1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 *          Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/crc32.h>
28 #include <linux/kthread.h>
29 #include <linux/netdevice.h>
30 #include <linux/vmalloc.h>
31 #include "octeon_config.h"
32 #include "liquidio_common.h"
33 #include "octeon_droq.h"
34 #include "octeon_iq.h"
35 #include "response_manager.h"
36 #include "octeon_device.h"
37 #include "octeon_nic.h"
38 #include "octeon_main.h"
39 #include "octeon_network.h"
40 #include "cn66xx_regs.h"
41 #include "cn66xx_device.h"
42 #include "cn68xx_regs.h"
43 #include "cn68xx_device.h"
44 #include "liquidio_image.h"
45 #include "octeon_mem_ops.h"
46 
47 /** Default configuration
48  *  for CN66XX OCTEON Models.
49  */
50 static struct octeon_config default_cn66xx_conf = {
51 	.card_type                              = LIO_210SV,
52 	.card_name                              = LIO_210SV_NAME,
53 
54 	/** IQ attributes */
55 	.iq					= {
56 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
57 		.pending_list_size		=
58 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
59 		.instr_type			= OCTEON_64BYTE_INSTR,
60 		.db_min				= CN6XXX_DB_MIN,
61 		.db_timeout			= CN6XXX_DB_TIMEOUT,
62 	}
63 	,
64 
65 	/** OQ attributes */
66 	.oq					= {
67 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
68 		.info_ptr			= OCTEON_OQ_INFOPTR_MODE,
69 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
70 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
71 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
72 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
73 	}
74 	,
75 
76 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_66XX,
77 	.num_def_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
78 	.num_def_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
79 	.def_rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
80 
81 	/* For ethernet interface 0:  Port cfg Attributes */
82 	.nic_if_cfg[0] = {
83 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
84 		.max_txqs			= MAX_TXQS_PER_INTF,
85 
86 		/* Actual configured value. Range could be: 1...max_txqs */
87 		.num_txqs			= DEF_TXQS_PER_INTF,
88 
89 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
90 		.max_rxqs			= MAX_RXQS_PER_INTF,
91 
92 		/* Actual configured value. Range could be: 1...max_rxqs */
93 		.num_rxqs			= DEF_RXQS_PER_INTF,
94 
95 		/* Num of desc for rx rings */
96 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
97 
98 		/* Num of desc for tx rings */
99 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
100 
101 		/* SKB size, We need not change buf size even for Jumbo frames.
102 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
103 		 */
104 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
105 
106 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
107 
108 		.gmx_port_id			= 0,
109 	},
110 
111 	.nic_if_cfg[1] = {
112 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
113 		.max_txqs			= MAX_TXQS_PER_INTF,
114 
115 		/* Actual configured value. Range could be: 1...max_txqs */
116 		.num_txqs			= DEF_TXQS_PER_INTF,
117 
118 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
119 		.max_rxqs			= MAX_RXQS_PER_INTF,
120 
121 		/* Actual configured value. Range could be: 1...max_rxqs */
122 		.num_rxqs			= DEF_RXQS_PER_INTF,
123 
124 		/* Num of desc for rx rings */
125 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
126 
127 		/* Num of desc for tx rings */
128 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
129 
130 		/* SKB size, We need not change buf size even for Jumbo frames.
131 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
132 		 */
133 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
134 
135 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
136 
137 		.gmx_port_id			= 1,
138 	},
139 
140 	/** Miscellaneous attributes */
141 	.misc					= {
142 		/* Host driver link query interval */
143 		.oct_link_query_interval	= 100,
144 
145 		/* Octeon link query interval */
146 		.host_link_query_interval	= 500,
147 
148 		.enable_sli_oq_bp		= 0,
149 
150 		/* Control queue group */
151 		.ctrlq_grp			= 1,
152 	}
153 	,
154 };
155 
156 /** Default configuration
157  *  for CN68XX OCTEON Model.
158  */
159 
160 static struct octeon_config default_cn68xx_conf = {
161 	.card_type                              = LIO_410NV,
162 	.card_name                              = LIO_410NV_NAME,
163 
164 	/** IQ attributes */
165 	.iq					= {
166 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
167 		.pending_list_size		=
168 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
169 		.instr_type			= OCTEON_64BYTE_INSTR,
170 		.db_min				= CN6XXX_DB_MIN,
171 		.db_timeout			= CN6XXX_DB_TIMEOUT,
172 	}
173 	,
174 
175 	/** OQ attributes */
176 	.oq					= {
177 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
178 		.info_ptr			= OCTEON_OQ_INFOPTR_MODE,
179 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
180 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
181 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
182 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
183 	}
184 	,
185 
186 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_68XX,
187 	.num_def_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
188 	.num_def_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
189 	.def_rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
190 
191 	.nic_if_cfg[0] = {
192 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
193 		.max_txqs			= MAX_TXQS_PER_INTF,
194 
195 		/* Actual configured value. Range could be: 1...max_txqs */
196 		.num_txqs			= DEF_TXQS_PER_INTF,
197 
198 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
199 		.max_rxqs			= MAX_RXQS_PER_INTF,
200 
201 		/* Actual configured value. Range could be: 1...max_rxqs */
202 		.num_rxqs			= DEF_RXQS_PER_INTF,
203 
204 		/* Num of desc for rx rings */
205 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
206 
207 		/* Num of desc for tx rings */
208 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
209 
210 		/* SKB size, We need not change buf size even for Jumbo frames.
211 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
212 		 */
213 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
214 
215 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
216 
217 		.gmx_port_id			= 0,
218 	},
219 
220 	.nic_if_cfg[1] = {
221 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
222 		.max_txqs			= MAX_TXQS_PER_INTF,
223 
224 		/* Actual configured value. Range could be: 1...max_txqs */
225 		.num_txqs			= DEF_TXQS_PER_INTF,
226 
227 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
228 		.max_rxqs			= MAX_RXQS_PER_INTF,
229 
230 		/* Actual configured value. Range could be: 1...max_rxqs */
231 		.num_rxqs			= DEF_RXQS_PER_INTF,
232 
233 		/* Num of desc for rx rings */
234 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
235 
236 		/* Num of desc for tx rings */
237 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
238 
239 		/* SKB size, We need not change buf size even for Jumbo frames.
240 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
241 		 */
242 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
243 
244 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
245 
246 		.gmx_port_id			= 1,
247 	},
248 
249 	.nic_if_cfg[2] = {
250 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
251 		.max_txqs			= MAX_TXQS_PER_INTF,
252 
253 		/* Actual configured value. Range could be: 1...max_txqs */
254 		.num_txqs			= DEF_TXQS_PER_INTF,
255 
256 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
257 		.max_rxqs			= MAX_RXQS_PER_INTF,
258 
259 		/* Actual configured value. Range could be: 1...max_rxqs */
260 		.num_rxqs			= DEF_RXQS_PER_INTF,
261 
262 		/* Num of desc for rx rings */
263 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
264 
265 		/* Num of desc for tx rings */
266 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
267 
268 		/* SKB size, We need not change buf size even for Jumbo frames.
269 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
270 		 */
271 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
272 
273 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
274 
275 		.gmx_port_id			= 2,
276 	},
277 
278 	.nic_if_cfg[3] = {
279 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
280 		.max_txqs			= MAX_TXQS_PER_INTF,
281 
282 		/* Actual configured value. Range could be: 1...max_txqs */
283 		.num_txqs			= DEF_TXQS_PER_INTF,
284 
285 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
286 		.max_rxqs			= MAX_RXQS_PER_INTF,
287 
288 		/* Actual configured value. Range could be: 1...max_rxqs */
289 		.num_rxqs			= DEF_RXQS_PER_INTF,
290 
291 		/* Num of desc for rx rings */
292 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
293 
294 		/* Num of desc for tx rings */
295 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
296 
297 		/* SKB size, We need not change buf size even for Jumbo frames.
298 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
299 		 */
300 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
301 
302 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
303 
304 		.gmx_port_id			= 3,
305 	},
306 
307 	/** Miscellaneous attributes */
308 	.misc					= {
309 		/* Host driver link query interval */
310 		.oct_link_query_interval	= 100,
311 
312 		/* Octeon link query interval */
313 		.host_link_query_interval	= 500,
314 
315 		.enable_sli_oq_bp		= 0,
316 
317 		/* Control queue group */
318 		.ctrlq_grp			= 1,
319 	}
320 	,
321 };
322 
323 /** Default configuration
324  *  for CN68XX OCTEON Model.
325  */
326 static struct octeon_config default_cn68xx_210nv_conf = {
327 	.card_type                              = LIO_210NV,
328 	.card_name                              = LIO_210NV_NAME,
329 
330 	/** IQ attributes */
331 
332 	.iq					= {
333 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
334 		.pending_list_size		=
335 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
336 		.instr_type			= OCTEON_64BYTE_INSTR,
337 		.db_min				= CN6XXX_DB_MIN,
338 		.db_timeout			= CN6XXX_DB_TIMEOUT,
339 	}
340 	,
341 
342 	/** OQ attributes */
343 	.oq					= {
344 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
345 		.info_ptr			= OCTEON_OQ_INFOPTR_MODE,
346 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
347 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
348 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
349 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
350 	}
351 	,
352 
353 	.num_nic_ports			= DEFAULT_NUM_NIC_PORTS_68XX_210NV,
354 	.num_def_rx_descs		= CN6XXX_MAX_OQ_DESCRIPTORS,
355 	.num_def_tx_descs		= CN6XXX_MAX_IQ_DESCRIPTORS,
356 	.def_rx_buf_size		= CN6XXX_OQ_BUF_SIZE,
357 
358 	.nic_if_cfg[0] = {
359 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
360 		.max_txqs			= MAX_TXQS_PER_INTF,
361 
362 		/* Actual configured value. Range could be: 1...max_txqs */
363 		.num_txqs			= DEF_TXQS_PER_INTF,
364 
365 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
366 		.max_rxqs			= MAX_RXQS_PER_INTF,
367 
368 		/* Actual configured value. Range could be: 1...max_rxqs */
369 		.num_rxqs			= DEF_RXQS_PER_INTF,
370 
371 		/* Num of desc for rx rings */
372 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
373 
374 		/* Num of desc for tx rings */
375 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
376 
377 		/* SKB size, We need not change buf size even for Jumbo frames.
378 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
379 		 */
380 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
381 
382 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
383 
384 		.gmx_port_id			= 0,
385 	},
386 
387 	.nic_if_cfg[1] = {
388 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
389 		.max_txqs			= MAX_TXQS_PER_INTF,
390 
391 		/* Actual configured value. Range could be: 1...max_txqs */
392 		.num_txqs			= DEF_TXQS_PER_INTF,
393 
394 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
395 		.max_rxqs			= MAX_RXQS_PER_INTF,
396 
397 		/* Actual configured value. Range could be: 1...max_rxqs */
398 		.num_rxqs			= DEF_RXQS_PER_INTF,
399 
400 		/* Num of desc for rx rings */
401 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
402 
403 		/* Num of desc for tx rings */
404 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
405 
406 		/* SKB size, We need not change buf size even for Jumbo frames.
407 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
408 		 */
409 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
410 
411 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
412 
413 		.gmx_port_id			= 1,
414 	},
415 
416 	/** Miscellaneous attributes */
417 	.misc					= {
418 		/* Host driver link query interval */
419 		.oct_link_query_interval	= 100,
420 
421 		/* Octeon link query interval */
422 		.host_link_query_interval	= 500,
423 
424 		.enable_sli_oq_bp		= 0,
425 
426 		/* Control queue group */
427 		.ctrlq_grp			= 1,
428 	}
429 	,
430 };
431 
432 enum {
433 	OCTEON_CONFIG_TYPE_DEFAULT = 0,
434 	NUM_OCTEON_CONFS,
435 };
436 
437 static struct octeon_config_ptr {
438 	u32 conf_type;
439 } oct_conf_info[MAX_OCTEON_DEVICES] = {
440 	{
441 		OCTEON_CONFIG_TYPE_DEFAULT,
442 	}, {
443 		OCTEON_CONFIG_TYPE_DEFAULT,
444 	}, {
445 		OCTEON_CONFIG_TYPE_DEFAULT,
446 	}, {
447 		OCTEON_CONFIG_TYPE_DEFAULT,
448 	},
449 };
450 
451 static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = {
452 	"BEGIN",	"PCI-MAP-DONE",	      "DISPATCH-INIT-DONE",
453 	"IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
454 	"DROQ-INIT-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
455 	"HOST-READY",	"CORE-READY",	      "RUNNING",	   "IN-RESET",
456 	"INVALID"
457 };
458 
459 static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = {
460 	"BASE", "NIC", "UNKNOWN"};
461 
462 static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES];
463 static u32 octeon_device_count;
464 
465 static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES];
466 
467 static void oct_set_config_info(int oct_id, int conf_type)
468 {
469 	if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1))
470 		conf_type = OCTEON_CONFIG_TYPE_DEFAULT;
471 	oct_conf_info[oct_id].conf_type = conf_type;
472 }
473 
474 void octeon_init_device_list(int conf_type)
475 {
476 	int i;
477 
478 	memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES));
479 	for (i = 0; i <  MAX_OCTEON_DEVICES; i++)
480 		oct_set_config_info(i, conf_type);
481 }
482 
483 static void *__retrieve_octeon_config_info(struct octeon_device *oct,
484 					   u16 card_type)
485 {
486 	u32 oct_id = oct->octeon_id;
487 	void *ret = NULL;
488 
489 	switch (oct_conf_info[oct_id].conf_type) {
490 	case OCTEON_CONFIG_TYPE_DEFAULT:
491 		if (oct->chip_id == OCTEON_CN66XX) {
492 			ret = (void *)&default_cn66xx_conf;
493 		} else if ((oct->chip_id == OCTEON_CN68XX) &&
494 			   (card_type == LIO_210NV)) {
495 			ret =  (void *)&default_cn68xx_210nv_conf;
496 		} else if ((oct->chip_id == OCTEON_CN68XX) &&
497 			   (card_type == LIO_410NV)) {
498 			ret =  (void *)&default_cn68xx_conf;
499 		}
500 		break;
501 	default:
502 		break;
503 	}
504 	return ret;
505 }
506 
507 static int __verify_octeon_config_info(struct octeon_device *oct, void *conf)
508 {
509 	switch (oct->chip_id) {
510 	case OCTEON_CN66XX:
511 	case OCTEON_CN68XX:
512 		return lio_validate_cn6xxx_config_info(oct, conf);
513 
514 	default:
515 		break;
516 	}
517 
518 	return 1;
519 }
520 
521 void *oct_get_config_info(struct octeon_device *oct, u16 card_type)
522 {
523 	void *conf = NULL;
524 
525 	conf = __retrieve_octeon_config_info(oct, card_type);
526 	if (!conf)
527 		return NULL;
528 
529 	if (__verify_octeon_config_info(oct, conf)) {
530 		dev_err(&oct->pci_dev->dev, "Configuration verification failed\n");
531 		return NULL;
532 	}
533 
534 	return conf;
535 }
536 
537 char *lio_get_state_string(atomic_t *state_ptr)
538 {
539 	s32 istate = (s32)atomic_read(state_ptr);
540 
541 	if (istate > OCT_DEV_STATES || istate < 0)
542 		return oct_dev_state_str[OCT_DEV_STATE_INVALID];
543 	return oct_dev_state_str[istate];
544 }
545 
546 static char *get_oct_app_string(u32 app_mode)
547 {
548 	if (app_mode <= CVM_DRV_APP_END)
549 		return oct_dev_app_str[app_mode - CVM_DRV_APP_START];
550 	return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START];
551 }
552 
553 int octeon_download_firmware(struct octeon_device *oct, const u8 *data,
554 			     size_t size)
555 {
556 	int ret = 0;
557 	u8 *p;
558 	u8 *buffer;
559 	u32 crc32_result;
560 	u64 load_addr;
561 	u32 image_len;
562 	struct octeon_firmware_file_header *h;
563 	u32 i;
564 
565 	if (size < sizeof(struct octeon_firmware_file_header)) {
566 		dev_err(&oct->pci_dev->dev, "Firmware file too small (%d < %d).\n",
567 			(u32)size,
568 			(u32)sizeof(struct octeon_firmware_file_header));
569 		return -EINVAL;
570 	}
571 
572 	h = (struct octeon_firmware_file_header *)data;
573 
574 	if (be32_to_cpu(h->magic) != LIO_NIC_MAGIC) {
575 		dev_err(&oct->pci_dev->dev, "Unrecognized firmware file.\n");
576 		return -EINVAL;
577 	}
578 
579 	crc32_result =
580 		crc32(~0, data,
581 		      sizeof(struct octeon_firmware_file_header) -
582 		      sizeof(u32)) ^ ~0U;
583 	if (crc32_result != be32_to_cpu(h->crc32)) {
584 		dev_err(&oct->pci_dev->dev, "Firmware CRC mismatch (0x%08x != 0x%08x).\n",
585 			crc32_result, be32_to_cpu(h->crc32));
586 		return -EINVAL;
587 	}
588 
589 	if (memcmp(LIQUIDIO_VERSION, h->version, strlen(LIQUIDIO_VERSION))) {
590 		dev_err(&oct->pci_dev->dev, "Unmatched firmware version. Expected %s, got %s.\n",
591 			LIQUIDIO_VERSION, h->version);
592 		return -EINVAL;
593 	}
594 
595 	if (be32_to_cpu(h->num_images) > LIO_MAX_IMAGES) {
596 		dev_err(&oct->pci_dev->dev, "Too many images in firmware file (%d).\n",
597 			be32_to_cpu(h->num_images));
598 		return -EINVAL;
599 	}
600 
601 	dev_info(&oct->pci_dev->dev, "Firmware version: %s\n", h->version);
602 	snprintf(oct->fw_info.liquidio_firmware_version, 32, "LIQUIDIO: %s",
603 		 h->version);
604 
605 	buffer = kmemdup(data, size, GFP_KERNEL);
606 	if (!buffer)
607 		return -ENOMEM;
608 
609 	p = buffer + sizeof(struct octeon_firmware_file_header);
610 
611 	/* load all images */
612 	for (i = 0; i < be32_to_cpu(h->num_images); i++) {
613 		load_addr = be64_to_cpu(h->desc[i].addr);
614 		image_len = be32_to_cpu(h->desc[i].len);
615 
616 		/* validate the image */
617 		crc32_result = crc32(~0, p, image_len) ^ ~0U;
618 		if (crc32_result != be32_to_cpu(h->desc[i].crc32)) {
619 			dev_err(&oct->pci_dev->dev,
620 				"Firmware CRC mismatch in image %d (0x%08x != 0x%08x).\n",
621 				i, crc32_result,
622 				be32_to_cpu(h->desc[i].crc32));
623 			ret = -EINVAL;
624 			goto done_downloading;
625 		}
626 
627 		/* download the image */
628 		octeon_pci_write_core_mem(oct, load_addr, p, image_len);
629 
630 		p += image_len;
631 		dev_dbg(&oct->pci_dev->dev,
632 			"Downloaded image %d (%d bytes) to address 0x%016llx\n",
633 			i, image_len, load_addr);
634 	}
635 
636 	/* Invoke the bootcmd */
637 	ret = octeon_console_send_cmd(oct, h->bootcmd, 50);
638 
639 done_downloading:
640 	kfree(buffer);
641 
642 	return ret;
643 }
644 
645 void octeon_free_device_mem(struct octeon_device *oct)
646 {
647 	u32 i;
648 
649 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
650 		/* could check  mask as well */
651 		vfree(oct->droq[i]);
652 	}
653 
654 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
655 		/* could check mask as well */
656 		vfree(oct->instr_queue[i]);
657 	}
658 
659 	i = oct->octeon_id;
660 	vfree(oct);
661 
662 	octeon_device[i] = NULL;
663 	octeon_device_count--;
664 }
665 
666 static struct octeon_device *octeon_allocate_device_mem(u32 pci_id,
667 							u32 priv_size)
668 {
669 	struct octeon_device *oct;
670 	u8 *buf = NULL;
671 	u32 octdevsize = 0, configsize = 0, size;
672 
673 	switch (pci_id) {
674 	case OCTEON_CN68XX:
675 	case OCTEON_CN66XX:
676 		configsize = sizeof(struct octeon_cn6xxx);
677 		break;
678 
679 	default:
680 		pr_err("%s: Unknown PCI Device: 0x%x\n",
681 		       __func__,
682 		       pci_id);
683 		return NULL;
684 	}
685 
686 	if (configsize & 0x7)
687 		configsize += (8 - (configsize & 0x7));
688 
689 	octdevsize = sizeof(struct octeon_device);
690 	if (octdevsize & 0x7)
691 		octdevsize += (8 - (octdevsize & 0x7));
692 
693 	if (priv_size & 0x7)
694 		priv_size += (8 - (priv_size & 0x7));
695 
696 	size = octdevsize + priv_size + configsize +
697 		(sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE);
698 
699 	buf = vmalloc(size);
700 	if (!buf)
701 		return NULL;
702 
703 	memset(buf, 0, size);
704 
705 	oct = (struct octeon_device *)buf;
706 	oct->priv = (void *)(buf + octdevsize);
707 	oct->chip = (void *)(buf + octdevsize + priv_size);
708 	oct->dispatch.dlist = (struct octeon_dispatch *)
709 		(buf + octdevsize + priv_size + configsize);
710 
711 	return oct;
712 }
713 
714 struct octeon_device *octeon_allocate_device(u32 pci_id,
715 					     u32 priv_size)
716 {
717 	u32 oct_idx = 0;
718 	struct octeon_device *oct = NULL;
719 
720 	for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++)
721 		if (!octeon_device[oct_idx])
722 			break;
723 
724 	if (oct_idx == MAX_OCTEON_DEVICES)
725 		return NULL;
726 
727 	oct = octeon_allocate_device_mem(pci_id, priv_size);
728 	if (!oct)
729 		return NULL;
730 
731 	spin_lock_init(&oct->pci_win_lock);
732 	spin_lock_init(&oct->mem_access_lock);
733 
734 	octeon_device_count++;
735 	octeon_device[oct_idx] = oct;
736 
737 	oct->octeon_id = oct_idx;
738 	snprintf((oct->device_name), sizeof(oct->device_name),
739 		 "LiquidIO%d", (oct->octeon_id));
740 
741 	return oct;
742 }
743 
744 int octeon_setup_instr_queues(struct octeon_device *oct)
745 {
746 	u32 i, num_iqs = 0;
747 	u32 num_descs = 0;
748 
749 	/* this causes queue 0 to be default queue */
750 	if (OCTEON_CN6XXX(oct)) {
751 		num_iqs = 1;
752 		num_descs =
753 			CFG_GET_NUM_DEF_TX_DESCS(CHIP_FIELD(oct, cn6xxx, conf));
754 	}
755 
756 	oct->num_iqs = 0;
757 
758 	for (i = 0; i < num_iqs; i++) {
759 		oct->instr_queue[i] =
760 			vmalloc(sizeof(struct octeon_instr_queue));
761 		if (!oct->instr_queue[i])
762 			return 1;
763 
764 		memset(oct->instr_queue[i], 0,
765 		       sizeof(struct octeon_instr_queue));
766 
767 		oct->instr_queue[i]->app_ctx = (void *)(size_t)i;
768 		if (octeon_init_instr_queue(oct, i, num_descs))
769 			return 1;
770 
771 		oct->num_iqs++;
772 	}
773 
774 	return 0;
775 }
776 
777 int octeon_setup_output_queues(struct octeon_device *oct)
778 {
779 	u32 i, num_oqs = 0;
780 	u32 num_descs = 0;
781 	u32 desc_size = 0;
782 
783 	/* this causes queue 0 to be default queue */
784 	if (OCTEON_CN6XXX(oct)) {
785 		/* CFG_GET_OQ_MAX_BASE_Q(CHIP_FIELD(oct, cn6xxx, conf)); */
786 		num_oqs = 1;
787 		num_descs =
788 			CFG_GET_NUM_DEF_RX_DESCS(CHIP_FIELD(oct, cn6xxx, conf));
789 		desc_size =
790 			CFG_GET_DEF_RX_BUF_SIZE(CHIP_FIELD(oct, cn6xxx, conf));
791 	}
792 
793 	oct->num_oqs = 0;
794 
795 	for (i = 0; i < num_oqs; i++) {
796 		oct->droq[i] = vmalloc(sizeof(*oct->droq[i]));
797 		if (!oct->droq[i])
798 			return 1;
799 
800 		memset(oct->droq[i], 0, sizeof(struct octeon_droq));
801 
802 		if (octeon_init_droq(oct, i, num_descs, desc_size, NULL))
803 			return 1;
804 
805 		oct->num_oqs++;
806 	}
807 
808 	return 0;
809 }
810 
811 void octeon_set_io_queues_off(struct octeon_device *oct)
812 {
813 	/* Disable the i/p and o/p queues for this Octeon. */
814 
815 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
816 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
817 }
818 
819 void octeon_set_droq_pkt_op(struct octeon_device *oct,
820 			    u32 q_no,
821 			    u32 enable)
822 {
823 	u32 reg_val = 0;
824 
825 	/* Disable the i/p and o/p queues for this Octeon. */
826 	reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
827 
828 	if (enable)
829 		reg_val = reg_val | (1 << q_no);
830 	else
831 		reg_val = reg_val & (~(1 << q_no));
832 
833 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val);
834 }
835 
836 int octeon_init_dispatch_list(struct octeon_device *oct)
837 {
838 	u32 i;
839 
840 	oct->dispatch.count = 0;
841 
842 	for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
843 		oct->dispatch.dlist[i].opcode = 0;
844 		INIT_LIST_HEAD(&oct->dispatch.dlist[i].list);
845 	}
846 
847 	for (i = 0; i <= REQTYPE_LAST; i++)
848 		octeon_register_reqtype_free_fn(oct, i, NULL);
849 
850 	spin_lock_init(&oct->dispatch.lock);
851 
852 	return 0;
853 }
854 
855 void octeon_delete_dispatch_list(struct octeon_device *oct)
856 {
857 	u32 i;
858 	struct list_head freelist, *temp, *tmp2;
859 
860 	INIT_LIST_HEAD(&freelist);
861 
862 	spin_lock_bh(&oct->dispatch.lock);
863 
864 	for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
865 		struct list_head *dispatch;
866 
867 		dispatch = &oct->dispatch.dlist[i].list;
868 		while (dispatch->next != dispatch) {
869 			temp = dispatch->next;
870 			list_del(temp);
871 			list_add_tail(temp, &freelist);
872 		}
873 
874 		oct->dispatch.dlist[i].opcode = 0;
875 	}
876 
877 	oct->dispatch.count = 0;
878 
879 	spin_unlock_bh(&oct->dispatch.lock);
880 
881 	list_for_each_safe(temp, tmp2, &freelist) {
882 		list_del(temp);
883 		vfree(temp);
884 	}
885 }
886 
887 octeon_dispatch_fn_t
888 octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode,
889 		    u16 subcode)
890 {
891 	u32 idx;
892 	struct list_head *dispatch;
893 	octeon_dispatch_fn_t fn = NULL;
894 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
895 
896 	idx = combined_opcode & OCTEON_OPCODE_MASK;
897 
898 	spin_lock_bh(&octeon_dev->dispatch.lock);
899 
900 	if (octeon_dev->dispatch.count == 0) {
901 		spin_unlock_bh(&octeon_dev->dispatch.lock);
902 		return NULL;
903 	}
904 
905 	if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
906 		spin_unlock_bh(&octeon_dev->dispatch.lock);
907 		return NULL;
908 	}
909 
910 	if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
911 		fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
912 	} else {
913 		list_for_each(dispatch,
914 			      &octeon_dev->dispatch.dlist[idx].list) {
915 			if (((struct octeon_dispatch *)dispatch)->opcode ==
916 			    combined_opcode) {
917 				fn = ((struct octeon_dispatch *)
918 				      dispatch)->dispatch_fn;
919 				break;
920 			}
921 		}
922 	}
923 
924 	spin_unlock_bh(&octeon_dev->dispatch.lock);
925 	return fn;
926 }
927 
928 /* octeon_register_dispatch_fn
929  * Parameters:
930  *   octeon_id - id of the octeon device.
931  *   opcode    - opcode for which driver should call the registered function
932  *   subcode   - subcode for which driver should call the registered function
933  *   fn        - The function to call when a packet with "opcode" arrives in
934  *		  octeon output queues.
935  *   fn_arg    - The argument to be passed when calling function "fn".
936  * Description:
937  *   Registers a function and its argument to be called when a packet
938  *   arrives in Octeon output queues with "opcode".
939  * Returns:
940  *   Success: 0
941  *   Failure: 1
942  * Locks:
943  *   No locks are held.
944  */
945 int
946 octeon_register_dispatch_fn(struct octeon_device *oct,
947 			    u16 opcode,
948 			    u16 subcode,
949 			    octeon_dispatch_fn_t fn, void *fn_arg)
950 {
951 	u32 idx;
952 	octeon_dispatch_fn_t pfn;
953 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
954 
955 	idx = combined_opcode & OCTEON_OPCODE_MASK;
956 
957 	spin_lock_bh(&oct->dispatch.lock);
958 	/* Add dispatch function to first level of lookup table */
959 	if (oct->dispatch.dlist[idx].opcode == 0) {
960 		oct->dispatch.dlist[idx].opcode = combined_opcode;
961 		oct->dispatch.dlist[idx].dispatch_fn = fn;
962 		oct->dispatch.dlist[idx].arg = fn_arg;
963 		oct->dispatch.count++;
964 		spin_unlock_bh(&oct->dispatch.lock);
965 		return 0;
966 	}
967 
968 	spin_unlock_bh(&oct->dispatch.lock);
969 
970 	/* Check if there was a function already registered for this
971 	 * opcode/subcode.
972 	 */
973 	pfn = octeon_get_dispatch(oct, opcode, subcode);
974 	if (!pfn) {
975 		struct octeon_dispatch *dispatch;
976 
977 		dev_dbg(&oct->pci_dev->dev,
978 			"Adding opcode to dispatch list linked list\n");
979 		dispatch = (struct octeon_dispatch *)
980 			   vmalloc(sizeof(struct octeon_dispatch));
981 		if (!dispatch) {
982 			dev_err(&oct->pci_dev->dev,
983 				"No memory to add dispatch function\n");
984 			return 1;
985 		}
986 		dispatch->opcode = combined_opcode;
987 		dispatch->dispatch_fn = fn;
988 		dispatch->arg = fn_arg;
989 
990 		/* Add dispatch function to linked list of fn ptrs
991 		 * at the hashed index.
992 		 */
993 		spin_lock_bh(&oct->dispatch.lock);
994 		list_add(&dispatch->list, &oct->dispatch.dlist[idx].list);
995 		oct->dispatch.count++;
996 		spin_unlock_bh(&oct->dispatch.lock);
997 
998 	} else {
999 		dev_err(&oct->pci_dev->dev,
1000 			"Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
1001 			opcode, subcode);
1002 		return 1;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 /* octeon_unregister_dispatch_fn
1009  * Parameters:
1010  *   oct       - octeon device
1011  *   opcode    - driver should unregister the function for this opcode
1012  *   subcode   - driver should unregister the function for this subcode
1013  * Description:
1014  *   Unregister the function set for this opcode+subcode.
1015  * Returns:
1016  *   Success: 0
1017  *   Failure: 1
1018  * Locks:
1019  *   No locks are held.
1020  */
1021 int
1022 octeon_unregister_dispatch_fn(struct octeon_device *oct, u16 opcode,
1023 			      u16 subcode)
1024 {
1025 	int retval = 0;
1026 	u32 idx;
1027 	struct list_head *dispatch, *dfree = NULL, *tmp2;
1028 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1029 
1030 	idx = combined_opcode & OCTEON_OPCODE_MASK;
1031 
1032 	spin_lock_bh(&oct->dispatch.lock);
1033 
1034 	if (oct->dispatch.count == 0) {
1035 		spin_unlock_bh(&oct->dispatch.lock);
1036 		dev_err(&oct->pci_dev->dev,
1037 			"No dispatch functions registered for this device\n");
1038 		return 1;
1039 	}
1040 
1041 	if (oct->dispatch.dlist[idx].opcode == combined_opcode) {
1042 		dispatch = &oct->dispatch.dlist[idx].list;
1043 		if (dispatch->next != dispatch) {
1044 			dispatch = dispatch->next;
1045 			oct->dispatch.dlist[idx].opcode =
1046 				((struct octeon_dispatch *)dispatch)->opcode;
1047 			oct->dispatch.dlist[idx].dispatch_fn =
1048 				((struct octeon_dispatch *)
1049 				 dispatch)->dispatch_fn;
1050 			oct->dispatch.dlist[idx].arg =
1051 				((struct octeon_dispatch *)dispatch)->arg;
1052 			list_del(dispatch);
1053 			dfree = dispatch;
1054 		} else {
1055 			oct->dispatch.dlist[idx].opcode = 0;
1056 			oct->dispatch.dlist[idx].dispatch_fn = NULL;
1057 			oct->dispatch.dlist[idx].arg = NULL;
1058 		}
1059 	} else {
1060 		retval = 1;
1061 		list_for_each_safe(dispatch, tmp2,
1062 				   &(oct->dispatch.dlist[idx].
1063 				     list)) {
1064 			if (((struct octeon_dispatch *)dispatch)->opcode ==
1065 			    combined_opcode) {
1066 				list_del(dispatch);
1067 				dfree = dispatch;
1068 				retval = 0;
1069 			}
1070 		}
1071 	}
1072 
1073 	if (!retval)
1074 		oct->dispatch.count--;
1075 
1076 	spin_unlock_bh(&oct->dispatch.lock);
1077 	vfree(dfree);
1078 	return retval;
1079 }
1080 
1081 int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf)
1082 {
1083 	u32 i;
1084 	char app_name[16];
1085 	struct octeon_device *oct = (struct octeon_device *)buf;
1086 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
1087 	struct octeon_core_setup *cs = NULL;
1088 	u32 num_nic_ports = 0;
1089 
1090 	if (OCTEON_CN6XXX(oct))
1091 		num_nic_ports =
1092 			CFG_GET_NUM_NIC_PORTS(CHIP_FIELD(oct, cn6xxx, conf));
1093 
1094 	if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) {
1095 		dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n",
1096 			atomic_read(&oct->status));
1097 		goto core_drv_init_err;
1098 	}
1099 
1100 	strncpy(app_name,
1101 		get_oct_app_string(
1102 		(u32)recv_pkt->rh.r_core_drv_init.app_mode),
1103 		sizeof(app_name) - 1);
1104 	oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1105 	if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) {
1106 		oct->fw_info.max_nic_ports =
1107 			(u32)recv_pkt->rh.r_core_drv_init.max_nic_ports;
1108 		oct->fw_info.num_gmx_ports =
1109 			(u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
1110 	}
1111 
1112 	if (oct->fw_info.max_nic_ports < num_nic_ports) {
1113 		dev_err(&oct->pci_dev->dev,
1114 			"Config has more ports than firmware allows (%d > %d).\n",
1115 			num_nic_ports, oct->fw_info.max_nic_ports);
1116 		goto core_drv_init_err;
1117 	}
1118 	oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
1119 	oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1120 
1121 	atomic_set(&oct->status, OCT_DEV_CORE_OK);
1122 
1123 	cs = &core_setup[oct->octeon_id];
1124 
1125 	if (recv_pkt->buffer_size[0] != sizeof(*cs)) {
1126 		dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n",
1127 			(u32)sizeof(*cs),
1128 			recv_pkt->buffer_size[0]);
1129 	}
1130 
1131 	memcpy(cs, get_rbd(recv_pkt->buffer_ptr[0]), sizeof(*cs));
1132 	strncpy(oct->boardinfo.name, cs->boardname, OCT_BOARD_NAME);
1133 	strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
1134 		OCT_SERIAL_LEN);
1135 
1136 	octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3));
1137 
1138 	oct->boardinfo.major = cs->board_rev_major;
1139 	oct->boardinfo.minor = cs->board_rev_minor;
1140 
1141 	dev_info(&oct->pci_dev->dev,
1142 		 "Running %s (%llu Hz)\n",
1143 		 app_name, CVM_CAST64(cs->corefreq));
1144 
1145 core_drv_init_err:
1146 	for (i = 0; i < recv_pkt->buffer_count; i++)
1147 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
1148 	octeon_free_recv_info(recv_info);
1149 	return 0;
1150 }
1151 
1152 int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no)
1153 
1154 {
1155 	if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES) &&
1156 	    (oct->io_qmask.iq & (1UL << q_no)))
1157 		return oct->instr_queue[q_no]->max_count;
1158 
1159 	return -1;
1160 }
1161 
1162 int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no)
1163 {
1164 	if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES) &&
1165 	    (oct->io_qmask.oq & (1UL << q_no)))
1166 		return oct->droq[q_no]->max_count;
1167 	return -1;
1168 }
1169 
1170 /* Retruns the host firmware handshake OCTEON specific configuration */
1171 struct octeon_config *octeon_get_conf(struct octeon_device *oct)
1172 {
1173 	struct octeon_config *default_oct_conf = NULL;
1174 
1175 	/* check the OCTEON Device model & return the corresponding octeon
1176 	 * configuration
1177 	 */
1178 
1179 	if (OCTEON_CN6XXX(oct)) {
1180 		default_oct_conf =
1181 			(struct octeon_config *)(CHIP_FIELD(oct, cn6xxx, conf));
1182 	}
1183 
1184 	return default_oct_conf;
1185 }
1186 
1187 /* scratch register address is same in all the OCT-II and CN70XX models */
1188 #define CNXX_SLI_SCRATCH1   0x3C0
1189 
1190 /** Get the octeon device pointer.
1191  *  @param octeon_id  - The id for which the octeon device pointer is required.
1192  *  @return Success: Octeon device pointer.
1193  *  @return Failure: NULL.
1194  */
1195 struct octeon_device *lio_get_device(u32 octeon_id)
1196 {
1197 	if (octeon_id >= MAX_OCTEON_DEVICES)
1198 		return NULL;
1199 	else
1200 		return octeon_device[octeon_id];
1201 }
1202 
1203 u64 lio_pci_readq(struct octeon_device *oct, u64 addr)
1204 {
1205 	u64 val64;
1206 	unsigned long flags;
1207 	u32 val32, addrhi;
1208 
1209 	spin_lock_irqsave(&oct->pci_win_lock, flags);
1210 
1211 	/* The windowed read happens when the LSB of the addr is written.
1212 	 * So write MSB first
1213 	 */
1214 	addrhi = (addr >> 32);
1215 	if ((oct->chip_id == OCTEON_CN66XX) || (oct->chip_id == OCTEON_CN68XX))
1216 		addrhi |= 0x00060000;
1217 	writel(addrhi, oct->reg_list.pci_win_rd_addr_hi);
1218 
1219 	/* Read back to preserve ordering of writes */
1220 	val32 = readl(oct->reg_list.pci_win_rd_addr_hi);
1221 
1222 	writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo);
1223 	val32 = readl(oct->reg_list.pci_win_rd_addr_lo);
1224 
1225 	val64 = readq(oct->reg_list.pci_win_rd_data);
1226 
1227 	spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1228 
1229 	return val64;
1230 }
1231 
1232 void lio_pci_writeq(struct octeon_device *oct,
1233 		    u64 val,
1234 		    u64 addr)
1235 {
1236 	u32 val32;
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&oct->pci_win_lock, flags);
1240 
1241 	writeq(addr, oct->reg_list.pci_win_wr_addr);
1242 
1243 	/* The write happens when the LSB is written. So write MSB first. */
1244 	writel(val >> 32, oct->reg_list.pci_win_wr_data_hi);
1245 	/* Read the MSB to ensure ordering of writes. */
1246 	val32 = readl(oct->reg_list.pci_win_wr_data_hi);
1247 
1248 	writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo);
1249 
1250 	spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1251 }
1252 
1253 int octeon_mem_access_ok(struct octeon_device *oct)
1254 {
1255 	u64 access_okay = 0;
1256 
1257 	/* Check to make sure a DDR interface is enabled */
1258 	u64 lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL);
1259 
1260 	access_okay = (lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK);
1261 
1262 	return access_okay ? 0 : 1;
1263 }
1264 
1265 int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout)
1266 {
1267 	int ret = 1;
1268 	u32 ms;
1269 
1270 	if (!timeout)
1271 		return ret;
1272 
1273 	while (*timeout == 0)
1274 		schedule_timeout_uninterruptible(HZ / 10);
1275 
1276 	for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout));
1277 	     ms += HZ / 10) {
1278 		ret = octeon_mem_access_ok(oct);
1279 
1280 		/* wait 100 ms */
1281 		if (ret)
1282 			schedule_timeout_uninterruptible(HZ / 10);
1283 	}
1284 
1285 	return ret;
1286 }
1287 
1288 /** Get the octeon id assigned to the octeon device passed as argument.
1289  *  This function is exported to other modules.
1290  *  @param dev - octeon device pointer passed as a void *.
1291  *  @return octeon device id
1292  */
1293 int lio_get_device_id(void *dev)
1294 {
1295 	struct octeon_device *octeon_dev = (struct octeon_device *)dev;
1296 	u32 i;
1297 
1298 	for (i = 0; i < MAX_OCTEON_DEVICES; i++)
1299 		if (octeon_device[i] == octeon_dev)
1300 			return octeon_dev->octeon_id;
1301 	return -1;
1302 }
1303