xref: /openbmc/linux/drivers/net/ethernet/cavium/liquidio/lio_vf_main.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <net/vxlan.h>
20 #include "liquidio_common.h"
21 #include "octeon_droq.h"
22 #include "octeon_iq.h"
23 #include "response_manager.h"
24 #include "octeon_device.h"
25 #include "octeon_nic.h"
26 #include "octeon_main.h"
27 #include "octeon_network.h"
28 #include "cn23xx_vf_device.h"
29 
30 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
31 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Virtual Function Driver");
32 MODULE_LICENSE("GPL");
33 MODULE_VERSION(LIQUIDIO_VERSION);
34 
35 static int debug = -1;
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
38 
39 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
40 
41 /* Bit mask values for lio->ifstate */
42 #define   LIO_IFSTATE_DROQ_OPS             0x01
43 #define   LIO_IFSTATE_REGISTERED           0x02
44 #define   LIO_IFSTATE_RUNNING              0x04
45 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
46 
47 struct liquidio_if_cfg_context {
48 	int octeon_id;
49 
50 	wait_queue_head_t wc;
51 
52 	int cond;
53 };
54 
55 struct liquidio_if_cfg_resp {
56 	u64 rh;
57 	struct liquidio_if_cfg_info cfg_info;
58 	u64 status;
59 };
60 
61 struct liquidio_rx_ctl_context {
62 	int octeon_id;
63 
64 	wait_queue_head_t wc;
65 
66 	int cond;
67 };
68 
69 struct oct_timestamp_resp {
70 	u64 rh;
71 	u64 timestamp;
72 	u64 status;
73 };
74 
75 union tx_info {
76 	u64 u64;
77 	struct {
78 #ifdef __BIG_ENDIAN_BITFIELD
79 		u16 gso_size;
80 		u16 gso_segs;
81 		u32 reserved;
82 #else
83 		u32 reserved;
84 		u16 gso_segs;
85 		u16 gso_size;
86 #endif
87 	} s;
88 };
89 
90 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
91 
92 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
93 #define OCTNIC_GSO_MAX_SIZE \
94 		(CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
95 
96 struct octnic_gather {
97 	/* List manipulation. Next and prev pointers. */
98 	struct list_head list;
99 
100 	/* Size of the gather component at sg in bytes. */
101 	int sg_size;
102 
103 	/* Number of bytes that sg was adjusted to make it 8B-aligned. */
104 	int adjust;
105 
106 	/* Gather component that can accommodate max sized fragment list
107 	 * received from the IP layer.
108 	 */
109 	struct octeon_sg_entry *sg;
110 };
111 
112 struct octeon_device_priv {
113 	/* Tasklet structures for this device. */
114 	struct tasklet_struct droq_tasklet;
115 	unsigned long napi_mask;
116 };
117 
118 static int
119 liquidio_vf_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
120 static void liquidio_vf_remove(struct pci_dev *pdev);
121 static int octeon_device_init(struct octeon_device *oct);
122 static int liquidio_stop(struct net_device *netdev);
123 
124 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
125 {
126 	struct octeon_device_priv *oct_priv =
127 	    (struct octeon_device_priv *)oct->priv;
128 	int retry = MAX_VF_IP_OP_PENDING_PKT_COUNT;
129 	int pkt_cnt = 0, pending_pkts;
130 	int i;
131 
132 	do {
133 		pending_pkts = 0;
134 
135 		for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
136 			if (!(oct->io_qmask.oq & BIT_ULL(i)))
137 				continue;
138 			pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
139 		}
140 		if (pkt_cnt > 0) {
141 			pending_pkts += pkt_cnt;
142 			tasklet_schedule(&oct_priv->droq_tasklet);
143 		}
144 		pkt_cnt = 0;
145 		schedule_timeout_uninterruptible(1);
146 
147 	} while (retry-- && pending_pkts);
148 
149 	return pkt_cnt;
150 }
151 
152 /**
153  * \brief wait for all pending requests to complete
154  * @param oct Pointer to Octeon device
155  *
156  * Called during shutdown sequence
157  */
158 static int wait_for_pending_requests(struct octeon_device *oct)
159 {
160 	int i, pcount = 0;
161 
162 	for (i = 0; i < MAX_VF_IP_OP_PENDING_PKT_COUNT; i++) {
163 		pcount = atomic_read(
164 		    &oct->response_list[OCTEON_ORDERED_SC_LIST]
165 			 .pending_req_count);
166 		if (pcount)
167 			schedule_timeout_uninterruptible(HZ / 10);
168 		else
169 			break;
170 	}
171 
172 	if (pcount)
173 		return 1;
174 
175 	return 0;
176 }
177 
178 /**
179  * \brief Cause device to go quiet so it can be safely removed/reset/etc
180  * @param oct Pointer to Octeon device
181  */
182 static void pcierror_quiesce_device(struct octeon_device *oct)
183 {
184 	int i;
185 
186 	/* Disable the input and output queues now. No more packets will
187 	 * arrive from Octeon, but we should wait for all packet processing
188 	 * to finish.
189 	 */
190 
191 	/* To allow for in-flight requests */
192 	schedule_timeout_uninterruptible(100);
193 
194 	if (wait_for_pending_requests(oct))
195 		dev_err(&oct->pci_dev->dev, "There were pending requests\n");
196 
197 	/* Force all requests waiting to be fetched by OCTEON to complete. */
198 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
199 		struct octeon_instr_queue *iq;
200 
201 		if (!(oct->io_qmask.iq & BIT_ULL(i)))
202 			continue;
203 		iq = oct->instr_queue[i];
204 
205 		if (atomic_read(&iq->instr_pending)) {
206 			spin_lock_bh(&iq->lock);
207 			iq->fill_cnt = 0;
208 			iq->octeon_read_index = iq->host_write_index;
209 			iq->stats.instr_processed +=
210 			    atomic_read(&iq->instr_pending);
211 			lio_process_iq_request_list(oct, iq, 0);
212 			spin_unlock_bh(&iq->lock);
213 		}
214 	}
215 
216 	/* Force all pending ordered list requests to time out. */
217 	lio_process_ordered_list(oct, 1);
218 
219 	/* We do not need to wait for output queue packets to be processed. */
220 }
221 
222 /**
223  * \brief Cleanup PCI AER uncorrectable error status
224  * @param dev Pointer to PCI device
225  */
226 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
227 {
228 	u32 status, mask;
229 	int pos = 0x100;
230 
231 	pr_info("%s :\n", __func__);
232 
233 	pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
234 	pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
235 	if (dev->error_state == pci_channel_io_normal)
236 		status &= ~mask; /* Clear corresponding nonfatal bits */
237 	else
238 		status &= mask; /* Clear corresponding fatal bits */
239 	pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
240 }
241 
242 /**
243  * \brief Stop all PCI IO to a given device
244  * @param dev Pointer to Octeon device
245  */
246 static void stop_pci_io(struct octeon_device *oct)
247 {
248 	struct msix_entry *msix_entries;
249 	int i;
250 
251 	/* No more instructions will be forwarded. */
252 	atomic_set(&oct->status, OCT_DEV_IN_RESET);
253 
254 	for (i = 0; i < oct->ifcount; i++)
255 		netif_device_detach(oct->props[i].netdev);
256 
257 	/* Disable interrupts  */
258 	oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
259 
260 	pcierror_quiesce_device(oct);
261 	if (oct->msix_on) {
262 		msix_entries = (struct msix_entry *)oct->msix_entries;
263 		for (i = 0; i < oct->num_msix_irqs; i++) {
264 			/* clear the affinity_cpumask */
265 			irq_set_affinity_hint(msix_entries[i].vector,
266 					      NULL);
267 			free_irq(msix_entries[i].vector,
268 				 &oct->ioq_vector[i]);
269 		}
270 		pci_disable_msix(oct->pci_dev);
271 		kfree(oct->msix_entries);
272 		oct->msix_entries = NULL;
273 		octeon_free_ioq_vector(oct);
274 	}
275 	dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
276 		lio_get_state_string(&oct->status));
277 
278 	/* making it a common function for all OCTEON models */
279 	cleanup_aer_uncorrect_error_status(oct->pci_dev);
280 
281 	pci_disable_device(oct->pci_dev);
282 }
283 
284 /**
285  * \brief called when PCI error is detected
286  * @param pdev Pointer to PCI device
287  * @param state The current pci connection state
288  *
289  * This function is called after a PCI bus error affecting
290  * this device has been detected.
291  */
292 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
293 						     pci_channel_state_t state)
294 {
295 	struct octeon_device *oct = pci_get_drvdata(pdev);
296 
297 	/* Non-correctable Non-fatal errors */
298 	if (state == pci_channel_io_normal) {
299 		dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
300 		cleanup_aer_uncorrect_error_status(oct->pci_dev);
301 		return PCI_ERS_RESULT_CAN_RECOVER;
302 	}
303 
304 	/* Non-correctable Fatal errors */
305 	dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
306 	stop_pci_io(oct);
307 
308 	return PCI_ERS_RESULT_DISCONNECT;
309 }
310 
311 /* For PCI-E Advanced Error Recovery (AER) Interface */
312 static const struct pci_error_handlers liquidio_vf_err_handler = {
313 	.error_detected = liquidio_pcie_error_detected,
314 };
315 
316 static const struct pci_device_id liquidio_vf_pci_tbl[] = {
317 	{
318 		PCI_VENDOR_ID_CAVIUM, OCTEON_CN23XX_VF_VID,
319 		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
320 	},
321 	{
322 		0, 0, 0, 0, 0, 0, 0
323 	}
324 };
325 MODULE_DEVICE_TABLE(pci, liquidio_vf_pci_tbl);
326 
327 static struct pci_driver liquidio_vf_pci_driver = {
328 	.name		= "LiquidIO_VF",
329 	.id_table	= liquidio_vf_pci_tbl,
330 	.probe		= liquidio_vf_probe,
331 	.remove		= liquidio_vf_remove,
332 	.err_handler	= &liquidio_vf_err_handler,    /* For AER */
333 };
334 
335 /**
336  * \brief check interface state
337  * @param lio per-network private data
338  * @param state_flag flag state to check
339  */
340 static int ifstate_check(struct lio *lio, int state_flag)
341 {
342 	return atomic_read(&lio->ifstate) & state_flag;
343 }
344 
345 /**
346  * \brief set interface state
347  * @param lio per-network private data
348  * @param state_flag flag state to set
349  */
350 static void ifstate_set(struct lio *lio, int state_flag)
351 {
352 	atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
353 }
354 
355 /**
356  * \brief clear interface state
357  * @param lio per-network private data
358  * @param state_flag flag state to clear
359  */
360 static void ifstate_reset(struct lio *lio, int state_flag)
361 {
362 	atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
363 }
364 
365 /**
366  * \brief Stop Tx queues
367  * @param netdev network device
368  */
369 static void txqs_stop(struct net_device *netdev)
370 {
371 	if (netif_is_multiqueue(netdev)) {
372 		int i;
373 
374 		for (i = 0; i < netdev->num_tx_queues; i++)
375 			netif_stop_subqueue(netdev, i);
376 	} else {
377 		netif_stop_queue(netdev);
378 	}
379 }
380 
381 /**
382  * \brief Start Tx queues
383  * @param netdev network device
384  */
385 static void txqs_start(struct net_device *netdev)
386 {
387 	if (netif_is_multiqueue(netdev)) {
388 		int i;
389 
390 		for (i = 0; i < netdev->num_tx_queues; i++)
391 			netif_start_subqueue(netdev, i);
392 	} else {
393 		netif_start_queue(netdev);
394 	}
395 }
396 
397 /**
398  * \brief Wake Tx queues
399  * @param netdev network device
400  */
401 static void txqs_wake(struct net_device *netdev)
402 {
403 	struct lio *lio = GET_LIO(netdev);
404 
405 	if (netif_is_multiqueue(netdev)) {
406 		int i;
407 
408 		for (i = 0; i < netdev->num_tx_queues; i++) {
409 			int qno = lio->linfo.txpciq[i % (lio->linfo.num_txpciq)]
410 				      .s.q_no;
411 			if (__netif_subqueue_stopped(netdev, i)) {
412 				INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
413 							  tx_restart, 1);
414 				netif_wake_subqueue(netdev, i);
415 			}
416 		}
417 	} else {
418 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
419 					  tx_restart, 1);
420 		netif_wake_queue(netdev);
421 	}
422 }
423 
424 /**
425  * \brief Start Tx queue
426  * @param netdev network device
427  */
428 static void start_txq(struct net_device *netdev)
429 {
430 	struct lio *lio = GET_LIO(netdev);
431 
432 	if (lio->linfo.link.s.link_up) {
433 		txqs_start(netdev);
434 		return;
435 	}
436 }
437 
438 /**
439  * \brief Wake a queue
440  * @param netdev network device
441  * @param q which queue to wake
442  */
443 static void wake_q(struct net_device *netdev, int q)
444 {
445 	if (netif_is_multiqueue(netdev))
446 		netif_wake_subqueue(netdev, q);
447 	else
448 		netif_wake_queue(netdev);
449 }
450 
451 /**
452  * \brief Stop a queue
453  * @param netdev network device
454  * @param q which queue to stop
455  */
456 static void stop_q(struct net_device *netdev, int q)
457 {
458 	if (netif_is_multiqueue(netdev))
459 		netif_stop_subqueue(netdev, q);
460 	else
461 		netif_stop_queue(netdev);
462 }
463 
464 /**
465  * Remove the node at the head of the list. The list would be empty at
466  * the end of this call if there are no more nodes in the list.
467  */
468 static struct list_head *list_delete_head(struct list_head *root)
469 {
470 	struct list_head *node;
471 
472 	if ((root->prev == root) && (root->next == root))
473 		node = NULL;
474 	else
475 		node = root->next;
476 
477 	if (node)
478 		list_del(node);
479 
480 	return node;
481 }
482 
483 /**
484  * \brief Delete gather lists
485  * @param lio per-network private data
486  */
487 static void delete_glists(struct lio *lio)
488 {
489 	struct octnic_gather *g;
490 	int i;
491 
492 	if (!lio->glist)
493 		return;
494 
495 	for (i = 0; i < lio->linfo.num_txpciq; i++) {
496 		do {
497 			g = (struct octnic_gather *)
498 			    list_delete_head(&lio->glist[i]);
499 			if (g) {
500 				if (g->sg)
501 					kfree((void *)((unsigned long)g->sg -
502 							g->adjust));
503 				kfree(g);
504 			}
505 		} while (g);
506 	}
507 
508 	kfree(lio->glist);
509 	kfree(lio->glist_lock);
510 }
511 
512 /**
513  * \brief Setup gather lists
514  * @param lio per-network private data
515  */
516 static int setup_glists(struct lio *lio, int num_iqs)
517 {
518 	struct octnic_gather *g;
519 	int i, j;
520 
521 	lio->glist_lock =
522 	    kzalloc(sizeof(*lio->glist_lock) * num_iqs, GFP_KERNEL);
523 	if (!lio->glist_lock)
524 		return 1;
525 
526 	lio->glist =
527 	    kzalloc(sizeof(*lio->glist) * num_iqs, GFP_KERNEL);
528 	if (!lio->glist) {
529 		kfree(lio->glist_lock);
530 		return 1;
531 	}
532 
533 	for (i = 0; i < num_iqs; i++) {
534 		spin_lock_init(&lio->glist_lock[i]);
535 
536 		INIT_LIST_HEAD(&lio->glist[i]);
537 
538 		for (j = 0; j < lio->tx_qsize; j++) {
539 			g = kzalloc(sizeof(*g), GFP_KERNEL);
540 			if (!g)
541 				break;
542 
543 			g->sg_size = ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) *
544 				      OCT_SG_ENTRY_SIZE);
545 
546 			g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
547 			if (!g->sg) {
548 				kfree(g);
549 				break;
550 			}
551 
552 			/* The gather component should be aligned on 64-bit
553 			 * boundary
554 			 */
555 			if (((unsigned long)g->sg) & 7) {
556 				g->adjust = 8 - (((unsigned long)g->sg) & 7);
557 				g->sg = (struct octeon_sg_entry *)
558 					((unsigned long)g->sg + g->adjust);
559 			}
560 			list_add_tail(&g->list, &lio->glist[i]);
561 		}
562 
563 		if (j != lio->tx_qsize) {
564 			delete_glists(lio);
565 			return 1;
566 		}
567 	}
568 
569 	return 0;
570 }
571 
572 /**
573  * \brief Print link information
574  * @param netdev network device
575  */
576 static void print_link_info(struct net_device *netdev)
577 {
578 	struct lio *lio = GET_LIO(netdev);
579 
580 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
581 		struct oct_link_info *linfo = &lio->linfo;
582 
583 		if (linfo->link.s.link_up) {
584 			netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
585 				   linfo->link.s.speed,
586 				   (linfo->link.s.duplex) ? "Full" : "Half");
587 		} else {
588 			netif_info(lio, link, lio->netdev, "Link Down\n");
589 		}
590 	}
591 }
592 
593 /**
594  * \brief Routine to notify MTU change
595  * @param work work_struct data structure
596  */
597 static void octnet_link_status_change(struct work_struct *work)
598 {
599 	struct cavium_wk *wk = (struct cavium_wk *)work;
600 	struct lio *lio = (struct lio *)wk->ctxptr;
601 
602 	rtnl_lock();
603 	call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
604 	rtnl_unlock();
605 }
606 
607 /**
608  * \brief Sets up the mtu status change work
609  * @param netdev network device
610  */
611 static int setup_link_status_change_wq(struct net_device *netdev)
612 {
613 	struct lio *lio = GET_LIO(netdev);
614 	struct octeon_device *oct = lio->oct_dev;
615 
616 	lio->link_status_wq.wq = alloc_workqueue("link-status",
617 						 WQ_MEM_RECLAIM, 0);
618 	if (!lio->link_status_wq.wq) {
619 		dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
620 		return -1;
621 	}
622 	INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
623 			  octnet_link_status_change);
624 	lio->link_status_wq.wk.ctxptr = lio;
625 
626 	return 0;
627 }
628 
629 static void cleanup_link_status_change_wq(struct net_device *netdev)
630 {
631 	struct lio *lio = GET_LIO(netdev);
632 
633 	if (lio->link_status_wq.wq) {
634 		cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
635 		destroy_workqueue(lio->link_status_wq.wq);
636 	}
637 }
638 
639 /**
640  * \brief Update link status
641  * @param netdev network device
642  * @param ls link status structure
643  *
644  * Called on receipt of a link status response from the core application to
645  * update each interface's link status.
646  */
647 static void update_link_status(struct net_device *netdev,
648 			       union oct_link_status *ls)
649 {
650 	struct lio *lio = GET_LIO(netdev);
651 	struct octeon_device *oct = lio->oct_dev;
652 
653 	if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
654 		lio->linfo.link.u64 = ls->u64;
655 
656 		print_link_info(netdev);
657 		lio->link_changes++;
658 
659 		if (lio->linfo.link.s.link_up) {
660 			netif_carrier_on(netdev);
661 			txqs_wake(netdev);
662 		} else {
663 			netif_carrier_off(netdev);
664 			txqs_stop(netdev);
665 		}
666 
667 		if (lio->linfo.link.s.mtu < netdev->mtu) {
668 			dev_warn(&oct->pci_dev->dev,
669 				 "PF has changed the MTU for gmx port. Reducing the mtu from %d to %d\n",
670 				 netdev->mtu, lio->linfo.link.s.mtu);
671 			lio->mtu = lio->linfo.link.s.mtu;
672 			netdev->mtu = lio->linfo.link.s.mtu;
673 			queue_delayed_work(lio->link_status_wq.wq,
674 					   &lio->link_status_wq.wk.work, 0);
675 		}
676 	}
677 }
678 
679 static void update_txq_status(struct octeon_device *oct, int iq_num)
680 {
681 	struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
682 	struct net_device *netdev;
683 	struct lio *lio;
684 
685 	netdev = oct->props[iq->ifidx].netdev;
686 	lio = GET_LIO(netdev);
687 	if (netif_is_multiqueue(netdev)) {
688 		if (__netif_subqueue_stopped(netdev, iq->q_index) &&
689 		    lio->linfo.link.s.link_up &&
690 		    (!octnet_iq_is_full(oct, iq_num))) {
691 			netif_wake_subqueue(netdev, iq->q_index);
692 			INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
693 						  tx_restart, 1);
694 		} else {
695 			if (!octnet_iq_is_full(oct, lio->txq)) {
696 				INCR_INSTRQUEUE_PKT_COUNT(
697 				    lio->oct_dev, lio->txq, tx_restart, 1);
698 				wake_q(netdev, lio->txq);
699 			}
700 		}
701 	}
702 }
703 
704 static
705 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
706 {
707 	struct octeon_device *oct = droq->oct_dev;
708 	struct octeon_device_priv *oct_priv =
709 	    (struct octeon_device_priv *)oct->priv;
710 
711 	if (droq->ops.poll_mode) {
712 		droq->ops.napi_fn(droq);
713 	} else {
714 		if (ret & MSIX_PO_INT) {
715 			dev_err(&oct->pci_dev->dev,
716 				"should not come here should not get rx when poll mode = 0 for vf\n");
717 			tasklet_schedule(&oct_priv->droq_tasklet);
718 			return 1;
719 		}
720 		/* this will be flushed periodically by check iq db */
721 		if (ret & MSIX_PI_INT)
722 			return 0;
723 	}
724 	return 0;
725 }
726 
727 static irqreturn_t
728 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
729 {
730 	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
731 	struct octeon_device *oct = ioq_vector->oct_dev;
732 	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
733 	u64 ret;
734 
735 	ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
736 
737 	if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
738 		liquidio_schedule_msix_droq_pkt_handler(droq, ret);
739 
740 	return IRQ_HANDLED;
741 }
742 
743 /**
744  * \brief Setup interrupt for octeon device
745  * @param oct octeon device
746  *
747  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
748  */
749 static int octeon_setup_interrupt(struct octeon_device *oct)
750 {
751 	struct msix_entry *msix_entries;
752 	int num_alloc_ioq_vectors;
753 	int num_ioq_vectors;
754 	int irqret;
755 	int i;
756 
757 	if (oct->msix_on) {
758 		oct->num_msix_irqs = oct->sriov_info.rings_per_vf;
759 
760 		oct->msix_entries = kcalloc(
761 		    oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
762 		if (!oct->msix_entries)
763 			return 1;
764 
765 		msix_entries = (struct msix_entry *)oct->msix_entries;
766 
767 		for (i = 0; i < oct->num_msix_irqs; i++)
768 			msix_entries[i].entry = i;
769 		num_alloc_ioq_vectors = pci_enable_msix_range(
770 						oct->pci_dev, msix_entries,
771 						oct->num_msix_irqs,
772 						oct->num_msix_irqs);
773 		if (num_alloc_ioq_vectors < 0) {
774 			dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
775 			kfree(oct->msix_entries);
776 			oct->msix_entries = NULL;
777 			return 1;
778 		}
779 		dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
780 
781 		num_ioq_vectors = oct->num_msix_irqs;
782 
783 		for (i = 0; i < num_ioq_vectors; i++) {
784 			irqret = request_irq(msix_entries[i].vector,
785 					     liquidio_msix_intr_handler, 0,
786 					     "octeon", &oct->ioq_vector[i]);
787 			if (irqret) {
788 				dev_err(&oct->pci_dev->dev,
789 					"OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
790 					irqret);
791 
792 				while (i) {
793 					i--;
794 					irq_set_affinity_hint(
795 					    msix_entries[i].vector, NULL);
796 					free_irq(msix_entries[i].vector,
797 						 &oct->ioq_vector[i]);
798 				}
799 				pci_disable_msix(oct->pci_dev);
800 				kfree(oct->msix_entries);
801 				oct->msix_entries = NULL;
802 				return 1;
803 			}
804 			oct->ioq_vector[i].vector = msix_entries[i].vector;
805 			/* assign the cpu mask for this msix interrupt vector */
806 			irq_set_affinity_hint(
807 			    msix_entries[i].vector,
808 			    (&oct->ioq_vector[i].affinity_mask));
809 		}
810 		dev_dbg(&oct->pci_dev->dev,
811 			"OCTEON[%d]: MSI-X enabled\n", oct->octeon_id);
812 	}
813 	return 0;
814 }
815 
816 /**
817  * \brief PCI probe handler
818  * @param pdev PCI device structure
819  * @param ent unused
820  */
821 static int
822 liquidio_vf_probe(struct pci_dev *pdev,
823 		  const struct pci_device_id *ent __attribute__((unused)))
824 {
825 	struct octeon_device *oct_dev = NULL;
826 
827 	oct_dev = octeon_allocate_device(pdev->device,
828 					 sizeof(struct octeon_device_priv));
829 
830 	if (!oct_dev) {
831 		dev_err(&pdev->dev, "Unable to allocate device\n");
832 		return -ENOMEM;
833 	}
834 	oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
835 
836 	dev_info(&pdev->dev, "Initializing device %x:%x.\n",
837 		 (u32)pdev->vendor, (u32)pdev->device);
838 
839 	/* Assign octeon_device for this device to the private data area. */
840 	pci_set_drvdata(pdev, oct_dev);
841 
842 	/* set linux specific device pointer */
843 	oct_dev->pci_dev = pdev;
844 
845 	if (octeon_device_init(oct_dev)) {
846 		liquidio_vf_remove(pdev);
847 		return -ENOMEM;
848 	}
849 
850 	dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
851 
852 	return 0;
853 }
854 
855 /**
856  * \brief PCI FLR for each Octeon device.
857  * @param oct octeon device
858  */
859 static void octeon_pci_flr(struct octeon_device *oct)
860 {
861 	u16 status;
862 
863 	pci_save_state(oct->pci_dev);
864 
865 	pci_cfg_access_lock(oct->pci_dev);
866 
867 	/* Quiesce the device completely */
868 	pci_write_config_word(oct->pci_dev, PCI_COMMAND,
869 			      PCI_COMMAND_INTX_DISABLE);
870 
871 	/* Wait for Transaction Pending bit clean */
872 	msleep(100);
873 	pcie_capability_read_word(oct->pci_dev, PCI_EXP_DEVSTA, &status);
874 	if (status & PCI_EXP_DEVSTA_TRPND) {
875 		dev_info(&oct->pci_dev->dev, "Function reset incomplete after 100ms, sleeping for 5 seconds\n");
876 		ssleep(5);
877 		pcie_capability_read_word(oct->pci_dev, PCI_EXP_DEVSTA,
878 					  &status);
879 		if (status & PCI_EXP_DEVSTA_TRPND)
880 			dev_info(&oct->pci_dev->dev, "Function reset still incomplete after 5s, reset anyway\n");
881 	}
882 	pcie_capability_set_word(oct->pci_dev, PCI_EXP_DEVCTL,
883 				 PCI_EXP_DEVCTL_BCR_FLR);
884 	mdelay(100);
885 
886 	pci_cfg_access_unlock(oct->pci_dev);
887 
888 	pci_restore_state(oct->pci_dev);
889 }
890 
891 /**
892  *\brief Destroy resources associated with octeon device
893  * @param pdev PCI device structure
894  * @param ent unused
895  */
896 static void octeon_destroy_resources(struct octeon_device *oct)
897 {
898 	struct msix_entry *msix_entries;
899 	int i;
900 
901 	switch (atomic_read(&oct->status)) {
902 	case OCT_DEV_RUNNING:
903 	case OCT_DEV_CORE_OK:
904 		/* No more instructions will be forwarded. */
905 		atomic_set(&oct->status, OCT_DEV_IN_RESET);
906 
907 		oct->app_mode = CVM_DRV_INVALID_APP;
908 		dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
909 			lio_get_state_string(&oct->status));
910 
911 		schedule_timeout_uninterruptible(HZ / 10);
912 
913 		/* fallthrough */
914 	case OCT_DEV_HOST_OK:
915 		/* fallthrough */
916 	case OCT_DEV_IO_QUEUES_DONE:
917 		if (wait_for_pending_requests(oct))
918 			dev_err(&oct->pci_dev->dev, "There were pending requests\n");
919 
920 		if (lio_wait_for_instr_fetch(oct))
921 			dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
922 
923 		/* Disable the input and output queues now. No more packets will
924 		 * arrive from Octeon, but we should wait for all packet
925 		 * processing to finish.
926 		 */
927 		oct->fn_list.disable_io_queues(oct);
928 
929 		if (lio_wait_for_oq_pkts(oct))
930 			dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
931 
932 	case OCT_DEV_INTR_SET_DONE:
933 		/* Disable interrupts  */
934 		oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
935 
936 		if (oct->msix_on) {
937 			msix_entries = (struct msix_entry *)oct->msix_entries;
938 			for (i = 0; i < oct->num_msix_irqs; i++) {
939 				irq_set_affinity_hint(msix_entries[i].vector,
940 						      NULL);
941 				free_irq(msix_entries[i].vector,
942 					 &oct->ioq_vector[i]);
943 			}
944 			pci_disable_msix(oct->pci_dev);
945 			kfree(oct->msix_entries);
946 			oct->msix_entries = NULL;
947 		}
948 		/* Soft reset the octeon device before exiting */
949 		if (oct->pci_dev->reset_fn)
950 			octeon_pci_flr(oct);
951 		else
952 			cn23xx_vf_ask_pf_to_do_flr(oct);
953 
954 		/* fallthrough */
955 	case OCT_DEV_MSIX_ALLOC_VECTOR_DONE:
956 		octeon_free_ioq_vector(oct);
957 
958 		/* fallthrough */
959 	case OCT_DEV_MBOX_SETUP_DONE:
960 		oct->fn_list.free_mbox(oct);
961 
962 		/* fallthrough */
963 	case OCT_DEV_IN_RESET:
964 	case OCT_DEV_DROQ_INIT_DONE:
965 		mdelay(100);
966 		for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
967 			if (!(oct->io_qmask.oq & BIT_ULL(i)))
968 				continue;
969 			octeon_delete_droq(oct, i);
970 		}
971 
972 		/* fallthrough */
973 	case OCT_DEV_RESP_LIST_INIT_DONE:
974 		octeon_delete_response_list(oct);
975 
976 		/* fallthrough */
977 	case OCT_DEV_INSTR_QUEUE_INIT_DONE:
978 		for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
979 			if (!(oct->io_qmask.iq & BIT_ULL(i)))
980 				continue;
981 			octeon_delete_instr_queue(oct, i);
982 		}
983 
984 		/* fallthrough */
985 	case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
986 		octeon_free_sc_buffer_pool(oct);
987 
988 		/* fallthrough */
989 	case OCT_DEV_DISPATCH_INIT_DONE:
990 		octeon_delete_dispatch_list(oct);
991 		cancel_delayed_work_sync(&oct->nic_poll_work.work);
992 
993 		/* fallthrough */
994 	case OCT_DEV_PCI_MAP_DONE:
995 		octeon_unmap_pci_barx(oct, 0);
996 		octeon_unmap_pci_barx(oct, 1);
997 
998 		/* fallthrough */
999 	case OCT_DEV_PCI_ENABLE_DONE:
1000 		pci_clear_master(oct->pci_dev);
1001 		/* Disable the device, releasing the PCI INT */
1002 		pci_disable_device(oct->pci_dev);
1003 
1004 		/* fallthrough */
1005 	case OCT_DEV_BEGIN_STATE:
1006 		/* Nothing to be done here either */
1007 		break;
1008 	}
1009 }
1010 
1011 /**
1012  * \brief Callback for rx ctrl
1013  * @param status status of request
1014  * @param buf pointer to resp structure
1015  */
1016 static void rx_ctl_callback(struct octeon_device *oct,
1017 			    u32 status, void *buf)
1018 {
1019 	struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1020 	struct liquidio_rx_ctl_context *ctx;
1021 
1022 	ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1023 
1024 	oct = lio_get_device(ctx->octeon_id);
1025 	if (status)
1026 		dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1027 			CVM_CAST64(status));
1028 	WRITE_ONCE(ctx->cond, 1);
1029 
1030 	/* This barrier is required to be sure that the response has been
1031 	 * written fully before waking up the handler
1032 	 */
1033 	wmb();
1034 
1035 	wake_up_interruptible(&ctx->wc);
1036 }
1037 
1038 /**
1039  * \brief Send Rx control command
1040  * @param lio per-network private data
1041  * @param start_stop whether to start or stop
1042  */
1043 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1044 {
1045 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1046 	int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1047 	struct liquidio_rx_ctl_context *ctx;
1048 	struct octeon_soft_command *sc;
1049 	union octnet_cmd *ncmd;
1050 	int retval;
1051 
1052 	if (oct->props[lio->ifidx].rx_on == start_stop)
1053 		return;
1054 
1055 	sc = (struct octeon_soft_command *)
1056 		octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1057 					  16, ctx_size);
1058 
1059 	ncmd = (union octnet_cmd *)sc->virtdptr;
1060 	ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1061 
1062 	WRITE_ONCE(ctx->cond, 0);
1063 	ctx->octeon_id = lio_get_device_id(oct);
1064 	init_waitqueue_head(&ctx->wc);
1065 
1066 	ncmd->u64 = 0;
1067 	ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1068 	ncmd->s.param1 = start_stop;
1069 
1070 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1071 
1072 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1073 
1074 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1075 				    OPCODE_NIC_CMD, 0, 0, 0);
1076 
1077 	sc->callback = rx_ctl_callback;
1078 	sc->callback_arg = sc;
1079 	sc->wait_time = 5000;
1080 
1081 	retval = octeon_send_soft_command(oct, sc);
1082 	if (retval == IQ_SEND_FAILED) {
1083 		netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1084 	} else {
1085 		/* Sleep on a wait queue till the cond flag indicates that the
1086 		 * response arrived or timed-out.
1087 		 */
1088 		if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1089 			return;
1090 		oct->props[lio->ifidx].rx_on = start_stop;
1091 	}
1092 
1093 	octeon_free_soft_command(oct, sc);
1094 }
1095 
1096 /**
1097  * \brief Destroy NIC device interface
1098  * @param oct octeon device
1099  * @param ifidx which interface to destroy
1100  *
1101  * Cleanup associated with each interface for an Octeon device  when NIC
1102  * module is being unloaded or if initialization fails during load.
1103  */
1104 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1105 {
1106 	struct net_device *netdev = oct->props[ifidx].netdev;
1107 	struct napi_struct *napi, *n;
1108 	struct lio *lio;
1109 
1110 	if (!netdev) {
1111 		dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1112 			__func__, ifidx);
1113 		return;
1114 	}
1115 
1116 	lio = GET_LIO(netdev);
1117 
1118 	dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1119 
1120 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1121 		liquidio_stop(netdev);
1122 
1123 	if (oct->props[lio->ifidx].napi_enabled == 1) {
1124 		list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1125 			napi_disable(napi);
1126 
1127 		oct->props[lio->ifidx].napi_enabled = 0;
1128 
1129 		oct->droq[0]->ops.poll_mode = 0;
1130 	}
1131 
1132 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1133 		unregister_netdev(netdev);
1134 
1135 	cleanup_link_status_change_wq(netdev);
1136 
1137 	delete_glists(lio);
1138 
1139 	free_netdev(netdev);
1140 
1141 	oct->props[ifidx].gmxport = -1;
1142 
1143 	oct->props[ifidx].netdev = NULL;
1144 }
1145 
1146 /**
1147  * \brief Stop complete NIC functionality
1148  * @param oct octeon device
1149  */
1150 static int liquidio_stop_nic_module(struct octeon_device *oct)
1151 {
1152 	struct lio *lio;
1153 	int i, j;
1154 
1155 	dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1156 	if (!oct->ifcount) {
1157 		dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1158 		return 1;
1159 	}
1160 
1161 	spin_lock_bh(&oct->cmd_resp_wqlock);
1162 	oct->cmd_resp_state = OCT_DRV_OFFLINE;
1163 	spin_unlock_bh(&oct->cmd_resp_wqlock);
1164 
1165 	for (i = 0; i < oct->ifcount; i++) {
1166 		lio = GET_LIO(oct->props[i].netdev);
1167 		for (j = 0; j < lio->linfo.num_rxpciq; j++)
1168 			octeon_unregister_droq_ops(oct,
1169 						   lio->linfo.rxpciq[j].s.q_no);
1170 	}
1171 
1172 	for (i = 0; i < oct->ifcount; i++)
1173 		liquidio_destroy_nic_device(oct, i);
1174 
1175 	dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1176 	return 0;
1177 }
1178 
1179 /**
1180  * \brief Cleans up resources at unload time
1181  * @param pdev PCI device structure
1182  */
1183 static void liquidio_vf_remove(struct pci_dev *pdev)
1184 {
1185 	struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1186 
1187 	dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1188 
1189 	if (oct_dev->app_mode == CVM_DRV_NIC_APP)
1190 		liquidio_stop_nic_module(oct_dev);
1191 
1192 	/* Reset the octeon device and cleanup all memory allocated for
1193 	 * the octeon device by driver.
1194 	 */
1195 	octeon_destroy_resources(oct_dev);
1196 
1197 	dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1198 
1199 	/* This octeon device has been removed. Update the global
1200 	 * data structure to reflect this. Free the device structure.
1201 	 */
1202 	octeon_free_device_mem(oct_dev);
1203 }
1204 
1205 /**
1206  * \brief PCI initialization for each Octeon device.
1207  * @param oct octeon device
1208  */
1209 static int octeon_pci_os_setup(struct octeon_device *oct)
1210 {
1211 #ifdef CONFIG_PCI_IOV
1212 	/* setup PCI stuff first */
1213 	if (!oct->pci_dev->physfn)
1214 		octeon_pci_flr(oct);
1215 #endif
1216 
1217 	if (pci_enable_device(oct->pci_dev)) {
1218 		dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1219 		return 1;
1220 	}
1221 
1222 	if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1223 		dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1224 		pci_disable_device(oct->pci_dev);
1225 		return 1;
1226 	}
1227 
1228 	/* Enable PCI DMA Master. */
1229 	pci_set_master(oct->pci_dev);
1230 
1231 	return 0;
1232 }
1233 
1234 static int skb_iq(struct lio *lio, struct sk_buff *skb)
1235 {
1236 	int q = 0;
1237 
1238 	if (netif_is_multiqueue(lio->netdev))
1239 		q = skb->queue_mapping % lio->linfo.num_txpciq;
1240 
1241 	return q;
1242 }
1243 
1244 /**
1245  * \brief Check Tx queue state for a given network buffer
1246  * @param lio per-network private data
1247  * @param skb network buffer
1248  */
1249 static int check_txq_state(struct lio *lio, struct sk_buff *skb)
1250 {
1251 	int q = 0, iq = 0;
1252 
1253 	if (netif_is_multiqueue(lio->netdev)) {
1254 		q = skb->queue_mapping;
1255 		iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1256 	} else {
1257 		iq = lio->txq;
1258 		q = iq;
1259 	}
1260 
1261 	if (octnet_iq_is_full(lio->oct_dev, iq))
1262 		return 0;
1263 
1264 	if (__netif_subqueue_stopped(lio->netdev, q)) {
1265 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1266 		wake_q(lio->netdev, q);
1267 	}
1268 
1269 	return 1;
1270 }
1271 
1272 /**
1273  * \brief Unmap and free network buffer
1274  * @param buf buffer
1275  */
1276 static void free_netbuf(void *buf)
1277 {
1278 	struct octnet_buf_free_info *finfo;
1279 	struct sk_buff *skb;
1280 	struct lio *lio;
1281 
1282 	finfo = (struct octnet_buf_free_info *)buf;
1283 	skb = finfo->skb;
1284 	lio = finfo->lio;
1285 
1286 	dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1287 			 DMA_TO_DEVICE);
1288 
1289 	check_txq_state(lio, skb);
1290 
1291 	tx_buffer_free(skb);
1292 }
1293 
1294 /**
1295  * \brief Unmap and free gather buffer
1296  * @param buf buffer
1297  */
1298 static void free_netsgbuf(void *buf)
1299 {
1300 	struct octnet_buf_free_info *finfo;
1301 	struct octnic_gather *g;
1302 	struct sk_buff *skb;
1303 	int i, frags, iq;
1304 	struct lio *lio;
1305 
1306 	finfo = (struct octnet_buf_free_info *)buf;
1307 	skb = finfo->skb;
1308 	lio = finfo->lio;
1309 	g = finfo->g;
1310 	frags = skb_shinfo(skb)->nr_frags;
1311 
1312 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1313 			 g->sg[0].ptr[0], (skb->len - skb->data_len),
1314 			 DMA_TO_DEVICE);
1315 
1316 	i = 1;
1317 	while (frags--) {
1318 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1319 
1320 		pci_unmap_page((lio->oct_dev)->pci_dev,
1321 			       g->sg[(i >> 2)].ptr[(i & 3)],
1322 			       frag->size, DMA_TO_DEVICE);
1323 		i++;
1324 	}
1325 
1326 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1327 			 finfo->dptr, g->sg_size,
1328 			 DMA_TO_DEVICE);
1329 
1330 	iq = skb_iq(lio, skb);
1331 
1332 	spin_lock(&lio->glist_lock[iq]);
1333 	list_add_tail(&g->list, &lio->glist[iq]);
1334 	spin_unlock(&lio->glist_lock[iq]);
1335 
1336 	check_txq_state(lio, skb); /* mq support: sub-queue state check */
1337 
1338 	tx_buffer_free(skb);
1339 }
1340 
1341 /**
1342  * \brief Unmap and free gather buffer with response
1343  * @param buf buffer
1344  */
1345 static void free_netsgbuf_with_resp(void *buf)
1346 {
1347 	struct octnet_buf_free_info *finfo;
1348 	struct octeon_soft_command *sc;
1349 	struct octnic_gather *g;
1350 	struct sk_buff *skb;
1351 	int i, frags, iq;
1352 	struct lio *lio;
1353 
1354 	sc = (struct octeon_soft_command *)buf;
1355 	skb = (struct sk_buff *)sc->callback_arg;
1356 	finfo = (struct octnet_buf_free_info *)&skb->cb;
1357 
1358 	lio = finfo->lio;
1359 	g = finfo->g;
1360 	frags = skb_shinfo(skb)->nr_frags;
1361 
1362 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1363 			 g->sg[0].ptr[0], (skb->len - skb->data_len),
1364 			 DMA_TO_DEVICE);
1365 
1366 	i = 1;
1367 	while (frags--) {
1368 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1369 
1370 		pci_unmap_page((lio->oct_dev)->pci_dev,
1371 			       g->sg[(i >> 2)].ptr[(i & 3)],
1372 			       frag->size, DMA_TO_DEVICE);
1373 		i++;
1374 	}
1375 
1376 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1377 			 finfo->dptr, g->sg_size,
1378 			 DMA_TO_DEVICE);
1379 
1380 	iq = skb_iq(lio, skb);
1381 
1382 	spin_lock(&lio->glist_lock[iq]);
1383 	list_add_tail(&g->list, &lio->glist[iq]);
1384 	spin_unlock(&lio->glist_lock[iq]);
1385 
1386 	/* Don't free the skb yet */
1387 
1388 	check_txq_state(lio, skb);
1389 }
1390 
1391 /**
1392  * \brief Setup output queue
1393  * @param oct octeon device
1394  * @param q_no which queue
1395  * @param num_descs how many descriptors
1396  * @param desc_size size of each descriptor
1397  * @param app_ctx application context
1398  */
1399 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1400 			     int desc_size, void *app_ctx)
1401 {
1402 	int ret_val;
1403 
1404 	dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1405 	/* droq creation and local register settings. */
1406 	ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1407 	if (ret_val < 0)
1408 		return ret_val;
1409 
1410 	if (ret_val == 1) {
1411 		dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1412 		return 0;
1413 	}
1414 
1415 	/* Enable the droq queues */
1416 	octeon_set_droq_pkt_op(oct, q_no, 1);
1417 
1418 	/* Send Credit for Octeon Output queues. Credits are always
1419 	 * sent after the output queue is enabled.
1420 	 */
1421 	writel(oct->droq[q_no]->max_count, oct->droq[q_no]->pkts_credit_reg);
1422 
1423 	return ret_val;
1424 }
1425 
1426 /**
1427  * \brief Callback for getting interface configuration
1428  * @param status status of request
1429  * @param buf pointer to resp structure
1430  */
1431 static void if_cfg_callback(struct octeon_device *oct,
1432 			    u32 status __attribute__((unused)), void *buf)
1433 {
1434 	struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1435 	struct liquidio_if_cfg_context *ctx;
1436 	struct liquidio_if_cfg_resp *resp;
1437 
1438 	resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1439 	ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
1440 
1441 	oct = lio_get_device(ctx->octeon_id);
1442 	if (resp->status)
1443 		dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1444 			CVM_CAST64(resp->status));
1445 	WRITE_ONCE(ctx->cond, 1);
1446 
1447 	snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
1448 		 resp->cfg_info.liquidio_firmware_version);
1449 
1450 	/* This barrier is required to be sure that the response has been
1451 	 * written fully before waking up the handler
1452 	 */
1453 	wmb();
1454 
1455 	wake_up_interruptible(&ctx->wc);
1456 }
1457 
1458 /**
1459  * \brief Select queue based on hash
1460  * @param dev Net device
1461  * @param skb sk_buff structure
1462  * @returns selected queue number
1463  */
1464 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1465 		    void *accel_priv __attribute__((unused)),
1466 		    select_queue_fallback_t fallback __attribute__((unused)))
1467 {
1468 	struct lio *lio;
1469 	u32 qindex;
1470 
1471 	lio = GET_LIO(dev);
1472 
1473 	qindex = skb_tx_hash(dev, skb);
1474 
1475 	return (u16)(qindex % (lio->linfo.num_txpciq));
1476 }
1477 
1478 /** Routine to push packets arriving on Octeon interface upto network layer.
1479  * @param oct_id   - octeon device id.
1480  * @param skbuff   - skbuff struct to be passed to network layer.
1481  * @param len      - size of total data received.
1482  * @param rh       - Control header associated with the packet
1483  * @param param    - additional control data with the packet
1484  * @param arg      - farg registered in droq_ops
1485  */
1486 static void
1487 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
1488 		     void *skbuff,
1489 		     u32 len,
1490 		     union octeon_rh *rh,
1491 		     void *param,
1492 		     void *arg)
1493 {
1494 	struct napi_struct *napi = param;
1495 	struct octeon_droq *droq =
1496 		container_of(param, struct octeon_droq, napi);
1497 	struct net_device *netdev = (struct net_device *)arg;
1498 	struct sk_buff *skb = (struct sk_buff *)skbuff;
1499 	u16 vtag = 0;
1500 
1501 	if (netdev) {
1502 		struct lio *lio = GET_LIO(netdev);
1503 		int packet_was_received;
1504 
1505 		/* Do not proceed if the interface is not in RUNNING state. */
1506 		if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1507 			recv_buffer_free(skb);
1508 			droq->stats.rx_dropped++;
1509 			return;
1510 		}
1511 
1512 		skb->dev = netdev;
1513 
1514 		skb_record_rx_queue(skb, droq->q_no);
1515 		if (likely(len > MIN_SKB_SIZE)) {
1516 			struct octeon_skb_page_info *pg_info;
1517 			unsigned char *va;
1518 
1519 			pg_info = ((struct octeon_skb_page_info *)(skb->cb));
1520 			if (pg_info->page) {
1521 				/* For Paged allocation use the frags */
1522 				va = page_address(pg_info->page) +
1523 					pg_info->page_offset;
1524 				memcpy(skb->data, va, MIN_SKB_SIZE);
1525 				skb_put(skb, MIN_SKB_SIZE);
1526 				skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1527 						pg_info->page,
1528 						pg_info->page_offset +
1529 						MIN_SKB_SIZE,
1530 						len - MIN_SKB_SIZE,
1531 						LIO_RXBUFFER_SZ);
1532 			}
1533 		} else {
1534 			struct octeon_skb_page_info *pg_info =
1535 				((struct octeon_skb_page_info *)(skb->cb));
1536 			skb_copy_to_linear_data(skb,
1537 						page_address(pg_info->page) +
1538 						pg_info->page_offset, len);
1539 			skb_put(skb, len);
1540 			put_page(pg_info->page);
1541 		}
1542 
1543 		skb_pull(skb, rh->r_dh.len * 8);
1544 		skb->protocol = eth_type_trans(skb, skb->dev);
1545 
1546 		if ((netdev->features & NETIF_F_RXCSUM) &&
1547 		    (((rh->r_dh.encap_on) &&
1548 		      (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
1549 		     (!(rh->r_dh.encap_on) &&
1550 		      (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
1551 			/* checksum has already been verified */
1552 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1553 		else
1554 			skb->ip_summed = CHECKSUM_NONE;
1555 
1556 		/* Setting Encapsulation field on basis of status received
1557 		 * from the firmware
1558 		 */
1559 		if (rh->r_dh.encap_on) {
1560 			skb->encapsulation = 1;
1561 			skb->csum_level = 1;
1562 			droq->stats.rx_vxlan++;
1563 		}
1564 
1565 		/* inbound VLAN tag */
1566 		if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1567 		    rh->r_dh.vlan) {
1568 			u16 priority = rh->r_dh.priority;
1569 			u16 vid = rh->r_dh.vlan;
1570 
1571 			vtag = (priority << VLAN_PRIO_SHIFT) | vid;
1572 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
1573 		}
1574 
1575 		packet_was_received = (napi_gro_receive(napi, skb) != GRO_DROP);
1576 
1577 		if (packet_was_received) {
1578 			droq->stats.rx_bytes_received += len;
1579 			droq->stats.rx_pkts_received++;
1580 			netdev->last_rx = jiffies;
1581 		} else {
1582 			droq->stats.rx_dropped++;
1583 			netif_info(lio, rx_err, lio->netdev,
1584 				   "droq:%d  error rx_dropped:%llu\n",
1585 				   droq->q_no, droq->stats.rx_dropped);
1586 		}
1587 
1588 	} else {
1589 		recv_buffer_free(skb);
1590 	}
1591 }
1592 
1593 /**
1594  * \brief callback when receive interrupt occurs and we are in NAPI mode
1595  * @param arg pointer to octeon output queue
1596  */
1597 static void liquidio_vf_napi_drv_callback(void *arg)
1598 {
1599 	struct octeon_droq *droq = arg;
1600 
1601 	napi_schedule_irqoff(&droq->napi);
1602 }
1603 
1604 /**
1605  * \brief Entry point for NAPI polling
1606  * @param napi NAPI structure
1607  * @param budget maximum number of items to process
1608  */
1609 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1610 {
1611 	struct octeon_instr_queue *iq;
1612 	struct octeon_device *oct;
1613 	struct octeon_droq *droq;
1614 	int tx_done = 0, iq_no;
1615 	int work_done;
1616 
1617 	droq = container_of(napi, struct octeon_droq, napi);
1618 	oct = droq->oct_dev;
1619 	iq_no = droq->q_no;
1620 
1621 	/* Handle Droq descriptors */
1622 	work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1623 						 POLL_EVENT_PROCESS_PKTS,
1624 						 budget);
1625 
1626 	/* Flush the instruction queue */
1627 	iq = oct->instr_queue[iq_no];
1628 	if (iq) {
1629 		/* Process iq buffers with in the budget limits */
1630 		tx_done = octeon_flush_iq(oct, iq, 1, budget);
1631 		/* Update iq read-index rather than waiting for next interrupt.
1632 		 * Return back if tx_done is false.
1633 		 */
1634 		update_txq_status(oct, iq_no);
1635 	} else {
1636 		dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n",
1637 			__func__, iq_no);
1638 	}
1639 
1640 	if ((work_done < budget) && (tx_done)) {
1641 		napi_complete(napi);
1642 		octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1643 					     POLL_EVENT_ENABLE_INTR, 0);
1644 		return 0;
1645 	}
1646 
1647 	return (!tx_done) ? (budget) : (work_done);
1648 }
1649 
1650 /**
1651  * \brief Setup input and output queues
1652  * @param octeon_dev octeon device
1653  * @param ifidx Interface index
1654  *
1655  * Note: Queues are with respect to the octeon device. Thus
1656  * an input queue is for egress packets, and output queues
1657  * are for ingress packets.
1658  */
1659 static int setup_io_queues(struct octeon_device *octeon_dev, int ifidx)
1660 {
1661 	struct octeon_droq_ops droq_ops;
1662 	struct net_device *netdev;
1663 	static int cpu_id_modulus;
1664 	struct octeon_droq *droq;
1665 	struct napi_struct *napi;
1666 	static int cpu_id;
1667 	int num_tx_descs;
1668 	struct lio *lio;
1669 	int retval = 0;
1670 	int q, q_no;
1671 
1672 	netdev = octeon_dev->props[ifidx].netdev;
1673 
1674 	lio = GET_LIO(netdev);
1675 
1676 	memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1677 
1678 	droq_ops.fptr = liquidio_push_packet;
1679 	droq_ops.farg = netdev;
1680 
1681 	droq_ops.poll_mode = 1;
1682 	droq_ops.napi_fn = liquidio_vf_napi_drv_callback;
1683 	cpu_id = 0;
1684 	cpu_id_modulus = num_present_cpus();
1685 
1686 	/* set up DROQs. */
1687 	for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1688 		q_no = lio->linfo.rxpciq[q].s.q_no;
1689 
1690 		retval = octeon_setup_droq(
1691 		    octeon_dev, q_no,
1692 		    CFG_GET_NUM_RX_DESCS_NIC_IF(octeon_get_conf(octeon_dev),
1693 						lio->ifidx),
1694 		    CFG_GET_NUM_RX_BUF_SIZE_NIC_IF(octeon_get_conf(octeon_dev),
1695 						   lio->ifidx),
1696 		    NULL);
1697 		if (retval) {
1698 			dev_err(&octeon_dev->pci_dev->dev,
1699 				"%s : Runtime DROQ(RxQ) creation failed.\n",
1700 				__func__);
1701 			return 1;
1702 		}
1703 
1704 		droq = octeon_dev->droq[q_no];
1705 		napi = &droq->napi;
1706 		netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
1707 
1708 		/* designate a CPU for this droq */
1709 		droq->cpu_id = cpu_id;
1710 		cpu_id++;
1711 		if (cpu_id >= cpu_id_modulus)
1712 			cpu_id = 0;
1713 
1714 		octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1715 	}
1716 
1717 	/* 23XX VF can send/recv control messages (via the first VF-owned
1718 	 * droq) from the firmware even if the ethX interface is down,
1719 	 * so that's why poll_mode must be off for the first droq.
1720 	 */
1721 	octeon_dev->droq[0]->ops.poll_mode = 0;
1722 
1723 	/* set up IQs. */
1724 	for (q = 0; q < lio->linfo.num_txpciq; q++) {
1725 		num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(
1726 		    octeon_get_conf(octeon_dev), lio->ifidx);
1727 		retval = octeon_setup_iq(octeon_dev, ifidx, q,
1728 					 lio->linfo.txpciq[q], num_tx_descs,
1729 					 netdev_get_tx_queue(netdev, q));
1730 		if (retval) {
1731 			dev_err(&octeon_dev->pci_dev->dev,
1732 				" %s : Runtime IQ(TxQ) creation failed.\n",
1733 				__func__);
1734 			return 1;
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /**
1742  * \brief Net device open for LiquidIO
1743  * @param netdev network device
1744  */
1745 static int liquidio_open(struct net_device *netdev)
1746 {
1747 	struct lio *lio = GET_LIO(netdev);
1748 	struct octeon_device *oct = lio->oct_dev;
1749 	struct napi_struct *napi, *n;
1750 
1751 	if (!oct->props[lio->ifidx].napi_enabled) {
1752 		list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1753 			napi_enable(napi);
1754 
1755 		oct->props[lio->ifidx].napi_enabled = 1;
1756 
1757 		oct->droq[0]->ops.poll_mode = 1;
1758 	}
1759 
1760 	ifstate_set(lio, LIO_IFSTATE_RUNNING);
1761 
1762 	/* Ready for link status updates */
1763 	lio->intf_open = 1;
1764 
1765 	netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
1766 	start_txq(netdev);
1767 
1768 	/* tell Octeon to start forwarding packets to host */
1769 	send_rx_ctrl_cmd(lio, 1);
1770 
1771 	dev_info(&oct->pci_dev->dev, "%s interface is opened\n", netdev->name);
1772 
1773 	return 0;
1774 }
1775 
1776 /**
1777  * \brief Net device stop for LiquidIO
1778  * @param netdev network device
1779  */
1780 static int liquidio_stop(struct net_device *netdev)
1781 {
1782 	struct lio *lio = GET_LIO(netdev);
1783 	struct octeon_device *oct = lio->oct_dev;
1784 
1785 	netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
1786 	/* Inform that netif carrier is down */
1787 	lio->intf_open = 0;
1788 	lio->linfo.link.s.link_up = 0;
1789 
1790 	netif_carrier_off(netdev);
1791 	lio->link_changes++;
1792 
1793 	/* tell Octeon to stop forwarding packets to host */
1794 	send_rx_ctrl_cmd(lio, 0);
1795 
1796 	ifstate_reset(lio, LIO_IFSTATE_RUNNING);
1797 
1798 	txqs_stop(netdev);
1799 
1800 	dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
1801 
1802 	return 0;
1803 }
1804 
1805 /**
1806  * \brief Converts a mask based on net device flags
1807  * @param netdev network device
1808  *
1809  * This routine generates a octnet_ifflags mask from the net device flags
1810  * received from the OS.
1811  */
1812 static enum octnet_ifflags get_new_flags(struct net_device *netdev)
1813 {
1814 	enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
1815 
1816 	if (netdev->flags & IFF_PROMISC)
1817 		f |= OCTNET_IFFLAG_PROMISC;
1818 
1819 	if (netdev->flags & IFF_ALLMULTI)
1820 		f |= OCTNET_IFFLAG_ALLMULTI;
1821 
1822 	if (netdev->flags & IFF_MULTICAST) {
1823 		f |= OCTNET_IFFLAG_MULTICAST;
1824 
1825 		/* Accept all multicast addresses if there are more than we
1826 		 * can handle
1827 		 */
1828 		if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
1829 			f |= OCTNET_IFFLAG_ALLMULTI;
1830 	}
1831 
1832 	if (netdev->flags & IFF_BROADCAST)
1833 		f |= OCTNET_IFFLAG_BROADCAST;
1834 
1835 	return f;
1836 }
1837 
1838 static void liquidio_set_uc_list(struct net_device *netdev)
1839 {
1840 	struct lio *lio = GET_LIO(netdev);
1841 	struct octeon_device *oct = lio->oct_dev;
1842 	struct octnic_ctrl_pkt nctrl;
1843 	struct netdev_hw_addr *ha;
1844 	u64 *mac;
1845 
1846 	if (lio->netdev_uc_count == netdev_uc_count(netdev))
1847 		return;
1848 
1849 	if (netdev_uc_count(netdev) > MAX_NCTRL_UDD) {
1850 		dev_err(&oct->pci_dev->dev, "too many MAC addresses in netdev uc list\n");
1851 		return;
1852 	}
1853 
1854 	lio->netdev_uc_count = netdev_uc_count(netdev);
1855 
1856 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1857 	nctrl.ncmd.s.cmd = OCTNET_CMD_SET_UC_LIST;
1858 	nctrl.ncmd.s.more = lio->netdev_uc_count;
1859 	nctrl.ncmd.s.param1 = oct->vf_num;
1860 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1861 	nctrl.netpndev = (u64)netdev;
1862 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
1863 
1864 	/* copy all the addresses into the udd */
1865 	mac = &nctrl.udd[0];
1866 	netdev_for_each_uc_addr(ha, netdev) {
1867 		ether_addr_copy(((u8 *)mac) + 2, ha->addr);
1868 		mac++;
1869 	}
1870 
1871 	octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
1872 }
1873 
1874 /**
1875  * \brief Net device set_multicast_list
1876  * @param netdev network device
1877  */
1878 static void liquidio_set_mcast_list(struct net_device *netdev)
1879 {
1880 	int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
1881 	struct lio *lio = GET_LIO(netdev);
1882 	struct octeon_device *oct = lio->oct_dev;
1883 	struct octnic_ctrl_pkt nctrl;
1884 	struct netdev_hw_addr *ha;
1885 	u64 *mc;
1886 	int ret;
1887 
1888 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1889 
1890 	/* Create a ctrl pkt command to be sent to core app. */
1891 	nctrl.ncmd.u64 = 0;
1892 	nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
1893 	nctrl.ncmd.s.param1 = get_new_flags(netdev);
1894 	nctrl.ncmd.s.param2 = mc_count;
1895 	nctrl.ncmd.s.more = mc_count;
1896 	nctrl.netpndev = (u64)netdev;
1897 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
1898 
1899 	/* copy all the addresses into the udd */
1900 	mc = &nctrl.udd[0];
1901 	netdev_for_each_mc_addr(ha, netdev) {
1902 		*mc = 0;
1903 		ether_addr_copy(((u8 *)mc) + 2, ha->addr);
1904 		/* no need to swap bytes */
1905 		if (++mc > &nctrl.udd[mc_count])
1906 			break;
1907 	}
1908 
1909 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1910 
1911 	/* Apparently, any activity in this call from the kernel has to
1912 	 * be atomic. So we won't wait for response.
1913 	 */
1914 	nctrl.wait_time = 0;
1915 
1916 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
1917 	if (ret < 0) {
1918 		dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
1919 			ret);
1920 	}
1921 
1922 	liquidio_set_uc_list(netdev);
1923 }
1924 
1925 /**
1926  * \brief Net device set_mac_address
1927  * @param netdev network device
1928  */
1929 static int liquidio_set_mac(struct net_device *netdev, void *p)
1930 {
1931 	struct sockaddr *addr = (struct sockaddr *)p;
1932 	struct lio *lio = GET_LIO(netdev);
1933 	struct octeon_device *oct = lio->oct_dev;
1934 	struct octnic_ctrl_pkt nctrl;
1935 	int ret = 0;
1936 
1937 	if (!is_valid_ether_addr(addr->sa_data))
1938 		return -EADDRNOTAVAIL;
1939 
1940 	if (ether_addr_equal(addr->sa_data, netdev->dev_addr))
1941 		return 0;
1942 
1943 	if (lio->linfo.macaddr_is_admin_asgnd)
1944 		return -EPERM;
1945 
1946 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1947 
1948 	nctrl.ncmd.u64 = 0;
1949 	nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
1950 	nctrl.ncmd.s.param1 = 0;
1951 	nctrl.ncmd.s.more = 1;
1952 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1953 	nctrl.netpndev = (u64)netdev;
1954 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
1955 	nctrl.wait_time = 100;
1956 
1957 	nctrl.udd[0] = 0;
1958 	/* The MAC Address is presented in network byte order. */
1959 	ether_addr_copy((u8 *)&nctrl.udd[0] + 2, addr->sa_data);
1960 
1961 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
1962 	if (ret < 0) {
1963 		dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
1964 		return -ENOMEM;
1965 	}
1966 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1967 	ether_addr_copy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data);
1968 
1969 	return 0;
1970 }
1971 
1972 /**
1973  * \brief Net device get_stats
1974  * @param netdev network device
1975  */
1976 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
1977 {
1978 	struct lio *lio = GET_LIO(netdev);
1979 	struct net_device_stats *stats = &netdev->stats;
1980 	u64 pkts = 0, drop = 0, bytes = 0;
1981 	struct oct_droq_stats *oq_stats;
1982 	struct oct_iq_stats *iq_stats;
1983 	struct octeon_device *oct;
1984 	int i, iq_no, oq_no;
1985 
1986 	oct = lio->oct_dev;
1987 
1988 	for (i = 0; i < lio->linfo.num_txpciq; i++) {
1989 		iq_no = lio->linfo.txpciq[i].s.q_no;
1990 		iq_stats = &oct->instr_queue[iq_no]->stats;
1991 		pkts += iq_stats->tx_done;
1992 		drop += iq_stats->tx_dropped;
1993 		bytes += iq_stats->tx_tot_bytes;
1994 	}
1995 
1996 	stats->tx_packets = pkts;
1997 	stats->tx_bytes = bytes;
1998 	stats->tx_dropped = drop;
1999 
2000 	pkts = 0;
2001 	drop = 0;
2002 	bytes = 0;
2003 
2004 	for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2005 		oq_no = lio->linfo.rxpciq[i].s.q_no;
2006 		oq_stats = &oct->droq[oq_no]->stats;
2007 		pkts += oq_stats->rx_pkts_received;
2008 		drop += (oq_stats->rx_dropped +
2009 			 oq_stats->dropped_nodispatch +
2010 			 oq_stats->dropped_toomany +
2011 			 oq_stats->dropped_nomem);
2012 		bytes += oq_stats->rx_bytes_received;
2013 	}
2014 
2015 	stats->rx_bytes = bytes;
2016 	stats->rx_packets = pkts;
2017 	stats->rx_dropped = drop;
2018 
2019 	return stats;
2020 }
2021 
2022 /**
2023  * \brief Net device change_mtu
2024  * @param netdev network device
2025  */
2026 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2027 {
2028 	struct lio *lio = GET_LIO(netdev);
2029 	struct octeon_device *oct = lio->oct_dev;
2030 
2031 	lio->mtu = new_mtu;
2032 
2033 	netif_info(lio, probe, lio->netdev, "MTU Changed from %d to %d\n",
2034 		   netdev->mtu, new_mtu);
2035 	dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2036 		 netdev->name, netdev->mtu, new_mtu);
2037 
2038 	netdev->mtu = new_mtu;
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  * \brief Handler for SIOCSHWTSTAMP ioctl
2045  * @param netdev network device
2046  * @param ifr interface request
2047  * @param cmd command
2048  */
2049 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2050 {
2051 	struct lio *lio = GET_LIO(netdev);
2052 	struct hwtstamp_config conf;
2053 
2054 	if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2055 		return -EFAULT;
2056 
2057 	if (conf.flags)
2058 		return -EINVAL;
2059 
2060 	switch (conf.tx_type) {
2061 	case HWTSTAMP_TX_ON:
2062 	case HWTSTAMP_TX_OFF:
2063 		break;
2064 	default:
2065 		return -ERANGE;
2066 	}
2067 
2068 	switch (conf.rx_filter) {
2069 	case HWTSTAMP_FILTER_NONE:
2070 		break;
2071 	case HWTSTAMP_FILTER_ALL:
2072 	case HWTSTAMP_FILTER_SOME:
2073 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2074 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2075 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2076 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2077 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2078 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2079 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2080 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2081 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2082 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2083 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2084 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2085 		conf.rx_filter = HWTSTAMP_FILTER_ALL;
2086 		break;
2087 	default:
2088 		return -ERANGE;
2089 	}
2090 
2091 	if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2092 		ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2093 
2094 	else
2095 		ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2096 
2097 	return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2098 }
2099 
2100 /**
2101  * \brief ioctl handler
2102  * @param netdev network device
2103  * @param ifr interface request
2104  * @param cmd command
2105  */
2106 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2107 {
2108 	switch (cmd) {
2109 	case SIOCSHWTSTAMP:
2110 		return hwtstamp_ioctl(netdev, ifr);
2111 	default:
2112 		return -EOPNOTSUPP;
2113 	}
2114 }
2115 
2116 static void handle_timestamp(struct octeon_device *oct, u32 status, void *buf)
2117 {
2118 	struct sk_buff *skb = (struct sk_buff *)buf;
2119 	struct octnet_buf_free_info *finfo;
2120 	struct oct_timestamp_resp *resp;
2121 	struct octeon_soft_command *sc;
2122 	struct lio *lio;
2123 
2124 	finfo = (struct octnet_buf_free_info *)skb->cb;
2125 	lio = finfo->lio;
2126 	sc = finfo->sc;
2127 	oct = lio->oct_dev;
2128 	resp = (struct oct_timestamp_resp *)sc->virtrptr;
2129 
2130 	if (status != OCTEON_REQUEST_DONE) {
2131 		dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2132 			CVM_CAST64(status));
2133 		resp->timestamp = 0;
2134 	}
2135 
2136 	octeon_swap_8B_data(&resp->timestamp, 1);
2137 
2138 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2139 		struct skb_shared_hwtstamps ts;
2140 		u64 ns = resp->timestamp;
2141 
2142 		netif_info(lio, tx_done, lio->netdev,
2143 			   "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2144 			   skb, (unsigned long long)ns);
2145 		ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2146 		skb_tstamp_tx(skb, &ts);
2147 	}
2148 
2149 	octeon_free_soft_command(oct, sc);
2150 	tx_buffer_free(skb);
2151 }
2152 
2153 /* \brief Send a data packet that will be timestamped
2154  * @param oct octeon device
2155  * @param ndata pointer to network data
2156  * @param finfo pointer to private network data
2157  */
2158 static int send_nic_timestamp_pkt(struct octeon_device *oct,
2159 				  struct octnic_data_pkt *ndata,
2160 				  struct octnet_buf_free_info *finfo)
2161 {
2162 	struct octeon_soft_command *sc;
2163 	int ring_doorbell;
2164 	struct lio *lio;
2165 	int retval;
2166 	u32 len;
2167 
2168 	lio = finfo->lio;
2169 
2170 	sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2171 					    sizeof(struct oct_timestamp_resp));
2172 	finfo->sc = sc;
2173 
2174 	if (!sc) {
2175 		dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2176 		return IQ_SEND_FAILED;
2177 	}
2178 
2179 	if (ndata->reqtype == REQTYPE_NORESP_NET)
2180 		ndata->reqtype = REQTYPE_RESP_NET;
2181 	else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2182 		ndata->reqtype = REQTYPE_RESP_NET_SG;
2183 
2184 	sc->callback = handle_timestamp;
2185 	sc->callback_arg = finfo->skb;
2186 	sc->iq_no = ndata->q_no;
2187 
2188 	len = (u32)((struct octeon_instr_ih3 *)(&sc->cmd.cmd3.ih3))->dlengsz;
2189 
2190 	ring_doorbell = 1;
2191 
2192 	retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2193 				     sc, len, ndata->reqtype);
2194 
2195 	if (retval == IQ_SEND_FAILED) {
2196 		dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2197 			retval);
2198 		octeon_free_soft_command(oct, sc);
2199 	} else {
2200 		netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2201 	}
2202 
2203 	return retval;
2204 }
2205 
2206 /** \brief Transmit networks packets to the Octeon interface
2207  * @param skbuff   skbuff struct to be passed to network layer.
2208  * @param netdev   pointer to network device
2209  * @returns whether the packet was transmitted to the device okay or not
2210  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
2211  */
2212 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2213 {
2214 	struct octnet_buf_free_info *finfo;
2215 	union octnic_cmd_setup cmdsetup;
2216 	struct octnic_data_pkt ndata;
2217 	struct octeon_instr_irh *irh;
2218 	struct oct_iq_stats *stats;
2219 	struct octeon_device *oct;
2220 	int q_idx = 0, iq_no = 0;
2221 	union tx_info *tx_info;
2222 	struct lio *lio;
2223 	int status = 0;
2224 	u64 dptr = 0;
2225 	u32 tag = 0;
2226 	int j;
2227 
2228 	lio = GET_LIO(netdev);
2229 	oct = lio->oct_dev;
2230 
2231 	if (netif_is_multiqueue(netdev)) {
2232 		q_idx = skb->queue_mapping;
2233 		q_idx = (q_idx % (lio->linfo.num_txpciq));
2234 		tag = q_idx;
2235 		iq_no = lio->linfo.txpciq[q_idx].s.q_no;
2236 	} else {
2237 		iq_no = lio->txq;
2238 	}
2239 
2240 	stats = &oct->instr_queue[iq_no]->stats;
2241 
2242 	/* Check for all conditions in which the current packet cannot be
2243 	 * transmitted.
2244 	 */
2245 	if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2246 	    (!lio->linfo.link.s.link_up) || (skb->len <= 0)) {
2247 		netif_info(lio, tx_err, lio->netdev, "Transmit failed link_status : %d\n",
2248 			   lio->linfo.link.s.link_up);
2249 		goto lio_xmit_failed;
2250 	}
2251 
2252 	/* Use space in skb->cb to store info used to unmap and
2253 	 * free the buffers.
2254 	 */
2255 	finfo = (struct octnet_buf_free_info *)skb->cb;
2256 	finfo->lio = lio;
2257 	finfo->skb = skb;
2258 	finfo->sc = NULL;
2259 
2260 	/* Prepare the attributes for the data to be passed to OSI. */
2261 	memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2262 
2263 	ndata.buf = finfo;
2264 
2265 	ndata.q_no = iq_no;
2266 
2267 	if (netif_is_multiqueue(netdev)) {
2268 		if (octnet_iq_is_full(oct, ndata.q_no)) {
2269 			/* defer sending if queue is full */
2270 			netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2271 				   ndata.q_no);
2272 			stats->tx_iq_busy++;
2273 			return NETDEV_TX_BUSY;
2274 		}
2275 	} else {
2276 		if (octnet_iq_is_full(oct, lio->txq)) {
2277 			/* defer sending if queue is full */
2278 			stats->tx_iq_busy++;
2279 			netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2280 				   ndata.q_no);
2281 			return NETDEV_TX_BUSY;
2282 		}
2283 	}
2284 
2285 	ndata.datasize = skb->len;
2286 
2287 	cmdsetup.u64 = 0;
2288 	cmdsetup.s.iq_no = iq_no;
2289 
2290 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2291 		if (skb->encapsulation) {
2292 			cmdsetup.s.tnl_csum = 1;
2293 			stats->tx_vxlan++;
2294 		} else {
2295 			cmdsetup.s.transport_csum = 1;
2296 		}
2297 	}
2298 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2299 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2300 		cmdsetup.s.timestamp = 1;
2301 	}
2302 
2303 	if (!skb_shinfo(skb)->nr_frags) {
2304 		cmdsetup.s.u.datasize = skb->len;
2305 		octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2306 		/* Offload checksum calculation for TCP/UDP packets */
2307 		dptr = dma_map_single(&oct->pci_dev->dev,
2308 				      skb->data,
2309 				      skb->len,
2310 				      DMA_TO_DEVICE);
2311 		if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2312 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2313 				__func__);
2314 			return NETDEV_TX_BUSY;
2315 		}
2316 
2317 		ndata.cmd.cmd3.dptr = dptr;
2318 		finfo->dptr = dptr;
2319 		ndata.reqtype = REQTYPE_NORESP_NET;
2320 
2321 	} else {
2322 		struct skb_frag_struct *frag;
2323 		struct octnic_gather *g;
2324 		int i, frags;
2325 
2326 		spin_lock(&lio->glist_lock[q_idx]);
2327 		g = (struct octnic_gather *)list_delete_head(
2328 		    &lio->glist[q_idx]);
2329 		spin_unlock(&lio->glist_lock[q_idx]);
2330 
2331 		if (!g) {
2332 			netif_info(lio, tx_err, lio->netdev,
2333 				   "Transmit scatter gather: glist null!\n");
2334 			goto lio_xmit_failed;
2335 		}
2336 
2337 		cmdsetup.s.gather = 1;
2338 		cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2339 		octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
2340 
2341 		memset(g->sg, 0, g->sg_size);
2342 
2343 		g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2344 						 skb->data,
2345 						 (skb->len - skb->data_len),
2346 						 DMA_TO_DEVICE);
2347 		if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2348 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2349 				__func__);
2350 			return NETDEV_TX_BUSY;
2351 		}
2352 		add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2353 
2354 		frags = skb_shinfo(skb)->nr_frags;
2355 		i = 1;
2356 		while (frags--) {
2357 			frag = &skb_shinfo(skb)->frags[i - 1];
2358 
2359 			g->sg[(i >> 2)].ptr[(i & 3)] =
2360 				dma_map_page(&oct->pci_dev->dev,
2361 					     frag->page.p,
2362 					     frag->page_offset,
2363 					     frag->size,
2364 					     DMA_TO_DEVICE);
2365 			if (dma_mapping_error(&oct->pci_dev->dev,
2366 					      g->sg[i >> 2].ptr[i & 3])) {
2367 				dma_unmap_single(&oct->pci_dev->dev,
2368 						 g->sg[0].ptr[0],
2369 						 skb->len - skb->data_len,
2370 						 DMA_TO_DEVICE);
2371 				for (j = 1; j < i; j++) {
2372 					frag = &skb_shinfo(skb)->frags[j - 1];
2373 					dma_unmap_page(&oct->pci_dev->dev,
2374 						       g->sg[j >> 2].ptr[j & 3],
2375 						       frag->size,
2376 						       DMA_TO_DEVICE);
2377 				}
2378 				dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2379 					__func__);
2380 				return NETDEV_TX_BUSY;
2381 			}
2382 
2383 			add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2384 			i++;
2385 		}
2386 
2387 		dptr = dma_map_single(&oct->pci_dev->dev,
2388 				      g->sg, g->sg_size,
2389 				      DMA_TO_DEVICE);
2390 		if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
2391 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 4\n",
2392 				__func__);
2393 			dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2394 					 skb->len - skb->data_len,
2395 					 DMA_TO_DEVICE);
2396 			for (j = 1; j <= frags; j++) {
2397 				frag = &skb_shinfo(skb)->frags[j - 1];
2398 				dma_unmap_page(&oct->pci_dev->dev,
2399 					       g->sg[j >> 2].ptr[j & 3],
2400 					       frag->size, DMA_TO_DEVICE);
2401 			}
2402 			return NETDEV_TX_BUSY;
2403 		}
2404 
2405 		ndata.cmd.cmd3.dptr = dptr;
2406 		finfo->dptr = dptr;
2407 		finfo->g = g;
2408 
2409 		ndata.reqtype = REQTYPE_NORESP_NET_SG;
2410 	}
2411 
2412 	irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
2413 	tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
2414 
2415 	if (skb_shinfo(skb)->gso_size) {
2416 		tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2417 		tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2418 	}
2419 
2420 	/* HW insert VLAN tag */
2421 	if (skb_vlan_tag_present(skb)) {
2422 		irh->priority = skb_vlan_tag_get(skb) >> VLAN_PRIO_SHIFT;
2423 		irh->vlan = skb_vlan_tag_get(skb) & VLAN_VID_MASK;
2424 	}
2425 
2426 	if (unlikely(cmdsetup.s.timestamp))
2427 		status = send_nic_timestamp_pkt(oct, &ndata, finfo);
2428 	else
2429 		status = octnet_send_nic_data_pkt(oct, &ndata);
2430 	if (status == IQ_SEND_FAILED)
2431 		goto lio_xmit_failed;
2432 
2433 	netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2434 
2435 	if (status == IQ_SEND_STOP) {
2436 		dev_err(&oct->pci_dev->dev, "Rcvd IQ_SEND_STOP signal; stopping IQ-%d\n",
2437 			iq_no);
2438 		stop_q(lio->netdev, q_idx);
2439 	}
2440 
2441 	netif_trans_update(netdev);
2442 
2443 	if (skb_shinfo(skb)->gso_size)
2444 		stats->tx_done += skb_shinfo(skb)->gso_segs;
2445 	else
2446 		stats->tx_done++;
2447 	stats->tx_tot_bytes += skb->len;
2448 
2449 	return NETDEV_TX_OK;
2450 
2451 lio_xmit_failed:
2452 	stats->tx_dropped++;
2453 	netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2454 		   iq_no, stats->tx_dropped);
2455 	if (dptr)
2456 		dma_unmap_single(&oct->pci_dev->dev, dptr,
2457 				 ndata.datasize, DMA_TO_DEVICE);
2458 	tx_buffer_free(skb);
2459 	return NETDEV_TX_OK;
2460 }
2461 
2462 /** \brief Network device Tx timeout
2463  * @param netdev    pointer to network device
2464  */
2465 static void liquidio_tx_timeout(struct net_device *netdev)
2466 {
2467 	struct lio *lio;
2468 
2469 	lio = GET_LIO(netdev);
2470 
2471 	netif_info(lio, tx_err, lio->netdev,
2472 		   "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2473 		   netdev->stats.tx_dropped);
2474 	netif_trans_update(netdev);
2475 	txqs_wake(netdev);
2476 }
2477 
2478 static int
2479 liquidio_vlan_rx_add_vid(struct net_device *netdev,
2480 			 __be16 proto __attribute__((unused)), u16 vid)
2481 {
2482 	struct lio *lio = GET_LIO(netdev);
2483 	struct octeon_device *oct = lio->oct_dev;
2484 	struct octnic_ctrl_pkt nctrl;
2485 	int ret = 0;
2486 
2487 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2488 
2489 	nctrl.ncmd.u64 = 0;
2490 	nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
2491 	nctrl.ncmd.s.param1 = vid;
2492 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2493 	nctrl.wait_time = 100;
2494 	nctrl.netpndev = (u64)netdev;
2495 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2496 
2497 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2498 	if (ret < 0) {
2499 		dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
2500 			ret);
2501 	}
2502 
2503 	return ret;
2504 }
2505 
2506 static int
2507 liquidio_vlan_rx_kill_vid(struct net_device *netdev,
2508 			  __be16 proto __attribute__((unused)), u16 vid)
2509 {
2510 	struct lio *lio = GET_LIO(netdev);
2511 	struct octeon_device *oct = lio->oct_dev;
2512 	struct octnic_ctrl_pkt nctrl;
2513 	int ret = 0;
2514 
2515 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2516 
2517 	nctrl.ncmd.u64 = 0;
2518 	nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
2519 	nctrl.ncmd.s.param1 = vid;
2520 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2521 	nctrl.wait_time = 100;
2522 	nctrl.netpndev = (u64)netdev;
2523 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2524 
2525 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2526 	if (ret < 0) {
2527 		dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
2528 			ret);
2529 	}
2530 	return ret;
2531 }
2532 
2533 /** Sending command to enable/disable RX checksum offload
2534  * @param netdev                pointer to network device
2535  * @param command               OCTNET_CMD_TNL_RX_CSUM_CTL
2536  * @param rx_cmd_bit            OCTNET_CMD_RXCSUM_ENABLE/
2537  *                              OCTNET_CMD_RXCSUM_DISABLE
2538  * @returns                     SUCCESS or FAILURE
2539  */
2540 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
2541 				       u8 rx_cmd)
2542 {
2543 	struct lio *lio = GET_LIO(netdev);
2544 	struct octeon_device *oct = lio->oct_dev;
2545 	struct octnic_ctrl_pkt nctrl;
2546 	int ret = 0;
2547 
2548 	nctrl.ncmd.u64 = 0;
2549 	nctrl.ncmd.s.cmd = command;
2550 	nctrl.ncmd.s.param1 = rx_cmd;
2551 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2552 	nctrl.wait_time = 100;
2553 	nctrl.netpndev = (u64)netdev;
2554 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2555 
2556 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2557 	if (ret < 0) {
2558 		dev_err(&oct->pci_dev->dev, "DEVFLAGS RXCSUM change failed in core (ret:0x%x)\n",
2559 			ret);
2560 	}
2561 	return ret;
2562 }
2563 
2564 /** Sending command to add/delete VxLAN UDP port to firmware
2565  * @param netdev                pointer to network device
2566  * @param command               OCTNET_CMD_VXLAN_PORT_CONFIG
2567  * @param vxlan_port            VxLAN port to be added or deleted
2568  * @param vxlan_cmd_bit         OCTNET_CMD_VXLAN_PORT_ADD,
2569  *                              OCTNET_CMD_VXLAN_PORT_DEL
2570  * @returns                     SUCCESS or FAILURE
2571  */
2572 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
2573 				       u16 vxlan_port, u8 vxlan_cmd_bit)
2574 {
2575 	struct lio *lio = GET_LIO(netdev);
2576 	struct octeon_device *oct = lio->oct_dev;
2577 	struct octnic_ctrl_pkt nctrl;
2578 	int ret = 0;
2579 
2580 	nctrl.ncmd.u64 = 0;
2581 	nctrl.ncmd.s.cmd = command;
2582 	nctrl.ncmd.s.more = vxlan_cmd_bit;
2583 	nctrl.ncmd.s.param1 = vxlan_port;
2584 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2585 	nctrl.wait_time = 100;
2586 	nctrl.netpndev = (u64)netdev;
2587 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2588 
2589 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2590 	if (ret < 0) {
2591 		dev_err(&oct->pci_dev->dev,
2592 			"DEVFLAGS VxLAN port add/delete failed in core (ret : 0x%x)\n",
2593 			ret);
2594 	}
2595 	return ret;
2596 }
2597 
2598 /** \brief Net device fix features
2599  * @param netdev  pointer to network device
2600  * @param request features requested
2601  * @returns updated features list
2602  */
2603 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2604 					       netdev_features_t request)
2605 {
2606 	struct lio *lio = netdev_priv(netdev);
2607 
2608 	if ((request & NETIF_F_RXCSUM) &&
2609 	    !(lio->dev_capability & NETIF_F_RXCSUM))
2610 		request &= ~NETIF_F_RXCSUM;
2611 
2612 	if ((request & NETIF_F_HW_CSUM) &&
2613 	    !(lio->dev_capability & NETIF_F_HW_CSUM))
2614 		request &= ~NETIF_F_HW_CSUM;
2615 
2616 	if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2617 		request &= ~NETIF_F_TSO;
2618 
2619 	if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2620 		request &= ~NETIF_F_TSO6;
2621 
2622 	if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2623 		request &= ~NETIF_F_LRO;
2624 
2625 	/* Disable LRO if RXCSUM is off */
2626 	if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2627 	    (lio->dev_capability & NETIF_F_LRO))
2628 		request &= ~NETIF_F_LRO;
2629 
2630 	return request;
2631 }
2632 
2633 /** \brief Net device set features
2634  * @param netdev  pointer to network device
2635  * @param features features to enable/disable
2636  */
2637 static int liquidio_set_features(struct net_device *netdev,
2638 				 netdev_features_t features)
2639 {
2640 	struct lio *lio = netdev_priv(netdev);
2641 
2642 	if (!((netdev->features ^ features) & NETIF_F_LRO))
2643 		return 0;
2644 
2645 	if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
2646 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
2647 				     OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
2648 	else if (!(features & NETIF_F_LRO) &&
2649 		 (lio->dev_capability & NETIF_F_LRO))
2650 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
2651 				     OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
2652 	if (!(netdev->features & NETIF_F_RXCSUM) &&
2653 	    (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
2654 	    (features & NETIF_F_RXCSUM))
2655 		liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
2656 					    OCTNET_CMD_RXCSUM_ENABLE);
2657 	else if ((netdev->features & NETIF_F_RXCSUM) &&
2658 		 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
2659 		 !(features & NETIF_F_RXCSUM))
2660 		liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
2661 					    OCTNET_CMD_RXCSUM_DISABLE);
2662 
2663 	return 0;
2664 }
2665 
2666 static void liquidio_add_vxlan_port(struct net_device *netdev,
2667 				    struct udp_tunnel_info *ti)
2668 {
2669 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2670 		return;
2671 
2672 	liquidio_vxlan_port_command(netdev,
2673 				    OCTNET_CMD_VXLAN_PORT_CONFIG,
2674 				    htons(ti->port),
2675 				    OCTNET_CMD_VXLAN_PORT_ADD);
2676 }
2677 
2678 static void liquidio_del_vxlan_port(struct net_device *netdev,
2679 				    struct udp_tunnel_info *ti)
2680 {
2681 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
2682 		return;
2683 
2684 	liquidio_vxlan_port_command(netdev,
2685 				    OCTNET_CMD_VXLAN_PORT_CONFIG,
2686 				    htons(ti->port),
2687 				    OCTNET_CMD_VXLAN_PORT_DEL);
2688 }
2689 
2690 static const struct net_device_ops lionetdevops = {
2691 	.ndo_open		= liquidio_open,
2692 	.ndo_stop		= liquidio_stop,
2693 	.ndo_start_xmit		= liquidio_xmit,
2694 	.ndo_get_stats		= liquidio_get_stats,
2695 	.ndo_set_mac_address	= liquidio_set_mac,
2696 	.ndo_set_rx_mode	= liquidio_set_mcast_list,
2697 	.ndo_tx_timeout		= liquidio_tx_timeout,
2698 	.ndo_vlan_rx_add_vid    = liquidio_vlan_rx_add_vid,
2699 	.ndo_vlan_rx_kill_vid   = liquidio_vlan_rx_kill_vid,
2700 	.ndo_change_mtu		= liquidio_change_mtu,
2701 	.ndo_do_ioctl		= liquidio_ioctl,
2702 	.ndo_fix_features	= liquidio_fix_features,
2703 	.ndo_set_features	= liquidio_set_features,
2704 	.ndo_udp_tunnel_add     = liquidio_add_vxlan_port,
2705 	.ndo_udp_tunnel_del     = liquidio_del_vxlan_port,
2706 	.ndo_select_queue	= select_q,
2707 };
2708 
2709 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
2710 {
2711 	struct octeon_device *oct = (struct octeon_device *)buf;
2712 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
2713 	union oct_link_status *ls;
2714 	int gmxport = 0;
2715 	int i;
2716 
2717 	if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
2718 		dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
2719 			recv_pkt->buffer_size[0],
2720 			recv_pkt->rh.r_nic_info.gmxport);
2721 		goto nic_info_err;
2722 	}
2723 
2724 	gmxport = recv_pkt->rh.r_nic_info.gmxport;
2725 	ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
2726 
2727 	octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
2728 
2729 	for (i = 0; i < oct->ifcount; i++) {
2730 		if (oct->props[i].gmxport == gmxport) {
2731 			update_link_status(oct->props[i].netdev, ls);
2732 			break;
2733 		}
2734 	}
2735 
2736 nic_info_err:
2737 	for (i = 0; i < recv_pkt->buffer_count; i++)
2738 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
2739 	octeon_free_recv_info(recv_info);
2740 	return 0;
2741 }
2742 
2743 /**
2744  * \brief Setup network interfaces
2745  * @param octeon_dev  octeon device
2746  *
2747  * Called during init time for each device. It assumes the NIC
2748  * is already up and running.  The link information for each
2749  * interface is passed in link_info.
2750  */
2751 static int setup_nic_devices(struct octeon_device *octeon_dev)
2752 {
2753 	int retval, num_iqueues, num_oqueues;
2754 	struct liquidio_if_cfg_context *ctx;
2755 	u32 resp_size, ctx_size, data_size;
2756 	struct liquidio_if_cfg_resp *resp;
2757 	struct octeon_soft_command *sc;
2758 	union oct_nic_if_cfg if_cfg;
2759 	struct octdev_props *props;
2760 	struct net_device *netdev;
2761 	struct lio_version *vdata;
2762 	struct lio *lio = NULL;
2763 	u8 mac[ETH_ALEN], i, j;
2764 	u32 ifidx_or_pfnum;
2765 
2766 	ifidx_or_pfnum = octeon_dev->pf_num;
2767 
2768 	/* This is to handle link status changes */
2769 	octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, OPCODE_NIC_INFO,
2770 				    lio_nic_info, octeon_dev);
2771 
2772 	/* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
2773 	 * They are handled directly.
2774 	 */
2775 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
2776 					free_netbuf);
2777 
2778 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
2779 					free_netsgbuf);
2780 
2781 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
2782 					free_netsgbuf_with_resp);
2783 
2784 	for (i = 0; i < octeon_dev->ifcount; i++) {
2785 		resp_size = sizeof(struct liquidio_if_cfg_resp);
2786 		ctx_size = sizeof(struct liquidio_if_cfg_context);
2787 		data_size = sizeof(struct lio_version);
2788 		sc = (struct octeon_soft_command *)
2789 			octeon_alloc_soft_command(octeon_dev, data_size,
2790 						  resp_size, ctx_size);
2791 		resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2792 		ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
2793 		vdata = (struct lio_version *)sc->virtdptr;
2794 
2795 		*((u64 *)vdata) = 0;
2796 		vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
2797 		vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
2798 		vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
2799 
2800 		WRITE_ONCE(ctx->cond, 0);
2801 		ctx->octeon_id = lio_get_device_id(octeon_dev);
2802 		init_waitqueue_head(&ctx->wc);
2803 
2804 		if_cfg.u64 = 0;
2805 
2806 		if_cfg.s.num_iqueues = octeon_dev->sriov_info.rings_per_vf;
2807 		if_cfg.s.num_oqueues = octeon_dev->sriov_info.rings_per_vf;
2808 		if_cfg.s.base_queue = 0;
2809 
2810 		sc->iq_no = 0;
2811 
2812 		octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
2813 					    OPCODE_NIC_IF_CFG, 0, if_cfg.u64,
2814 					    0);
2815 
2816 		sc->callback = if_cfg_callback;
2817 		sc->callback_arg = sc;
2818 		sc->wait_time = 5000;
2819 
2820 		retval = octeon_send_soft_command(octeon_dev, sc);
2821 		if (retval == IQ_SEND_FAILED) {
2822 			dev_err(&octeon_dev->pci_dev->dev,
2823 				"iq/oq config failed status: %x\n", retval);
2824 			/* Soft instr is freed by driver in case of failure. */
2825 			goto setup_nic_dev_fail;
2826 		}
2827 
2828 		/* Sleep on a wait queue till the cond flag indicates that the
2829 		 * response arrived or timed-out.
2830 		 */
2831 		if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
2832 			dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
2833 			goto setup_nic_wait_intr;
2834 		}
2835 
2836 		retval = resp->status;
2837 		if (retval) {
2838 			dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
2839 			goto setup_nic_dev_fail;
2840 		}
2841 
2842 		octeon_swap_8B_data((u64 *)(&resp->cfg_info),
2843 				    (sizeof(struct liquidio_if_cfg_info)) >> 3);
2844 
2845 		num_iqueues = hweight64(resp->cfg_info.iqmask);
2846 		num_oqueues = hweight64(resp->cfg_info.oqmask);
2847 
2848 		if (!(num_iqueues) || !(num_oqueues)) {
2849 			dev_err(&octeon_dev->pci_dev->dev,
2850 				"Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
2851 				resp->cfg_info.iqmask, resp->cfg_info.oqmask);
2852 			goto setup_nic_dev_fail;
2853 		}
2854 		dev_dbg(&octeon_dev->pci_dev->dev,
2855 			"interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
2856 			i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
2857 			num_iqueues, num_oqueues);
2858 
2859 		netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
2860 
2861 		if (!netdev) {
2862 			dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
2863 			goto setup_nic_dev_fail;
2864 		}
2865 
2866 		SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
2867 
2868 		/* Associate the routines that will handle different
2869 		 * netdev tasks.
2870 		 */
2871 		netdev->netdev_ops = &lionetdevops;
2872 
2873 		lio = GET_LIO(netdev);
2874 
2875 		memset(lio, 0, sizeof(struct lio));
2876 
2877 		lio->ifidx = ifidx_or_pfnum;
2878 
2879 		props = &octeon_dev->props[i];
2880 		props->gmxport = resp->cfg_info.linfo.gmxport;
2881 		props->netdev = netdev;
2882 
2883 		lio->linfo.num_rxpciq = num_oqueues;
2884 		lio->linfo.num_txpciq = num_iqueues;
2885 
2886 		for (j = 0; j < num_oqueues; j++) {
2887 			lio->linfo.rxpciq[j].u64 =
2888 			    resp->cfg_info.linfo.rxpciq[j].u64;
2889 		}
2890 		for (j = 0; j < num_iqueues; j++) {
2891 			lio->linfo.txpciq[j].u64 =
2892 			    resp->cfg_info.linfo.txpciq[j].u64;
2893 		}
2894 
2895 		lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
2896 		lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
2897 		lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
2898 		lio->linfo.macaddr_is_admin_asgnd =
2899 			resp->cfg_info.linfo.macaddr_is_admin_asgnd;
2900 
2901 		lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2902 
2903 		lio->dev_capability = NETIF_F_HIGHDMA
2904 				      | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2905 				      | NETIF_F_SG | NETIF_F_RXCSUM
2906 				      | NETIF_F_TSO | NETIF_F_TSO6
2907 				      | NETIF_F_GRO
2908 				      | NETIF_F_LRO;
2909 		netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
2910 
2911 		/* Copy of transmit encapsulation capabilities:
2912 		 * TSO, TSO6, Checksums for this device
2913 		 */
2914 		lio->enc_dev_capability = NETIF_F_IP_CSUM
2915 					  | NETIF_F_IPV6_CSUM
2916 					  | NETIF_F_GSO_UDP_TUNNEL
2917 					  | NETIF_F_HW_CSUM | NETIF_F_SG
2918 					  | NETIF_F_RXCSUM
2919 					  | NETIF_F_TSO | NETIF_F_TSO6
2920 					  | NETIF_F_LRO;
2921 
2922 		netdev->hw_enc_features =
2923 		    (lio->enc_dev_capability & ~NETIF_F_LRO);
2924 		netdev->vlan_features = lio->dev_capability;
2925 		/* Add any unchangeable hw features */
2926 		lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER |
2927 				       NETIF_F_HW_VLAN_CTAG_RX |
2928 				       NETIF_F_HW_VLAN_CTAG_TX;
2929 
2930 		netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
2931 
2932 		netdev->hw_features = lio->dev_capability;
2933 
2934 		/* MTU range: 68 - 16000 */
2935 		netdev->min_mtu = LIO_MIN_MTU_SIZE;
2936 		netdev->max_mtu = LIO_MAX_MTU_SIZE;
2937 
2938 		/* Point to the  properties for octeon device to which this
2939 		 * interface belongs.
2940 		 */
2941 		lio->oct_dev = octeon_dev;
2942 		lio->octprops = props;
2943 		lio->netdev = netdev;
2944 
2945 		dev_dbg(&octeon_dev->pci_dev->dev,
2946 			"if%d gmx: %d hw_addr: 0x%llx\n", i,
2947 			lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
2948 
2949 		/* 64-bit swap required on LE machines */
2950 		octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
2951 		for (j = 0; j < ETH_ALEN; j++)
2952 			mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
2953 
2954 		/* Copy MAC Address to OS network device structure */
2955 		ether_addr_copy(netdev->dev_addr, mac);
2956 
2957 		if (setup_io_queues(octeon_dev, i)) {
2958 			dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
2959 			goto setup_nic_dev_fail;
2960 		}
2961 
2962 		ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
2963 
2964 		/* For VFs, enable Octeon device interrupts here,
2965 		 * as this is contingent upon IO queue setup
2966 		 */
2967 		octeon_dev->fn_list.enable_interrupt(octeon_dev,
2968 						     OCTEON_ALL_INTR);
2969 
2970 		/* By default all interfaces on a single Octeon uses the same
2971 		 * tx and rx queues
2972 		 */
2973 		lio->txq = lio->linfo.txpciq[0].s.q_no;
2974 		lio->rxq = lio->linfo.rxpciq[0].s.q_no;
2975 
2976 		lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
2977 		lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
2978 
2979 		if (setup_glists(lio, num_iqueues)) {
2980 			dev_err(&octeon_dev->pci_dev->dev,
2981 				"Gather list allocation failed\n");
2982 			goto setup_nic_dev_fail;
2983 		}
2984 
2985 		/* Register ethtool support */
2986 		liquidio_set_ethtool_ops(netdev);
2987 		if (lio->oct_dev->chip_id == OCTEON_CN23XX_VF_VID)
2988 			octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
2989 		else
2990 			octeon_dev->priv_flags = 0x0;
2991 
2992 		if (netdev->features & NETIF_F_LRO)
2993 			liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
2994 					     OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
2995 
2996 		if ((debug != -1) && (debug & NETIF_MSG_HW))
2997 			liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE,
2998 					     0);
2999 
3000 		if (setup_link_status_change_wq(netdev))
3001 			goto setup_nic_dev_fail;
3002 
3003 		/* Register the network device with the OS */
3004 		if (register_netdev(netdev)) {
3005 			dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3006 			goto setup_nic_dev_fail;
3007 		}
3008 
3009 		dev_dbg(&octeon_dev->pci_dev->dev,
3010 			"Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3011 			i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3012 		netif_carrier_off(netdev);
3013 		lio->link_changes++;
3014 
3015 		ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3016 
3017 		/* Sending command to firmware to enable Rx checksum offload
3018 		 * by default at the time of setup of Liquidio driver for
3019 		 * this device
3020 		 */
3021 		liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3022 					    OCTNET_CMD_RXCSUM_ENABLE);
3023 		liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
3024 				     OCTNET_CMD_TXCSUM_ENABLE);
3025 
3026 		dev_dbg(&octeon_dev->pci_dev->dev,
3027 			"NIC ifidx:%d Setup successful\n", i);
3028 
3029 		octeon_free_soft_command(octeon_dev, sc);
3030 	}
3031 
3032 	return 0;
3033 
3034 setup_nic_dev_fail:
3035 
3036 	octeon_free_soft_command(octeon_dev, sc);
3037 
3038 setup_nic_wait_intr:
3039 
3040 	while (i--) {
3041 		dev_err(&octeon_dev->pci_dev->dev,
3042 			"NIC ifidx:%d Setup failed\n", i);
3043 		liquidio_destroy_nic_device(octeon_dev, i);
3044 	}
3045 	return -ENODEV;
3046 }
3047 
3048 /**
3049  * \brief initialize the NIC
3050  * @param oct octeon device
3051  *
3052  * This initialization routine is called once the Octeon device application is
3053  * up and running
3054  */
3055 static int liquidio_init_nic_module(struct octeon_device *oct)
3056 {
3057 	struct oct_intrmod_cfg *intrmod_cfg;
3058 	int num_nic_ports = 1;
3059 	int i, retval = 0;
3060 
3061 	dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3062 
3063 	/* only default iq and oq were initialized
3064 	 * initialize the rest as well run port_config command for each port
3065 	 */
3066 	oct->ifcount = num_nic_ports;
3067 	memset(oct->props, 0,
3068 	       sizeof(struct octdev_props) * num_nic_ports);
3069 
3070 	for (i = 0; i < MAX_OCTEON_LINKS; i++)
3071 		oct->props[i].gmxport = -1;
3072 
3073 	retval = setup_nic_devices(oct);
3074 	if (retval) {
3075 		dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3076 		goto octnet_init_failure;
3077 	}
3078 
3079 	/* Initialize interrupt moderation params */
3080 	intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3081 	intrmod_cfg->rx_enable = 1;
3082 	intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3083 	intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3084 	intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3085 	intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER;
3086 	intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER;
3087 	intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER;
3088 	intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER;
3089 	intrmod_cfg->tx_enable = 1;
3090 	intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER;
3091 	intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER;
3092 	intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct));
3093 	intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct));
3094 	intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct));
3095 	dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3096 
3097 	return retval;
3098 
3099 octnet_init_failure:
3100 
3101 	oct->ifcount = 0;
3102 
3103 	return retval;
3104 }
3105 
3106 /**
3107  * \brief Device initialization for each Octeon device that is probed
3108  * @param octeon_dev  octeon device
3109  */
3110 static int octeon_device_init(struct octeon_device *oct)
3111 {
3112 	u32 rev_id;
3113 	int j;
3114 
3115 	atomic_set(&oct->status, OCT_DEV_BEGIN_STATE);
3116 
3117 	/* Enable access to the octeon device and make its DMA capability
3118 	 * known to the OS.
3119 	 */
3120 	if (octeon_pci_os_setup(oct))
3121 		return 1;
3122 	atomic_set(&oct->status, OCT_DEV_PCI_ENABLE_DONE);
3123 
3124 	oct->chip_id = OCTEON_CN23XX_VF_VID;
3125 	pci_read_config_dword(oct->pci_dev, 8, &rev_id);
3126 	oct->rev_id = rev_id & 0xff;
3127 
3128 	if (cn23xx_setup_octeon_vf_device(oct))
3129 		return 1;
3130 
3131 	atomic_set(&oct->status, OCT_DEV_PCI_MAP_DONE);
3132 
3133 	oct->app_mode = CVM_DRV_NIC_APP;
3134 
3135 	/* Initialize the dispatch mechanism used to push packets arriving on
3136 	 * Octeon Output queues.
3137 	 */
3138 	if (octeon_init_dispatch_list(oct))
3139 		return 1;
3140 
3141 	atomic_set(&oct->status, OCT_DEV_DISPATCH_INIT_DONE);
3142 
3143 	if (octeon_set_io_queues_off(oct)) {
3144 		dev_err(&oct->pci_dev->dev, "setting io queues off failed\n");
3145 		return 1;
3146 	}
3147 
3148 	if (oct->fn_list.setup_device_regs(oct)) {
3149 		dev_err(&oct->pci_dev->dev, "device registers configuration failed\n");
3150 		return 1;
3151 	}
3152 
3153 	/* Initialize soft command buffer pool */
3154 	if (octeon_setup_sc_buffer_pool(oct)) {
3155 		dev_err(&oct->pci_dev->dev, "sc buffer pool allocation failed\n");
3156 		return 1;
3157 	}
3158 	atomic_set(&oct->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3159 
3160 	/* Setup the data structures that manage this Octeon's Input queues. */
3161 	if (octeon_setup_instr_queues(oct)) {
3162 		dev_err(&oct->pci_dev->dev, "instruction queue initialization failed\n");
3163 		return 1;
3164 	}
3165 	atomic_set(&oct->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3166 
3167 	/* Initialize lists to manage the requests of different types that
3168 	 * arrive from user & kernel applications for this octeon device.
3169 	 */
3170 	if (octeon_setup_response_list(oct)) {
3171 		dev_err(&oct->pci_dev->dev, "Response list allocation failed\n");
3172 		return 1;
3173 	}
3174 	atomic_set(&oct->status, OCT_DEV_RESP_LIST_INIT_DONE);
3175 
3176 	if (octeon_setup_output_queues(oct)) {
3177 		dev_err(&oct->pci_dev->dev, "Output queue initialization failed\n");
3178 		return 1;
3179 	}
3180 	atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);
3181 
3182 	if (oct->fn_list.setup_mbox(oct)) {
3183 		dev_err(&oct->pci_dev->dev, "Mailbox setup failed\n");
3184 		return 1;
3185 	}
3186 	atomic_set(&oct->status, OCT_DEV_MBOX_SETUP_DONE);
3187 
3188 	if (octeon_allocate_ioq_vector(oct)) {
3189 		dev_err(&oct->pci_dev->dev, "ioq vector allocation failed\n");
3190 		return 1;
3191 	}
3192 	atomic_set(&oct->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE);
3193 
3194 	dev_info(&oct->pci_dev->dev, "OCTEON_CN23XX VF Version: %s, %d ioqs\n",
3195 		 LIQUIDIO_VERSION, oct->sriov_info.rings_per_vf);
3196 
3197 	/* Setup the interrupt handler and record the INT SUM register address*/
3198 	if (octeon_setup_interrupt(oct))
3199 		return 1;
3200 
3201 	if (cn23xx_octeon_pfvf_handshake(oct))
3202 		return 1;
3203 
3204 	/* Enable Octeon device interrupts */
3205 	oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
3206 
3207 	atomic_set(&oct->status, OCT_DEV_INTR_SET_DONE);
3208 
3209 	/* Enable the input and output queues for this Octeon device */
3210 	if (oct->fn_list.enable_io_queues(oct)) {
3211 		dev_err(&oct->pci_dev->dev, "enabling io queues failed\n");
3212 		return 1;
3213 	}
3214 
3215 	atomic_set(&oct->status, OCT_DEV_IO_QUEUES_DONE);
3216 
3217 	atomic_set(&oct->status, OCT_DEV_HOST_OK);
3218 
3219 	/* Send Credit for Octeon Output queues. Credits are always sent after
3220 	 * the output queue is enabled.
3221 	 */
3222 	for (j = 0; j < oct->num_oqs; j++)
3223 		writel(oct->droq[j]->max_count, oct->droq[j]->pkts_credit_reg);
3224 
3225 	/* Packets can start arriving on the output queues from this point. */
3226 
3227 	atomic_set(&oct->status, OCT_DEV_CORE_OK);
3228 
3229 	atomic_set(&oct->status, OCT_DEV_RUNNING);
3230 
3231 	if (liquidio_init_nic_module(oct))
3232 		return 1;
3233 
3234 	return 0;
3235 }
3236 
3237 static int __init liquidio_vf_init(void)
3238 {
3239 	octeon_init_device_list(0);
3240 	return pci_register_driver(&liquidio_vf_pci_driver);
3241 }
3242 
3243 static void __exit liquidio_vf_exit(void)
3244 {
3245 	pci_unregister_driver(&liquidio_vf_pci_driver);
3246 
3247 	pr_info("LiquidIO_VF network module is now unloaded\n");
3248 }
3249 
3250 module_init(liquidio_vf_init);
3251 module_exit(liquidio_vf_exit);
3252