixx_ctl mix_ctl; 520 union cvmx_mixx_bist mix_bist; 521 union cvmx_agl_gmx_bist agl_gmx_bist; 522 523 mix_ctl.u64 = 0; 524 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 525 do { 526 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 527 } while (mix_ctl.s.busy); 528 mix_ctl.s.reset = 1; 529 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 530 cvmx_read_csr(p->mix + MIX_CTL); 531 octeon_io_clk_delay(64); 532 533 mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST); 534 if (mix_bist.u64) 535 dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n", 536 (unsigned long long)mix_bist.u64); 537 538 agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST); 539 if (agl_gmx_bist.u64) 540 dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n", 541 (unsigned long long)agl_gmx_bist.u64); 542 } 543 544 struct octeon_mgmt_cam_state { 545 u64 cam[6]; 546 u64 cam_mask; 547 int cam_index; 548 }; 549 550 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs, 551 const unsigned char *addr) 552 { 553 int i; 554 555 for (i = 0; i < 6; i++) 556 cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index)); 557 cs->cam_mask |= (1ULL << cs->cam_index); 558 cs->cam_index++; 559 } 560 561 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev) 562 { 563 struct octeon_mgmt *p = netdev_priv(netdev); 564 union cvmx_agl_gmx_rxx_adr_ctl adr_ctl; 565 union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx; 566 unsigned long flags; 567 unsigned int prev_packet_enable; 568 unsigned int cam_mode = 1; /* 1 - Accept on CAM match */ 569 unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */ 570 struct octeon_mgmt_cam_state cam_state; 571 struct netdev_hw_addr *ha; 572 int available_cam_entries; 573 574 memset(&cam_state, 0, sizeof(cam_state)); 575 576 if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) { 577 cam_mode = 0; 578 available_cam_entries = 8; 579 } else { 580 /* One CAM entry for the primary address, leaves seven 581 * for the secondary addresses. 582 */ 583 available_cam_entries = 7 - netdev->uc.count; 584 } 585 586 if (netdev->flags & IFF_MULTICAST) { 587 if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) || 588 netdev_mc_count(netdev) > available_cam_entries) 589 multicast_mode = 2; /* 2 - Accept all multicast. */ 590 else 591 multicast_mode = 0; /* 0 - Use CAM. */ 592 } 593 594 if (cam_mode == 1) { 595 /* Add primary address. */ 596 octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr); 597 netdev_for_each_uc_addr(ha, netdev) 598 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 599 } 600 if (multicast_mode == 0) { 601 netdev_for_each_mc_addr(ha, netdev) 602 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 603 } 604 605 spin_lock_irqsave(&p->lock, flags); 606 607 /* Disable packet I/O. */ 608 agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 609 prev_packet_enable = agl_gmx_prtx.s.en; 610 agl_gmx_prtx.s.en = 0; 611 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 612 613 adr_ctl.u64 = 0; 614 adr_ctl.s.cam_mode = cam_mode; 615 adr_ctl.s.mcst = multicast_mode; 616 adr_ctl.s.bcst = 1; /* Allow broadcast */ 617 618 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64); 619 620 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]); 621 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]); 622 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]); 623 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]); 624 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]); 625 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]); 626 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask); 627 628 /* Restore packet I/O. */ 629 agl_gmx_prtx.s.en = prev_packet_enable; 630 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 631 632 spin_unlock_irqrestore(&p->lock, flags); 633 } 634 635 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr) 636 { 637 int r = eth_mac_addr(netdev, addr); 638 639 if (r) 640 return r; 641 642 octeon_mgmt_set_rx_filtering(netdev); 643 644 return 0; 645 } 646 647 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu) 648 { 649 struct octeon_mgmt *p = netdev_priv(netdev); 650 int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN; 651 652 netdev->mtu = new_mtu; 653 654 /* HW lifts the limit if the frame is VLAN tagged 655 * (+4 bytes per each tag, up to two tags) 656 */ 657 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet); 658 /* Set the hardware to truncate packets larger than the MTU. The jabber 659 * register must be set to a multiple of 8 bytes, so round up. JABBER is 660 * an unconditional limit, so we need to account for two possible VLAN 661 * tags. 662 */ 663 cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER, 664 (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8); 665 666 return 0; 667 } 668 669 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id) 670 { 671 struct net_device *netdev = dev_id; 672 struct octeon_mgmt *p = netdev_priv(netdev); 673 union cvmx_mixx_isr mixx_isr; 674 675 mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR); 676 677 /* Clear any pending interrupts */ 678 cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64); 679 cvmx_read_csr(p->mix + MIX_ISR); 680 681 if (mixx_isr.s.irthresh) { 682 octeon_mgmt_disable_rx_irq(p); 683 napi_schedule(&p->napi); 684 } 685 if (mixx_isr.s.orthresh) { 686 octeon_mgmt_disable_tx_irq(p); 687 tasklet_schedule(&p->tx_clean_tasklet); 688 } 689 690 return IRQ_HANDLED; 691 } 692 693 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev, 694 struct ifreq *rq, int cmd) 695 { 696 struct octeon_mgmt *p = netdev_priv(netdev); 697 struct hwtstamp_config config; 698 union cvmx_mio_ptp_clock_cfg ptp; 699 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 700 bool have_hw_timestamps = false; 701 702 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 703 return -EFAULT; 704 705 /* Check the status of hardware for tiemstamps */ 706 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 707 /* Get the current state of the PTP clock */ 708 ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG); 709 if (!ptp.s.ext_clk_en) { 710 /* The clock has not been configured to use an 711 * external source. Program it to use the main clock 712 * reference. 713 */ 714 u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate(); 715 if (!ptp.s.ptp_en) 716 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp); 717 netdev_info(netdev, 718 "PTP Clock using sclk reference @ %lldHz\n", 719 (NSEC_PER_SEC << 32) / clock_comp); 720 } else { 721 /* The clock is already programmed to use a GPIO */ 722 u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP); 723 netdev_info(netdev, 724 "PTP Clock using GPIO%d @ %lld Hz\n", 725 ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp); 726 } 727 728 /* Enable the clock if it wasn't done already */ 729 if (!ptp.s.ptp_en) { 730 ptp.s.ptp_en = 1; 731 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64); 732 } 733 have_hw_timestamps = true; 734 } 735 736 if (!have_hw_timestamps) 737 return -EINVAL; 738 739 switch (config.tx_type) { 740 case HWTSTAMP_TX_OFF: 741 case HWTSTAMP_TX_ON: 742 break; 743 default: 744 return -ERANGE; 745 } 746 747 switch (config.rx_filter) { 748 case HWTSTAMP_FILTER_NONE: 749 p->has_rx_tstamp = false; 750 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 751 rxx_frm_ctl.s.ptp_mode = 0; 752 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 753 break; 754 case HWTSTAMP_FILTER_ALL: 755 case HWTSTAMP_FILTER_SOME: 756 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 757 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 758 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 759 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 760 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 761 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 762 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 763 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 764 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 765 case HWTSTAMP_FILTER_PTP_V2_EVENT: 766 case HWTSTAMP_FILTER_PTP_V2_SYNC: 767 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 768 case HWTSTAMP_FILTER_NTP_ALL: 769 p->has_rx_tstamp = have_hw_timestamps; 770 config.rx_filter = HWTSTAMP_FILTER_ALL; 771 if (p->has_rx_tstamp) { 772 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 773 rxx_frm_ctl.s.ptp_mode = 1; 774 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 775 } 776 break; 777 default: 778 return -ERANGE; 779 } 780 781 if (copy_to_user(rq->ifr_data, &config, sizeof(config))) 782 return -EFAULT; 783 784 return 0; 785 } 786 787 static int octeon_mgmt_ioctl(struct net_device *netdev, 788 struct ifreq *rq, int cmd) 789 { 790 switch (cmd) { 791 case SIOCSHWTSTAMP: 792 return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd); 793 default: 794 return phy_do_ioctl(netdev, rq, cmd); 795 } 796 } 797 798 static void octeon_mgmt_disable_link(struct octeon_mgmt *p) 799 { 800 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 801 802 /* Disable GMX before we make any changes. */ 803 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 804 prtx_cfg.s.en = 0; 805 prtx_cfg.s.tx_en = 0; 806 prtx_cfg.s.rx_en = 0; 807 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 808 809 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 810 int i; 811 for (i = 0; i < 10; i++) { 812 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 813 if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1) 814 break; 815 mdelay(1); 816 i++; 817 } 818 } 819 } 820 821 static void octeon_mgmt_enable_link(struct octeon_mgmt *p) 822 { 823 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 824 825 /* Restore the GMX enable state only if link is set */ 826 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 827 prtx_cfg.s.tx_en = 1; 828 prtx_cfg.s.rx_en = 1; 829 prtx_cfg.s.en = 1; 830 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 831 } 832 833 static void octeon_mgmt_update_link(struct octeon_mgmt *p) 834 { 835 struct net_device *ndev = p->netdev; 836 struct phy_device *phydev = ndev->phydev; 837 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 838 839 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 840 841 if (!phydev->link) 842 prtx_cfg.s.duplex = 1; 843 else 844 prtx_cfg.s.duplex = phydev->duplex; 845 846 switch (phydev->speed) { 847 case 10: 848 prtx_cfg.s.speed = 0; 849 prtx_cfg.s.slottime = 0; 850 851 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 852 prtx_cfg.s.burst = 1; 853 prtx_cfg.s.speed_msb = 1; 854 } 855 break; 856 case 100: 857 prtx_cfg.s.speed = 0; 858 prtx_cfg.s.slottime = 0; 859 860 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 861 prtx_cfg.s.burst = 1; 862 prtx_cfg.s.speed_msb = 0; 863 } 864 break; 865 case 1000: 866 /* 1000 MBits is only supported on 6XXX chips */ 867 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 868 prtx_cfg.s.speed = 1; 869 prtx_cfg.s.speed_msb = 0; 870 /* Only matters for half-duplex */ 871 prtx_cfg.s.slottime = 1; 872 prtx_cfg.s.burst = phydev->duplex; 873 } 874 break; 875 case 0: /* No link */ 876 default: 877 break; 878 } 879 880 /* Write the new GMX setting with the port still disabled. */ 881 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 882 883 /* Read GMX CFG again to make sure the config is completed. */ 884 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 885 886 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 887 union cvmx_agl_gmx_txx_clk agl_clk; 888 union cvmx_agl_prtx_ctl prtx_ctl; 889 890 prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 891 agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK); 892 /* MII (both speeds) and RGMII 1000 speed. */ 893 agl_clk.s.clk_cnt = 1; 894 if (prtx_ctl.s.mode == 0) { /* RGMII mode */ 895 if (phydev->speed == 10) 896 agl_clk.s.clk_cnt = 50; 897 else if (phydev->speed == 100) 898 agl_clk.s.clk_cnt = 5; 899 } 900 cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64); 901 } 902 } 903 904 static void octeon_mgmt_adjust_link(struct net_device *netdev) 905 { 906 struct octeon_mgmt *p = netdev_priv(netdev); 907 struct phy_device *phydev = netdev->phydev; 908 unsigned long flags; 909 int link_changed = 0; 910 911 if (!phydev) 912 return; 913 914 spin_lock_irqsave(&p->lock, flags); 915 916 917 if (!phydev->link && p->last_link) 918 link_changed = -1; 919 920 if (phydev->link && 921 (p->last_duplex != phydev->duplex || 922 p->last_link != phydev->link || 923 p->last_speed != phydev->speed)) { 924 octeon_mgmt_disable_link(p); 925 link_changed = 1; 926 octeon_mgmt_update_link(p); 927 octeon_mgmt_enable_link(p); 928 } 929 930 p->last_link = phydev->link; 931 p->last_speed = phydev->speed; 932 p->last_duplex = phydev->duplex; 933 934 spin_unlock_irqrestore(&p->lock, flags); 935 936 if (link_changed != 0) { 937 if (link_changed > 0) 938 netdev_info(netdev, "Link is up - %d/%s\n", 939 phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half"); 940 else 941 netdev_info(netdev, "Link is down\n"); 942 } 943 } 944 945 static int octeon_mgmt_init_phy(struct net_device *netdev) 946 { 947 struct octeon_mgmt *p = netdev_priv(netdev); 948 struct phy_device *phydev = NULL; 949 950 if (octeon_is_simulation() || p->phy_np == NULL) { 951 /* No PHYs in the simulator. */ 952 netif_carrier_on(netdev); 953 return 0; 954 } 955 956 phydev = of_phy_connect(netdev, p->phy_np, 957 octeon_mgmt_adjust_link, 0, 958 PHY_INTERFACE_MODE_MII); 959 960 if (!phydev) 961 return -EPROBE_DEFER; 962 963 return 0; 964 } 965 966 static int octeon_mgmt_open(struct net_device *netdev) 967 { 968 struct octeon_mgmt *p = netdev_priv(netdev); 969 union cvmx_mixx_ctl mix_ctl; 970 union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode; 971 union cvmx_mixx_oring1 oring1; 972 union cvmx_mixx_iring1 iring1; 973 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 974 union cvmx_mixx_irhwm mix_irhwm; 975 union cvmx_mixx_orhwm mix_orhwm; 976 union cvmx_mixx_intena mix_intena; 977 struct sockaddr sa; 978 979 /* Allocate ring buffers. */ 980 p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 981 GFP_KERNEL); 982 if (!p->tx_ring) 983 return -ENOMEM; 984 p->tx_ring_handle = 985 dma_map_single(p->dev, p->tx_ring, 986 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 987 DMA_BIDIRECTIONAL); 988 p->tx_next = 0; 989 p->tx_next_clean = 0; 990 p->tx_current_fill = 0; 991 992 993 p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 994 GFP_KERNEL); 995 if (!p->rx_ring) 996 goto err_nomem; 997 p->rx_ring_handle = 998 dma_map_single(p->dev, p->rx_ring, 999 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1000 DMA_BIDIRECTIONAL); 1001 1002 p->rx_next = 0; 1003 p->rx_next_fill = 0; 1004 p->rx_current_fill = 0; 1005 1006 octeon_mgmt_reset_hw(p); 1007 1008 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1009 1010 /* Bring it out of reset if needed. */ 1011 if (mix_ctl.s.reset) { 1012 mix_ctl.s.reset = 0; 1013 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1014 do { 1015 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1016 } while (mix_ctl.s.reset); 1017 } 1018 1019 if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { 1020 agl_gmx_inf_mode.u64 = 0; 1021 agl_gmx_inf_mode.s.en = 1; 1022 cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64); 1023 } 1024 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) 1025 || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { 1026 /* Force compensation values, as they are not 1027 * determined properly by HW 1028 */ 1029 union cvmx_agl_gmx_drv_ctl drv_ctl; 1030 1031 drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL); 1032 if (p->port) { 1033 drv_ctl.s.byp_en1 = 1; 1034 drv_ctl.s.nctl1 = 6; 1035 drv_ctl.s.pctl1 = 6; 1036 } else { 1037 drv_ctl.s.byp_en = 1; 1038 drv_ctl.s.nctl = 6; 1039 drv_ctl.s.pctl = 6; 1040 } 1041 cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64); 1042 } 1043 1044 oring1.u64 = 0; 1045 oring1.s.obase = p->tx_ring_handle >> 3; 1046 oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE; 1047 cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64); 1048 1049 iring1.u64 = 0; 1050 iring1.s.ibase = p->rx_ring_handle >> 3; 1051 iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE; 1052 cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64); 1053 1054 memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN); 1055 octeon_mgmt_set_mac_address(netdev, &sa); 1056 1057 octeon_mgmt_change_mtu(netdev, netdev->mtu); 1058 1059 /* Enable the port HW. Packets are not allowed until 1060 * cvmx_mgmt_port_enable() is called. 1061 */ 1062 mix_ctl.u64 = 0; 1063 mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */ 1064 mix_ctl.s.en = 1; /* Enable the port */ 1065 mix_ctl.s.nbtarb = 0; /* Arbitration mode */ 1066 /* MII CB-request FIFO programmable high watermark */ 1067 mix_ctl.s.mrq_hwm = 1; 1068 #ifdef __LITTLE_ENDIAN 1069 mix_ctl.s.lendian = 1; 1070 #endif 1071 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1072 1073 /* Read the PHY to find the mode of the interface. */ 1074 if (octeon_mgmt_init_phy(netdev)) { 1075 dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port); 1076 goto err_noirq; 1077 } 1078 1079 /* Set the mode of the interface, RGMII/MII. */ 1080 if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) { 1081 union cvmx_agl_prtx_ctl agl_prtx_ctl; 1082 int rgmii_mode = 1083 (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, 1084 netdev->phydev->supported) | 1085 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1086 netdev->phydev->supported)) != 0; 1087 1088 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1089 agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1; 1090 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1091 1092 /* MII clocks counts are based on the 125Mhz 1093 * reference, which has an 8nS period. So our delays 1094 * need to be multiplied by this factor. 1095 */ 1096 #define NS_PER_PHY_CLK 8 1097 1098 /* Take the DLL and clock tree out of reset */ 1099 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1100 agl_prtx_ctl.s.clkrst = 0; 1101 if (rgmii_mode) { 1102 agl_prtx_ctl.s.dllrst = 0; 1103 agl_prtx_ctl.s.clktx_byp = 0; 1104 } 1105 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1106 cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */ 1107 1108 /* Wait for the DLL to lock. External 125 MHz 1109 * reference clock must be stable at this point. 1110 */ 1111 ndelay(256 * NS_PER_PHY_CLK); 1112 1113 /* Enable the interface */ 1114 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1115 agl_prtx_ctl.s.enable = 1; 1116 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1117 1118 /* Read the value back to force the previous write */ 1119 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1120 1121 /* Enable the compensation controller */ 1122 agl_prtx_ctl.s.comp = 1; 1123 agl_prtx_ctl.s.drv_byp = 0; 1124 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1125 /* Force write out before wait. */ 1126 cvmx_read_csr(p->agl_prt_ctl); 1127 1128 /* For compensation state to lock. */ 1129 ndelay(1040 * NS_PER_PHY_CLK); 1130 1131 /* Default Interframe Gaps are too small. Recommended 1132 * workaround is. 1133 * 1134 * AGL_GMX_TX_IFG[IFG1]=14 1135 * AGL_GMX_TX_IFG[IFG2]=10 1136 */ 1137 cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae); 1138 } 1139 1140 octeon_mgmt_rx_fill_ring(netdev); 1141 1142 /* Clear statistics. */ 1143 /* Clear on read. */ 1144 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1); 1145 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0); 1146 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0); 1147 1148 cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1); 1149 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0); 1150 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0); 1151 1152 /* Clear any pending interrupts */ 1153 cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR)); 1154 1155 if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name, 1156 netdev)) { 1157 dev_err(p->dev, "request_irq(%d) failed.\n", p->irq); 1158 goto err_noirq; 1159 } 1160 1161 /* Interrupt every single RX packet */ 1162 mix_irhwm.u64 = 0; 1163 mix_irhwm.s.irhwm = 0; 1164 cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64); 1165 1166 /* Interrupt when we have 1 or more packets to clean. */ 1167 mix_orhwm.u64 = 0; 1168 mix_orhwm.s.orhwm = 0; 1169 cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64); 1170 1171 /* Enable receive and transmit interrupts */ 1172 mix_intena.u64 = 0; 1173 mix_intena.s.ithena = 1; 1174 mix_intena.s.othena = 1; 1175 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 1176 1177 /* Enable packet I/O. */ 1178 1179 rxx_frm_ctl.u64 = 0; 1180 rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0; 1181 rxx_frm_ctl.s.pre_align = 1; 1182 /* When set, disables the length check for non-min sized pkts 1183 * with padding in the client data. 1184 */ 1185 rxx_frm_ctl.s.pad_len = 1; 1186 /* When set, disables the length check for VLAN pkts */ 1187 rxx_frm_ctl.s.vlan_len = 1; 1188 /* When set, PREAMBLE checking is less strict */ 1189 rxx_frm_ctl.s.pre_free = 1; 1190 /* Control Pause Frames can match station SMAC */ 1191 rxx_frm_ctl.s.ctl_smac = 0; 1192 /* Control Pause Frames can match globally assign Multicast address */ 1193 rxx_frm_ctl.s.ctl_mcst = 1; 1194 /* Forward pause information to TX block */ 1195 rxx_frm_ctl.s.ctl_bck = 1; 1196 /* Drop Control Pause Frames */ 1197 rxx_frm_ctl.s.ctl_drp = 1; 1198 /* Strip off the preamble */ 1199 rxx_frm_ctl.s.pre_strp = 1; 1200 /* This port is configured to send PREAMBLE+SFD to begin every 1201 * frame. GMX checks that the PREAMBLE is sent correctly. 1202 */ 1203 rxx_frm_ctl.s.pre_chk = 1; 1204 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 1205 1206 /* Configure the port duplex, speed and enables */ 1207 octeon_mgmt_disable_link(p); 1208 if (netdev->phydev) 1209 octeon_mgmt_update_link(p); 1210 octeon_mgmt_enable_link(p); 1211 1212 p->last_link = 0; 1213 p->last_speed = 0; 1214 /* PHY is not present in simulator. The carrier is enabled 1215 * while initializing the phy for simulator, leave it enabled. 1216 */ 1217 if (netdev->phydev) { 1218 netif_carrier_off(netdev); 1219 phy_start(netdev->phydev); 1220 } 1221 1222 netif_wake_queue(netdev); 1223 napi_enable(&p->napi); 1224 1225 return 0; 1226 err_noirq: 1227 octeon_mgmt_reset_hw(p); 1228 dma_unmap_single(p->dev, p->rx_ring_handle, 1229 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1230 DMA_BIDIRECTIONAL); 1231 kfree(p->rx_ring); 1232 err_nomem: 1233 dma_unmap_single(p->dev, p->tx_ring_handle, 1234 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1235 DMA_BIDIRECTIONAL); 1236 kfree(p->tx_ring); 1237 return -ENOMEM; 1238 } 1239 1240 static int octeon_mgmt_stop(struct net_device *netdev) 1241 { 1242 struct octeon_mgmt *p = netdev_priv(netdev); 1243 1244 napi_disable(&p->napi); 1245 netif_stop_queue(netdev); 1246 1247 if (netdev->phydev) { 1248 phy_stop(netdev->phydev); 1249 phy_disconnect(netdev->phydev); 1250 } 1251 1252 netif_carrier_off(netdev); 1253 1254 octeon_mgmt_reset_hw(p); 1255 1256 free_irq(p->irq, netdev); 1257 1258 /* dma_unmap is a nop on Octeon, so just free everything. */ 1259 skb_queue_purge(&p->tx_list); 1260 skb_queue_purge(&p->rx_list); 1261 1262 dma_unmap_single(p->dev, p->rx_ring_handle, 1263 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1264 DMA_BIDIRECTIONAL); 1265 kfree(p->rx_ring); 1266 1267 dma_unmap_single(p->dev, p->tx_ring_handle, 1268 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1269 DMA_BIDIRECTIONAL); 1270 kfree(p->tx_ring); 1271 1272 return 0; 1273 } 1274 1275 static netdev_tx_t 1276 octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev) 1277 { 1278 struct octeon_mgmt *p = netdev_priv(netdev); 1279 union mgmt_port_ring_entry re; 1280 unsigned long flags; 1281 netdev_tx_t rv = NETDEV_TX_BUSY; 1282 1283 re.d64 = 0; 1284 re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0); 1285 re.s.len = skb->len; 1286 re.s.addr = dma_map_single(p->dev, skb->data, 1287 skb->len, 1288 DMA_TO_DEVICE); 1289 1290 spin_lock_irqsave(&p->tx_list.lock, flags); 1291 1292 if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) { 1293 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1294 netif_stop_queue(netdev); 1295 spin_lock_irqsave(&p->tx_list.lock, flags); 1296 } 1297 1298 if (unlikely(p->tx_current_fill >= 1299 ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) { 1300 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1301 dma_unmap_single(p->dev, re.s.addr, re.s.len, 1302 DMA_TO_DEVICE); 1303 goto out; 1304 } 1305 1306 __skb_queue_tail(&p->tx_list, skb); 1307 1308 /* Put it in the ring. */ 1309 p->tx_ring[p->tx_next] = re.d64; 1310 p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE; 1311 p->tx_current_fill++; 1312 1313 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1314 1315 dma_sync_single_for_device(p->dev, p->tx_ring_handle, 1316 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1317 DMA_BIDIRECTIONAL); 1318 1319 netdev->stats.tx_packets++; 1320 netdev->stats.tx_bytes += skb->len; 1321 1322 /* Ring the bell. */ 1323 cvmx_write_csr(p->mix + MIX_ORING2, 1); 1324 1325 netif_trans_update(netdev); 1326 rv = NETDEV_TX_OK; 1327 out: 1328 octeon_mgmt_update_tx_stats(netdev); 1329 return rv; 1330 } 1331 1332 #ifdef CONFIG_NET_POLL_CONTROLLER 1333 static void octeon_mgmt_poll_controller(struct net_device *netdev) 1334 { 1335 struct octeon_mgmt *p = netdev_priv(netdev); 1336 1337 octeon_mgmt_receive_packets(p, 16); 1338 octeon_mgmt_update_rx_stats(netdev); 1339 } 1340 #endif 1341 1342 static void octeon_mgmt_get_drvinfo(struct net_device *netdev, 1343 struct ethtool_drvinfo *info) 1344 { 1345 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1346 } 1347 1348 static int octeon_mgmt_nway_reset(struct net_device *dev) 1349 { 1350 if (!capable(CAP_NET_ADMIN)) 1351 return -EPERM; 1352 1353 if (dev->phydev) 1354 return phy_start_aneg(dev->phydev); 1355 1356 return -EOPNOTSUPP; 1357 } 1358 1359 static const struct ethtool_ops octeon_mgmt_ethtool_ops = { 1360 .get_drvinfo = octeon_mgmt_get_drvinfo, 1361 .nway_reset = octeon_mgmt_nway_reset, 1362 .get_link = ethtool_op_get_link, 1363 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1364 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1365 }; 1366 1367 static const struct net_device_ops octeon_mgmt_ops = { 1368 .ndo_open = octeon_mgmt_open, 1369 .ndo_stop = octeon_mgmt_stop, 1370 .ndo_start_xmit = octeon_mgmt_xmit, 1371 .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering, 1372 .ndo_set_mac_address = octeon_mgmt_set_mac_address, 1373 .ndo_eth_ioctl = octeon_mgmt_ioctl, 1374 .ndo_change_mtu = octeon_mgmt_change_mtu, 1375 #ifdef CONFIG_NET_POLL_CONTROLLER 1376 .ndo_poll_controller = octeon_mgmt_poll_controller, 1377 #endif 1378 }; 1379 1380 static int octeon_mgmt_probe(struct platform_device *pdev) 1381 { 1382 struct net_device *netdev; 1383 struct octeon_mgmt *p; 1384 const __be32 *data; 1385 struct resource *res_mix; 1386 struct resource *res_agl; 1387 struct resource *res_agl_prt_ctl; 1388 int len; 1389 int result; 1390 1391 netdev = alloc_etherdev(sizeof(struct octeon_mgmt)); 1392 if (netdev == NULL) 1393 return -ENOMEM; 1394 1395 SET_NETDEV_DEV(netdev, &pdev->dev); 1396 1397 platform_set_drvdata(pdev, netdev); 1398 p = netdev_priv(netdev); 1399 netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll, 1400 OCTEON_MGMT_NAPI_WEIGHT); 1401 1402 p->netdev = netdev; 1403 p->dev = &pdev->dev; 1404 p->has_rx_tstamp = false; 1405 1406 data = of_get_property(pdev->dev.of_node, "cell-index", &len); 1407 if (data && len == sizeof(*data)) { 1408 p->port = be32_to_cpup(data); 1409 } else { 1410 dev_err(&pdev->dev, "no 'cell-index' property\n"); 1411 result = -ENXIO; 1412 goto err; 1413 } 1414 1415 snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port); 1416 1417 result = platform_get_irq(pdev, 0); 1418 if (result < 0) 1419 goto err; 1420 1421 p->irq = result; 1422 1423 res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1424 if (res_mix == NULL) { 1425 dev_err(&pdev->dev, "no 'reg' resource\n"); 1426 result = -ENXIO; 1427 goto err; 1428 } 1429 1430 res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1431 if (res_agl == NULL) { 1432 dev_err(&pdev->dev, "no 'reg' resource\n"); 1433 result = -ENXIO; 1434 goto err; 1435 } 1436 1437 res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1438 if (res_agl_prt_ctl == NULL) { 1439 dev_err(&pdev->dev, "no 'reg' resource\n"); 1440 result = -ENXIO; 1441 goto err; 1442 } 1443 1444 p->mix_phys = res_mix->start; 1445 p->mix_size = resource_size(res_mix); 1446 p->agl_phys = res_agl->start; 1447 p->agl_size = resource_size(res_agl); 1448 p->agl_prt_ctl_phys = res_agl_prt_ctl->start; 1449 p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl); 1450 1451 1452 if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size, 1453 res_mix->name)) { 1454 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1455 res_mix->name); 1456 result = -ENXIO; 1457 goto err; 1458 } 1459 1460 if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size, 1461 res_agl->name)) { 1462 result = -ENXIO; 1463 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1464 res_agl->name); 1465 goto err; 1466 } 1467 1468 if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys, 1469 p->agl_prt_ctl_size, res_agl_prt_ctl->name)) { 1470 result = -ENXIO; 1471 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1472 res_agl_prt_ctl->name); 1473 goto err; 1474 } 1475 1476 p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size); 1477 p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size); 1478 p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys, 1479 p->agl_prt_ctl_size); 1480 if (!p->mix || !p->agl || !p->agl_prt_ctl) { 1481 dev_err(&pdev->dev, "failed to map I/O memory\n"); 1482 result = -ENOMEM; 1483 goto err; 1484 } 1485 1486 spin_lock_init(&p->lock); 1487 1488 skb_queue_head_init(&p->tx_list); 1489 skb_queue_head_init(&p->rx_list); 1490 tasklet_setup(&p->tx_clean_tasklet, 1491 octeon_mgmt_clean_tx_tasklet); 1492 1493 netdev->priv_flags |= IFF_UNICAST_FLT; 1494 1495 netdev->netdev_ops = &octeon_mgmt_ops; 1496 netdev->ethtool_ops = &octeon_mgmt_ethtool_ops; 1497 1498 netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM; 1499 netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM - VLAN_HLEN; 1500 1501 result = of_get_ethdev_address(pdev->dev.of_node, netdev); 1502 if (result) 1503 eth_hw_addr_random(netdev); 1504 1505 p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 1506 1507 result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1508 if (result) 1509 goto err; 1510 1511 netif_carrier_off(netdev); 1512 result = register_netdev(netdev); 1513 if (result) 1514 goto err; 1515 1516 return 0; 1517 1518 err: 1519 of_node_put(p->phy_np); 1520 free_netdev(netdev); 1521 return result; 1522 } 1523 1524 static int octeon_mgmt_remove(struct platform_device *pdev) 1525 { 1526 struct net_device *netdev = platform_get_drvdata(pdev); 1527 struct octeon_mgmt *p = netdev_priv(netdev); 1528 1529 unregister_netdev(netdev); 1530 of_node_put(p->phy_np); 1531 free_netdev(netdev); 1532 return 0; 1533 } 1534 1535 static const struct of_device_id octeon_mgmt_match[] = { 1536 { 1537 .compatible = "cavium,octeon-5750-mix", 1538 }, 1539 {}, 1540 }; 1541 MODULE_DEVICE_TABLE(of, octeon_mgmt_match); 1542 1543 static struct platform_driver octeon_mgmt_driver = { 1544 .driver = { 1545 .name = "octeon_mgmt", 1546 .of_match_table = octeon_mgmt_match, 1547 }, 1548 .probe = octeon_mgmt_probe, 1549 .remove = octeon_mgmt_remove, 1550 }; 1551 1552 module_platform_driver(octeon_mgmt_driver); 1553 1554 MODULE_SOFTDEP("pre: mdio-cavium"); 1555 MODULE_DESCRIPTION(DRV_DESCRIPTION); 1556 MODULE_AUTHOR("David Daney"); 1557 MODULE_LICENSE("GPL"); 1558