1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more 17 * details. 18 **********************************************************************/ 19 20 /*! \file octeon_network.h 21 * \brief Host NIC Driver: Structure and Macro definitions used by NIC Module. 22 */ 23 24 #ifndef __OCTEON_NETWORK_H__ 25 #define __OCTEON_NETWORK_H__ 26 #include <linux/ptp_clock_kernel.h> 27 28 #define LIO_MAX_MTU_SIZE (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE) 29 #define LIO_MIN_MTU_SIZE ETH_MIN_MTU 30 31 struct oct_nic_stats_resp { 32 u64 rh; 33 struct oct_link_stats stats; 34 u64 status; 35 }; 36 37 struct oct_nic_stats_ctrl { 38 struct completion complete; 39 struct net_device *netdev; 40 }; 41 42 /** LiquidIO per-interface network private data */ 43 struct lio { 44 /** State of the interface. Rx/Tx happens only in the RUNNING state. */ 45 atomic_t ifstate; 46 47 /** Octeon Interface index number. This device will be represented as 48 * oct<ifidx> in the system. 49 */ 50 int ifidx; 51 52 /** Octeon Input queue to use to transmit for this network interface. */ 53 int txq; 54 55 /** Octeon Output queue from which pkts arrive 56 * for this network interface. 57 */ 58 int rxq; 59 60 /** Guards each glist */ 61 spinlock_t *glist_lock; 62 63 /** Array of gather component linked lists */ 64 struct list_head *glist; 65 void **glists_virt_base; 66 dma_addr_t *glists_dma_base; 67 u32 glist_entry_size; 68 69 /** Pointer to the NIC properties for the Octeon device this network 70 * interface is associated with. 71 */ 72 struct octdev_props *octprops; 73 74 /** Pointer to the octeon device structure. */ 75 struct octeon_device *oct_dev; 76 77 struct net_device *netdev; 78 79 /** Link information sent by the core application for this interface. */ 80 struct oct_link_info linfo; 81 82 /** counter of link changes */ 83 u64 link_changes; 84 85 /** Size of Tx queue for this octeon device. */ 86 u32 tx_qsize; 87 88 /** Size of Rx queue for this octeon device. */ 89 u32 rx_qsize; 90 91 /** Size of MTU this octeon device. */ 92 u32 mtu; 93 94 /** msg level flag per interface. */ 95 u32 msg_enable; 96 97 /** Copy of Interface capabilities: TSO, TSO6, LRO, Chescksums . */ 98 u64 dev_capability; 99 100 /* Copy of transmit encapsulation capabilities: 101 * TSO, TSO6, Checksums for this device for Kernel 102 * 3.10.0 onwards 103 */ 104 u64 enc_dev_capability; 105 106 /** Copy of beacaon reg in phy */ 107 u32 phy_beacon_val; 108 109 /** Copy of ctrl reg in phy */ 110 u32 led_ctrl_val; 111 112 /* PTP clock information */ 113 struct ptp_clock_info ptp_info; 114 struct ptp_clock *ptp_clock; 115 s64 ptp_adjust; 116 117 /* for atomic access to Octeon PTP reg and data struct */ 118 spinlock_t ptp_lock; 119 120 /* Interface info */ 121 u32 intf_open; 122 123 /* work queue for txq status */ 124 struct cavium_wq txq_status_wq; 125 126 /* work queue for link status */ 127 struct cavium_wq link_status_wq; 128 129 int netdev_uc_count; 130 }; 131 132 #define LIO_SIZE (sizeof(struct lio)) 133 #define GET_LIO(netdev) ((struct lio *)netdev_priv(netdev)) 134 135 #define CIU3_WDOG(c) (0x1010000020000ULL + ((c) << 3)) 136 #define CIU3_WDOG_MASK 12ULL 137 #define LIO_MONITOR_WDOG_EXPIRE 1 138 #define LIO_MONITOR_CORE_STUCK_MSGD 2 139 #define LIO_MAX_CORES 12 140 141 /** 142 * \brief Enable or disable feature 143 * @param netdev pointer to network device 144 * @param cmd Command that just requires acknowledgment 145 * @param param1 Parameter to command 146 */ 147 int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1); 148 149 /** 150 * \brief Link control command completion callback 151 * @param nctrl_ptr pointer to control packet structure 152 * 153 * This routine is called by the callback function when a ctrl pkt sent to 154 * core app completes. The nctrl_ptr contains a copy of the command type 155 * and data sent to the core app. This routine is only called if the ctrl 156 * pkt was sent successfully to the core app. 157 */ 158 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr); 159 160 /** 161 * \brief Register ethtool operations 162 * @param netdev pointer to network device 163 */ 164 void liquidio_set_ethtool_ops(struct net_device *netdev); 165 166 #define SKB_ADJ_MASK 0x3F 167 #define SKB_ADJ (SKB_ADJ_MASK + 1) 168 169 #define MIN_SKB_SIZE 256 /* 8 bytes and more - 8 bytes for PTP */ 170 #define LIO_RXBUFFER_SZ 2048 171 172 static inline void 173 *recv_buffer_alloc(struct octeon_device *oct, 174 struct octeon_skb_page_info *pg_info) 175 { 176 struct page *page; 177 struct sk_buff *skb; 178 struct octeon_skb_page_info *skb_pg_info; 179 180 page = alloc_page(GFP_ATOMIC | __GFP_COLD); 181 if (unlikely(!page)) 182 return NULL; 183 184 skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ); 185 if (unlikely(!skb)) { 186 __free_page(page); 187 pg_info->page = NULL; 188 return NULL; 189 } 190 191 if ((unsigned long)skb->data & SKB_ADJ_MASK) { 192 u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK); 193 194 skb_reserve(skb, r); 195 } 196 197 skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 198 /* Get DMA info */ 199 pg_info->dma = dma_map_page(&oct->pci_dev->dev, page, 0, 200 PAGE_SIZE, DMA_FROM_DEVICE); 201 202 /* Mapping failed!! */ 203 if (dma_mapping_error(&oct->pci_dev->dev, pg_info->dma)) { 204 __free_page(page); 205 dev_kfree_skb_any((struct sk_buff *)skb); 206 pg_info->page = NULL; 207 return NULL; 208 } 209 210 pg_info->page = page; 211 pg_info->page_offset = 0; 212 skb_pg_info->page = page; 213 skb_pg_info->page_offset = 0; 214 skb_pg_info->dma = pg_info->dma; 215 216 return (void *)skb; 217 } 218 219 static inline void 220 *recv_buffer_fast_alloc(u32 size) 221 { 222 struct sk_buff *skb; 223 struct octeon_skb_page_info *skb_pg_info; 224 225 skb = dev_alloc_skb(size + SKB_ADJ); 226 if (unlikely(!skb)) 227 return NULL; 228 229 if ((unsigned long)skb->data & SKB_ADJ_MASK) { 230 u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK); 231 232 skb_reserve(skb, r); 233 } 234 235 skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 236 skb_pg_info->page = NULL; 237 skb_pg_info->page_offset = 0; 238 skb_pg_info->dma = 0; 239 240 return skb; 241 } 242 243 static inline int 244 recv_buffer_recycle(struct octeon_device *oct, void *buf) 245 { 246 struct octeon_skb_page_info *pg_info = buf; 247 248 if (!pg_info->page) { 249 dev_err(&oct->pci_dev->dev, "%s: pg_info->page NULL\n", 250 __func__); 251 return -ENOMEM; 252 } 253 254 if (unlikely(page_count(pg_info->page) != 1) || 255 unlikely(page_to_nid(pg_info->page) != numa_node_id())) { 256 dma_unmap_page(&oct->pci_dev->dev, 257 pg_info->dma, (PAGE_SIZE << 0), 258 DMA_FROM_DEVICE); 259 pg_info->dma = 0; 260 pg_info->page = NULL; 261 pg_info->page_offset = 0; 262 return -ENOMEM; 263 } 264 265 /* Flip to other half of the buffer */ 266 if (pg_info->page_offset == 0) 267 pg_info->page_offset = LIO_RXBUFFER_SZ; 268 else 269 pg_info->page_offset = 0; 270 page_ref_inc(pg_info->page); 271 272 return 0; 273 } 274 275 static inline void 276 *recv_buffer_reuse(struct octeon_device *oct, void *buf) 277 { 278 struct octeon_skb_page_info *pg_info = buf, *skb_pg_info; 279 struct sk_buff *skb; 280 281 skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ); 282 if (unlikely(!skb)) { 283 dma_unmap_page(&oct->pci_dev->dev, 284 pg_info->dma, (PAGE_SIZE << 0), 285 DMA_FROM_DEVICE); 286 return NULL; 287 } 288 289 if ((unsigned long)skb->data & SKB_ADJ_MASK) { 290 u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK); 291 292 skb_reserve(skb, r); 293 } 294 295 skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 296 skb_pg_info->page = pg_info->page; 297 skb_pg_info->page_offset = pg_info->page_offset; 298 skb_pg_info->dma = pg_info->dma; 299 300 return skb; 301 } 302 303 static inline void 304 recv_buffer_destroy(void *buffer, struct octeon_skb_page_info *pg_info) 305 { 306 struct sk_buff *skb = (struct sk_buff *)buffer; 307 308 put_page(pg_info->page); 309 pg_info->dma = 0; 310 pg_info->page = NULL; 311 pg_info->page_offset = 0; 312 313 if (skb) 314 dev_kfree_skb_any(skb); 315 } 316 317 static inline void recv_buffer_free(void *buffer) 318 { 319 struct sk_buff *skb = (struct sk_buff *)buffer; 320 struct octeon_skb_page_info *pg_info; 321 322 pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 323 324 if (pg_info->page) { 325 put_page(pg_info->page); 326 pg_info->dma = 0; 327 pg_info->page = NULL; 328 pg_info->page_offset = 0; 329 } 330 331 dev_kfree_skb_any((struct sk_buff *)buffer); 332 } 333 334 static inline void 335 recv_buffer_fast_free(void *buffer) 336 { 337 dev_kfree_skb_any((struct sk_buff *)buffer); 338 } 339 340 static inline void tx_buffer_free(void *buffer) 341 { 342 dev_kfree_skb_any((struct sk_buff *)buffer); 343 } 344 345 #define lio_dma_alloc(oct, size, dma_addr) \ 346 dma_alloc_coherent(&(oct)->pci_dev->dev, size, dma_addr, GFP_KERNEL) 347 #define lio_dma_free(oct, size, virt_addr, dma_addr) \ 348 dma_free_coherent(&(oct)->pci_dev->dev, size, virt_addr, dma_addr) 349 350 static inline void * 351 lio_alloc_info_buffer(struct octeon_device *oct, 352 struct octeon_droq *droq) 353 { 354 void *virt_ptr; 355 356 virt_ptr = lio_dma_alloc(oct, (droq->max_count * OCT_DROQ_INFO_SIZE), 357 &droq->info_list_dma); 358 if (virt_ptr) { 359 droq->info_alloc_size = droq->max_count * OCT_DROQ_INFO_SIZE; 360 droq->info_base_addr = virt_ptr; 361 } 362 363 return virt_ptr; 364 } 365 366 static inline void lio_free_info_buffer(struct octeon_device *oct, 367 struct octeon_droq *droq) 368 { 369 lio_dma_free(oct, droq->info_alloc_size, droq->info_base_addr, 370 droq->info_list_dma); 371 } 372 373 static inline 374 void *get_rbd(struct sk_buff *skb) 375 { 376 struct octeon_skb_page_info *pg_info; 377 unsigned char *va; 378 379 pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 380 va = page_address(pg_info->page) + pg_info->page_offset; 381 382 return va; 383 } 384 385 static inline u64 386 lio_map_ring_info(struct octeon_droq *droq, u32 i) 387 { 388 return droq->info_list_dma + (i * sizeof(struct octeon_droq_info)); 389 } 390 391 static inline u64 392 lio_map_ring(void *buf) 393 { 394 dma_addr_t dma_addr; 395 396 struct sk_buff *skb = (struct sk_buff *)buf; 397 struct octeon_skb_page_info *pg_info; 398 399 pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 400 if (!pg_info->page) { 401 pr_err("%s: pg_info->page NULL\n", __func__); 402 WARN_ON(1); 403 } 404 405 /* Get DMA info */ 406 dma_addr = pg_info->dma; 407 if (!pg_info->dma) { 408 pr_err("%s: ERROR it should be already available\n", 409 __func__); 410 WARN_ON(1); 411 } 412 dma_addr += pg_info->page_offset; 413 414 return (u64)dma_addr; 415 } 416 417 static inline void 418 lio_unmap_ring(struct pci_dev *pci_dev, 419 u64 buf_ptr) 420 421 { 422 dma_unmap_page(&pci_dev->dev, 423 buf_ptr, (PAGE_SIZE << 0), 424 DMA_FROM_DEVICE); 425 } 426 427 static inline void *octeon_fast_packet_alloc(u32 size) 428 { 429 return recv_buffer_fast_alloc(size); 430 } 431 432 static inline void octeon_fast_packet_next(struct octeon_droq *droq, 433 struct sk_buff *nicbuf, 434 int copy_len, 435 int idx) 436 { 437 memcpy(skb_put(nicbuf, copy_len), 438 get_rbd(droq->recv_buf_list[idx].buffer), copy_len); 439 } 440 441 #endif 442