1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  **********************************************************************/
19 #include <linux/pci.h>
20 #include <linux/netdevice.h>
21 #include <linux/vmalloc.h>
22 #include "liquidio_common.h"
23 #include "octeon_droq.h"
24 #include "octeon_iq.h"
25 #include "response_manager.h"
26 #include "octeon_device.h"
27 #include "octeon_main.h"
28 #include "octeon_network.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32 
33 struct iq_post_status {
34 	int status;
35 	int index;
36 };
37 
38 static void check_db_timeout(struct work_struct *work);
39 static void  __check_db_timeout(struct octeon_device *oct, u64 iq_no);
40 
41 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
42 
43 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
44 {
45 	struct octeon_instr_queue *iq =
46 	    (struct octeon_instr_queue *)oct->instr_queue[iq_no];
47 	return iq->iqcmd_64B;
48 }
49 
50 #define IQ_INSTR_MODE_32B(oct, iq_no)  (!IQ_INSTR_MODE_64B(oct, iq_no))
51 
52 /* Define this to return the request status comaptible to old code */
53 /*#define OCTEON_USE_OLD_REQ_STATUS*/
54 
55 /* Return 0 on success, 1 on failure */
56 int octeon_init_instr_queue(struct octeon_device *oct,
57 			    union oct_txpciq txpciq,
58 			    u32 num_descs)
59 {
60 	struct octeon_instr_queue *iq;
61 	struct octeon_iq_config *conf = NULL;
62 	u32 iq_no = (u32)txpciq.s.q_no;
63 	u32 q_size;
64 	struct cavium_wq *db_wq;
65 	int numa_node = dev_to_node(&oct->pci_dev->dev);
66 
67 	if (OCTEON_CN6XXX(oct))
68 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
69 	else if (OCTEON_CN23XX_PF(oct))
70 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
71 	else if (OCTEON_CN23XX_VF(oct))
72 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
73 
74 	if (!conf) {
75 		dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
76 			oct->chip_id);
77 		return 1;
78 	}
79 
80 	q_size = (u32)conf->instr_type * num_descs;
81 
82 	iq = oct->instr_queue[iq_no];
83 
84 	iq->oct_dev = oct;
85 
86 	iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
87 	if (!iq->base_addr) {
88 		dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
89 			iq_no);
90 		return 1;
91 	}
92 
93 	iq->max_count = num_descs;
94 
95 	/* Initialize a list to holds requests that have been posted to Octeon
96 	 * but has yet to be fetched by octeon
97 	 */
98 	iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
99 					       numa_node);
100 	if (!iq->request_list)
101 		iq->request_list = vmalloc(sizeof(*iq->request_list) *
102 						  num_descs);
103 	if (!iq->request_list) {
104 		lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
105 		dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
106 			iq_no);
107 		return 1;
108 	}
109 
110 	memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
111 
112 	dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
113 		iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
114 
115 	iq->txpciq.u64 = txpciq.u64;
116 	iq->fill_threshold = (u32)conf->db_min;
117 	iq->fill_cnt = 0;
118 	iq->host_write_index = 0;
119 	iq->octeon_read_index = 0;
120 	iq->flush_index = 0;
121 	iq->last_db_time = 0;
122 	iq->do_auto_flush = 1;
123 	iq->db_timeout = (u32)conf->db_timeout;
124 	atomic_set(&iq->instr_pending, 0);
125 
126 	/* Initialize the spinlock for this instruction queue */
127 	spin_lock_init(&iq->lock);
128 	spin_lock_init(&iq->post_lock);
129 
130 	spin_lock_init(&iq->iq_flush_running_lock);
131 
132 	oct->io_qmask.iq |= BIT_ULL(iq_no);
133 
134 	/* Set the 32B/64B mode for each input queue */
135 	oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
136 	iq->iqcmd_64B = (conf->instr_type == 64);
137 
138 	oct->fn_list.setup_iq_regs(oct, iq_no);
139 
140 	oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
141 						     WQ_MEM_RECLAIM,
142 						     0);
143 	if (!oct->check_db_wq[iq_no].wq) {
144 		vfree(iq->request_list);
145 		iq->request_list = NULL;
146 		lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
147 		dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
148 			iq_no);
149 		return 1;
150 	}
151 
152 	db_wq = &oct->check_db_wq[iq_no];
153 
154 	INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
155 	db_wq->wk.ctxptr = oct;
156 	db_wq->wk.ctxul = iq_no;
157 	queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
158 
159 	return 0;
160 }
161 
162 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
163 {
164 	u64 desc_size = 0, q_size;
165 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
166 
167 	cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
168 	destroy_workqueue(oct->check_db_wq[iq_no].wq);
169 
170 	if (OCTEON_CN6XXX(oct))
171 		desc_size =
172 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
173 	else if (OCTEON_CN23XX_PF(oct))
174 		desc_size =
175 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
176 	else if (OCTEON_CN23XX_VF(oct))
177 		desc_size =
178 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
179 
180 	vfree(iq->request_list);
181 
182 	if (iq->base_addr) {
183 		q_size = iq->max_count * desc_size;
184 		lio_dma_free(oct, (u32)q_size, iq->base_addr,
185 			     iq->base_addr_dma);
186 		oct->io_qmask.iq &= ~(1ULL << iq_no);
187 		vfree(oct->instr_queue[iq_no]);
188 		oct->instr_queue[iq_no] = NULL;
189 		oct->num_iqs--;
190 		return 0;
191 	}
192 	return 1;
193 }
194 
195 /* Return 0 on success, 1 on failure */
196 int octeon_setup_iq(struct octeon_device *oct,
197 		    int ifidx,
198 		    int q_index,
199 		    union oct_txpciq txpciq,
200 		    u32 num_descs,
201 		    void *app_ctx)
202 {
203 	u32 iq_no = (u32)txpciq.s.q_no;
204 	int numa_node = dev_to_node(&oct->pci_dev->dev);
205 
206 	if (oct->instr_queue[iq_no]) {
207 		dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
208 			iq_no);
209 		oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
210 		oct->instr_queue[iq_no]->app_ctx = app_ctx;
211 		return 0;
212 	}
213 	oct->instr_queue[iq_no] =
214 	    vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
215 	if (!oct->instr_queue[iq_no])
216 		oct->instr_queue[iq_no] =
217 		    vmalloc(sizeof(struct octeon_instr_queue));
218 	if (!oct->instr_queue[iq_no])
219 		return 1;
220 
221 	memset(oct->instr_queue[iq_no], 0,
222 	       sizeof(struct octeon_instr_queue));
223 
224 	oct->instr_queue[iq_no]->q_index = q_index;
225 	oct->instr_queue[iq_no]->app_ctx = app_ctx;
226 	oct->instr_queue[iq_no]->ifidx = ifidx;
227 
228 	if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
229 		vfree(oct->instr_queue[iq_no]);
230 		oct->instr_queue[iq_no] = NULL;
231 		return 1;
232 	}
233 
234 	oct->num_iqs++;
235 	if (oct->fn_list.enable_io_queues(oct))
236 		return 1;
237 
238 	return 0;
239 }
240 
241 int lio_wait_for_instr_fetch(struct octeon_device *oct)
242 {
243 	int i, retry = 1000, pending, instr_cnt = 0;
244 
245 	do {
246 		instr_cnt = 0;
247 
248 		for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
249 			if (!(oct->io_qmask.iq & BIT_ULL(i)))
250 				continue;
251 			pending =
252 			    atomic_read(&oct->instr_queue[i]->instr_pending);
253 			if (pending)
254 				__check_db_timeout(oct, i);
255 			instr_cnt += pending;
256 		}
257 
258 		if (instr_cnt == 0)
259 			break;
260 
261 		schedule_timeout_uninterruptible(1);
262 
263 	} while (retry-- && instr_cnt);
264 
265 	return instr_cnt;
266 }
267 
268 static inline void
269 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
270 {
271 	if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
272 		writel(iq->fill_cnt, iq->doorbell_reg);
273 		/* make sure doorbell write goes through */
274 		mmiowb();
275 		iq->fill_cnt = 0;
276 		iq->last_db_time = jiffies;
277 		return;
278 	}
279 }
280 
281 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
282 				      u8 *cmd)
283 {
284 	u8 *iqptr, cmdsize;
285 
286 	cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
287 	iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
288 
289 	memcpy(iqptr, cmd, cmdsize);
290 }
291 
292 static inline struct iq_post_status
293 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
294 {
295 	struct iq_post_status st;
296 
297 	st.status = IQ_SEND_OK;
298 
299 	/* This ensures that the read index does not wrap around to the same
300 	 * position if queue gets full before Octeon could fetch any instr.
301 	 */
302 	if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
303 		st.status = IQ_SEND_FAILED;
304 		st.index = -1;
305 		return st;
306 	}
307 
308 	if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
309 		st.status = IQ_SEND_STOP;
310 
311 	__copy_cmd_into_iq(iq, cmd);
312 
313 	/* "index" is returned, host_write_index is modified. */
314 	st.index = iq->host_write_index;
315 	iq->host_write_index = incr_index(iq->host_write_index, 1,
316 					  iq->max_count);
317 	iq->fill_cnt++;
318 
319 	/* Flush the command into memory. We need to be sure the data is in
320 	 * memory before indicating that the instruction is pending.
321 	 */
322 	wmb();
323 
324 	atomic_inc(&iq->instr_pending);
325 
326 	return st;
327 }
328 
329 int
330 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
331 				void (*fn)(void *))
332 {
333 	if (reqtype > REQTYPE_LAST) {
334 		dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
335 			__func__, reqtype);
336 		return -EINVAL;
337 	}
338 
339 	reqtype_free_fn[oct->octeon_id][reqtype] = fn;
340 
341 	return 0;
342 }
343 
344 static inline void
345 __add_to_request_list(struct octeon_instr_queue *iq,
346 		      int idx, void *buf, int reqtype)
347 {
348 	iq->request_list[idx].buf = buf;
349 	iq->request_list[idx].reqtype = reqtype;
350 }
351 
352 /* Can only run in process context */
353 int
354 lio_process_iq_request_list(struct octeon_device *oct,
355 			    struct octeon_instr_queue *iq, u32 napi_budget)
356 {
357 	int reqtype;
358 	void *buf;
359 	u32 old = iq->flush_index;
360 	u32 inst_count = 0;
361 	unsigned int pkts_compl = 0, bytes_compl = 0;
362 	struct octeon_soft_command *sc;
363 	struct octeon_instr_irh *irh;
364 	unsigned long flags;
365 
366 	while (old != iq->octeon_read_index) {
367 		reqtype = iq->request_list[old].reqtype;
368 		buf     = iq->request_list[old].buf;
369 
370 		if (reqtype == REQTYPE_NONE)
371 			goto skip_this;
372 
373 		octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
374 						     &bytes_compl);
375 
376 		switch (reqtype) {
377 		case REQTYPE_NORESP_NET:
378 		case REQTYPE_NORESP_NET_SG:
379 		case REQTYPE_RESP_NET_SG:
380 			reqtype_free_fn[oct->octeon_id][reqtype](buf);
381 			break;
382 		case REQTYPE_RESP_NET:
383 		case REQTYPE_SOFT_COMMAND:
384 			sc = buf;
385 
386 			if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
387 				irh = (struct octeon_instr_irh *)
388 					&sc->cmd.cmd3.irh;
389 			else
390 				irh = (struct octeon_instr_irh *)
391 					&sc->cmd.cmd2.irh;
392 			if (irh->rflag) {
393 				/* We're expecting a response from Octeon.
394 				 * It's up to lio_process_ordered_list() to
395 				 * process  sc. Add sc to the ordered soft
396 				 * command response list because we expect
397 				 * a response from Octeon.
398 				 */
399 				spin_lock_irqsave
400 					(&oct->response_list
401 					 [OCTEON_ORDERED_SC_LIST].lock,
402 					 flags);
403 				atomic_inc(&oct->response_list
404 					[OCTEON_ORDERED_SC_LIST].
405 					pending_req_count);
406 				list_add_tail(&sc->node, &oct->response_list
407 					[OCTEON_ORDERED_SC_LIST].head);
408 				spin_unlock_irqrestore
409 					(&oct->response_list
410 					 [OCTEON_ORDERED_SC_LIST].lock,
411 					 flags);
412 			} else {
413 				if (sc->callback) {
414 					/* This callback must not sleep */
415 					sc->callback(oct, OCTEON_REQUEST_DONE,
416 						     sc->callback_arg);
417 				}
418 			}
419 			break;
420 		default:
421 			dev_err(&oct->pci_dev->dev,
422 				"%s Unknown reqtype: %d buf: %p at idx %d\n",
423 				__func__, reqtype, buf, old);
424 		}
425 
426 		iq->request_list[old].buf = NULL;
427 		iq->request_list[old].reqtype = 0;
428 
429  skip_this:
430 		inst_count++;
431 		old = incr_index(old, 1, iq->max_count);
432 
433 		if ((napi_budget) && (inst_count >= napi_budget))
434 			break;
435 	}
436 	if (bytes_compl)
437 		octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
438 						   bytes_compl);
439 	iq->flush_index = old;
440 
441 	return inst_count;
442 }
443 
444 /* Can only be called from process context */
445 int
446 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
447 		u32 napi_budget)
448 {
449 	u32 inst_processed = 0;
450 	u32 tot_inst_processed = 0;
451 	int tx_done = 1;
452 
453 	if (!spin_trylock(&iq->iq_flush_running_lock))
454 		return tx_done;
455 
456 	spin_lock_bh(&iq->lock);
457 
458 	iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
459 
460 	do {
461 		/* Process any outstanding IQ packets. */
462 		if (iq->flush_index == iq->octeon_read_index)
463 			break;
464 
465 		if (napi_budget)
466 			inst_processed =
467 				lio_process_iq_request_list(oct, iq,
468 							    napi_budget -
469 							    tot_inst_processed);
470 		else
471 			inst_processed =
472 				lio_process_iq_request_list(oct, iq, 0);
473 
474 		if (inst_processed) {
475 			atomic_sub(inst_processed, &iq->instr_pending);
476 			iq->stats.instr_processed += inst_processed;
477 		}
478 
479 		tot_inst_processed += inst_processed;
480 		inst_processed = 0;
481 
482 	} while (tot_inst_processed < napi_budget);
483 
484 	if (napi_budget && (tot_inst_processed >= napi_budget))
485 		tx_done = 0;
486 
487 	iq->last_db_time = jiffies;
488 
489 	spin_unlock_bh(&iq->lock);
490 
491 	spin_unlock(&iq->iq_flush_running_lock);
492 
493 	return tx_done;
494 }
495 
496 /* Process instruction queue after timeout.
497  * This routine gets called from a workqueue or when removing the module.
498  */
499 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
500 {
501 	struct octeon_instr_queue *iq;
502 	u64 next_time;
503 
504 	if (!oct)
505 		return;
506 
507 	iq = oct->instr_queue[iq_no];
508 	if (!iq)
509 		return;
510 
511 	/* return immediately, if no work pending */
512 	if (!atomic_read(&iq->instr_pending))
513 		return;
514 	/* If jiffies - last_db_time < db_timeout do nothing  */
515 	next_time = iq->last_db_time + iq->db_timeout;
516 	if (!time_after(jiffies, (unsigned long)next_time))
517 		return;
518 	iq->last_db_time = jiffies;
519 
520 	/* Flush the instruction queue */
521 	octeon_flush_iq(oct, iq, 0);
522 
523 	lio_enable_irq(NULL, iq);
524 }
525 
526 /* Called by the Poll thread at regular intervals to check the instruction
527  * queue for commands to be posted and for commands that were fetched by Octeon.
528  */
529 static void check_db_timeout(struct work_struct *work)
530 {
531 	struct cavium_wk *wk = (struct cavium_wk *)work;
532 	struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
533 	u64 iq_no = wk->ctxul;
534 	struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
535 	u32 delay = 10;
536 
537 	__check_db_timeout(oct, iq_no);
538 	queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
539 }
540 
541 int
542 octeon_send_command(struct octeon_device *oct, u32 iq_no,
543 		    u32 force_db, void *cmd, void *buf,
544 		    u32 datasize, u32 reqtype)
545 {
546 	struct iq_post_status st;
547 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
548 
549 	/* Get the lock and prevent other tasks and tx interrupt handler from
550 	 * running.
551 	 */
552 	spin_lock_bh(&iq->post_lock);
553 
554 	st = __post_command2(iq, cmd);
555 
556 	if (st.status != IQ_SEND_FAILED) {
557 		octeon_report_sent_bytes_to_bql(buf, reqtype);
558 		__add_to_request_list(iq, st.index, buf, reqtype);
559 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
560 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
561 
562 		if (force_db)
563 			ring_doorbell(oct, iq);
564 	} else {
565 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
566 	}
567 
568 	spin_unlock_bh(&iq->post_lock);
569 
570 	/* This is only done here to expedite packets being flushed
571 	 * for cases where there are no IQ completion interrupts.
572 	 */
573 
574 	return st.status;
575 }
576 
577 void
578 octeon_prepare_soft_command(struct octeon_device *oct,
579 			    struct octeon_soft_command *sc,
580 			    u8 opcode,
581 			    u8 subcode,
582 			    u32 irh_ossp,
583 			    u64 ossp0,
584 			    u64 ossp1)
585 {
586 	struct octeon_config *oct_cfg;
587 	struct octeon_instr_ih2 *ih2;
588 	struct octeon_instr_ih3 *ih3;
589 	struct octeon_instr_pki_ih3 *pki_ih3;
590 	struct octeon_instr_irh *irh;
591 	struct octeon_instr_rdp *rdp;
592 
593 	WARN_ON(opcode > 15);
594 	WARN_ON(subcode > 127);
595 
596 	oct_cfg = octeon_get_conf(oct);
597 
598 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
599 		ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
600 
601 		ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
602 
603 		pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
604 
605 		pki_ih3->w           = 1;
606 		pki_ih3->raw         = 1;
607 		pki_ih3->utag        = 1;
608 		pki_ih3->uqpg        =
609 			oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
610 		pki_ih3->utt         = 1;
611 		pki_ih3->tag     = LIO_CONTROL;
612 		pki_ih3->tagtype = ATOMIC_TAG;
613 		pki_ih3->qpg         =
614 			oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
615 		pki_ih3->pm          = 0x7;
616 		pki_ih3->sl          = 8;
617 
618 		if (sc->datasize)
619 			ih3->dlengsz = sc->datasize;
620 
621 		irh            = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
622 		irh->opcode    = opcode;
623 		irh->subcode   = subcode;
624 
625 		/* opcode/subcode specific parameters (ossp) */
626 		irh->ossp       = irh_ossp;
627 		sc->cmd.cmd3.ossp[0] = ossp0;
628 		sc->cmd.cmd3.ossp[1] = ossp1;
629 
630 		if (sc->rdatasize) {
631 			rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
632 			rdp->pcie_port = oct->pcie_port;
633 			rdp->rlen      = sc->rdatasize;
634 
635 			irh->rflag =  1;
636 			/*PKI IH3*/
637 			/* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
638 			ih3->fsz    = LIO_SOFTCMDRESP_IH3;
639 		} else {
640 			irh->rflag =  0;
641 			/*PKI IH3*/
642 			/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
643 			ih3->fsz    = LIO_PCICMD_O3;
644 		}
645 
646 	} else {
647 		ih2          = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
648 		ih2->tagtype = ATOMIC_TAG;
649 		ih2->tag     = LIO_CONTROL;
650 		ih2->raw     = 1;
651 		ih2->grp     = CFG_GET_CTRL_Q_GRP(oct_cfg);
652 
653 		if (sc->datasize) {
654 			ih2->dlengsz = sc->datasize;
655 			ih2->rs = 1;
656 		}
657 
658 		irh            = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
659 		irh->opcode    = opcode;
660 		irh->subcode   = subcode;
661 
662 		/* opcode/subcode specific parameters (ossp) */
663 		irh->ossp       = irh_ossp;
664 		sc->cmd.cmd2.ossp[0] = ossp0;
665 		sc->cmd.cmd2.ossp[1] = ossp1;
666 
667 		if (sc->rdatasize) {
668 			rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
669 			rdp->pcie_port = oct->pcie_port;
670 			rdp->rlen      = sc->rdatasize;
671 
672 			irh->rflag =  1;
673 			/* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
674 			ih2->fsz   = LIO_SOFTCMDRESP_IH2;
675 		} else {
676 			irh->rflag =  0;
677 			/* irh + ossp[0] + ossp[1] = 24 bytes */
678 			ih2->fsz   = LIO_PCICMD_O2;
679 		}
680 	}
681 }
682 
683 int octeon_send_soft_command(struct octeon_device *oct,
684 			     struct octeon_soft_command *sc)
685 {
686 	struct octeon_instr_ih2 *ih2;
687 	struct octeon_instr_ih3 *ih3;
688 	struct octeon_instr_irh *irh;
689 	u32 len;
690 
691 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
692 		ih3 =  (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
693 		if (ih3->dlengsz) {
694 			WARN_ON(!sc->dmadptr);
695 			sc->cmd.cmd3.dptr = sc->dmadptr;
696 		}
697 		irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
698 		if (irh->rflag) {
699 			WARN_ON(!sc->dmarptr);
700 			WARN_ON(!sc->status_word);
701 			*sc->status_word = COMPLETION_WORD_INIT;
702 			sc->cmd.cmd3.rptr = sc->dmarptr;
703 		}
704 		len = (u32)ih3->dlengsz;
705 	} else {
706 		ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
707 		if (ih2->dlengsz) {
708 			WARN_ON(!sc->dmadptr);
709 			sc->cmd.cmd2.dptr = sc->dmadptr;
710 		}
711 		irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
712 		if (irh->rflag) {
713 			WARN_ON(!sc->dmarptr);
714 			WARN_ON(!sc->status_word);
715 			*sc->status_word = COMPLETION_WORD_INIT;
716 			sc->cmd.cmd2.rptr = sc->dmarptr;
717 		}
718 		len = (u32)ih2->dlengsz;
719 	}
720 
721 	if (sc->wait_time)
722 		sc->timeout = jiffies + sc->wait_time;
723 
724 	return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
725 				    len, REQTYPE_SOFT_COMMAND));
726 }
727 
728 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
729 {
730 	int i;
731 	u64 dma_addr;
732 	struct octeon_soft_command *sc;
733 
734 	INIT_LIST_HEAD(&oct->sc_buf_pool.head);
735 	spin_lock_init(&oct->sc_buf_pool.lock);
736 	atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
737 
738 	for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
739 		sc = (struct octeon_soft_command *)
740 			lio_dma_alloc(oct,
741 				      SOFT_COMMAND_BUFFER_SIZE,
742 					  (dma_addr_t *)&dma_addr);
743 		if (!sc) {
744 			octeon_free_sc_buffer_pool(oct);
745 			return 1;
746 		}
747 
748 		sc->dma_addr = dma_addr;
749 		sc->size = SOFT_COMMAND_BUFFER_SIZE;
750 
751 		list_add_tail(&sc->node, &oct->sc_buf_pool.head);
752 	}
753 
754 	return 0;
755 }
756 
757 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
758 {
759 	struct list_head *tmp, *tmp2;
760 	struct octeon_soft_command *sc;
761 
762 	spin_lock_bh(&oct->sc_buf_pool.lock);
763 
764 	list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
765 		list_del(tmp);
766 
767 		sc = (struct octeon_soft_command *)tmp;
768 
769 		lio_dma_free(oct, sc->size, sc, sc->dma_addr);
770 	}
771 
772 	INIT_LIST_HEAD(&oct->sc_buf_pool.head);
773 
774 	spin_unlock_bh(&oct->sc_buf_pool.lock);
775 
776 	return 0;
777 }
778 
779 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
780 						      u32 datasize,
781 						      u32 rdatasize,
782 						      u32 ctxsize)
783 {
784 	u64 dma_addr;
785 	u32 size;
786 	u32 offset = sizeof(struct octeon_soft_command);
787 	struct octeon_soft_command *sc = NULL;
788 	struct list_head *tmp;
789 
790 	WARN_ON((offset + datasize + rdatasize + ctxsize) >
791 	       SOFT_COMMAND_BUFFER_SIZE);
792 
793 	spin_lock_bh(&oct->sc_buf_pool.lock);
794 
795 	if (list_empty(&oct->sc_buf_pool.head)) {
796 		spin_unlock_bh(&oct->sc_buf_pool.lock);
797 		return NULL;
798 	}
799 
800 	list_for_each(tmp, &oct->sc_buf_pool.head)
801 		break;
802 
803 	list_del(tmp);
804 
805 	atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
806 
807 	spin_unlock_bh(&oct->sc_buf_pool.lock);
808 
809 	sc = (struct octeon_soft_command *)tmp;
810 
811 	dma_addr = sc->dma_addr;
812 	size = sc->size;
813 
814 	memset(sc, 0, sc->size);
815 
816 	sc->dma_addr = dma_addr;
817 	sc->size = size;
818 
819 	if (ctxsize) {
820 		sc->ctxptr = (u8 *)sc + offset;
821 		sc->ctxsize = ctxsize;
822 	}
823 
824 	/* Start data at 128 byte boundary */
825 	offset = (offset + ctxsize + 127) & 0xffffff80;
826 
827 	if (datasize) {
828 		sc->virtdptr = (u8 *)sc + offset;
829 		sc->dmadptr = dma_addr + offset;
830 		sc->datasize = datasize;
831 	}
832 
833 	/* Start rdata at 128 byte boundary */
834 	offset = (offset + datasize + 127) & 0xffffff80;
835 
836 	if (rdatasize) {
837 		WARN_ON(rdatasize < 16);
838 		sc->virtrptr = (u8 *)sc + offset;
839 		sc->dmarptr = dma_addr + offset;
840 		sc->rdatasize = rdatasize;
841 		sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
842 	}
843 
844 	return sc;
845 }
846 
847 void octeon_free_soft_command(struct octeon_device *oct,
848 			      struct octeon_soft_command *sc)
849 {
850 	spin_lock_bh(&oct->sc_buf_pool.lock);
851 
852 	list_add_tail(&sc->node, &oct->sc_buf_pool.head);
853 
854 	atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
855 
856 	spin_unlock_bh(&oct->sc_buf_pool.lock);
857 }
858