1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  **********************************************************************/
19 #include <linux/pci.h>
20 #include <linux/netdevice.h>
21 #include <linux/vmalloc.h>
22 #include "liquidio_common.h"
23 #include "octeon_droq.h"
24 #include "octeon_iq.h"
25 #include "response_manager.h"
26 #include "octeon_device.h"
27 #include "octeon_main.h"
28 #include "octeon_network.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32 
33 struct iq_post_status {
34 	int status;
35 	int index;
36 };
37 
38 static void check_db_timeout(struct work_struct *work);
39 static void  __check_db_timeout(struct octeon_device *oct, u64 iq_no);
40 
41 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
42 
43 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
44 {
45 	struct octeon_instr_queue *iq =
46 	    (struct octeon_instr_queue *)oct->instr_queue[iq_no];
47 	return iq->iqcmd_64B;
48 }
49 
50 #define IQ_INSTR_MODE_32B(oct, iq_no)  (!IQ_INSTR_MODE_64B(oct, iq_no))
51 
52 /* Define this to return the request status comaptible to old code */
53 /*#define OCTEON_USE_OLD_REQ_STATUS*/
54 
55 /* Return 0 on success, 1 on failure */
56 int octeon_init_instr_queue(struct octeon_device *oct,
57 			    union oct_txpciq txpciq,
58 			    u32 num_descs)
59 {
60 	struct octeon_instr_queue *iq;
61 	struct octeon_iq_config *conf = NULL;
62 	u32 iq_no = (u32)txpciq.s.q_no;
63 	u32 q_size;
64 	struct cavium_wq *db_wq;
65 	int numa_node = dev_to_node(&oct->pci_dev->dev);
66 
67 	if (OCTEON_CN6XXX(oct))
68 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
69 	else if (OCTEON_CN23XX_PF(oct))
70 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
71 	else if (OCTEON_CN23XX_VF(oct))
72 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
73 
74 	if (!conf) {
75 		dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
76 			oct->chip_id);
77 		return 1;
78 	}
79 
80 	if (num_descs & (num_descs - 1)) {
81 		dev_err(&oct->pci_dev->dev,
82 			"Number of descriptors for instr queue %d not in power of 2.\n",
83 			iq_no);
84 		return 1;
85 	}
86 
87 	q_size = (u32)conf->instr_type * num_descs;
88 
89 	iq = oct->instr_queue[iq_no];
90 
91 	iq->oct_dev = oct;
92 
93 	iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
94 	if (!iq->base_addr) {
95 		dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
96 			iq_no);
97 		return 1;
98 	}
99 
100 	iq->max_count = num_descs;
101 
102 	/* Initialize a list to holds requests that have been posted to Octeon
103 	 * but has yet to be fetched by octeon
104 	 */
105 	iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
106 					       numa_node);
107 	if (!iq->request_list)
108 		iq->request_list = vmalloc(sizeof(*iq->request_list) *
109 						  num_descs);
110 	if (!iq->request_list) {
111 		lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
112 		dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
113 			iq_no);
114 		return 1;
115 	}
116 
117 	memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
118 
119 	dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
120 		iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
121 
122 	iq->txpciq.u64 = txpciq.u64;
123 	iq->fill_threshold = (u32)conf->db_min;
124 	iq->fill_cnt = 0;
125 	iq->host_write_index = 0;
126 	iq->octeon_read_index = 0;
127 	iq->flush_index = 0;
128 	iq->last_db_time = 0;
129 	iq->do_auto_flush = 1;
130 	iq->db_timeout = (u32)conf->db_timeout;
131 	atomic_set(&iq->instr_pending, 0);
132 
133 	/* Initialize the spinlock for this instruction queue */
134 	spin_lock_init(&iq->lock);
135 	spin_lock_init(&iq->post_lock);
136 
137 	spin_lock_init(&iq->iq_flush_running_lock);
138 
139 	oct->io_qmask.iq |= BIT_ULL(iq_no);
140 
141 	/* Set the 32B/64B mode for each input queue */
142 	oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
143 	iq->iqcmd_64B = (conf->instr_type == 64);
144 
145 	oct->fn_list.setup_iq_regs(oct, iq_no);
146 
147 	oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
148 						     WQ_MEM_RECLAIM,
149 						     0);
150 	if (!oct->check_db_wq[iq_no].wq) {
151 		vfree(iq->request_list);
152 		iq->request_list = NULL;
153 		lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
154 		dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
155 			iq_no);
156 		return 1;
157 	}
158 
159 	db_wq = &oct->check_db_wq[iq_no];
160 
161 	INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
162 	db_wq->wk.ctxptr = oct;
163 	db_wq->wk.ctxul = iq_no;
164 	queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
165 
166 	return 0;
167 }
168 
169 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
170 {
171 	u64 desc_size = 0, q_size;
172 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
173 
174 	cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
175 	destroy_workqueue(oct->check_db_wq[iq_no].wq);
176 
177 	if (OCTEON_CN6XXX(oct))
178 		desc_size =
179 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
180 	else if (OCTEON_CN23XX_PF(oct))
181 		desc_size =
182 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
183 	else if (OCTEON_CN23XX_VF(oct))
184 		desc_size =
185 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
186 
187 	vfree(iq->request_list);
188 
189 	if (iq->base_addr) {
190 		q_size = iq->max_count * desc_size;
191 		lio_dma_free(oct, (u32)q_size, iq->base_addr,
192 			     iq->base_addr_dma);
193 		return 0;
194 	}
195 	return 1;
196 }
197 
198 /* Return 0 on success, 1 on failure */
199 int octeon_setup_iq(struct octeon_device *oct,
200 		    int ifidx,
201 		    int q_index,
202 		    union oct_txpciq txpciq,
203 		    u32 num_descs,
204 		    void *app_ctx)
205 {
206 	u32 iq_no = (u32)txpciq.s.q_no;
207 	int numa_node = dev_to_node(&oct->pci_dev->dev);
208 
209 	if (oct->instr_queue[iq_no]) {
210 		dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
211 			iq_no);
212 		oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
213 		oct->instr_queue[iq_no]->app_ctx = app_ctx;
214 		return 0;
215 	}
216 	oct->instr_queue[iq_no] =
217 	    vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
218 	if (!oct->instr_queue[iq_no])
219 		oct->instr_queue[iq_no] =
220 		    vmalloc(sizeof(struct octeon_instr_queue));
221 	if (!oct->instr_queue[iq_no])
222 		return 1;
223 
224 	memset(oct->instr_queue[iq_no], 0,
225 	       sizeof(struct octeon_instr_queue));
226 
227 	oct->instr_queue[iq_no]->q_index = q_index;
228 	oct->instr_queue[iq_no]->app_ctx = app_ctx;
229 	oct->instr_queue[iq_no]->ifidx = ifidx;
230 
231 	if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
232 		vfree(oct->instr_queue[iq_no]);
233 		oct->instr_queue[iq_no] = NULL;
234 		return 1;
235 	}
236 
237 	oct->num_iqs++;
238 	if (oct->fn_list.enable_io_queues(oct))
239 		return 1;
240 
241 	return 0;
242 }
243 
244 int lio_wait_for_instr_fetch(struct octeon_device *oct)
245 {
246 	int i, retry = 1000, pending, instr_cnt = 0;
247 
248 	do {
249 		instr_cnt = 0;
250 
251 		for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
252 			if (!(oct->io_qmask.iq & BIT_ULL(i)))
253 				continue;
254 			pending =
255 			    atomic_read(&oct->instr_queue[i]->instr_pending);
256 			if (pending)
257 				__check_db_timeout(oct, i);
258 			instr_cnt += pending;
259 		}
260 
261 		if (instr_cnt == 0)
262 			break;
263 
264 		schedule_timeout_uninterruptible(1);
265 
266 	} while (retry-- && instr_cnt);
267 
268 	return instr_cnt;
269 }
270 
271 static inline void
272 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
273 {
274 	if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
275 		writel(iq->fill_cnt, iq->doorbell_reg);
276 		/* make sure doorbell write goes through */
277 		mmiowb();
278 		iq->fill_cnt = 0;
279 		iq->last_db_time = jiffies;
280 		return;
281 	}
282 }
283 
284 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
285 				      u8 *cmd)
286 {
287 	u8 *iqptr, cmdsize;
288 
289 	cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
290 	iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
291 
292 	memcpy(iqptr, cmd, cmdsize);
293 }
294 
295 static inline struct iq_post_status
296 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
297 {
298 	struct iq_post_status st;
299 
300 	st.status = IQ_SEND_OK;
301 
302 	/* This ensures that the read index does not wrap around to the same
303 	 * position if queue gets full before Octeon could fetch any instr.
304 	 */
305 	if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
306 		st.status = IQ_SEND_FAILED;
307 		st.index = -1;
308 		return st;
309 	}
310 
311 	if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
312 		st.status = IQ_SEND_STOP;
313 
314 	__copy_cmd_into_iq(iq, cmd);
315 
316 	/* "index" is returned, host_write_index is modified. */
317 	st.index = iq->host_write_index;
318 	iq->host_write_index = incr_index(iq->host_write_index, 1,
319 					  iq->max_count);
320 	iq->fill_cnt++;
321 
322 	/* Flush the command into memory. We need to be sure the data is in
323 	 * memory before indicating that the instruction is pending.
324 	 */
325 	wmb();
326 
327 	atomic_inc(&iq->instr_pending);
328 
329 	return st;
330 }
331 
332 int
333 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
334 				void (*fn)(void *))
335 {
336 	if (reqtype > REQTYPE_LAST) {
337 		dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
338 			__func__, reqtype);
339 		return -EINVAL;
340 	}
341 
342 	reqtype_free_fn[oct->octeon_id][reqtype] = fn;
343 
344 	return 0;
345 }
346 
347 static inline void
348 __add_to_request_list(struct octeon_instr_queue *iq,
349 		      int idx, void *buf, int reqtype)
350 {
351 	iq->request_list[idx].buf = buf;
352 	iq->request_list[idx].reqtype = reqtype;
353 }
354 
355 /* Can only run in process context */
356 int
357 lio_process_iq_request_list(struct octeon_device *oct,
358 			    struct octeon_instr_queue *iq, u32 napi_budget)
359 {
360 	int reqtype;
361 	void *buf;
362 	u32 old = iq->flush_index;
363 	u32 inst_count = 0;
364 	unsigned int pkts_compl = 0, bytes_compl = 0;
365 	struct octeon_soft_command *sc;
366 	struct octeon_instr_irh *irh;
367 	unsigned long flags;
368 
369 	while (old != iq->octeon_read_index) {
370 		reqtype = iq->request_list[old].reqtype;
371 		buf     = iq->request_list[old].buf;
372 
373 		if (reqtype == REQTYPE_NONE)
374 			goto skip_this;
375 
376 		octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
377 						     &bytes_compl);
378 
379 		switch (reqtype) {
380 		case REQTYPE_NORESP_NET:
381 		case REQTYPE_NORESP_NET_SG:
382 		case REQTYPE_RESP_NET_SG:
383 			reqtype_free_fn[oct->octeon_id][reqtype](buf);
384 			break;
385 		case REQTYPE_RESP_NET:
386 		case REQTYPE_SOFT_COMMAND:
387 			sc = buf;
388 
389 			if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
390 				irh = (struct octeon_instr_irh *)
391 					&sc->cmd.cmd3.irh;
392 			else
393 				irh = (struct octeon_instr_irh *)
394 					&sc->cmd.cmd2.irh;
395 			if (irh->rflag) {
396 				/* We're expecting a response from Octeon.
397 				 * It's up to lio_process_ordered_list() to
398 				 * process  sc. Add sc to the ordered soft
399 				 * command response list because we expect
400 				 * a response from Octeon.
401 				 */
402 				spin_lock_irqsave
403 					(&oct->response_list
404 					 [OCTEON_ORDERED_SC_LIST].lock,
405 					 flags);
406 				atomic_inc(&oct->response_list
407 					[OCTEON_ORDERED_SC_LIST].
408 					pending_req_count);
409 				list_add_tail(&sc->node, &oct->response_list
410 					[OCTEON_ORDERED_SC_LIST].head);
411 				spin_unlock_irqrestore
412 					(&oct->response_list
413 					 [OCTEON_ORDERED_SC_LIST].lock,
414 					 flags);
415 			} else {
416 				if (sc->callback) {
417 					/* This callback must not sleep */
418 					sc->callback(oct, OCTEON_REQUEST_DONE,
419 						     sc->callback_arg);
420 				}
421 			}
422 			break;
423 		default:
424 			dev_err(&oct->pci_dev->dev,
425 				"%s Unknown reqtype: %d buf: %p at idx %d\n",
426 				__func__, reqtype, buf, old);
427 		}
428 
429 		iq->request_list[old].buf = NULL;
430 		iq->request_list[old].reqtype = 0;
431 
432  skip_this:
433 		inst_count++;
434 		old = incr_index(old, 1, iq->max_count);
435 
436 		if ((napi_budget) && (inst_count >= napi_budget))
437 			break;
438 	}
439 	if (bytes_compl)
440 		octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
441 						   bytes_compl);
442 	iq->flush_index = old;
443 
444 	return inst_count;
445 }
446 
447 /* Can only be called from process context */
448 int
449 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
450 		u32 napi_budget)
451 {
452 	u32 inst_processed = 0;
453 	u32 tot_inst_processed = 0;
454 	int tx_done = 1;
455 
456 	if (!spin_trylock(&iq->iq_flush_running_lock))
457 		return tx_done;
458 
459 	spin_lock_bh(&iq->lock);
460 
461 	iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
462 
463 	do {
464 		/* Process any outstanding IQ packets. */
465 		if (iq->flush_index == iq->octeon_read_index)
466 			break;
467 
468 		if (napi_budget)
469 			inst_processed =
470 				lio_process_iq_request_list(oct, iq,
471 							    napi_budget -
472 							    tot_inst_processed);
473 		else
474 			inst_processed =
475 				lio_process_iq_request_list(oct, iq, 0);
476 
477 		if (inst_processed) {
478 			atomic_sub(inst_processed, &iq->instr_pending);
479 			iq->stats.instr_processed += inst_processed;
480 		}
481 
482 		tot_inst_processed += inst_processed;
483 		inst_processed = 0;
484 
485 	} while (tot_inst_processed < napi_budget);
486 
487 	if (napi_budget && (tot_inst_processed >= napi_budget))
488 		tx_done = 0;
489 
490 	iq->last_db_time = jiffies;
491 
492 	spin_unlock_bh(&iq->lock);
493 
494 	spin_unlock(&iq->iq_flush_running_lock);
495 
496 	return tx_done;
497 }
498 
499 /* Process instruction queue after timeout.
500  * This routine gets called from a workqueue or when removing the module.
501  */
502 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
503 {
504 	struct octeon_instr_queue *iq;
505 	u64 next_time;
506 
507 	if (!oct)
508 		return;
509 
510 	iq = oct->instr_queue[iq_no];
511 	if (!iq)
512 		return;
513 
514 	/* return immediately, if no work pending */
515 	if (!atomic_read(&iq->instr_pending))
516 		return;
517 	/* If jiffies - last_db_time < db_timeout do nothing  */
518 	next_time = iq->last_db_time + iq->db_timeout;
519 	if (!time_after(jiffies, (unsigned long)next_time))
520 		return;
521 	iq->last_db_time = jiffies;
522 
523 	/* Flush the instruction queue */
524 	octeon_flush_iq(oct, iq, 0);
525 
526 	lio_enable_irq(NULL, iq);
527 }
528 
529 /* Called by the Poll thread at regular intervals to check the instruction
530  * queue for commands to be posted and for commands that were fetched by Octeon.
531  */
532 static void check_db_timeout(struct work_struct *work)
533 {
534 	struct cavium_wk *wk = (struct cavium_wk *)work;
535 	struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
536 	u64 iq_no = wk->ctxul;
537 	struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
538 	u32 delay = 10;
539 
540 	__check_db_timeout(oct, iq_no);
541 	queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
542 }
543 
544 int
545 octeon_send_command(struct octeon_device *oct, u32 iq_no,
546 		    u32 force_db, void *cmd, void *buf,
547 		    u32 datasize, u32 reqtype)
548 {
549 	struct iq_post_status st;
550 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
551 
552 	/* Get the lock and prevent other tasks and tx interrupt handler from
553 	 * running.
554 	 */
555 	spin_lock_bh(&iq->post_lock);
556 
557 	st = __post_command2(iq, cmd);
558 
559 	if (st.status != IQ_SEND_FAILED) {
560 		octeon_report_sent_bytes_to_bql(buf, reqtype);
561 		__add_to_request_list(iq, st.index, buf, reqtype);
562 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
563 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
564 
565 		if (force_db)
566 			ring_doorbell(oct, iq);
567 	} else {
568 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
569 	}
570 
571 	spin_unlock_bh(&iq->post_lock);
572 
573 	/* This is only done here to expedite packets being flushed
574 	 * for cases where there are no IQ completion interrupts.
575 	 */
576 
577 	return st.status;
578 }
579 
580 void
581 octeon_prepare_soft_command(struct octeon_device *oct,
582 			    struct octeon_soft_command *sc,
583 			    u8 opcode,
584 			    u8 subcode,
585 			    u32 irh_ossp,
586 			    u64 ossp0,
587 			    u64 ossp1)
588 {
589 	struct octeon_config *oct_cfg;
590 	struct octeon_instr_ih2 *ih2;
591 	struct octeon_instr_ih3 *ih3;
592 	struct octeon_instr_pki_ih3 *pki_ih3;
593 	struct octeon_instr_irh *irh;
594 	struct octeon_instr_rdp *rdp;
595 
596 	WARN_ON(opcode > 15);
597 	WARN_ON(subcode > 127);
598 
599 	oct_cfg = octeon_get_conf(oct);
600 
601 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
602 		ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
603 
604 		ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
605 
606 		pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
607 
608 		pki_ih3->w           = 1;
609 		pki_ih3->raw         = 1;
610 		pki_ih3->utag        = 1;
611 		pki_ih3->uqpg        =
612 			oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
613 		pki_ih3->utt         = 1;
614 		pki_ih3->tag     = LIO_CONTROL;
615 		pki_ih3->tagtype = ATOMIC_TAG;
616 		pki_ih3->qpg         =
617 			oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
618 		pki_ih3->pm          = 0x7;
619 		pki_ih3->sl          = 8;
620 
621 		if (sc->datasize)
622 			ih3->dlengsz = sc->datasize;
623 
624 		irh            = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
625 		irh->opcode    = opcode;
626 		irh->subcode   = subcode;
627 
628 		/* opcode/subcode specific parameters (ossp) */
629 		irh->ossp       = irh_ossp;
630 		sc->cmd.cmd3.ossp[0] = ossp0;
631 		sc->cmd.cmd3.ossp[1] = ossp1;
632 
633 		if (sc->rdatasize) {
634 			rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
635 			rdp->pcie_port = oct->pcie_port;
636 			rdp->rlen      = sc->rdatasize;
637 
638 			irh->rflag =  1;
639 			/*PKI IH3*/
640 			/* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
641 			ih3->fsz    = LIO_SOFTCMDRESP_IH3;
642 		} else {
643 			irh->rflag =  0;
644 			/*PKI IH3*/
645 			/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
646 			ih3->fsz    = LIO_PCICMD_O3;
647 		}
648 
649 	} else {
650 		ih2          = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
651 		ih2->tagtype = ATOMIC_TAG;
652 		ih2->tag     = LIO_CONTROL;
653 		ih2->raw     = 1;
654 		ih2->grp     = CFG_GET_CTRL_Q_GRP(oct_cfg);
655 
656 		if (sc->datasize) {
657 			ih2->dlengsz = sc->datasize;
658 			ih2->rs = 1;
659 		}
660 
661 		irh            = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
662 		irh->opcode    = opcode;
663 		irh->subcode   = subcode;
664 
665 		/* opcode/subcode specific parameters (ossp) */
666 		irh->ossp       = irh_ossp;
667 		sc->cmd.cmd2.ossp[0] = ossp0;
668 		sc->cmd.cmd2.ossp[1] = ossp1;
669 
670 		if (sc->rdatasize) {
671 			rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
672 			rdp->pcie_port = oct->pcie_port;
673 			rdp->rlen      = sc->rdatasize;
674 
675 			irh->rflag =  1;
676 			/* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
677 			ih2->fsz   = LIO_SOFTCMDRESP_IH2;
678 		} else {
679 			irh->rflag =  0;
680 			/* irh + ossp[0] + ossp[1] = 24 bytes */
681 			ih2->fsz   = LIO_PCICMD_O2;
682 		}
683 	}
684 }
685 
686 int octeon_send_soft_command(struct octeon_device *oct,
687 			     struct octeon_soft_command *sc)
688 {
689 	struct octeon_instr_ih2 *ih2;
690 	struct octeon_instr_ih3 *ih3;
691 	struct octeon_instr_irh *irh;
692 	u32 len;
693 
694 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
695 		ih3 =  (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
696 		if (ih3->dlengsz) {
697 			WARN_ON(!sc->dmadptr);
698 			sc->cmd.cmd3.dptr = sc->dmadptr;
699 		}
700 		irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
701 		if (irh->rflag) {
702 			WARN_ON(!sc->dmarptr);
703 			WARN_ON(!sc->status_word);
704 			*sc->status_word = COMPLETION_WORD_INIT;
705 			sc->cmd.cmd3.rptr = sc->dmarptr;
706 		}
707 		len = (u32)ih3->dlengsz;
708 	} else {
709 		ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
710 		if (ih2->dlengsz) {
711 			WARN_ON(!sc->dmadptr);
712 			sc->cmd.cmd2.dptr = sc->dmadptr;
713 		}
714 		irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
715 		if (irh->rflag) {
716 			WARN_ON(!sc->dmarptr);
717 			WARN_ON(!sc->status_word);
718 			*sc->status_word = COMPLETION_WORD_INIT;
719 			sc->cmd.cmd2.rptr = sc->dmarptr;
720 		}
721 		len = (u32)ih2->dlengsz;
722 	}
723 
724 	if (sc->wait_time)
725 		sc->timeout = jiffies + sc->wait_time;
726 
727 	return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
728 				    len, REQTYPE_SOFT_COMMAND));
729 }
730 
731 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
732 {
733 	int i;
734 	u64 dma_addr;
735 	struct octeon_soft_command *sc;
736 
737 	INIT_LIST_HEAD(&oct->sc_buf_pool.head);
738 	spin_lock_init(&oct->sc_buf_pool.lock);
739 	atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
740 
741 	for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
742 		sc = (struct octeon_soft_command *)
743 			lio_dma_alloc(oct,
744 				      SOFT_COMMAND_BUFFER_SIZE,
745 					  (dma_addr_t *)&dma_addr);
746 		if (!sc) {
747 			octeon_free_sc_buffer_pool(oct);
748 			return 1;
749 		}
750 
751 		sc->dma_addr = dma_addr;
752 		sc->size = SOFT_COMMAND_BUFFER_SIZE;
753 
754 		list_add_tail(&sc->node, &oct->sc_buf_pool.head);
755 	}
756 
757 	return 0;
758 }
759 
760 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
761 {
762 	struct list_head *tmp, *tmp2;
763 	struct octeon_soft_command *sc;
764 
765 	spin_lock_bh(&oct->sc_buf_pool.lock);
766 
767 	list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
768 		list_del(tmp);
769 
770 		sc = (struct octeon_soft_command *)tmp;
771 
772 		lio_dma_free(oct, sc->size, sc, sc->dma_addr);
773 	}
774 
775 	INIT_LIST_HEAD(&oct->sc_buf_pool.head);
776 
777 	spin_unlock_bh(&oct->sc_buf_pool.lock);
778 
779 	return 0;
780 }
781 
782 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
783 						      u32 datasize,
784 						      u32 rdatasize,
785 						      u32 ctxsize)
786 {
787 	u64 dma_addr;
788 	u32 size;
789 	u32 offset = sizeof(struct octeon_soft_command);
790 	struct octeon_soft_command *sc = NULL;
791 	struct list_head *tmp;
792 
793 	WARN_ON((offset + datasize + rdatasize + ctxsize) >
794 	       SOFT_COMMAND_BUFFER_SIZE);
795 
796 	spin_lock_bh(&oct->sc_buf_pool.lock);
797 
798 	if (list_empty(&oct->sc_buf_pool.head)) {
799 		spin_unlock_bh(&oct->sc_buf_pool.lock);
800 		return NULL;
801 	}
802 
803 	list_for_each(tmp, &oct->sc_buf_pool.head)
804 		break;
805 
806 	list_del(tmp);
807 
808 	atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
809 
810 	spin_unlock_bh(&oct->sc_buf_pool.lock);
811 
812 	sc = (struct octeon_soft_command *)tmp;
813 
814 	dma_addr = sc->dma_addr;
815 	size = sc->size;
816 
817 	memset(sc, 0, sc->size);
818 
819 	sc->dma_addr = dma_addr;
820 	sc->size = size;
821 
822 	if (ctxsize) {
823 		sc->ctxptr = (u8 *)sc + offset;
824 		sc->ctxsize = ctxsize;
825 	}
826 
827 	/* Start data at 128 byte boundary */
828 	offset = (offset + ctxsize + 127) & 0xffffff80;
829 
830 	if (datasize) {
831 		sc->virtdptr = (u8 *)sc + offset;
832 		sc->dmadptr = dma_addr + offset;
833 		sc->datasize = datasize;
834 	}
835 
836 	/* Start rdata at 128 byte boundary */
837 	offset = (offset + datasize + 127) & 0xffffff80;
838 
839 	if (rdatasize) {
840 		WARN_ON(rdatasize < 16);
841 		sc->virtrptr = (u8 *)sc + offset;
842 		sc->dmarptr = dma_addr + offset;
843 		sc->rdatasize = rdatasize;
844 		sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
845 	}
846 
847 	return sc;
848 }
849 
850 void octeon_free_soft_command(struct octeon_device *oct,
851 			      struct octeon_soft_command *sc)
852 {
853 	spin_lock_bh(&oct->sc_buf_pool.lock);
854 
855 	list_add_tail(&sc->node, &oct->sc_buf_pool.head);
856 
857 	atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
858 
859 	spin_unlock_bh(&oct->sc_buf_pool.lock);
860 }
861