1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more 17 * details. 18 **********************************************************************/ 19 #include <linux/pci.h> 20 #include <linux/netdevice.h> 21 #include <linux/vmalloc.h> 22 #include "liquidio_common.h" 23 #include "octeon_droq.h" 24 #include "octeon_iq.h" 25 #include "response_manager.h" 26 #include "octeon_device.h" 27 #include "octeon_main.h" 28 #include "octeon_network.h" 29 #include "cn66xx_device.h" 30 #include "cn23xx_pf_device.h" 31 #include "cn23xx_vf_device.h" 32 33 struct iq_post_status { 34 int status; 35 int index; 36 }; 37 38 static void check_db_timeout(struct work_struct *work); 39 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no); 40 41 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *); 42 43 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no) 44 { 45 struct octeon_instr_queue *iq = 46 (struct octeon_instr_queue *)oct->instr_queue[iq_no]; 47 return iq->iqcmd_64B; 48 } 49 50 #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no)) 51 52 /* Define this to return the request status comaptible to old code */ 53 /*#define OCTEON_USE_OLD_REQ_STATUS*/ 54 55 /* Return 0 on success, 1 on failure */ 56 int octeon_init_instr_queue(struct octeon_device *oct, 57 union oct_txpciq txpciq, 58 u32 num_descs) 59 { 60 struct octeon_instr_queue *iq; 61 struct octeon_iq_config *conf = NULL; 62 u32 iq_no = (u32)txpciq.s.q_no; 63 u32 q_size; 64 struct cavium_wq *db_wq; 65 int numa_node = dev_to_node(&oct->pci_dev->dev); 66 67 if (OCTEON_CN6XXX(oct)) 68 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx))); 69 else if (OCTEON_CN23XX_PF(oct)) 70 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf))); 71 else if (OCTEON_CN23XX_VF(oct)) 72 conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf))); 73 74 if (!conf) { 75 dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n", 76 oct->chip_id); 77 return 1; 78 } 79 80 q_size = (u32)conf->instr_type * num_descs; 81 82 iq = oct->instr_queue[iq_no]; 83 84 iq->oct_dev = oct; 85 86 iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma); 87 if (!iq->base_addr) { 88 dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n", 89 iq_no); 90 return 1; 91 } 92 93 iq->max_count = num_descs; 94 95 /* Initialize a list to holds requests that have been posted to Octeon 96 * but has yet to be fetched by octeon 97 */ 98 iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs), 99 numa_node); 100 if (!iq->request_list) 101 iq->request_list = vmalloc(sizeof(*iq->request_list) * 102 num_descs); 103 if (!iq->request_list) { 104 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma); 105 dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n", 106 iq_no); 107 return 1; 108 } 109 110 memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs); 111 112 dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n", 113 iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count); 114 115 iq->txpciq.u64 = txpciq.u64; 116 iq->fill_threshold = (u32)conf->db_min; 117 iq->fill_cnt = 0; 118 iq->host_write_index = 0; 119 iq->octeon_read_index = 0; 120 iq->flush_index = 0; 121 iq->last_db_time = 0; 122 iq->do_auto_flush = 1; 123 iq->db_timeout = (u32)conf->db_timeout; 124 atomic_set(&iq->instr_pending, 0); 125 126 /* Initialize the spinlock for this instruction queue */ 127 spin_lock_init(&iq->lock); 128 spin_lock_init(&iq->post_lock); 129 130 spin_lock_init(&iq->iq_flush_running_lock); 131 132 oct->io_qmask.iq |= BIT_ULL(iq_no); 133 134 /* Set the 32B/64B mode for each input queue */ 135 oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no); 136 iq->iqcmd_64B = (conf->instr_type == 64); 137 138 oct->fn_list.setup_iq_regs(oct, iq_no); 139 140 oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db", 141 WQ_MEM_RECLAIM, 142 0); 143 if (!oct->check_db_wq[iq_no].wq) { 144 vfree(iq->request_list); 145 iq->request_list = NULL; 146 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma); 147 dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n", 148 iq_no); 149 return 1; 150 } 151 152 db_wq = &oct->check_db_wq[iq_no]; 153 154 INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout); 155 db_wq->wk.ctxptr = oct; 156 db_wq->wk.ctxul = iq_no; 157 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1)); 158 159 return 0; 160 } 161 162 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no) 163 { 164 u64 desc_size = 0, q_size; 165 struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; 166 167 cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work); 168 destroy_workqueue(oct->check_db_wq[iq_no].wq); 169 170 if (OCTEON_CN6XXX(oct)) 171 desc_size = 172 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx)); 173 else if (OCTEON_CN23XX_PF(oct)) 174 desc_size = 175 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf)); 176 else if (OCTEON_CN23XX_VF(oct)) 177 desc_size = 178 CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf)); 179 180 vfree(iq->request_list); 181 182 if (iq->base_addr) { 183 q_size = iq->max_count * desc_size; 184 lio_dma_free(oct, (u32)q_size, iq->base_addr, 185 iq->base_addr_dma); 186 oct->io_qmask.iq &= ~(1ULL << iq_no); 187 vfree(oct->instr_queue[iq_no]); 188 oct->instr_queue[iq_no] = NULL; 189 oct->num_iqs--; 190 return 0; 191 } 192 return 1; 193 } 194 195 /* Return 0 on success, 1 on failure */ 196 int octeon_setup_iq(struct octeon_device *oct, 197 int ifidx, 198 int q_index, 199 union oct_txpciq txpciq, 200 u32 num_descs, 201 void *app_ctx) 202 { 203 u32 iq_no = (u32)txpciq.s.q_no; 204 int numa_node = dev_to_node(&oct->pci_dev->dev); 205 206 if (oct->instr_queue[iq_no]) { 207 dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n", 208 iq_no); 209 oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64; 210 oct->instr_queue[iq_no]->app_ctx = app_ctx; 211 return 0; 212 } 213 oct->instr_queue[iq_no] = 214 vmalloc_node(sizeof(struct octeon_instr_queue), numa_node); 215 if (!oct->instr_queue[iq_no]) 216 oct->instr_queue[iq_no] = 217 vmalloc(sizeof(struct octeon_instr_queue)); 218 if (!oct->instr_queue[iq_no]) 219 return 1; 220 221 memset(oct->instr_queue[iq_no], 0, 222 sizeof(struct octeon_instr_queue)); 223 224 oct->instr_queue[iq_no]->q_index = q_index; 225 oct->instr_queue[iq_no]->app_ctx = app_ctx; 226 oct->instr_queue[iq_no]->ifidx = ifidx; 227 228 if (octeon_init_instr_queue(oct, txpciq, num_descs)) { 229 vfree(oct->instr_queue[iq_no]); 230 oct->instr_queue[iq_no] = NULL; 231 return 1; 232 } 233 234 oct->num_iqs++; 235 if (oct->fn_list.enable_io_queues(oct)) 236 return 1; 237 238 return 0; 239 } 240 241 int lio_wait_for_instr_fetch(struct octeon_device *oct) 242 { 243 int i, retry = 1000, pending, instr_cnt = 0; 244 245 do { 246 instr_cnt = 0; 247 248 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 249 if (!(oct->io_qmask.iq & BIT_ULL(i))) 250 continue; 251 pending = 252 atomic_read(&oct->instr_queue[i]->instr_pending); 253 if (pending) 254 __check_db_timeout(oct, i); 255 instr_cnt += pending; 256 } 257 258 if (instr_cnt == 0) 259 break; 260 261 schedule_timeout_uninterruptible(1); 262 263 } while (retry-- && instr_cnt); 264 265 return instr_cnt; 266 } 267 268 static inline void 269 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq) 270 { 271 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) { 272 writel(iq->fill_cnt, iq->doorbell_reg); 273 /* make sure doorbell write goes through */ 274 mmiowb(); 275 iq->fill_cnt = 0; 276 iq->last_db_time = jiffies; 277 return; 278 } 279 } 280 281 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq, 282 u8 *cmd) 283 { 284 u8 *iqptr, cmdsize; 285 286 cmdsize = ((iq->iqcmd_64B) ? 64 : 32); 287 iqptr = iq->base_addr + (cmdsize * iq->host_write_index); 288 289 memcpy(iqptr, cmd, cmdsize); 290 } 291 292 static inline struct iq_post_status 293 __post_command2(struct octeon_instr_queue *iq, u8 *cmd) 294 { 295 struct iq_post_status st; 296 297 st.status = IQ_SEND_OK; 298 299 /* This ensures that the read index does not wrap around to the same 300 * position if queue gets full before Octeon could fetch any instr. 301 */ 302 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) { 303 st.status = IQ_SEND_FAILED; 304 st.index = -1; 305 return st; 306 } 307 308 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2)) 309 st.status = IQ_SEND_STOP; 310 311 __copy_cmd_into_iq(iq, cmd); 312 313 /* "index" is returned, host_write_index is modified. */ 314 st.index = iq->host_write_index; 315 iq->host_write_index = incr_index(iq->host_write_index, 1, 316 iq->max_count); 317 iq->fill_cnt++; 318 319 /* Flush the command into memory. We need to be sure the data is in 320 * memory before indicating that the instruction is pending. 321 */ 322 wmb(); 323 324 atomic_inc(&iq->instr_pending); 325 326 return st; 327 } 328 329 int 330 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype, 331 void (*fn)(void *)) 332 { 333 if (reqtype > REQTYPE_LAST) { 334 dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n", 335 __func__, reqtype); 336 return -EINVAL; 337 } 338 339 reqtype_free_fn[oct->octeon_id][reqtype] = fn; 340 341 return 0; 342 } 343 344 static inline void 345 __add_to_request_list(struct octeon_instr_queue *iq, 346 int idx, void *buf, int reqtype) 347 { 348 iq->request_list[idx].buf = buf; 349 iq->request_list[idx].reqtype = reqtype; 350 } 351 352 /* Can only run in process context */ 353 int 354 lio_process_iq_request_list(struct octeon_device *oct, 355 struct octeon_instr_queue *iq, u32 napi_budget) 356 { 357 int reqtype; 358 void *buf; 359 u32 old = iq->flush_index; 360 u32 inst_count = 0; 361 unsigned int pkts_compl = 0, bytes_compl = 0; 362 struct octeon_soft_command *sc; 363 struct octeon_instr_irh *irh; 364 unsigned long flags; 365 366 while (old != iq->octeon_read_index) { 367 reqtype = iq->request_list[old].reqtype; 368 buf = iq->request_list[old].buf; 369 370 if (reqtype == REQTYPE_NONE) 371 goto skip_this; 372 373 octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl, 374 &bytes_compl); 375 376 switch (reqtype) { 377 case REQTYPE_NORESP_NET: 378 case REQTYPE_NORESP_NET_SG: 379 case REQTYPE_RESP_NET_SG: 380 reqtype_free_fn[oct->octeon_id][reqtype](buf); 381 break; 382 case REQTYPE_RESP_NET: 383 case REQTYPE_SOFT_COMMAND: 384 sc = buf; 385 386 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) 387 irh = (struct octeon_instr_irh *) 388 &sc->cmd.cmd3.irh; 389 else 390 irh = (struct octeon_instr_irh *) 391 &sc->cmd.cmd2.irh; 392 if (irh->rflag) { 393 /* We're expecting a response from Octeon. 394 * It's up to lio_process_ordered_list() to 395 * process sc. Add sc to the ordered soft 396 * command response list because we expect 397 * a response from Octeon. 398 */ 399 spin_lock_irqsave 400 (&oct->response_list 401 [OCTEON_ORDERED_SC_LIST].lock, 402 flags); 403 atomic_inc(&oct->response_list 404 [OCTEON_ORDERED_SC_LIST]. 405 pending_req_count); 406 list_add_tail(&sc->node, &oct->response_list 407 [OCTEON_ORDERED_SC_LIST].head); 408 spin_unlock_irqrestore 409 (&oct->response_list 410 [OCTEON_ORDERED_SC_LIST].lock, 411 flags); 412 } else { 413 if (sc->callback) { 414 /* This callback must not sleep */ 415 sc->callback(oct, OCTEON_REQUEST_DONE, 416 sc->callback_arg); 417 } 418 } 419 break; 420 default: 421 dev_err(&oct->pci_dev->dev, 422 "%s Unknown reqtype: %d buf: %p at idx %d\n", 423 __func__, reqtype, buf, old); 424 } 425 426 iq->request_list[old].buf = NULL; 427 iq->request_list[old].reqtype = 0; 428 429 skip_this: 430 inst_count++; 431 old = incr_index(old, 1, iq->max_count); 432 433 if ((napi_budget) && (inst_count >= napi_budget)) 434 break; 435 } 436 if (bytes_compl) 437 octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl, 438 bytes_compl); 439 iq->flush_index = old; 440 441 return inst_count; 442 } 443 444 /* Can only be called from process context */ 445 int 446 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq, 447 u32 napi_budget) 448 { 449 u32 inst_processed = 0; 450 u32 tot_inst_processed = 0; 451 int tx_done = 1; 452 453 if (!spin_trylock(&iq->iq_flush_running_lock)) 454 return tx_done; 455 456 spin_lock_bh(&iq->lock); 457 458 iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq); 459 460 do { 461 /* Process any outstanding IQ packets. */ 462 if (iq->flush_index == iq->octeon_read_index) 463 break; 464 465 if (napi_budget) 466 inst_processed = 467 lio_process_iq_request_list(oct, iq, 468 napi_budget - 469 tot_inst_processed); 470 else 471 inst_processed = 472 lio_process_iq_request_list(oct, iq, 0); 473 474 if (inst_processed) { 475 atomic_sub(inst_processed, &iq->instr_pending); 476 iq->stats.instr_processed += inst_processed; 477 } 478 479 tot_inst_processed += inst_processed; 480 inst_processed = 0; 481 482 } while (tot_inst_processed < napi_budget); 483 484 if (napi_budget && (tot_inst_processed >= napi_budget)) 485 tx_done = 0; 486 487 iq->last_db_time = jiffies; 488 489 spin_unlock_bh(&iq->lock); 490 491 spin_unlock(&iq->iq_flush_running_lock); 492 493 return tx_done; 494 } 495 496 /* Process instruction queue after timeout. 497 * This routine gets called from a workqueue or when removing the module. 498 */ 499 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no) 500 { 501 struct octeon_instr_queue *iq; 502 u64 next_time; 503 504 if (!oct) 505 return; 506 507 iq = oct->instr_queue[iq_no]; 508 if (!iq) 509 return; 510 511 /* return immediately, if no work pending */ 512 if (!atomic_read(&iq->instr_pending)) 513 return; 514 /* If jiffies - last_db_time < db_timeout do nothing */ 515 next_time = iq->last_db_time + iq->db_timeout; 516 if (!time_after(jiffies, (unsigned long)next_time)) 517 return; 518 iq->last_db_time = jiffies; 519 520 /* Flush the instruction queue */ 521 octeon_flush_iq(oct, iq, 0); 522 523 lio_enable_irq(NULL, iq); 524 } 525 526 /* Called by the Poll thread at regular intervals to check the instruction 527 * queue for commands to be posted and for commands that were fetched by Octeon. 528 */ 529 static void check_db_timeout(struct work_struct *work) 530 { 531 struct cavium_wk *wk = (struct cavium_wk *)work; 532 struct octeon_device *oct = (struct octeon_device *)wk->ctxptr; 533 u64 iq_no = wk->ctxul; 534 struct cavium_wq *db_wq = &oct->check_db_wq[iq_no]; 535 u32 delay = 10; 536 537 __check_db_timeout(oct, iq_no); 538 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay)); 539 } 540 541 int 542 octeon_send_command(struct octeon_device *oct, u32 iq_no, 543 u32 force_db, void *cmd, void *buf, 544 u32 datasize, u32 reqtype) 545 { 546 struct iq_post_status st; 547 struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; 548 549 /* Get the lock and prevent other tasks and tx interrupt handler from 550 * running. 551 */ 552 spin_lock_bh(&iq->post_lock); 553 554 st = __post_command2(iq, cmd); 555 556 if (st.status != IQ_SEND_FAILED) { 557 octeon_report_sent_bytes_to_bql(buf, reqtype); 558 __add_to_request_list(iq, st.index, buf, reqtype); 559 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize); 560 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1); 561 562 if (force_db) 563 ring_doorbell(oct, iq); 564 } else { 565 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1); 566 } 567 568 spin_unlock_bh(&iq->post_lock); 569 570 /* This is only done here to expedite packets being flushed 571 * for cases where there are no IQ completion interrupts. 572 */ 573 574 return st.status; 575 } 576 577 void 578 octeon_prepare_soft_command(struct octeon_device *oct, 579 struct octeon_soft_command *sc, 580 u8 opcode, 581 u8 subcode, 582 u32 irh_ossp, 583 u64 ossp0, 584 u64 ossp1) 585 { 586 struct octeon_config *oct_cfg; 587 struct octeon_instr_ih2 *ih2; 588 struct octeon_instr_ih3 *ih3; 589 struct octeon_instr_pki_ih3 *pki_ih3; 590 struct octeon_instr_irh *irh; 591 struct octeon_instr_rdp *rdp; 592 593 WARN_ON(opcode > 15); 594 WARN_ON(subcode > 127); 595 596 oct_cfg = octeon_get_conf(oct); 597 598 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) { 599 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3; 600 601 ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind; 602 603 pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3; 604 605 pki_ih3->w = 1; 606 pki_ih3->raw = 1; 607 pki_ih3->utag = 1; 608 pki_ih3->uqpg = 609 oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg; 610 pki_ih3->utt = 1; 611 pki_ih3->tag = LIO_CONTROL; 612 pki_ih3->tagtype = ATOMIC_TAG; 613 pki_ih3->qpg = 614 oct->instr_queue[sc->iq_no]->txpciq.s.qpg; 615 pki_ih3->pm = 0x7; 616 pki_ih3->sl = 8; 617 618 if (sc->datasize) 619 ih3->dlengsz = sc->datasize; 620 621 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh; 622 irh->opcode = opcode; 623 irh->subcode = subcode; 624 625 /* opcode/subcode specific parameters (ossp) */ 626 irh->ossp = irh_ossp; 627 sc->cmd.cmd3.ossp[0] = ossp0; 628 sc->cmd.cmd3.ossp[1] = ossp1; 629 630 if (sc->rdatasize) { 631 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp; 632 rdp->pcie_port = oct->pcie_port; 633 rdp->rlen = sc->rdatasize; 634 635 irh->rflag = 1; 636 /*PKI IH3*/ 637 /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */ 638 ih3->fsz = LIO_SOFTCMDRESP_IH3; 639 } else { 640 irh->rflag = 0; 641 /*PKI IH3*/ 642 /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */ 643 ih3->fsz = LIO_PCICMD_O3; 644 } 645 646 } else { 647 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2; 648 ih2->tagtype = ATOMIC_TAG; 649 ih2->tag = LIO_CONTROL; 650 ih2->raw = 1; 651 ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg); 652 653 if (sc->datasize) { 654 ih2->dlengsz = sc->datasize; 655 ih2->rs = 1; 656 } 657 658 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh; 659 irh->opcode = opcode; 660 irh->subcode = subcode; 661 662 /* opcode/subcode specific parameters (ossp) */ 663 irh->ossp = irh_ossp; 664 sc->cmd.cmd2.ossp[0] = ossp0; 665 sc->cmd.cmd2.ossp[1] = ossp1; 666 667 if (sc->rdatasize) { 668 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp; 669 rdp->pcie_port = oct->pcie_port; 670 rdp->rlen = sc->rdatasize; 671 672 irh->rflag = 1; 673 /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */ 674 ih2->fsz = LIO_SOFTCMDRESP_IH2; 675 } else { 676 irh->rflag = 0; 677 /* irh + ossp[0] + ossp[1] = 24 bytes */ 678 ih2->fsz = LIO_PCICMD_O2; 679 } 680 } 681 } 682 683 int octeon_send_soft_command(struct octeon_device *oct, 684 struct octeon_soft_command *sc) 685 { 686 struct octeon_instr_ih2 *ih2; 687 struct octeon_instr_ih3 *ih3; 688 struct octeon_instr_irh *irh; 689 u32 len; 690 691 if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) { 692 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3; 693 if (ih3->dlengsz) { 694 WARN_ON(!sc->dmadptr); 695 sc->cmd.cmd3.dptr = sc->dmadptr; 696 } 697 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh; 698 if (irh->rflag) { 699 WARN_ON(!sc->dmarptr); 700 WARN_ON(!sc->status_word); 701 *sc->status_word = COMPLETION_WORD_INIT; 702 sc->cmd.cmd3.rptr = sc->dmarptr; 703 } 704 len = (u32)ih3->dlengsz; 705 } else { 706 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2; 707 if (ih2->dlengsz) { 708 WARN_ON(!sc->dmadptr); 709 sc->cmd.cmd2.dptr = sc->dmadptr; 710 } 711 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh; 712 if (irh->rflag) { 713 WARN_ON(!sc->dmarptr); 714 WARN_ON(!sc->status_word); 715 *sc->status_word = COMPLETION_WORD_INIT; 716 sc->cmd.cmd2.rptr = sc->dmarptr; 717 } 718 len = (u32)ih2->dlengsz; 719 } 720 721 if (sc->wait_time) 722 sc->timeout = jiffies + sc->wait_time; 723 724 return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc, 725 len, REQTYPE_SOFT_COMMAND)); 726 } 727 728 int octeon_setup_sc_buffer_pool(struct octeon_device *oct) 729 { 730 int i; 731 u64 dma_addr; 732 struct octeon_soft_command *sc; 733 734 INIT_LIST_HEAD(&oct->sc_buf_pool.head); 735 spin_lock_init(&oct->sc_buf_pool.lock); 736 atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0); 737 738 for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) { 739 sc = (struct octeon_soft_command *) 740 lio_dma_alloc(oct, 741 SOFT_COMMAND_BUFFER_SIZE, 742 (dma_addr_t *)&dma_addr); 743 if (!sc) { 744 octeon_free_sc_buffer_pool(oct); 745 return 1; 746 } 747 748 sc->dma_addr = dma_addr; 749 sc->size = SOFT_COMMAND_BUFFER_SIZE; 750 751 list_add_tail(&sc->node, &oct->sc_buf_pool.head); 752 } 753 754 return 0; 755 } 756 757 int octeon_free_sc_buffer_pool(struct octeon_device *oct) 758 { 759 struct list_head *tmp, *tmp2; 760 struct octeon_soft_command *sc; 761 762 spin_lock_bh(&oct->sc_buf_pool.lock); 763 764 list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) { 765 list_del(tmp); 766 767 sc = (struct octeon_soft_command *)tmp; 768 769 lio_dma_free(oct, sc->size, sc, sc->dma_addr); 770 } 771 772 INIT_LIST_HEAD(&oct->sc_buf_pool.head); 773 774 spin_unlock_bh(&oct->sc_buf_pool.lock); 775 776 return 0; 777 } 778 779 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct, 780 u32 datasize, 781 u32 rdatasize, 782 u32 ctxsize) 783 { 784 u64 dma_addr; 785 u32 size; 786 u32 offset = sizeof(struct octeon_soft_command); 787 struct octeon_soft_command *sc = NULL; 788 struct list_head *tmp; 789 790 WARN_ON((offset + datasize + rdatasize + ctxsize) > 791 SOFT_COMMAND_BUFFER_SIZE); 792 793 spin_lock_bh(&oct->sc_buf_pool.lock); 794 795 if (list_empty(&oct->sc_buf_pool.head)) { 796 spin_unlock_bh(&oct->sc_buf_pool.lock); 797 return NULL; 798 } 799 800 list_for_each(tmp, &oct->sc_buf_pool.head) 801 break; 802 803 list_del(tmp); 804 805 atomic_inc(&oct->sc_buf_pool.alloc_buf_count); 806 807 spin_unlock_bh(&oct->sc_buf_pool.lock); 808 809 sc = (struct octeon_soft_command *)tmp; 810 811 dma_addr = sc->dma_addr; 812 size = sc->size; 813 814 memset(sc, 0, sc->size); 815 816 sc->dma_addr = dma_addr; 817 sc->size = size; 818 819 if (ctxsize) { 820 sc->ctxptr = (u8 *)sc + offset; 821 sc->ctxsize = ctxsize; 822 } 823 824 /* Start data at 128 byte boundary */ 825 offset = (offset + ctxsize + 127) & 0xffffff80; 826 827 if (datasize) { 828 sc->virtdptr = (u8 *)sc + offset; 829 sc->dmadptr = dma_addr + offset; 830 sc->datasize = datasize; 831 } 832 833 /* Start rdata at 128 byte boundary */ 834 offset = (offset + datasize + 127) & 0xffffff80; 835 836 if (rdatasize) { 837 WARN_ON(rdatasize < 16); 838 sc->virtrptr = (u8 *)sc + offset; 839 sc->dmarptr = dma_addr + offset; 840 sc->rdatasize = rdatasize; 841 sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8); 842 } 843 844 return sc; 845 } 846 847 void octeon_free_soft_command(struct octeon_device *oct, 848 struct octeon_soft_command *sc) 849 { 850 spin_lock_bh(&oct->sc_buf_pool.lock); 851 852 list_add_tail(&sc->node, &oct->sc_buf_pool.head); 853 854 atomic_dec(&oct->sc_buf_pool.alloc_buf_count); 855 856 spin_unlock_bh(&oct->sc_buf_pool.lock); 857 } 858