xref: /openbmc/linux/drivers/net/ethernet/cavium/liquidio/octeon_device.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include <linux/vmalloc.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "octeon_main.h"
27 #include "octeon_network.h"
28 #include "cn66xx_regs.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32 
33 /** Default configuration
34  *  for CN66XX OCTEON Models.
35  */
36 static struct octeon_config default_cn66xx_conf = {
37 	.card_type                              = LIO_210SV,
38 	.card_name                              = LIO_210SV_NAME,
39 
40 	/** IQ attributes */
41 	.iq					= {
42 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
43 		.pending_list_size		=
44 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
45 		.instr_type			= OCTEON_64BYTE_INSTR,
46 		.db_min				= CN6XXX_DB_MIN,
47 		.db_timeout			= CN6XXX_DB_TIMEOUT,
48 	}
49 	,
50 
51 	/** OQ attributes */
52 	.oq					= {
53 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
54 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
55 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
56 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
57 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
58 	}
59 	,
60 
61 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_66XX,
62 	.num_def_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
63 	.num_def_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
64 	.def_rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
65 
66 	/* For ethernet interface 0:  Port cfg Attributes */
67 	.nic_if_cfg[0] = {
68 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
69 		.max_txqs			= MAX_TXQS_PER_INTF,
70 
71 		/* Actual configured value. Range could be: 1...max_txqs */
72 		.num_txqs			= DEF_TXQS_PER_INTF,
73 
74 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
75 		.max_rxqs			= MAX_RXQS_PER_INTF,
76 
77 		/* Actual configured value. Range could be: 1...max_rxqs */
78 		.num_rxqs			= DEF_RXQS_PER_INTF,
79 
80 		/* Num of desc for rx rings */
81 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
82 
83 		/* Num of desc for tx rings */
84 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
85 
86 		/* SKB size, We need not change buf size even for Jumbo frames.
87 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
88 		 */
89 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
90 
91 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
92 
93 		.gmx_port_id			= 0,
94 	},
95 
96 	.nic_if_cfg[1] = {
97 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
98 		.max_txqs			= MAX_TXQS_PER_INTF,
99 
100 		/* Actual configured value. Range could be: 1...max_txqs */
101 		.num_txqs			= DEF_TXQS_PER_INTF,
102 
103 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
104 		.max_rxqs			= MAX_RXQS_PER_INTF,
105 
106 		/* Actual configured value. Range could be: 1...max_rxqs */
107 		.num_rxqs			= DEF_RXQS_PER_INTF,
108 
109 		/* Num of desc for rx rings */
110 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
111 
112 		/* Num of desc for tx rings */
113 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
114 
115 		/* SKB size, We need not change buf size even for Jumbo frames.
116 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
117 		 */
118 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
119 
120 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
121 
122 		.gmx_port_id			= 1,
123 	},
124 
125 	/** Miscellaneous attributes */
126 	.misc					= {
127 		/* Host driver link query interval */
128 		.oct_link_query_interval	= 100,
129 
130 		/* Octeon link query interval */
131 		.host_link_query_interval	= 500,
132 
133 		.enable_sli_oq_bp		= 0,
134 
135 		/* Control queue group */
136 		.ctrlq_grp			= 1,
137 	}
138 	,
139 };
140 
141 /** Default configuration
142  *  for CN68XX OCTEON Model.
143  */
144 
145 static struct octeon_config default_cn68xx_conf = {
146 	.card_type                              = LIO_410NV,
147 	.card_name                              = LIO_410NV_NAME,
148 
149 	/** IQ attributes */
150 	.iq					= {
151 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
152 		.pending_list_size		=
153 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
154 		.instr_type			= OCTEON_64BYTE_INSTR,
155 		.db_min				= CN6XXX_DB_MIN,
156 		.db_timeout			= CN6XXX_DB_TIMEOUT,
157 	}
158 	,
159 
160 	/** OQ attributes */
161 	.oq					= {
162 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
163 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
164 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
165 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
166 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
167 	}
168 	,
169 
170 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_68XX,
171 	.num_def_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
172 	.num_def_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
173 	.def_rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
174 
175 	.nic_if_cfg[0] = {
176 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
177 		.max_txqs			= MAX_TXQS_PER_INTF,
178 
179 		/* Actual configured value. Range could be: 1...max_txqs */
180 		.num_txqs			= DEF_TXQS_PER_INTF,
181 
182 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
183 		.max_rxqs			= MAX_RXQS_PER_INTF,
184 
185 		/* Actual configured value. Range could be: 1...max_rxqs */
186 		.num_rxqs			= DEF_RXQS_PER_INTF,
187 
188 		/* Num of desc for rx rings */
189 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
190 
191 		/* Num of desc for tx rings */
192 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
193 
194 		/* SKB size, We need not change buf size even for Jumbo frames.
195 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
196 		 */
197 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
198 
199 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
200 
201 		.gmx_port_id			= 0,
202 	},
203 
204 	.nic_if_cfg[1] = {
205 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
206 		.max_txqs			= MAX_TXQS_PER_INTF,
207 
208 		/* Actual configured value. Range could be: 1...max_txqs */
209 		.num_txqs			= DEF_TXQS_PER_INTF,
210 
211 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
212 		.max_rxqs			= MAX_RXQS_PER_INTF,
213 
214 		/* Actual configured value. Range could be: 1...max_rxqs */
215 		.num_rxqs			= DEF_RXQS_PER_INTF,
216 
217 		/* Num of desc for rx rings */
218 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
219 
220 		/* Num of desc for tx rings */
221 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
222 
223 		/* SKB size, We need not change buf size even for Jumbo frames.
224 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
225 		 */
226 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
227 
228 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
229 
230 		.gmx_port_id			= 1,
231 	},
232 
233 	.nic_if_cfg[2] = {
234 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
235 		.max_txqs			= MAX_TXQS_PER_INTF,
236 
237 		/* Actual configured value. Range could be: 1...max_txqs */
238 		.num_txqs			= DEF_TXQS_PER_INTF,
239 
240 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
241 		.max_rxqs			= MAX_RXQS_PER_INTF,
242 
243 		/* Actual configured value. Range could be: 1...max_rxqs */
244 		.num_rxqs			= DEF_RXQS_PER_INTF,
245 
246 		/* Num of desc for rx rings */
247 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
248 
249 		/* Num of desc for tx rings */
250 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
251 
252 		/* SKB size, We need not change buf size even for Jumbo frames.
253 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
254 		 */
255 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
256 
257 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
258 
259 		.gmx_port_id			= 2,
260 	},
261 
262 	.nic_if_cfg[3] = {
263 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
264 		.max_txqs			= MAX_TXQS_PER_INTF,
265 
266 		/* Actual configured value. Range could be: 1...max_txqs */
267 		.num_txqs			= DEF_TXQS_PER_INTF,
268 
269 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
270 		.max_rxqs			= MAX_RXQS_PER_INTF,
271 
272 		/* Actual configured value. Range could be: 1...max_rxqs */
273 		.num_rxqs			= DEF_RXQS_PER_INTF,
274 
275 		/* Num of desc for rx rings */
276 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
277 
278 		/* Num of desc for tx rings */
279 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
280 
281 		/* SKB size, We need not change buf size even for Jumbo frames.
282 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
283 		 */
284 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
285 
286 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
287 
288 		.gmx_port_id			= 3,
289 	},
290 
291 	/** Miscellaneous attributes */
292 	.misc					= {
293 		/* Host driver link query interval */
294 		.oct_link_query_interval	= 100,
295 
296 		/* Octeon link query interval */
297 		.host_link_query_interval	= 500,
298 
299 		.enable_sli_oq_bp		= 0,
300 
301 		/* Control queue group */
302 		.ctrlq_grp			= 1,
303 	}
304 	,
305 };
306 
307 /** Default configuration
308  *  for CN68XX OCTEON Model.
309  */
310 static struct octeon_config default_cn68xx_210nv_conf = {
311 	.card_type                              = LIO_210NV,
312 	.card_name                              = LIO_210NV_NAME,
313 
314 	/** IQ attributes */
315 
316 	.iq					= {
317 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
318 		.pending_list_size		=
319 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
320 		.instr_type			= OCTEON_64BYTE_INSTR,
321 		.db_min				= CN6XXX_DB_MIN,
322 		.db_timeout			= CN6XXX_DB_TIMEOUT,
323 	}
324 	,
325 
326 	/** OQ attributes */
327 	.oq					= {
328 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
329 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
330 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
331 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
332 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
333 	}
334 	,
335 
336 	.num_nic_ports			= DEFAULT_NUM_NIC_PORTS_68XX_210NV,
337 	.num_def_rx_descs		= CN6XXX_MAX_OQ_DESCRIPTORS,
338 	.num_def_tx_descs		= CN6XXX_MAX_IQ_DESCRIPTORS,
339 	.def_rx_buf_size		= CN6XXX_OQ_BUF_SIZE,
340 
341 	.nic_if_cfg[0] = {
342 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
343 		.max_txqs			= MAX_TXQS_PER_INTF,
344 
345 		/* Actual configured value. Range could be: 1...max_txqs */
346 		.num_txqs			= DEF_TXQS_PER_INTF,
347 
348 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
349 		.max_rxqs			= MAX_RXQS_PER_INTF,
350 
351 		/* Actual configured value. Range could be: 1...max_rxqs */
352 		.num_rxqs			= DEF_RXQS_PER_INTF,
353 
354 		/* Num of desc for rx rings */
355 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
356 
357 		/* Num of desc for tx rings */
358 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
359 
360 		/* SKB size, We need not change buf size even for Jumbo frames.
361 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
362 		 */
363 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
364 
365 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
366 
367 		.gmx_port_id			= 0,
368 	},
369 
370 	.nic_if_cfg[1] = {
371 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
372 		.max_txqs			= MAX_TXQS_PER_INTF,
373 
374 		/* Actual configured value. Range could be: 1...max_txqs */
375 		.num_txqs			= DEF_TXQS_PER_INTF,
376 
377 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
378 		.max_rxqs			= MAX_RXQS_PER_INTF,
379 
380 		/* Actual configured value. Range could be: 1...max_rxqs */
381 		.num_rxqs			= DEF_RXQS_PER_INTF,
382 
383 		/* Num of desc for rx rings */
384 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
385 
386 		/* Num of desc for tx rings */
387 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
388 
389 		/* SKB size, We need not change buf size even for Jumbo frames.
390 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
391 		 */
392 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
393 
394 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
395 
396 		.gmx_port_id			= 1,
397 	},
398 
399 	/** Miscellaneous attributes */
400 	.misc					= {
401 		/* Host driver link query interval */
402 		.oct_link_query_interval	= 100,
403 
404 		/* Octeon link query interval */
405 		.host_link_query_interval	= 500,
406 
407 		.enable_sli_oq_bp		= 0,
408 
409 		/* Control queue group */
410 		.ctrlq_grp			= 1,
411 	}
412 	,
413 };
414 
415 static struct octeon_config default_cn23xx_conf = {
416 	.card_type                              = LIO_23XX,
417 	.card_name                              = LIO_23XX_NAME,
418 	/** IQ attributes */
419 	.iq = {
420 		.max_iqs		= CN23XX_CFG_IO_QUEUES,
421 		.pending_list_size	= (CN23XX_DEFAULT_IQ_DESCRIPTORS *
422 					   CN23XX_CFG_IO_QUEUES),
423 		.instr_type		= OCTEON_64BYTE_INSTR,
424 		.db_min			= CN23XX_DB_MIN,
425 		.db_timeout		= CN23XX_DB_TIMEOUT,
426 		.iq_intr_pkt		= CN23XX_DEF_IQ_INTR_THRESHOLD,
427 	},
428 
429 	/** OQ attributes */
430 	.oq = {
431 		.max_oqs		= CN23XX_CFG_IO_QUEUES,
432 		.pkts_per_intr	= CN23XX_OQ_PKTSPER_INTR,
433 		.refill_threshold	= CN23XX_OQ_REFIL_THRESHOLD,
434 		.oq_intr_pkt	= CN23XX_OQ_INTR_PKT,
435 		.oq_intr_time	= CN23XX_OQ_INTR_TIME,
436 	},
437 
438 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_23XX,
439 	.num_def_rx_descs			= CN23XX_DEFAULT_OQ_DESCRIPTORS,
440 	.num_def_tx_descs			= CN23XX_DEFAULT_IQ_DESCRIPTORS,
441 	.def_rx_buf_size			= CN23XX_OQ_BUF_SIZE,
442 
443 	/* For ethernet interface 0:  Port cfg Attributes */
444 	.nic_if_cfg[0] = {
445 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
446 		.max_txqs			= MAX_TXQS_PER_INTF,
447 
448 		/* Actual configured value. Range could be: 1...max_txqs */
449 		.num_txqs			= DEF_TXQS_PER_INTF,
450 
451 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
452 		.max_rxqs			= MAX_RXQS_PER_INTF,
453 
454 		/* Actual configured value. Range could be: 1...max_rxqs */
455 		.num_rxqs			= DEF_RXQS_PER_INTF,
456 
457 		/* Num of desc for rx rings */
458 		.num_rx_descs			= CN23XX_DEFAULT_OQ_DESCRIPTORS,
459 
460 		/* Num of desc for tx rings */
461 		.num_tx_descs			= CN23XX_DEFAULT_IQ_DESCRIPTORS,
462 
463 		/* SKB size, We need not change buf size even for Jumbo frames.
464 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
465 		 */
466 		.rx_buf_size			= CN23XX_OQ_BUF_SIZE,
467 
468 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
469 
470 		.gmx_port_id			= 0,
471 	},
472 
473 	.nic_if_cfg[1] = {
474 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
475 		.max_txqs			= MAX_TXQS_PER_INTF,
476 
477 		/* Actual configured value. Range could be: 1...max_txqs */
478 		.num_txqs			= DEF_TXQS_PER_INTF,
479 
480 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
481 		.max_rxqs			= MAX_RXQS_PER_INTF,
482 
483 		/* Actual configured value. Range could be: 1...max_rxqs */
484 		.num_rxqs			= DEF_RXQS_PER_INTF,
485 
486 		/* Num of desc for rx rings */
487 		.num_rx_descs			= CN23XX_DEFAULT_OQ_DESCRIPTORS,
488 
489 		/* Num of desc for tx rings */
490 		.num_tx_descs			= CN23XX_DEFAULT_IQ_DESCRIPTORS,
491 
492 		/* SKB size, We need not change buf size even for Jumbo frames.
493 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
494 		 */
495 		.rx_buf_size			= CN23XX_OQ_BUF_SIZE,
496 
497 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
498 
499 		.gmx_port_id			= 1,
500 	},
501 
502 	.misc					= {
503 		/* Host driver link query interval */
504 		.oct_link_query_interval	= 100,
505 
506 		/* Octeon link query interval */
507 		.host_link_query_interval	= 500,
508 
509 		.enable_sli_oq_bp		= 0,
510 
511 		/* Control queue group */
512 		.ctrlq_grp			= 1,
513 	}
514 };
515 
516 static struct octeon_config_ptr {
517 	u32 conf_type;
518 } oct_conf_info[MAX_OCTEON_DEVICES] = {
519 	{
520 		OCTEON_CONFIG_TYPE_DEFAULT,
521 	}, {
522 		OCTEON_CONFIG_TYPE_DEFAULT,
523 	}, {
524 		OCTEON_CONFIG_TYPE_DEFAULT,
525 	}, {
526 		OCTEON_CONFIG_TYPE_DEFAULT,
527 	},
528 };
529 
530 static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = {
531 	"BEGIN", "PCI-ENABLE-DONE", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
532 	"IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
533 	"DROQ-INIT-DONE", "MBOX-SETUP-DONE", "MSIX-ALLOC-VECTOR-DONE",
534 	"INTR-SET-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
535 	"HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
536 	"INVALID"
537 };
538 
539 static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = {
540 	"BASE", "NIC", "UNKNOWN"};
541 
542 static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES];
543 static atomic_t adapter_refcounts[MAX_OCTEON_DEVICES];
544 static atomic_t adapter_fw_states[MAX_OCTEON_DEVICES];
545 
546 static u32 octeon_device_count;
547 /* locks device array (i.e. octeon_device[]) */
548 static spinlock_t octeon_devices_lock;
549 
550 static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES];
551 
552 static void oct_set_config_info(int oct_id, int conf_type)
553 {
554 	if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1))
555 		conf_type = OCTEON_CONFIG_TYPE_DEFAULT;
556 	oct_conf_info[oct_id].conf_type = conf_type;
557 }
558 
559 void octeon_init_device_list(int conf_type)
560 {
561 	int i;
562 
563 	memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES));
564 	for (i = 0; i <  MAX_OCTEON_DEVICES; i++)
565 		oct_set_config_info(i, conf_type);
566 	spin_lock_init(&octeon_devices_lock);
567 }
568 
569 static void *__retrieve_octeon_config_info(struct octeon_device *oct,
570 					   u16 card_type)
571 {
572 	u32 oct_id = oct->octeon_id;
573 	void *ret = NULL;
574 
575 	switch (oct_conf_info[oct_id].conf_type) {
576 	case OCTEON_CONFIG_TYPE_DEFAULT:
577 		if (oct->chip_id == OCTEON_CN66XX) {
578 			ret = &default_cn66xx_conf;
579 		} else if ((oct->chip_id == OCTEON_CN68XX) &&
580 			   (card_type == LIO_210NV)) {
581 			ret = &default_cn68xx_210nv_conf;
582 		} else if ((oct->chip_id == OCTEON_CN68XX) &&
583 			   (card_type == LIO_410NV)) {
584 			ret = &default_cn68xx_conf;
585 		} else if (oct->chip_id == OCTEON_CN23XX_PF_VID) {
586 			ret = &default_cn23xx_conf;
587 		} else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
588 			ret = &default_cn23xx_conf;
589 		}
590 		break;
591 	default:
592 		break;
593 	}
594 	return ret;
595 }
596 
597 static int __verify_octeon_config_info(struct octeon_device *oct, void *conf)
598 {
599 	switch (oct->chip_id) {
600 	case OCTEON_CN66XX:
601 	case OCTEON_CN68XX:
602 		return lio_validate_cn6xxx_config_info(oct, conf);
603 	case OCTEON_CN23XX_PF_VID:
604 	case OCTEON_CN23XX_VF_VID:
605 		return 0;
606 	default:
607 		break;
608 	}
609 
610 	return 1;
611 }
612 
613 void *oct_get_config_info(struct octeon_device *oct, u16 card_type)
614 {
615 	void *conf = NULL;
616 
617 	conf = __retrieve_octeon_config_info(oct, card_type);
618 	if (!conf)
619 		return NULL;
620 
621 	if (__verify_octeon_config_info(oct, conf)) {
622 		dev_err(&oct->pci_dev->dev, "Configuration verification failed\n");
623 		return NULL;
624 	}
625 
626 	return conf;
627 }
628 
629 char *lio_get_state_string(atomic_t *state_ptr)
630 {
631 	s32 istate = (s32)atomic_read(state_ptr);
632 
633 	if (istate > OCT_DEV_STATES || istate < 0)
634 		return oct_dev_state_str[OCT_DEV_STATE_INVALID];
635 	return oct_dev_state_str[istate];
636 }
637 
638 static char *get_oct_app_string(u32 app_mode)
639 {
640 	if (app_mode <= CVM_DRV_APP_END)
641 		return oct_dev_app_str[app_mode - CVM_DRV_APP_START];
642 	return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START];
643 }
644 
645 void octeon_free_device_mem(struct octeon_device *oct)
646 {
647 	int i;
648 
649 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
650 		if (oct->io_qmask.oq & BIT_ULL(i))
651 			vfree(oct->droq[i]);
652 	}
653 
654 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
655 		if (oct->io_qmask.iq & BIT_ULL(i))
656 			vfree(oct->instr_queue[i]);
657 	}
658 
659 	i = oct->octeon_id;
660 	vfree(oct);
661 
662 	octeon_device[i] = NULL;
663 	octeon_device_count--;
664 }
665 
666 static struct octeon_device *octeon_allocate_device_mem(u32 pci_id,
667 							u32 priv_size)
668 {
669 	struct octeon_device *oct;
670 	u8 *buf = NULL;
671 	u32 octdevsize = 0, configsize = 0, size;
672 
673 	switch (pci_id) {
674 	case OCTEON_CN68XX:
675 	case OCTEON_CN66XX:
676 		configsize = sizeof(struct octeon_cn6xxx);
677 		break;
678 
679 	case OCTEON_CN23XX_PF_VID:
680 		configsize = sizeof(struct octeon_cn23xx_pf);
681 		break;
682 	case OCTEON_CN23XX_VF_VID:
683 		configsize = sizeof(struct octeon_cn23xx_vf);
684 		break;
685 	default:
686 		pr_err("%s: Unknown PCI Device: 0x%x\n",
687 		       __func__,
688 		       pci_id);
689 		return NULL;
690 	}
691 
692 	if (configsize & 0x7)
693 		configsize += (8 - (configsize & 0x7));
694 
695 	octdevsize = sizeof(struct octeon_device);
696 	if (octdevsize & 0x7)
697 		octdevsize += (8 - (octdevsize & 0x7));
698 
699 	if (priv_size & 0x7)
700 		priv_size += (8 - (priv_size & 0x7));
701 
702 	size = octdevsize + priv_size + configsize +
703 		(sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE);
704 
705 	buf = vzalloc(size);
706 	if (!buf)
707 		return NULL;
708 
709 	oct = (struct octeon_device *)buf;
710 	oct->priv = (void *)(buf + octdevsize);
711 	oct->chip = (void *)(buf + octdevsize + priv_size);
712 	oct->dispatch.dlist = (struct octeon_dispatch *)
713 		(buf + octdevsize + priv_size + configsize);
714 
715 	return oct;
716 }
717 
718 struct octeon_device *octeon_allocate_device(u32 pci_id,
719 					     u32 priv_size)
720 {
721 	u32 oct_idx = 0;
722 	struct octeon_device *oct = NULL;
723 
724 	spin_lock(&octeon_devices_lock);
725 
726 	for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++)
727 		if (!octeon_device[oct_idx])
728 			break;
729 
730 	if (oct_idx < MAX_OCTEON_DEVICES) {
731 		oct = octeon_allocate_device_mem(pci_id, priv_size);
732 		if (oct) {
733 			octeon_device_count++;
734 			octeon_device[oct_idx] = oct;
735 		}
736 	}
737 
738 	spin_unlock(&octeon_devices_lock);
739 	if (!oct)
740 		return NULL;
741 
742 	spin_lock_init(&oct->pci_win_lock);
743 	spin_lock_init(&oct->mem_access_lock);
744 
745 	oct->octeon_id = oct_idx;
746 	snprintf(oct->device_name, sizeof(oct->device_name),
747 		 "LiquidIO%d", (oct->octeon_id));
748 
749 	return oct;
750 }
751 
752 /** Register a device's bus location at initialization time.
753  *  @param octeon_dev - pointer to the octeon device structure.
754  *  @param bus        - PCIe bus #
755  *  @param dev        - PCIe device #
756  *  @param func       - PCIe function #
757  *  @param is_pf      - TRUE for PF, FALSE for VF
758  *  @return reference count of device's adapter
759  */
760 int octeon_register_device(struct octeon_device *oct,
761 			   int bus, int dev, int func, int is_pf)
762 {
763 	int idx, refcount;
764 
765 	oct->loc.bus = bus;
766 	oct->loc.dev = dev;
767 	oct->loc.func = func;
768 
769 	oct->adapter_refcount = &adapter_refcounts[oct->octeon_id];
770 	atomic_set(oct->adapter_refcount, 0);
771 
772 	/* Like the reference count, the f/w state is shared 'per-adapter' */
773 	oct->adapter_fw_state = &adapter_fw_states[oct->octeon_id];
774 	atomic_set(oct->adapter_fw_state, FW_NEEDS_TO_BE_LOADED);
775 
776 	spin_lock(&octeon_devices_lock);
777 	for (idx = (int)oct->octeon_id - 1; idx >= 0; idx--) {
778 		if (!octeon_device[idx]) {
779 			dev_err(&oct->pci_dev->dev,
780 				"%s: Internal driver error, missing dev",
781 				__func__);
782 			spin_unlock(&octeon_devices_lock);
783 			atomic_inc(oct->adapter_refcount);
784 			return 1; /* here, refcount is guaranteed to be 1 */
785 		}
786 		/* If another device is at same bus/dev, use its refcounter
787 		 * (and f/w state variable).
788 		 */
789 		if ((octeon_device[idx]->loc.bus == bus) &&
790 		    (octeon_device[idx]->loc.dev == dev)) {
791 			oct->adapter_refcount =
792 				octeon_device[idx]->adapter_refcount;
793 			oct->adapter_fw_state =
794 				octeon_device[idx]->adapter_fw_state;
795 			break;
796 		}
797 	}
798 	spin_unlock(&octeon_devices_lock);
799 
800 	atomic_inc(oct->adapter_refcount);
801 	refcount = atomic_read(oct->adapter_refcount);
802 
803 	dev_dbg(&oct->pci_dev->dev, "%s: %02x:%02x:%d refcount %u", __func__,
804 		oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
805 
806 	return refcount;
807 }
808 
809 /** Deregister a device at de-initialization time.
810  *  @param octeon_dev - pointer to the octeon device structure.
811  *  @return reference count of device's adapter
812  */
813 int octeon_deregister_device(struct octeon_device *oct)
814 {
815 	int refcount;
816 
817 	atomic_dec(oct->adapter_refcount);
818 	refcount = atomic_read(oct->adapter_refcount);
819 
820 	dev_dbg(&oct->pci_dev->dev, "%s: %04d:%02d:%d refcount %u", __func__,
821 		oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
822 
823 	return refcount;
824 }
825 
826 int
827 octeon_allocate_ioq_vector(struct octeon_device *oct, u32 num_ioqs)
828 {
829 	struct octeon_ioq_vector *ioq_vector;
830 	int cpu_num;
831 	int size;
832 	int i;
833 
834 	size = sizeof(struct octeon_ioq_vector) * num_ioqs;
835 
836 	oct->ioq_vector = vzalloc(size);
837 	if (!oct->ioq_vector)
838 		return -1;
839 	for (i = 0; i < num_ioqs; i++) {
840 		ioq_vector		= &oct->ioq_vector[i];
841 		ioq_vector->oct_dev	= oct;
842 		ioq_vector->iq_index	= i;
843 		ioq_vector->droq_index	= i;
844 		ioq_vector->mbox	= oct->mbox[i];
845 
846 		cpu_num = i % num_online_cpus();
847 		cpumask_set_cpu(cpu_num, &ioq_vector->affinity_mask);
848 
849 		if (oct->chip_id == OCTEON_CN23XX_PF_VID)
850 			ioq_vector->ioq_num	= i + oct->sriov_info.pf_srn;
851 		else
852 			ioq_vector->ioq_num	= i;
853 	}
854 
855 	return 0;
856 }
857 
858 void
859 octeon_free_ioq_vector(struct octeon_device *oct)
860 {
861 	vfree(oct->ioq_vector);
862 }
863 
864 /* this function is only for setting up the first queue */
865 int octeon_setup_instr_queues(struct octeon_device *oct)
866 {
867 	u32 num_descs = 0;
868 	u32 iq_no = 0;
869 	union oct_txpciq txpciq;
870 	int numa_node = dev_to_node(&oct->pci_dev->dev);
871 
872 	if (OCTEON_CN6XXX(oct))
873 		num_descs =
874 			CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn6xxx));
875 	else if (OCTEON_CN23XX_PF(oct))
876 		num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_pf));
877 	else if (OCTEON_CN23XX_VF(oct))
878 		num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_vf));
879 
880 	oct->num_iqs = 0;
881 
882 	oct->instr_queue[0] = vzalloc_node(sizeof(*oct->instr_queue[0]),
883 				numa_node);
884 	if (!oct->instr_queue[0])
885 		oct->instr_queue[0] =
886 			vzalloc(sizeof(struct octeon_instr_queue));
887 	if (!oct->instr_queue[0])
888 		return 1;
889 	memset(oct->instr_queue[0], 0, sizeof(struct octeon_instr_queue));
890 	oct->instr_queue[0]->q_index = 0;
891 	oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
892 	oct->instr_queue[0]->ifidx = 0;
893 	txpciq.u64 = 0;
894 	txpciq.s.q_no = iq_no;
895 	txpciq.s.pkind = oct->pfvf_hsword.pkind;
896 	txpciq.s.use_qpg = 0;
897 	txpciq.s.qpg = 0;
898 	if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
899 		/* prevent memory leak */
900 		vfree(oct->instr_queue[0]);
901 		oct->instr_queue[0] = NULL;
902 		return 1;
903 	}
904 
905 	oct->num_iqs++;
906 	return 0;
907 }
908 
909 int octeon_setup_output_queues(struct octeon_device *oct)
910 {
911 	u32 num_descs = 0;
912 	u32 desc_size = 0;
913 	u32 oq_no = 0;
914 	int numa_node = dev_to_node(&oct->pci_dev->dev);
915 
916 	if (OCTEON_CN6XXX(oct)) {
917 		num_descs =
918 			CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn6xxx));
919 		desc_size =
920 			CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn6xxx));
921 	} else if (OCTEON_CN23XX_PF(oct)) {
922 		num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_pf));
923 		desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_pf));
924 	} else if (OCTEON_CN23XX_VF(oct)) {
925 		num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_vf));
926 		desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_vf));
927 	}
928 	oct->num_oqs = 0;
929 	oct->droq[0] = vzalloc_node(sizeof(*oct->droq[0]), numa_node);
930 	if (!oct->droq[0])
931 		oct->droq[0] = vzalloc(sizeof(*oct->droq[0]));
932 	if (!oct->droq[0])
933 		return 1;
934 
935 	if (octeon_init_droq(oct, oq_no, num_descs, desc_size, NULL)) {
936 		vfree(oct->droq[oq_no]);
937 		oct->droq[oq_no] = NULL;
938 		return 1;
939 	}
940 	oct->num_oqs++;
941 
942 	return 0;
943 }
944 
945 int octeon_set_io_queues_off(struct octeon_device *oct)
946 {
947 	int loop = BUSY_READING_REG_VF_LOOP_COUNT;
948 
949 	if (OCTEON_CN6XXX(oct)) {
950 		octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
951 		octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
952 	} else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
953 		u32 q_no;
954 
955 		/* IOQs will already be in reset.
956 		 * If RST bit is set, wait for quiet bit to be set.
957 		 * Once quiet bit is set, clear the RST bit.
958 		 */
959 		for (q_no = 0; q_no < oct->sriov_info.rings_per_vf; q_no++) {
960 			u64 reg_val = octeon_read_csr64(
961 				oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
962 
963 			while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
964 			       !(reg_val &  CN23XX_PKT_INPUT_CTL_QUIET) &&
965 			       loop) {
966 				reg_val = octeon_read_csr64(
967 					oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
968 				loop--;
969 			}
970 			if (!loop) {
971 				dev_err(&oct->pci_dev->dev,
972 					"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
973 					q_no);
974 				return -1;
975 			}
976 
977 			reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
978 			octeon_write_csr64(oct,
979 					   CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
980 					   reg_val);
981 
982 			reg_val = octeon_read_csr64(
983 					oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
984 			if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
985 				dev_err(&oct->pci_dev->dev,
986 					"unable to reset qno %u\n", q_no);
987 				return -1;
988 			}
989 		}
990 	}
991 	return 0;
992 }
993 
994 void octeon_set_droq_pkt_op(struct octeon_device *oct,
995 			    u32 q_no,
996 			    u32 enable)
997 {
998 	u32 reg_val = 0;
999 
1000 	/* Disable the i/p and o/p queues for this Octeon. */
1001 	if (OCTEON_CN6XXX(oct)) {
1002 		reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
1003 
1004 		if (enable)
1005 			reg_val = reg_val | (1 << q_no);
1006 		else
1007 			reg_val = reg_val & (~(1 << q_no));
1008 
1009 		octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val);
1010 	}
1011 }
1012 
1013 int octeon_init_dispatch_list(struct octeon_device *oct)
1014 {
1015 	u32 i;
1016 
1017 	oct->dispatch.count = 0;
1018 
1019 	for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
1020 		oct->dispatch.dlist[i].opcode = 0;
1021 		INIT_LIST_HEAD(&oct->dispatch.dlist[i].list);
1022 	}
1023 
1024 	for (i = 0; i <= REQTYPE_LAST; i++)
1025 		octeon_register_reqtype_free_fn(oct, i, NULL);
1026 
1027 	spin_lock_init(&oct->dispatch.lock);
1028 
1029 	return 0;
1030 }
1031 
1032 void octeon_delete_dispatch_list(struct octeon_device *oct)
1033 {
1034 	u32 i;
1035 	struct list_head freelist, *temp, *tmp2;
1036 
1037 	INIT_LIST_HEAD(&freelist);
1038 
1039 	spin_lock_bh(&oct->dispatch.lock);
1040 
1041 	for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
1042 		struct list_head *dispatch;
1043 
1044 		dispatch = &oct->dispatch.dlist[i].list;
1045 		while (dispatch->next != dispatch) {
1046 			temp = dispatch->next;
1047 			list_del(temp);
1048 			list_add_tail(temp, &freelist);
1049 		}
1050 
1051 		oct->dispatch.dlist[i].opcode = 0;
1052 	}
1053 
1054 	oct->dispatch.count = 0;
1055 
1056 	spin_unlock_bh(&oct->dispatch.lock);
1057 
1058 	list_for_each_safe(temp, tmp2, &freelist) {
1059 		list_del(temp);
1060 		vfree(temp);
1061 	}
1062 }
1063 
1064 octeon_dispatch_fn_t
1065 octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode,
1066 		    u16 subcode)
1067 {
1068 	u32 idx;
1069 	struct list_head *dispatch;
1070 	octeon_dispatch_fn_t fn = NULL;
1071 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1072 
1073 	idx = combined_opcode & OCTEON_OPCODE_MASK;
1074 
1075 	spin_lock_bh(&octeon_dev->dispatch.lock);
1076 
1077 	if (octeon_dev->dispatch.count == 0) {
1078 		spin_unlock_bh(&octeon_dev->dispatch.lock);
1079 		return NULL;
1080 	}
1081 
1082 	if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
1083 		spin_unlock_bh(&octeon_dev->dispatch.lock);
1084 		return NULL;
1085 	}
1086 
1087 	if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
1088 		fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
1089 	} else {
1090 		list_for_each(dispatch,
1091 			      &octeon_dev->dispatch.dlist[idx].list) {
1092 			if (((struct octeon_dispatch *)dispatch)->opcode ==
1093 			    combined_opcode) {
1094 				fn = ((struct octeon_dispatch *)
1095 				      dispatch)->dispatch_fn;
1096 				break;
1097 			}
1098 		}
1099 	}
1100 
1101 	spin_unlock_bh(&octeon_dev->dispatch.lock);
1102 	return fn;
1103 }
1104 
1105 /* octeon_register_dispatch_fn
1106  * Parameters:
1107  *   octeon_id - id of the octeon device.
1108  *   opcode    - opcode for which driver should call the registered function
1109  *   subcode   - subcode for which driver should call the registered function
1110  *   fn        - The function to call when a packet with "opcode" arrives in
1111  *		  octeon output queues.
1112  *   fn_arg    - The argument to be passed when calling function "fn".
1113  * Description:
1114  *   Registers a function and its argument to be called when a packet
1115  *   arrives in Octeon output queues with "opcode".
1116  * Returns:
1117  *   Success: 0
1118  *   Failure: 1
1119  * Locks:
1120  *   No locks are held.
1121  */
1122 int
1123 octeon_register_dispatch_fn(struct octeon_device *oct,
1124 			    u16 opcode,
1125 			    u16 subcode,
1126 			    octeon_dispatch_fn_t fn, void *fn_arg)
1127 {
1128 	u32 idx;
1129 	octeon_dispatch_fn_t pfn;
1130 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1131 
1132 	idx = combined_opcode & OCTEON_OPCODE_MASK;
1133 
1134 	spin_lock_bh(&oct->dispatch.lock);
1135 	/* Add dispatch function to first level of lookup table */
1136 	if (oct->dispatch.dlist[idx].opcode == 0) {
1137 		oct->dispatch.dlist[idx].opcode = combined_opcode;
1138 		oct->dispatch.dlist[idx].dispatch_fn = fn;
1139 		oct->dispatch.dlist[idx].arg = fn_arg;
1140 		oct->dispatch.count++;
1141 		spin_unlock_bh(&oct->dispatch.lock);
1142 		return 0;
1143 	}
1144 
1145 	spin_unlock_bh(&oct->dispatch.lock);
1146 
1147 	/* Check if there was a function already registered for this
1148 	 * opcode/subcode.
1149 	 */
1150 	pfn = octeon_get_dispatch(oct, opcode, subcode);
1151 	if (!pfn) {
1152 		struct octeon_dispatch *dispatch;
1153 
1154 		dev_dbg(&oct->pci_dev->dev,
1155 			"Adding opcode to dispatch list linked list\n");
1156 		dispatch = (struct octeon_dispatch *)
1157 			   vmalloc(sizeof(struct octeon_dispatch));
1158 		if (!dispatch) {
1159 			dev_err(&oct->pci_dev->dev,
1160 				"No memory to add dispatch function\n");
1161 			return 1;
1162 		}
1163 		dispatch->opcode = combined_opcode;
1164 		dispatch->dispatch_fn = fn;
1165 		dispatch->arg = fn_arg;
1166 
1167 		/* Add dispatch function to linked list of fn ptrs
1168 		 * at the hashed index.
1169 		 */
1170 		spin_lock_bh(&oct->dispatch.lock);
1171 		list_add(&dispatch->list, &oct->dispatch.dlist[idx].list);
1172 		oct->dispatch.count++;
1173 		spin_unlock_bh(&oct->dispatch.lock);
1174 
1175 	} else {
1176 		if (pfn == fn &&
1177 		    octeon_get_dispatch_arg(oct, opcode, subcode) == fn_arg)
1178 			return 0;
1179 
1180 		dev_err(&oct->pci_dev->dev,
1181 			"Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
1182 			opcode, subcode);
1183 		return 1;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf)
1190 {
1191 	u32 i;
1192 	char app_name[16];
1193 	struct octeon_device *oct = (struct octeon_device *)buf;
1194 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
1195 	struct octeon_core_setup *cs = NULL;
1196 	u32 num_nic_ports = 0;
1197 
1198 	if (OCTEON_CN6XXX(oct))
1199 		num_nic_ports =
1200 			CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn6xxx));
1201 	else if (OCTEON_CN23XX_PF(oct))
1202 		num_nic_ports =
1203 			CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn23xx_pf));
1204 
1205 	if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) {
1206 		dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n",
1207 			atomic_read(&oct->status));
1208 		goto core_drv_init_err;
1209 	}
1210 
1211 	strncpy(app_name,
1212 		get_oct_app_string(
1213 		(u32)recv_pkt->rh.r_core_drv_init.app_mode),
1214 		sizeof(app_name) - 1);
1215 	oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1216 	if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) {
1217 		oct->fw_info.max_nic_ports =
1218 			(u32)recv_pkt->rh.r_core_drv_init.max_nic_ports;
1219 		oct->fw_info.num_gmx_ports =
1220 			(u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
1221 	}
1222 
1223 	if (oct->fw_info.max_nic_ports < num_nic_ports) {
1224 		dev_err(&oct->pci_dev->dev,
1225 			"Config has more ports than firmware allows (%d > %d).\n",
1226 			num_nic_ports, oct->fw_info.max_nic_ports);
1227 		goto core_drv_init_err;
1228 	}
1229 	oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
1230 	oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1231 	oct->pfvf_hsword.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1232 
1233 	oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
1234 
1235 	for (i = 0; i < oct->num_iqs; i++)
1236 		oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
1237 
1238 	atomic_set(&oct->status, OCT_DEV_CORE_OK);
1239 
1240 	cs = &core_setup[oct->octeon_id];
1241 
1242 	if (recv_pkt->buffer_size[0] != (sizeof(*cs) + OCT_DROQ_INFO_SIZE)) {
1243 		dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n",
1244 			(u32)sizeof(*cs),
1245 			recv_pkt->buffer_size[0]);
1246 	}
1247 
1248 	memcpy(cs, get_rbd(
1249 	       recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE, sizeof(*cs));
1250 
1251 	strncpy(oct->boardinfo.name, cs->boardname, OCT_BOARD_NAME);
1252 	strncpy(oct->boardinfo.serial_number, cs->board_serial_number,
1253 		OCT_SERIAL_LEN);
1254 
1255 	octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3));
1256 
1257 	oct->boardinfo.major = cs->board_rev_major;
1258 	oct->boardinfo.minor = cs->board_rev_minor;
1259 
1260 	dev_info(&oct->pci_dev->dev,
1261 		 "Running %s (%llu Hz)\n",
1262 		 app_name, CVM_CAST64(cs->corefreq));
1263 
1264 core_drv_init_err:
1265 	for (i = 0; i < recv_pkt->buffer_count; i++)
1266 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
1267 	octeon_free_recv_info(recv_info);
1268 	return 0;
1269 }
1270 
1271 int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no)
1272 
1273 {
1274 	if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES(oct)) &&
1275 	    (oct->io_qmask.iq & BIT_ULL(q_no)))
1276 		return oct->instr_queue[q_no]->max_count;
1277 
1278 	return -1;
1279 }
1280 
1281 int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no)
1282 {
1283 	if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES(oct)) &&
1284 	    (oct->io_qmask.oq & BIT_ULL(q_no)))
1285 		return oct->droq[q_no]->max_count;
1286 	return -1;
1287 }
1288 
1289 /* Retruns the host firmware handshake OCTEON specific configuration */
1290 struct octeon_config *octeon_get_conf(struct octeon_device *oct)
1291 {
1292 	struct octeon_config *default_oct_conf = NULL;
1293 
1294 	/* check the OCTEON Device model & return the corresponding octeon
1295 	 * configuration
1296 	 */
1297 
1298 	if (OCTEON_CN6XXX(oct)) {
1299 		default_oct_conf =
1300 			(struct octeon_config *)(CHIP_CONF(oct, cn6xxx));
1301 	} else if (OCTEON_CN23XX_PF(oct)) {
1302 		default_oct_conf = (struct octeon_config *)
1303 			(CHIP_CONF(oct, cn23xx_pf));
1304 	} else if (OCTEON_CN23XX_VF(oct)) {
1305 		default_oct_conf = (struct octeon_config *)
1306 			(CHIP_CONF(oct, cn23xx_vf));
1307 	}
1308 	return default_oct_conf;
1309 }
1310 
1311 /* scratch register address is same in all the OCT-II and CN70XX models */
1312 #define CNXX_SLI_SCRATCH1   0x3C0
1313 
1314 /** Get the octeon device pointer.
1315  *  @param octeon_id  - The id for which the octeon device pointer is required.
1316  *  @return Success: Octeon device pointer.
1317  *  @return Failure: NULL.
1318  */
1319 struct octeon_device *lio_get_device(u32 octeon_id)
1320 {
1321 	if (octeon_id >= MAX_OCTEON_DEVICES)
1322 		return NULL;
1323 	else
1324 		return octeon_device[octeon_id];
1325 }
1326 
1327 u64 lio_pci_readq(struct octeon_device *oct, u64 addr)
1328 {
1329 	u64 val64;
1330 	unsigned long flags;
1331 	u32 val32, addrhi;
1332 
1333 	spin_lock_irqsave(&oct->pci_win_lock, flags);
1334 
1335 	/* The windowed read happens when the LSB of the addr is written.
1336 	 * So write MSB first
1337 	 */
1338 	addrhi = (addr >> 32);
1339 	if ((oct->chip_id == OCTEON_CN66XX) ||
1340 	    (oct->chip_id == OCTEON_CN68XX) ||
1341 	    (oct->chip_id == OCTEON_CN23XX_PF_VID))
1342 		addrhi |= 0x00060000;
1343 	writel(addrhi, oct->reg_list.pci_win_rd_addr_hi);
1344 
1345 	/* Read back to preserve ordering of writes */
1346 	val32 = readl(oct->reg_list.pci_win_rd_addr_hi);
1347 
1348 	writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo);
1349 	val32 = readl(oct->reg_list.pci_win_rd_addr_lo);
1350 
1351 	val64 = readq(oct->reg_list.pci_win_rd_data);
1352 
1353 	spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1354 
1355 	return val64;
1356 }
1357 
1358 void lio_pci_writeq(struct octeon_device *oct,
1359 		    u64 val,
1360 		    u64 addr)
1361 {
1362 	u32 val32;
1363 	unsigned long flags;
1364 
1365 	spin_lock_irqsave(&oct->pci_win_lock, flags);
1366 
1367 	writeq(addr, oct->reg_list.pci_win_wr_addr);
1368 
1369 	/* The write happens when the LSB is written. So write MSB first. */
1370 	writel(val >> 32, oct->reg_list.pci_win_wr_data_hi);
1371 	/* Read the MSB to ensure ordering of writes. */
1372 	val32 = readl(oct->reg_list.pci_win_wr_data_hi);
1373 
1374 	writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo);
1375 
1376 	spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1377 }
1378 
1379 int octeon_mem_access_ok(struct octeon_device *oct)
1380 {
1381 	u64 access_okay = 0;
1382 	u64 lmc0_reset_ctl;
1383 
1384 	/* Check to make sure a DDR interface is enabled */
1385 	if (OCTEON_CN23XX_PF(oct)) {
1386 		lmc0_reset_ctl = lio_pci_readq(oct, CN23XX_LMC0_RESET_CTL);
1387 		access_okay =
1388 			(lmc0_reset_ctl & CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
1389 	} else {
1390 		lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL);
1391 		access_okay =
1392 			(lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK);
1393 	}
1394 
1395 	return access_okay ? 0 : 1;
1396 }
1397 
1398 int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout)
1399 {
1400 	int ret = 1;
1401 	u32 ms;
1402 
1403 	if (!timeout)
1404 		return ret;
1405 
1406 	for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout));
1407 	     ms += HZ / 10) {
1408 		ret = octeon_mem_access_ok(oct);
1409 
1410 		/* wait 100 ms */
1411 		if (ret)
1412 			schedule_timeout_uninterruptible(HZ / 10);
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 /** Get the octeon id assigned to the octeon device passed as argument.
1419  *  This function is exported to other modules.
1420  *  @param dev - octeon device pointer passed as a void *.
1421  *  @return octeon device id
1422  */
1423 int lio_get_device_id(void *dev)
1424 {
1425 	struct octeon_device *octeon_dev = (struct octeon_device *)dev;
1426 	u32 i;
1427 
1428 	for (i = 0; i < MAX_OCTEON_DEVICES; i++)
1429 		if (octeon_device[i] == octeon_dev)
1430 			return octeon_dev->octeon_id;
1431 	return -1;
1432 }
1433 
1434 void lio_enable_irq(struct octeon_droq *droq, struct octeon_instr_queue *iq)
1435 {
1436 	u64 instr_cnt;
1437 	u32 pkts_pend;
1438 	struct octeon_device *oct = NULL;
1439 
1440 	/* the whole thing needs to be atomic, ideally */
1441 	if (droq) {
1442 		pkts_pend = (u32)atomic_read(&droq->pkts_pending);
1443 		spin_lock_bh(&droq->lock);
1444 		writel(droq->pkt_count - pkts_pend, droq->pkts_sent_reg);
1445 		droq->pkt_count = pkts_pend;
1446 		/* this write needs to be flushed before we release the lock */
1447 		mmiowb();
1448 		spin_unlock_bh(&droq->lock);
1449 		oct = droq->oct_dev;
1450 	}
1451 	if (iq) {
1452 		spin_lock_bh(&iq->lock);
1453 		writel(iq->pkt_in_done, iq->inst_cnt_reg);
1454 		iq->pkt_in_done = 0;
1455 		/* this write needs to be flushed before we release the lock */
1456 		mmiowb();
1457 		spin_unlock_bh(&iq->lock);
1458 		oct = iq->oct_dev;
1459 	}
1460 	/*write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
1461 	 *to trigger tx interrupts as well, if they are pending.
1462 	 */
1463 	if (oct && (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))) {
1464 		if (droq)
1465 			writeq(CN23XX_INTR_RESEND, droq->pkts_sent_reg);
1466 		/*we race with firmrware here. read and write the IN_DONE_CNTS*/
1467 		else if (iq) {
1468 			instr_cnt =  readq(iq->inst_cnt_reg);
1469 			writeq(((instr_cnt & 0xFFFFFFFF00000000ULL) |
1470 				CN23XX_INTR_RESEND),
1471 			       iq->inst_cnt_reg);
1472 		}
1473 	}
1474 }
1475