1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/module.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/firmware.h> 22 #include <net/vxlan.h> 23 #include <linux/kthread.h> 24 #include "liquidio_common.h" 25 #include "octeon_droq.h" 26 #include "octeon_iq.h" 27 #include "response_manager.h" 28 #include "octeon_device.h" 29 #include "octeon_nic.h" 30 #include "octeon_main.h" 31 #include "octeon_network.h" 32 #include "cn66xx_regs.h" 33 #include "cn66xx_device.h" 34 #include "cn68xx_device.h" 35 #include "cn23xx_pf_device.h" 36 #include "liquidio_image.h" 37 38 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>"); 39 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver"); 40 MODULE_LICENSE("GPL"); 41 MODULE_VERSION(LIQUIDIO_VERSION); 42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX); 43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX); 44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX); 45 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX); 46 47 static int ddr_timeout = 10000; 48 module_param(ddr_timeout, int, 0644); 49 MODULE_PARM_DESC(ddr_timeout, 50 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check"); 51 52 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 53 54 static int debug = -1; 55 module_param(debug, int, 0644); 56 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits"); 57 58 static char fw_type[LIO_MAX_FW_TYPE_LEN]; 59 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000); 60 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\""); 61 62 static int ptp_enable = 1; 63 64 /* Polling interval for determining when NIC application is alive */ 65 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100 66 67 /* runtime link query interval */ 68 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000 69 70 struct liquidio_if_cfg_context { 71 int octeon_id; 72 73 wait_queue_head_t wc; 74 75 int cond; 76 }; 77 78 struct liquidio_if_cfg_resp { 79 u64 rh; 80 struct liquidio_if_cfg_info cfg_info; 81 u64 status; 82 }; 83 84 struct liquidio_rx_ctl_context { 85 int octeon_id; 86 87 wait_queue_head_t wc; 88 89 int cond; 90 }; 91 92 struct oct_link_status_resp { 93 u64 rh; 94 struct oct_link_info link_info; 95 u64 status; 96 }; 97 98 struct oct_timestamp_resp { 99 u64 rh; 100 u64 timestamp; 101 u64 status; 102 }; 103 104 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp)) 105 106 union tx_info { 107 u64 u64; 108 struct { 109 #ifdef __BIG_ENDIAN_BITFIELD 110 u16 gso_size; 111 u16 gso_segs; 112 u32 reserved; 113 #else 114 u32 reserved; 115 u16 gso_segs; 116 u16 gso_size; 117 #endif 118 } s; 119 }; 120 121 /** Octeon device properties to be used by the NIC module. 122 * Each octeon device in the system will be represented 123 * by this structure in the NIC module. 124 */ 125 126 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS) 127 128 #define OCTNIC_GSO_MAX_HEADER_SIZE 128 129 #define OCTNIC_GSO_MAX_SIZE \ 130 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE) 131 132 /** Structure of a node in list of gather components maintained by 133 * NIC driver for each network device. 134 */ 135 struct octnic_gather { 136 /** List manipulation. Next and prev pointers. */ 137 struct list_head list; 138 139 /** Size of the gather component at sg in bytes. */ 140 int sg_size; 141 142 /** Number of bytes that sg was adjusted to make it 8B-aligned. */ 143 int adjust; 144 145 /** Gather component that can accommodate max sized fragment list 146 * received from the IP layer. 147 */ 148 struct octeon_sg_entry *sg; 149 150 dma_addr_t sg_dma_ptr; 151 }; 152 153 struct handshake { 154 struct completion init; 155 struct completion started; 156 struct pci_dev *pci_dev; 157 int init_ok; 158 int started_ok; 159 }; 160 161 struct octeon_device_priv { 162 /** Tasklet structures for this device. */ 163 struct tasklet_struct droq_tasklet; 164 unsigned long napi_mask; 165 }; 166 167 #ifdef CONFIG_PCI_IOV 168 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs); 169 #endif 170 171 static int octeon_device_init(struct octeon_device *); 172 static int liquidio_stop(struct net_device *netdev); 173 static void liquidio_remove(struct pci_dev *pdev); 174 static int liquidio_probe(struct pci_dev *pdev, 175 const struct pci_device_id *ent); 176 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 177 int linkstate); 178 179 static struct handshake handshake[MAX_OCTEON_DEVICES]; 180 static struct completion first_stage; 181 182 static void octeon_droq_bh(unsigned long pdev) 183 { 184 int q_no; 185 int reschedule = 0; 186 struct octeon_device *oct = (struct octeon_device *)pdev; 187 struct octeon_device_priv *oct_priv = 188 (struct octeon_device_priv *)oct->priv; 189 190 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) { 191 if (!(oct->io_qmask.oq & BIT_ULL(q_no))) 192 continue; 193 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no], 194 MAX_PACKET_BUDGET); 195 lio_enable_irq(oct->droq[q_no], NULL); 196 197 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 198 /* set time and cnt interrupt thresholds for this DROQ 199 * for NAPI 200 */ 201 int adjusted_q_no = q_no + oct->sriov_info.pf_srn; 202 203 octeon_write_csr64( 204 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no), 205 0x5700000040ULL); 206 octeon_write_csr64( 207 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0); 208 } 209 } 210 211 if (reschedule) 212 tasklet_schedule(&oct_priv->droq_tasklet); 213 } 214 215 static int lio_wait_for_oq_pkts(struct octeon_device *oct) 216 { 217 struct octeon_device_priv *oct_priv = 218 (struct octeon_device_priv *)oct->priv; 219 int retry = 100, pkt_cnt = 0, pending_pkts = 0; 220 int i; 221 222 do { 223 pending_pkts = 0; 224 225 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 226 if (!(oct->io_qmask.oq & BIT_ULL(i))) 227 continue; 228 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]); 229 } 230 if (pkt_cnt > 0) { 231 pending_pkts += pkt_cnt; 232 tasklet_schedule(&oct_priv->droq_tasklet); 233 } 234 pkt_cnt = 0; 235 schedule_timeout_uninterruptible(1); 236 237 } while (retry-- && pending_pkts); 238 239 return pkt_cnt; 240 } 241 242 /** 243 * \brief Forces all IO queues off on a given device 244 * @param oct Pointer to Octeon device 245 */ 246 static void force_io_queues_off(struct octeon_device *oct) 247 { 248 if ((oct->chip_id == OCTEON_CN66XX) || 249 (oct->chip_id == OCTEON_CN68XX)) { 250 /* Reset the Enable bits for Input Queues. */ 251 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0); 252 253 /* Reset the Enable bits for Output Queues. */ 254 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0); 255 } 256 } 257 258 /** 259 * \brief wait for all pending requests to complete 260 * @param oct Pointer to Octeon device 261 * 262 * Called during shutdown sequence 263 */ 264 static int wait_for_pending_requests(struct octeon_device *oct) 265 { 266 int i, pcount = 0; 267 268 for (i = 0; i < 100; i++) { 269 pcount = 270 atomic_read(&oct->response_list 271 [OCTEON_ORDERED_SC_LIST].pending_req_count); 272 if (pcount) 273 schedule_timeout_uninterruptible(HZ / 10); 274 else 275 break; 276 } 277 278 if (pcount) 279 return 1; 280 281 return 0; 282 } 283 284 /** 285 * \brief Cause device to go quiet so it can be safely removed/reset/etc 286 * @param oct Pointer to Octeon device 287 */ 288 static inline void pcierror_quiesce_device(struct octeon_device *oct) 289 { 290 int i; 291 292 /* Disable the input and output queues now. No more packets will 293 * arrive from Octeon, but we should wait for all packet processing 294 * to finish. 295 */ 296 force_io_queues_off(oct); 297 298 /* To allow for in-flight requests */ 299 schedule_timeout_uninterruptible(100); 300 301 if (wait_for_pending_requests(oct)) 302 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 303 304 /* Force all requests waiting to be fetched by OCTEON to complete. */ 305 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 306 struct octeon_instr_queue *iq; 307 308 if (!(oct->io_qmask.iq & BIT_ULL(i))) 309 continue; 310 iq = oct->instr_queue[i]; 311 312 if (atomic_read(&iq->instr_pending)) { 313 spin_lock_bh(&iq->lock); 314 iq->fill_cnt = 0; 315 iq->octeon_read_index = iq->host_write_index; 316 iq->stats.instr_processed += 317 atomic_read(&iq->instr_pending); 318 lio_process_iq_request_list(oct, iq, 0); 319 spin_unlock_bh(&iq->lock); 320 } 321 } 322 323 /* Force all pending ordered list requests to time out. */ 324 lio_process_ordered_list(oct, 1); 325 326 /* We do not need to wait for output queue packets to be processed. */ 327 } 328 329 /** 330 * \brief Cleanup PCI AER uncorrectable error status 331 * @param dev Pointer to PCI device 332 */ 333 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev) 334 { 335 int pos = 0x100; 336 u32 status, mask; 337 338 pr_info("%s :\n", __func__); 339 340 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status); 341 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask); 342 if (dev->error_state == pci_channel_io_normal) 343 status &= ~mask; /* Clear corresponding nonfatal bits */ 344 else 345 status &= mask; /* Clear corresponding fatal bits */ 346 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status); 347 } 348 349 /** 350 * \brief Stop all PCI IO to a given device 351 * @param dev Pointer to Octeon device 352 */ 353 static void stop_pci_io(struct octeon_device *oct) 354 { 355 /* No more instructions will be forwarded. */ 356 atomic_set(&oct->status, OCT_DEV_IN_RESET); 357 358 pci_disable_device(oct->pci_dev); 359 360 /* Disable interrupts */ 361 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 362 363 pcierror_quiesce_device(oct); 364 365 /* Release the interrupt line */ 366 free_irq(oct->pci_dev->irq, oct); 367 368 if (oct->flags & LIO_FLAG_MSI_ENABLED) 369 pci_disable_msi(oct->pci_dev); 370 371 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 372 lio_get_state_string(&oct->status)); 373 374 /* making it a common function for all OCTEON models */ 375 cleanup_aer_uncorrect_error_status(oct->pci_dev); 376 } 377 378 /** 379 * \brief called when PCI error is detected 380 * @param pdev Pointer to PCI device 381 * @param state The current pci connection state 382 * 383 * This function is called after a PCI bus error affecting 384 * this device has been detected. 385 */ 386 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev, 387 pci_channel_state_t state) 388 { 389 struct octeon_device *oct = pci_get_drvdata(pdev); 390 391 /* Non-correctable Non-fatal errors */ 392 if (state == pci_channel_io_normal) { 393 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n"); 394 cleanup_aer_uncorrect_error_status(oct->pci_dev); 395 return PCI_ERS_RESULT_CAN_RECOVER; 396 } 397 398 /* Non-correctable Fatal errors */ 399 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n"); 400 stop_pci_io(oct); 401 402 /* Always return a DISCONNECT. There is no support for recovery but only 403 * for a clean shutdown. 404 */ 405 return PCI_ERS_RESULT_DISCONNECT; 406 } 407 408 /** 409 * \brief mmio handler 410 * @param pdev Pointer to PCI device 411 */ 412 static pci_ers_result_t liquidio_pcie_mmio_enabled( 413 struct pci_dev *pdev __attribute__((unused))) 414 { 415 /* We should never hit this since we never ask for a reset for a Fatal 416 * Error. We always return DISCONNECT in io_error above. 417 * But play safe and return RECOVERED for now. 418 */ 419 return PCI_ERS_RESULT_RECOVERED; 420 } 421 422 /** 423 * \brief called after the pci bus has been reset. 424 * @param pdev Pointer to PCI device 425 * 426 * Restart the card from scratch, as if from a cold-boot. Implementation 427 * resembles the first-half of the octeon_resume routine. 428 */ 429 static pci_ers_result_t liquidio_pcie_slot_reset( 430 struct pci_dev *pdev __attribute__((unused))) 431 { 432 /* We should never hit this since we never ask for a reset for a Fatal 433 * Error. We always return DISCONNECT in io_error above. 434 * But play safe and return RECOVERED for now. 435 */ 436 return PCI_ERS_RESULT_RECOVERED; 437 } 438 439 /** 440 * \brief called when traffic can start flowing again. 441 * @param pdev Pointer to PCI device 442 * 443 * This callback is called when the error recovery driver tells us that 444 * its OK to resume normal operation. Implementation resembles the 445 * second-half of the octeon_resume routine. 446 */ 447 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused))) 448 { 449 /* Nothing to be done here. */ 450 } 451 452 #ifdef CONFIG_PM 453 /** 454 * \brief called when suspending 455 * @param pdev Pointer to PCI device 456 * @param state state to suspend to 457 */ 458 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)), 459 pm_message_t state __attribute__((unused))) 460 { 461 return 0; 462 } 463 464 /** 465 * \brief called when resuming 466 * @param pdev Pointer to PCI device 467 */ 468 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused))) 469 { 470 return 0; 471 } 472 #endif 473 474 /* For PCI-E Advanced Error Recovery (AER) Interface */ 475 static const struct pci_error_handlers liquidio_err_handler = { 476 .error_detected = liquidio_pcie_error_detected, 477 .mmio_enabled = liquidio_pcie_mmio_enabled, 478 .slot_reset = liquidio_pcie_slot_reset, 479 .resume = liquidio_pcie_resume, 480 }; 481 482 static const struct pci_device_id liquidio_pci_tbl[] = { 483 { /* 68xx */ 484 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 485 }, 486 { /* 66xx */ 487 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 488 }, 489 { /* 23xx pf */ 490 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 491 }, 492 { 493 0, 0, 0, 0, 0, 0, 0 494 } 495 }; 496 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl); 497 498 static struct pci_driver liquidio_pci_driver = { 499 .name = "LiquidIO", 500 .id_table = liquidio_pci_tbl, 501 .probe = liquidio_probe, 502 .remove = liquidio_remove, 503 .err_handler = &liquidio_err_handler, /* For AER */ 504 505 #ifdef CONFIG_PM 506 .suspend = liquidio_suspend, 507 .resume = liquidio_resume, 508 #endif 509 #ifdef CONFIG_PCI_IOV 510 .sriov_configure = liquidio_enable_sriov, 511 #endif 512 }; 513 514 /** 515 * \brief register PCI driver 516 */ 517 static int liquidio_init_pci(void) 518 { 519 return pci_register_driver(&liquidio_pci_driver); 520 } 521 522 /** 523 * \brief unregister PCI driver 524 */ 525 static void liquidio_deinit_pci(void) 526 { 527 pci_unregister_driver(&liquidio_pci_driver); 528 } 529 530 /** 531 * \brief Stop Tx queues 532 * @param netdev network device 533 */ 534 static inline void txqs_stop(struct net_device *netdev) 535 { 536 if (netif_is_multiqueue(netdev)) { 537 int i; 538 539 for (i = 0; i < netdev->num_tx_queues; i++) 540 netif_stop_subqueue(netdev, i); 541 } else { 542 netif_stop_queue(netdev); 543 } 544 } 545 546 /** 547 * \brief Start Tx queues 548 * @param netdev network device 549 */ 550 static inline void txqs_start(struct net_device *netdev) 551 { 552 if (netif_is_multiqueue(netdev)) { 553 int i; 554 555 for (i = 0; i < netdev->num_tx_queues; i++) 556 netif_start_subqueue(netdev, i); 557 } else { 558 netif_start_queue(netdev); 559 } 560 } 561 562 /** 563 * \brief Wake Tx queues 564 * @param netdev network device 565 */ 566 static inline void txqs_wake(struct net_device *netdev) 567 { 568 struct lio *lio = GET_LIO(netdev); 569 570 if (netif_is_multiqueue(netdev)) { 571 int i; 572 573 for (i = 0; i < netdev->num_tx_queues; i++) { 574 int qno = lio->linfo.txpciq[i % 575 (lio->linfo.num_txpciq)].s.q_no; 576 577 if (__netif_subqueue_stopped(netdev, i)) { 578 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno, 579 tx_restart, 1); 580 netif_wake_subqueue(netdev, i); 581 } 582 } 583 } else { 584 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 585 tx_restart, 1); 586 netif_wake_queue(netdev); 587 } 588 } 589 590 /** 591 * \brief Stop Tx queue 592 * @param netdev network device 593 */ 594 static void stop_txq(struct net_device *netdev) 595 { 596 txqs_stop(netdev); 597 } 598 599 /** 600 * \brief Start Tx queue 601 * @param netdev network device 602 */ 603 static void start_txq(struct net_device *netdev) 604 { 605 struct lio *lio = GET_LIO(netdev); 606 607 if (lio->linfo.link.s.link_up) { 608 txqs_start(netdev); 609 return; 610 } 611 } 612 613 /** 614 * \brief Wake a queue 615 * @param netdev network device 616 * @param q which queue to wake 617 */ 618 static inline void wake_q(struct net_device *netdev, int q) 619 { 620 if (netif_is_multiqueue(netdev)) 621 netif_wake_subqueue(netdev, q); 622 else 623 netif_wake_queue(netdev); 624 } 625 626 /** 627 * \brief Stop a queue 628 * @param netdev network device 629 * @param q which queue to stop 630 */ 631 static inline void stop_q(struct net_device *netdev, int q) 632 { 633 if (netif_is_multiqueue(netdev)) 634 netif_stop_subqueue(netdev, q); 635 else 636 netif_stop_queue(netdev); 637 } 638 639 /** 640 * \brief Check Tx queue status, and take appropriate action 641 * @param lio per-network private data 642 * @returns 0 if full, number of queues woken up otherwise 643 */ 644 static inline int check_txq_status(struct lio *lio) 645 { 646 int ret_val = 0; 647 648 if (netif_is_multiqueue(lio->netdev)) { 649 int numqs = lio->netdev->num_tx_queues; 650 int q, iq = 0; 651 652 /* check each sub-queue state */ 653 for (q = 0; q < numqs; q++) { 654 iq = lio->linfo.txpciq[q % 655 (lio->linfo.num_txpciq)].s.q_no; 656 if (octnet_iq_is_full(lio->oct_dev, iq)) 657 continue; 658 if (__netif_subqueue_stopped(lio->netdev, q)) { 659 wake_q(lio->netdev, q); 660 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, 661 tx_restart, 1); 662 ret_val++; 663 } 664 } 665 } else { 666 if (octnet_iq_is_full(lio->oct_dev, lio->txq)) 667 return 0; 668 wake_q(lio->netdev, lio->txq); 669 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 670 tx_restart, 1); 671 ret_val = 1; 672 } 673 return ret_val; 674 } 675 676 /** 677 * Remove the node at the head of the list. The list would be empty at 678 * the end of this call if there are no more nodes in the list. 679 */ 680 static inline struct list_head *list_delete_head(struct list_head *root) 681 { 682 struct list_head *node; 683 684 if ((root->prev == root) && (root->next == root)) 685 node = NULL; 686 else 687 node = root->next; 688 689 if (node) 690 list_del(node); 691 692 return node; 693 } 694 695 /** 696 * \brief Delete gather lists 697 * @param lio per-network private data 698 */ 699 static void delete_glists(struct lio *lio) 700 { 701 struct octnic_gather *g; 702 int i; 703 704 kfree(lio->glist_lock); 705 lio->glist_lock = NULL; 706 707 if (!lio->glist) 708 return; 709 710 for (i = 0; i < lio->linfo.num_txpciq; i++) { 711 do { 712 g = (struct octnic_gather *) 713 list_delete_head(&lio->glist[i]); 714 if (g) 715 kfree(g); 716 } while (g); 717 718 if (lio->glists_virt_base && lio->glists_virt_base[i] && 719 lio->glists_dma_base && lio->glists_dma_base[i]) { 720 lio_dma_free(lio->oct_dev, 721 lio->glist_entry_size * lio->tx_qsize, 722 lio->glists_virt_base[i], 723 lio->glists_dma_base[i]); 724 } 725 } 726 727 kfree(lio->glists_virt_base); 728 lio->glists_virt_base = NULL; 729 730 kfree(lio->glists_dma_base); 731 lio->glists_dma_base = NULL; 732 733 kfree(lio->glist); 734 lio->glist = NULL; 735 } 736 737 /** 738 * \brief Setup gather lists 739 * @param lio per-network private data 740 */ 741 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs) 742 { 743 int i, j; 744 struct octnic_gather *g; 745 746 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock), 747 GFP_KERNEL); 748 if (!lio->glist_lock) 749 return -ENOMEM; 750 751 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist), 752 GFP_KERNEL); 753 if (!lio->glist) { 754 kfree(lio->glist_lock); 755 lio->glist_lock = NULL; 756 return -ENOMEM; 757 } 758 759 lio->glist_entry_size = 760 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE); 761 762 /* allocate memory to store virtual and dma base address of 763 * per glist consistent memory 764 */ 765 lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base), 766 GFP_KERNEL); 767 lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base), 768 GFP_KERNEL); 769 770 if (!lio->glists_virt_base || !lio->glists_dma_base) { 771 delete_glists(lio); 772 return -ENOMEM; 773 } 774 775 for (i = 0; i < num_iqs; i++) { 776 int numa_node = dev_to_node(&oct->pci_dev->dev); 777 778 spin_lock_init(&lio->glist_lock[i]); 779 780 INIT_LIST_HEAD(&lio->glist[i]); 781 782 lio->glists_virt_base[i] = 783 lio_dma_alloc(oct, 784 lio->glist_entry_size * lio->tx_qsize, 785 &lio->glists_dma_base[i]); 786 787 if (!lio->glists_virt_base[i]) { 788 delete_glists(lio); 789 return -ENOMEM; 790 } 791 792 for (j = 0; j < lio->tx_qsize; j++) { 793 g = kzalloc_node(sizeof(*g), GFP_KERNEL, 794 numa_node); 795 if (!g) 796 g = kzalloc(sizeof(*g), GFP_KERNEL); 797 if (!g) 798 break; 799 800 g->sg = lio->glists_virt_base[i] + 801 (j * lio->glist_entry_size); 802 803 g->sg_dma_ptr = lio->glists_dma_base[i] + 804 (j * lio->glist_entry_size); 805 806 list_add_tail(&g->list, &lio->glist[i]); 807 } 808 809 if (j != lio->tx_qsize) { 810 delete_glists(lio); 811 return -ENOMEM; 812 } 813 } 814 815 return 0; 816 } 817 818 /** 819 * \brief Print link information 820 * @param netdev network device 821 */ 822 static void print_link_info(struct net_device *netdev) 823 { 824 struct lio *lio = GET_LIO(netdev); 825 826 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) { 827 struct oct_link_info *linfo = &lio->linfo; 828 829 if (linfo->link.s.link_up) { 830 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n", 831 linfo->link.s.speed, 832 (linfo->link.s.duplex) ? "Full" : "Half"); 833 } else { 834 netif_info(lio, link, lio->netdev, "Link Down\n"); 835 } 836 } 837 } 838 839 /** 840 * \brief Routine to notify MTU change 841 * @param work work_struct data structure 842 */ 843 static void octnet_link_status_change(struct work_struct *work) 844 { 845 struct cavium_wk *wk = (struct cavium_wk *)work; 846 struct lio *lio = (struct lio *)wk->ctxptr; 847 848 rtnl_lock(); 849 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev); 850 rtnl_unlock(); 851 } 852 853 /** 854 * \brief Sets up the mtu status change work 855 * @param netdev network device 856 */ 857 static inline int setup_link_status_change_wq(struct net_device *netdev) 858 { 859 struct lio *lio = GET_LIO(netdev); 860 struct octeon_device *oct = lio->oct_dev; 861 862 lio->link_status_wq.wq = alloc_workqueue("link-status", 863 WQ_MEM_RECLAIM, 0); 864 if (!lio->link_status_wq.wq) { 865 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n"); 866 return -1; 867 } 868 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work, 869 octnet_link_status_change); 870 lio->link_status_wq.wk.ctxptr = lio; 871 872 return 0; 873 } 874 875 static inline void cleanup_link_status_change_wq(struct net_device *netdev) 876 { 877 struct lio *lio = GET_LIO(netdev); 878 879 if (lio->link_status_wq.wq) { 880 cancel_delayed_work_sync(&lio->link_status_wq.wk.work); 881 destroy_workqueue(lio->link_status_wq.wq); 882 } 883 } 884 885 /** 886 * \brief Update link status 887 * @param netdev network device 888 * @param ls link status structure 889 * 890 * Called on receipt of a link status response from the core application to 891 * update each interface's link status. 892 */ 893 static inline void update_link_status(struct net_device *netdev, 894 union oct_link_status *ls) 895 { 896 struct lio *lio = GET_LIO(netdev); 897 int changed = (lio->linfo.link.u64 != ls->u64); 898 899 lio->linfo.link.u64 = ls->u64; 900 901 if ((lio->intf_open) && (changed)) { 902 print_link_info(netdev); 903 lio->link_changes++; 904 905 if (lio->linfo.link.s.link_up) { 906 netif_carrier_on(netdev); 907 txqs_wake(netdev); 908 } else { 909 netif_carrier_off(netdev); 910 stop_txq(netdev); 911 } 912 } 913 } 914 915 /* Runs in interrupt context. */ 916 static void update_txq_status(struct octeon_device *oct, int iq_num) 917 { 918 struct net_device *netdev; 919 struct lio *lio; 920 struct octeon_instr_queue *iq = oct->instr_queue[iq_num]; 921 922 netdev = oct->props[iq->ifidx].netdev; 923 924 /* This is needed because the first IQ does not have 925 * a netdev associated with it. 926 */ 927 if (!netdev) 928 return; 929 930 lio = GET_LIO(netdev); 931 if (netif_is_multiqueue(netdev)) { 932 if (__netif_subqueue_stopped(netdev, iq->q_index) && 933 lio->linfo.link.s.link_up && 934 (!octnet_iq_is_full(oct, iq_num))) { 935 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num, 936 tx_restart, 1); 937 netif_wake_subqueue(netdev, iq->q_index); 938 } 939 } else if (netif_queue_stopped(netdev) && 940 lio->linfo.link.s.link_up && 941 (!octnet_iq_is_full(oct, lio->txq))) { 942 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, 943 lio->txq, tx_restart, 1); 944 netif_wake_queue(netdev); 945 } 946 } 947 948 static 949 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret) 950 { 951 struct octeon_device *oct = droq->oct_dev; 952 struct octeon_device_priv *oct_priv = 953 (struct octeon_device_priv *)oct->priv; 954 955 if (droq->ops.poll_mode) { 956 droq->ops.napi_fn(droq); 957 } else { 958 if (ret & MSIX_PO_INT) { 959 tasklet_schedule(&oct_priv->droq_tasklet); 960 return 1; 961 } 962 /* this will be flushed periodically by check iq db */ 963 if (ret & MSIX_PI_INT) 964 return 0; 965 } 966 return 0; 967 } 968 969 /** 970 * \brief Droq packet processor sceduler 971 * @param oct octeon device 972 */ 973 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct) 974 { 975 struct octeon_device_priv *oct_priv = 976 (struct octeon_device_priv *)oct->priv; 977 u64 oq_no; 978 struct octeon_droq *droq; 979 980 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) { 981 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); 982 oq_no++) { 983 if (!(oct->droq_intr & BIT_ULL(oq_no))) 984 continue; 985 986 droq = oct->droq[oq_no]; 987 988 if (droq->ops.poll_mode) { 989 droq->ops.napi_fn(droq); 990 oct_priv->napi_mask |= (1 << oq_no); 991 } else { 992 tasklet_schedule(&oct_priv->droq_tasklet); 993 } 994 } 995 } 996 } 997 998 static irqreturn_t 999 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev) 1000 { 1001 u64 ret; 1002 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; 1003 struct octeon_device *oct = ioq_vector->oct_dev; 1004 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; 1005 1006 ret = oct->fn_list.msix_interrupt_handler(ioq_vector); 1007 1008 if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT)) 1009 liquidio_schedule_msix_droq_pkt_handler(droq, ret); 1010 1011 return IRQ_HANDLED; 1012 } 1013 1014 /** 1015 * \brief Interrupt handler for octeon 1016 * @param irq unused 1017 * @param dev octeon device 1018 */ 1019 static 1020 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)), 1021 void *dev) 1022 { 1023 struct octeon_device *oct = (struct octeon_device *)dev; 1024 irqreturn_t ret; 1025 1026 /* Disable our interrupts for the duration of ISR */ 1027 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1028 1029 ret = oct->fn_list.process_interrupt_regs(oct); 1030 1031 if (ret == IRQ_HANDLED) 1032 liquidio_schedule_droq_pkt_handlers(oct); 1033 1034 /* Re-enable our interrupts */ 1035 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET)) 1036 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR); 1037 1038 return ret; 1039 } 1040 1041 /** 1042 * \brief Setup interrupt for octeon device 1043 * @param oct octeon device 1044 * 1045 * Enable interrupt in Octeon device as given in the PCI interrupt mask. 1046 */ 1047 static int octeon_setup_interrupt(struct octeon_device *oct) 1048 { 1049 int irqret, err; 1050 struct msix_entry *msix_entries; 1051 int i; 1052 int num_ioq_vectors; 1053 int num_alloc_ioq_vectors; 1054 char *queue_irq_names = NULL; 1055 char *aux_irq_name = NULL; 1056 1057 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 1058 oct->num_msix_irqs = oct->sriov_info.num_pf_rings; 1059 /* one non ioq interrupt for handling sli_mac_pf_int_sum */ 1060 oct->num_msix_irqs += 1; 1061 1062 /* allocate storage for the names assigned to each irq */ 1063 oct->irq_name_storage = 1064 kcalloc((MAX_IOQ_INTERRUPTS_PER_PF + 1), INTRNAMSIZ, 1065 GFP_KERNEL); 1066 if (!oct->irq_name_storage) { 1067 dev_err(&oct->pci_dev->dev, "Irq name storage alloc failed...\n"); 1068 return -ENOMEM; 1069 } 1070 1071 queue_irq_names = oct->irq_name_storage; 1072 aux_irq_name = &queue_irq_names 1073 [IRQ_NAME_OFF(MAX_IOQ_INTERRUPTS_PER_PF)]; 1074 1075 oct->msix_entries = kcalloc( 1076 oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL); 1077 if (!oct->msix_entries) { 1078 dev_err(&oct->pci_dev->dev, "Memory Alloc failed...\n"); 1079 kfree(oct->irq_name_storage); 1080 oct->irq_name_storage = NULL; 1081 return -ENOMEM; 1082 } 1083 1084 msix_entries = (struct msix_entry *)oct->msix_entries; 1085 /*Assumption is that pf msix vectors start from pf srn to pf to 1086 * trs and not from 0. if not change this code 1087 */ 1088 for (i = 0; i < oct->num_msix_irqs - 1; i++) 1089 msix_entries[i].entry = oct->sriov_info.pf_srn + i; 1090 msix_entries[oct->num_msix_irqs - 1].entry = 1091 oct->sriov_info.trs; 1092 num_alloc_ioq_vectors = pci_enable_msix_range( 1093 oct->pci_dev, msix_entries, 1094 oct->num_msix_irqs, 1095 oct->num_msix_irqs); 1096 if (num_alloc_ioq_vectors < 0) { 1097 dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n"); 1098 kfree(oct->msix_entries); 1099 oct->msix_entries = NULL; 1100 kfree(oct->irq_name_storage); 1101 oct->irq_name_storage = NULL; 1102 return num_alloc_ioq_vectors; 1103 } 1104 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n"); 1105 1106 num_ioq_vectors = oct->num_msix_irqs; 1107 1108 /** For PF, there is one non-ioq interrupt handler */ 1109 num_ioq_vectors -= 1; 1110 1111 snprintf(aux_irq_name, INTRNAMSIZ, 1112 "LiquidIO%u-pf%u-aux", oct->octeon_id, oct->pf_num); 1113 irqret = request_irq(msix_entries[num_ioq_vectors].vector, 1114 liquidio_legacy_intr_handler, 0, 1115 aux_irq_name, oct); 1116 if (irqret) { 1117 dev_err(&oct->pci_dev->dev, 1118 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n", 1119 irqret); 1120 pci_disable_msix(oct->pci_dev); 1121 kfree(oct->msix_entries); 1122 oct->msix_entries = NULL; 1123 kfree(oct->irq_name_storage); 1124 oct->irq_name_storage = NULL; 1125 return irqret; 1126 } 1127 1128 for (i = 0; i < num_ioq_vectors; i++) { 1129 snprintf(&queue_irq_names[IRQ_NAME_OFF(i)], INTRNAMSIZ, 1130 "LiquidIO%u-pf%u-rxtx-%u", 1131 oct->octeon_id, oct->pf_num, i); 1132 1133 irqret = request_irq(msix_entries[i].vector, 1134 liquidio_msix_intr_handler, 0, 1135 &queue_irq_names[IRQ_NAME_OFF(i)], 1136 &oct->ioq_vector[i]); 1137 if (irqret) { 1138 dev_err(&oct->pci_dev->dev, 1139 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n", 1140 irqret); 1141 /** Freeing the non-ioq irq vector here . */ 1142 free_irq(msix_entries[num_ioq_vectors].vector, 1143 oct); 1144 1145 while (i) { 1146 i--; 1147 /** clearing affinity mask. */ 1148 irq_set_affinity_hint( 1149 msix_entries[i].vector, NULL); 1150 free_irq(msix_entries[i].vector, 1151 &oct->ioq_vector[i]); 1152 } 1153 pci_disable_msix(oct->pci_dev); 1154 kfree(oct->msix_entries); 1155 oct->msix_entries = NULL; 1156 kfree(oct->irq_name_storage); 1157 oct->irq_name_storage = NULL; 1158 return irqret; 1159 } 1160 oct->ioq_vector[i].vector = msix_entries[i].vector; 1161 /* assign the cpu mask for this msix interrupt vector */ 1162 irq_set_affinity_hint( 1163 msix_entries[i].vector, 1164 (&oct->ioq_vector[i].affinity_mask)); 1165 } 1166 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n", 1167 oct->octeon_id); 1168 } else { 1169 err = pci_enable_msi(oct->pci_dev); 1170 if (err) 1171 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n", 1172 err); 1173 else 1174 oct->flags |= LIO_FLAG_MSI_ENABLED; 1175 1176 /* allocate storage for the names assigned to the irq */ 1177 oct->irq_name_storage = kcalloc(1, INTRNAMSIZ, GFP_KERNEL); 1178 if (!oct->irq_name_storage) 1179 return -ENOMEM; 1180 1181 queue_irq_names = oct->irq_name_storage; 1182 1183 snprintf(&queue_irq_names[IRQ_NAME_OFF(0)], INTRNAMSIZ, 1184 "LiquidIO%u-pf%u-rxtx-%u", 1185 oct->octeon_id, oct->pf_num, 0); 1186 1187 irqret = request_irq(oct->pci_dev->irq, 1188 liquidio_legacy_intr_handler, 1189 IRQF_SHARED, 1190 &queue_irq_names[IRQ_NAME_OFF(0)], oct); 1191 if (irqret) { 1192 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1193 pci_disable_msi(oct->pci_dev); 1194 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n", 1195 irqret); 1196 kfree(oct->irq_name_storage); 1197 oct->irq_name_storage = NULL; 1198 return irqret; 1199 } 1200 } 1201 return 0; 1202 } 1203 1204 static struct octeon_device *get_other_octeon_device(struct octeon_device *oct) 1205 { 1206 struct octeon_device *other_oct; 1207 1208 other_oct = lio_get_device(oct->octeon_id + 1); 1209 1210 if (other_oct && other_oct->pci_dev) { 1211 int oct_busnum, other_oct_busnum; 1212 1213 oct_busnum = oct->pci_dev->bus->number; 1214 other_oct_busnum = other_oct->pci_dev->bus->number; 1215 1216 if (oct_busnum == other_oct_busnum) { 1217 int oct_slot, other_oct_slot; 1218 1219 oct_slot = PCI_SLOT(oct->pci_dev->devfn); 1220 other_oct_slot = PCI_SLOT(other_oct->pci_dev->devfn); 1221 1222 if (oct_slot == other_oct_slot) 1223 return other_oct; 1224 } 1225 } 1226 1227 return NULL; 1228 } 1229 1230 static void disable_all_vf_links(struct octeon_device *oct) 1231 { 1232 struct net_device *netdev; 1233 int max_vfs, vf, i; 1234 1235 if (!oct) 1236 return; 1237 1238 max_vfs = oct->sriov_info.max_vfs; 1239 1240 for (i = 0; i < oct->ifcount; i++) { 1241 netdev = oct->props[i].netdev; 1242 if (!netdev) 1243 continue; 1244 1245 for (vf = 0; vf < max_vfs; vf++) 1246 liquidio_set_vf_link_state(netdev, vf, 1247 IFLA_VF_LINK_STATE_DISABLE); 1248 } 1249 } 1250 1251 static int liquidio_watchdog(void *param) 1252 { 1253 bool err_msg_was_printed[LIO_MAX_CORES]; 1254 u16 mask_of_crashed_or_stuck_cores = 0; 1255 bool all_vf_links_are_disabled = false; 1256 struct octeon_device *oct = param; 1257 struct octeon_device *other_oct; 1258 #ifdef CONFIG_MODULE_UNLOAD 1259 long refcount, vfs_referencing_pf; 1260 u64 vfs_mask1, vfs_mask2; 1261 #endif 1262 int core; 1263 1264 memset(err_msg_was_printed, 0, sizeof(err_msg_was_printed)); 1265 1266 while (!kthread_should_stop()) { 1267 /* sleep for a couple of seconds so that we don't hog the CPU */ 1268 set_current_state(TASK_INTERRUPTIBLE); 1269 schedule_timeout(msecs_to_jiffies(2000)); 1270 1271 mask_of_crashed_or_stuck_cores = 1272 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 1273 1274 if (!mask_of_crashed_or_stuck_cores) 1275 continue; 1276 1277 WRITE_ONCE(oct->cores_crashed, true); 1278 other_oct = get_other_octeon_device(oct); 1279 if (other_oct) 1280 WRITE_ONCE(other_oct->cores_crashed, true); 1281 1282 for (core = 0; core < LIO_MAX_CORES; core++) { 1283 bool core_crashed_or_got_stuck; 1284 1285 core_crashed_or_got_stuck = 1286 (mask_of_crashed_or_stuck_cores 1287 >> core) & 1; 1288 1289 if (core_crashed_or_got_stuck && 1290 !err_msg_was_printed[core]) { 1291 dev_err(&oct->pci_dev->dev, 1292 "ERROR: Octeon core %d crashed or got stuck! See oct-fwdump for details.\n", 1293 core); 1294 err_msg_was_printed[core] = true; 1295 } 1296 } 1297 1298 if (all_vf_links_are_disabled) 1299 continue; 1300 1301 disable_all_vf_links(oct); 1302 disable_all_vf_links(other_oct); 1303 all_vf_links_are_disabled = true; 1304 1305 #ifdef CONFIG_MODULE_UNLOAD 1306 vfs_mask1 = READ_ONCE(oct->sriov_info.vf_drv_loaded_mask); 1307 vfs_mask2 = READ_ONCE(other_oct->sriov_info.vf_drv_loaded_mask); 1308 1309 vfs_referencing_pf = hweight64(vfs_mask1); 1310 vfs_referencing_pf += hweight64(vfs_mask2); 1311 1312 refcount = module_refcount(THIS_MODULE); 1313 if (refcount >= vfs_referencing_pf) { 1314 while (vfs_referencing_pf) { 1315 module_put(THIS_MODULE); 1316 vfs_referencing_pf--; 1317 } 1318 } 1319 #endif 1320 } 1321 1322 return 0; 1323 } 1324 1325 /** 1326 * \brief PCI probe handler 1327 * @param pdev PCI device structure 1328 * @param ent unused 1329 */ 1330 static int 1331 liquidio_probe(struct pci_dev *pdev, 1332 const struct pci_device_id *ent __attribute__((unused))) 1333 { 1334 struct octeon_device *oct_dev = NULL; 1335 struct handshake *hs; 1336 1337 oct_dev = octeon_allocate_device(pdev->device, 1338 sizeof(struct octeon_device_priv)); 1339 if (!oct_dev) { 1340 dev_err(&pdev->dev, "Unable to allocate device\n"); 1341 return -ENOMEM; 1342 } 1343 1344 if (pdev->device == OCTEON_CN23XX_PF_VID) 1345 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED; 1346 1347 dev_info(&pdev->dev, "Initializing device %x:%x.\n", 1348 (u32)pdev->vendor, (u32)pdev->device); 1349 1350 /* Assign octeon_device for this device to the private data area. */ 1351 pci_set_drvdata(pdev, oct_dev); 1352 1353 /* set linux specific device pointer */ 1354 oct_dev->pci_dev = (void *)pdev; 1355 1356 hs = &handshake[oct_dev->octeon_id]; 1357 init_completion(&hs->init); 1358 init_completion(&hs->started); 1359 hs->pci_dev = pdev; 1360 1361 if (oct_dev->octeon_id == 0) 1362 /* first LiquidIO NIC is detected */ 1363 complete(&first_stage); 1364 1365 if (octeon_device_init(oct_dev)) { 1366 complete(&hs->init); 1367 liquidio_remove(pdev); 1368 return -ENOMEM; 1369 } 1370 1371 if (OCTEON_CN23XX_PF(oct_dev)) { 1372 u64 scratch1; 1373 u8 bus, device, function; 1374 1375 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1); 1376 if (!(scratch1 & 4ULL)) { 1377 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that 1378 * the lio watchdog kernel thread is running for this 1379 * NIC. Each NIC gets one watchdog kernel thread. 1380 */ 1381 scratch1 |= 4ULL; 1382 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1, 1383 scratch1); 1384 1385 bus = pdev->bus->number; 1386 device = PCI_SLOT(pdev->devfn); 1387 function = PCI_FUNC(pdev->devfn); 1388 oct_dev->watchdog_task = kthread_create( 1389 liquidio_watchdog, oct_dev, 1390 "liowd/%02hhx:%02hhx.%hhx", bus, device, function); 1391 if (!IS_ERR(oct_dev->watchdog_task)) { 1392 wake_up_process(oct_dev->watchdog_task); 1393 } else { 1394 oct_dev->watchdog_task = NULL; 1395 dev_err(&oct_dev->pci_dev->dev, 1396 "failed to create kernel_thread\n"); 1397 liquidio_remove(pdev); 1398 return -1; 1399 } 1400 } 1401 } 1402 1403 oct_dev->rx_pause = 1; 1404 oct_dev->tx_pause = 1; 1405 1406 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n"); 1407 1408 return 0; 1409 } 1410 1411 static bool fw_type_is_none(void) 1412 { 1413 return strncmp(fw_type, LIO_FW_NAME_TYPE_NONE, 1414 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0; 1415 } 1416 1417 /** 1418 *\brief Destroy resources associated with octeon device 1419 * @param pdev PCI device structure 1420 * @param ent unused 1421 */ 1422 static void octeon_destroy_resources(struct octeon_device *oct) 1423 { 1424 int i; 1425 struct msix_entry *msix_entries; 1426 struct octeon_device_priv *oct_priv = 1427 (struct octeon_device_priv *)oct->priv; 1428 1429 struct handshake *hs; 1430 1431 switch (atomic_read(&oct->status)) { 1432 case OCT_DEV_RUNNING: 1433 case OCT_DEV_CORE_OK: 1434 1435 /* No more instructions will be forwarded. */ 1436 atomic_set(&oct->status, OCT_DEV_IN_RESET); 1437 1438 oct->app_mode = CVM_DRV_INVALID_APP; 1439 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 1440 lio_get_state_string(&oct->status)); 1441 1442 schedule_timeout_uninterruptible(HZ / 10); 1443 1444 /* fallthrough */ 1445 case OCT_DEV_HOST_OK: 1446 1447 /* fallthrough */ 1448 case OCT_DEV_CONSOLE_INIT_DONE: 1449 /* Remove any consoles */ 1450 octeon_remove_consoles(oct); 1451 1452 /* fallthrough */ 1453 case OCT_DEV_IO_QUEUES_DONE: 1454 if (wait_for_pending_requests(oct)) 1455 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 1456 1457 if (lio_wait_for_instr_fetch(oct)) 1458 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n"); 1459 1460 /* Disable the input and output queues now. No more packets will 1461 * arrive from Octeon, but we should wait for all packet 1462 * processing to finish. 1463 */ 1464 oct->fn_list.disable_io_queues(oct); 1465 1466 if (lio_wait_for_oq_pkts(oct)) 1467 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n"); 1468 1469 /* fallthrough */ 1470 case OCT_DEV_INTR_SET_DONE: 1471 /* Disable interrupts */ 1472 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1473 1474 if (oct->msix_on) { 1475 msix_entries = (struct msix_entry *)oct->msix_entries; 1476 for (i = 0; i < oct->num_msix_irqs - 1; i++) { 1477 /* clear the affinity_cpumask */ 1478 irq_set_affinity_hint(msix_entries[i].vector, 1479 NULL); 1480 free_irq(msix_entries[i].vector, 1481 &oct->ioq_vector[i]); 1482 } 1483 /* non-iov vector's argument is oct struct */ 1484 free_irq(msix_entries[i].vector, oct); 1485 1486 pci_disable_msix(oct->pci_dev); 1487 kfree(oct->msix_entries); 1488 oct->msix_entries = NULL; 1489 } else { 1490 /* Release the interrupt line */ 1491 free_irq(oct->pci_dev->irq, oct); 1492 1493 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1494 pci_disable_msi(oct->pci_dev); 1495 } 1496 1497 kfree(oct->irq_name_storage); 1498 oct->irq_name_storage = NULL; 1499 1500 /* fallthrough */ 1501 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE: 1502 if (OCTEON_CN23XX_PF(oct)) 1503 octeon_free_ioq_vector(oct); 1504 1505 /* fallthrough */ 1506 case OCT_DEV_MBOX_SETUP_DONE: 1507 if (OCTEON_CN23XX_PF(oct)) 1508 oct->fn_list.free_mbox(oct); 1509 1510 /* fallthrough */ 1511 case OCT_DEV_IN_RESET: 1512 case OCT_DEV_DROQ_INIT_DONE: 1513 /* Wait for any pending operations */ 1514 mdelay(100); 1515 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 1516 if (!(oct->io_qmask.oq & BIT_ULL(i))) 1517 continue; 1518 octeon_delete_droq(oct, i); 1519 } 1520 1521 /* Force any pending handshakes to complete */ 1522 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 1523 hs = &handshake[i]; 1524 1525 if (hs->pci_dev) { 1526 handshake[oct->octeon_id].init_ok = 0; 1527 complete(&handshake[oct->octeon_id].init); 1528 handshake[oct->octeon_id].started_ok = 0; 1529 complete(&handshake[oct->octeon_id].started); 1530 } 1531 } 1532 1533 /* fallthrough */ 1534 case OCT_DEV_RESP_LIST_INIT_DONE: 1535 octeon_delete_response_list(oct); 1536 1537 /* fallthrough */ 1538 case OCT_DEV_INSTR_QUEUE_INIT_DONE: 1539 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 1540 if (!(oct->io_qmask.iq & BIT_ULL(i))) 1541 continue; 1542 octeon_delete_instr_queue(oct, i); 1543 } 1544 #ifdef CONFIG_PCI_IOV 1545 if (oct->sriov_info.sriov_enabled) 1546 pci_disable_sriov(oct->pci_dev); 1547 #endif 1548 /* fallthrough */ 1549 case OCT_DEV_SC_BUFF_POOL_INIT_DONE: 1550 octeon_free_sc_buffer_pool(oct); 1551 1552 /* fallthrough */ 1553 case OCT_DEV_DISPATCH_INIT_DONE: 1554 octeon_delete_dispatch_list(oct); 1555 cancel_delayed_work_sync(&oct->nic_poll_work.work); 1556 1557 /* fallthrough */ 1558 case OCT_DEV_PCI_MAP_DONE: 1559 if (!fw_type_is_none()) { 1560 /* Soft reset the octeon device before exiting */ 1561 if (!OCTEON_CN23XX_PF(oct) || 1562 (OCTEON_CN23XX_PF(oct) && !oct->octeon_id)) 1563 oct->fn_list.soft_reset(oct); 1564 } 1565 1566 octeon_unmap_pci_barx(oct, 0); 1567 octeon_unmap_pci_barx(oct, 1); 1568 1569 /* fallthrough */ 1570 case OCT_DEV_PCI_ENABLE_DONE: 1571 pci_clear_master(oct->pci_dev); 1572 /* Disable the device, releasing the PCI INT */ 1573 pci_disable_device(oct->pci_dev); 1574 1575 /* fallthrough */ 1576 case OCT_DEV_BEGIN_STATE: 1577 /* Nothing to be done here either */ 1578 break; 1579 } /* end switch (oct->status) */ 1580 1581 tasklet_kill(&oct_priv->droq_tasklet); 1582 } 1583 1584 /** 1585 * \brief Callback for rx ctrl 1586 * @param status status of request 1587 * @param buf pointer to resp structure 1588 */ 1589 static void rx_ctl_callback(struct octeon_device *oct, 1590 u32 status, 1591 void *buf) 1592 { 1593 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1594 struct liquidio_rx_ctl_context *ctx; 1595 1596 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1597 1598 oct = lio_get_device(ctx->octeon_id); 1599 if (status) 1600 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n", 1601 CVM_CAST64(status)); 1602 WRITE_ONCE(ctx->cond, 1); 1603 1604 /* This barrier is required to be sure that the response has been 1605 * written fully before waking up the handler 1606 */ 1607 wmb(); 1608 1609 wake_up_interruptible(&ctx->wc); 1610 } 1611 1612 /** 1613 * \brief Send Rx control command 1614 * @param lio per-network private data 1615 * @param start_stop whether to start or stop 1616 */ 1617 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop) 1618 { 1619 struct octeon_soft_command *sc; 1620 struct liquidio_rx_ctl_context *ctx; 1621 union octnet_cmd *ncmd; 1622 int ctx_size = sizeof(struct liquidio_rx_ctl_context); 1623 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1624 int retval; 1625 1626 if (oct->props[lio->ifidx].rx_on == start_stop) 1627 return; 1628 1629 sc = (struct octeon_soft_command *) 1630 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE, 1631 16, ctx_size); 1632 1633 ncmd = (union octnet_cmd *)sc->virtdptr; 1634 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1635 1636 WRITE_ONCE(ctx->cond, 0); 1637 ctx->octeon_id = lio_get_device_id(oct); 1638 init_waitqueue_head(&ctx->wc); 1639 1640 ncmd->u64 = 0; 1641 ncmd->s.cmd = OCTNET_CMD_RX_CTL; 1642 ncmd->s.param1 = start_stop; 1643 1644 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3)); 1645 1646 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 1647 1648 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 1649 OPCODE_NIC_CMD, 0, 0, 0); 1650 1651 sc->callback = rx_ctl_callback; 1652 sc->callback_arg = sc; 1653 sc->wait_time = 5000; 1654 1655 retval = octeon_send_soft_command(oct, sc); 1656 if (retval == IQ_SEND_FAILED) { 1657 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n"); 1658 } else { 1659 /* Sleep on a wait queue till the cond flag indicates that the 1660 * response arrived or timed-out. 1661 */ 1662 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) 1663 return; 1664 oct->props[lio->ifidx].rx_on = start_stop; 1665 } 1666 1667 octeon_free_soft_command(oct, sc); 1668 } 1669 1670 /** 1671 * \brief Destroy NIC device interface 1672 * @param oct octeon device 1673 * @param ifidx which interface to destroy 1674 * 1675 * Cleanup associated with each interface for an Octeon device when NIC 1676 * module is being unloaded or if initialization fails during load. 1677 */ 1678 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx) 1679 { 1680 struct net_device *netdev = oct->props[ifidx].netdev; 1681 struct lio *lio; 1682 struct napi_struct *napi, *n; 1683 1684 if (!netdev) { 1685 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n", 1686 __func__, ifidx); 1687 return; 1688 } 1689 1690 lio = GET_LIO(netdev); 1691 1692 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n"); 1693 1694 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) 1695 liquidio_stop(netdev); 1696 1697 if (fw_type_is_none()) { 1698 struct octnic_ctrl_pkt nctrl; 1699 1700 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 1701 nctrl.ncmd.s.cmd = OCTNET_CMD_RESET_PF; 1702 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 1703 octnet_send_nic_ctrl_pkt(oct, &nctrl); 1704 } 1705 1706 if (oct->props[lio->ifidx].napi_enabled == 1) { 1707 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1708 napi_disable(napi); 1709 1710 oct->props[lio->ifidx].napi_enabled = 0; 1711 1712 if (OCTEON_CN23XX_PF(oct)) 1713 oct->droq[0]->ops.poll_mode = 0; 1714 } 1715 1716 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) 1717 unregister_netdev(netdev); 1718 1719 cleanup_link_status_change_wq(netdev); 1720 1721 cleanup_rx_oom_poll_fn(netdev); 1722 1723 delete_glists(lio); 1724 1725 free_netdev(netdev); 1726 1727 oct->props[ifidx].gmxport = -1; 1728 1729 oct->props[ifidx].netdev = NULL; 1730 } 1731 1732 /** 1733 * \brief Stop complete NIC functionality 1734 * @param oct octeon device 1735 */ 1736 static int liquidio_stop_nic_module(struct octeon_device *oct) 1737 { 1738 int i, j; 1739 struct lio *lio; 1740 1741 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n"); 1742 if (!oct->ifcount) { 1743 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n"); 1744 return 1; 1745 } 1746 1747 spin_lock_bh(&oct->cmd_resp_wqlock); 1748 oct->cmd_resp_state = OCT_DRV_OFFLINE; 1749 spin_unlock_bh(&oct->cmd_resp_wqlock); 1750 1751 for (i = 0; i < oct->ifcount; i++) { 1752 lio = GET_LIO(oct->props[i].netdev); 1753 for (j = 0; j < lio->linfo.num_rxpciq; j++) 1754 octeon_unregister_droq_ops(oct, 1755 lio->linfo.rxpciq[j].s.q_no); 1756 } 1757 1758 for (i = 0; i < oct->ifcount; i++) 1759 liquidio_destroy_nic_device(oct, i); 1760 1761 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n"); 1762 return 0; 1763 } 1764 1765 /** 1766 * \brief Cleans up resources at unload time 1767 * @param pdev PCI device structure 1768 */ 1769 static void liquidio_remove(struct pci_dev *pdev) 1770 { 1771 struct octeon_device *oct_dev = pci_get_drvdata(pdev); 1772 1773 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n"); 1774 1775 if (oct_dev->watchdog_task) 1776 kthread_stop(oct_dev->watchdog_task); 1777 1778 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP)) 1779 liquidio_stop_nic_module(oct_dev); 1780 1781 /* Reset the octeon device and cleanup all memory allocated for 1782 * the octeon device by driver. 1783 */ 1784 octeon_destroy_resources(oct_dev); 1785 1786 dev_info(&oct_dev->pci_dev->dev, "Device removed\n"); 1787 1788 /* This octeon device has been removed. Update the global 1789 * data structure to reflect this. Free the device structure. 1790 */ 1791 octeon_free_device_mem(oct_dev); 1792 } 1793 1794 /** 1795 * \brief Identify the Octeon device and to map the BAR address space 1796 * @param oct octeon device 1797 */ 1798 static int octeon_chip_specific_setup(struct octeon_device *oct) 1799 { 1800 u32 dev_id, rev_id; 1801 int ret = 1; 1802 char *s; 1803 1804 pci_read_config_dword(oct->pci_dev, 0, &dev_id); 1805 pci_read_config_dword(oct->pci_dev, 8, &rev_id); 1806 oct->rev_id = rev_id & 0xff; 1807 1808 switch (dev_id) { 1809 case OCTEON_CN68XX_PCIID: 1810 oct->chip_id = OCTEON_CN68XX; 1811 ret = lio_setup_cn68xx_octeon_device(oct); 1812 s = "CN68XX"; 1813 break; 1814 1815 case OCTEON_CN66XX_PCIID: 1816 oct->chip_id = OCTEON_CN66XX; 1817 ret = lio_setup_cn66xx_octeon_device(oct); 1818 s = "CN66XX"; 1819 break; 1820 1821 case OCTEON_CN23XX_PCIID_PF: 1822 oct->chip_id = OCTEON_CN23XX_PF_VID; 1823 ret = setup_cn23xx_octeon_pf_device(oct); 1824 s = "CN23XX"; 1825 break; 1826 1827 default: 1828 s = "?"; 1829 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n", 1830 dev_id); 1831 } 1832 1833 if (!ret) 1834 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s, 1835 OCTEON_MAJOR_REV(oct), 1836 OCTEON_MINOR_REV(oct), 1837 octeon_get_conf(oct)->card_name, 1838 LIQUIDIO_VERSION); 1839 1840 return ret; 1841 } 1842 1843 /** 1844 * \brief PCI initialization for each Octeon device. 1845 * @param oct octeon device 1846 */ 1847 static int octeon_pci_os_setup(struct octeon_device *oct) 1848 { 1849 /* setup PCI stuff first */ 1850 if (pci_enable_device(oct->pci_dev)) { 1851 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n"); 1852 return 1; 1853 } 1854 1855 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) { 1856 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n"); 1857 pci_disable_device(oct->pci_dev); 1858 return 1; 1859 } 1860 1861 /* Enable PCI DMA Master. */ 1862 pci_set_master(oct->pci_dev); 1863 1864 return 0; 1865 } 1866 1867 static inline int skb_iq(struct lio *lio, struct sk_buff *skb) 1868 { 1869 int q = 0; 1870 1871 if (netif_is_multiqueue(lio->netdev)) 1872 q = skb->queue_mapping % lio->linfo.num_txpciq; 1873 1874 return q; 1875 } 1876 1877 /** 1878 * \brief Check Tx queue state for a given network buffer 1879 * @param lio per-network private data 1880 * @param skb network buffer 1881 */ 1882 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb) 1883 { 1884 int q = 0, iq = 0; 1885 1886 if (netif_is_multiqueue(lio->netdev)) { 1887 q = skb->queue_mapping; 1888 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no; 1889 } else { 1890 iq = lio->txq; 1891 q = iq; 1892 } 1893 1894 if (octnet_iq_is_full(lio->oct_dev, iq)) 1895 return 0; 1896 1897 if (__netif_subqueue_stopped(lio->netdev, q)) { 1898 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1); 1899 wake_q(lio->netdev, q); 1900 } 1901 return 1; 1902 } 1903 1904 /** 1905 * \brief Unmap and free network buffer 1906 * @param buf buffer 1907 */ 1908 static void free_netbuf(void *buf) 1909 { 1910 struct sk_buff *skb; 1911 struct octnet_buf_free_info *finfo; 1912 struct lio *lio; 1913 1914 finfo = (struct octnet_buf_free_info *)buf; 1915 skb = finfo->skb; 1916 lio = finfo->lio; 1917 1918 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len, 1919 DMA_TO_DEVICE); 1920 1921 check_txq_state(lio, skb); 1922 1923 tx_buffer_free(skb); 1924 } 1925 1926 /** 1927 * \brief Unmap and free gather buffer 1928 * @param buf buffer 1929 */ 1930 static void free_netsgbuf(void *buf) 1931 { 1932 struct octnet_buf_free_info *finfo; 1933 struct sk_buff *skb; 1934 struct lio *lio; 1935 struct octnic_gather *g; 1936 int i, frags, iq; 1937 1938 finfo = (struct octnet_buf_free_info *)buf; 1939 skb = finfo->skb; 1940 lio = finfo->lio; 1941 g = finfo->g; 1942 frags = skb_shinfo(skb)->nr_frags; 1943 1944 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1945 g->sg[0].ptr[0], (skb->len - skb->data_len), 1946 DMA_TO_DEVICE); 1947 1948 i = 1; 1949 while (frags--) { 1950 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1951 1952 pci_unmap_page((lio->oct_dev)->pci_dev, 1953 g->sg[(i >> 2)].ptr[(i & 3)], 1954 frag->size, DMA_TO_DEVICE); 1955 i++; 1956 } 1957 1958 iq = skb_iq(lio, skb); 1959 spin_lock(&lio->glist_lock[iq]); 1960 list_add_tail(&g->list, &lio->glist[iq]); 1961 spin_unlock(&lio->glist_lock[iq]); 1962 1963 check_txq_state(lio, skb); /* mq support: sub-queue state check */ 1964 1965 tx_buffer_free(skb); 1966 } 1967 1968 /** 1969 * \brief Unmap and free gather buffer with response 1970 * @param buf buffer 1971 */ 1972 static void free_netsgbuf_with_resp(void *buf) 1973 { 1974 struct octeon_soft_command *sc; 1975 struct octnet_buf_free_info *finfo; 1976 struct sk_buff *skb; 1977 struct lio *lio; 1978 struct octnic_gather *g; 1979 int i, frags, iq; 1980 1981 sc = (struct octeon_soft_command *)buf; 1982 skb = (struct sk_buff *)sc->callback_arg; 1983 finfo = (struct octnet_buf_free_info *)&skb->cb; 1984 1985 lio = finfo->lio; 1986 g = finfo->g; 1987 frags = skb_shinfo(skb)->nr_frags; 1988 1989 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1990 g->sg[0].ptr[0], (skb->len - skb->data_len), 1991 DMA_TO_DEVICE); 1992 1993 i = 1; 1994 while (frags--) { 1995 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1996 1997 pci_unmap_page((lio->oct_dev)->pci_dev, 1998 g->sg[(i >> 2)].ptr[(i & 3)], 1999 frag->size, DMA_TO_DEVICE); 2000 i++; 2001 } 2002 2003 iq = skb_iq(lio, skb); 2004 2005 spin_lock(&lio->glist_lock[iq]); 2006 list_add_tail(&g->list, &lio->glist[iq]); 2007 spin_unlock(&lio->glist_lock[iq]); 2008 2009 /* Don't free the skb yet */ 2010 2011 check_txq_state(lio, skb); 2012 } 2013 2014 /** 2015 * \brief Adjust ptp frequency 2016 * @param ptp PTP clock info 2017 * @param ppb how much to adjust by, in parts-per-billion 2018 */ 2019 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 2020 { 2021 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2022 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2023 u64 comp, delta; 2024 unsigned long flags; 2025 bool neg_adj = false; 2026 2027 if (ppb < 0) { 2028 neg_adj = true; 2029 ppb = -ppb; 2030 } 2031 2032 /* The hardware adds the clock compensation value to the 2033 * PTP clock on every coprocessor clock cycle, so we 2034 * compute the delta in terms of coprocessor clocks. 2035 */ 2036 delta = (u64)ppb << 32; 2037 do_div(delta, oct->coproc_clock_rate); 2038 2039 spin_lock_irqsave(&lio->ptp_lock, flags); 2040 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP); 2041 if (neg_adj) 2042 comp -= delta; 2043 else 2044 comp += delta; 2045 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP); 2046 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2047 2048 return 0; 2049 } 2050 2051 /** 2052 * \brief Adjust ptp time 2053 * @param ptp PTP clock info 2054 * @param delta how much to adjust by, in nanosecs 2055 */ 2056 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 2057 { 2058 unsigned long flags; 2059 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2060 2061 spin_lock_irqsave(&lio->ptp_lock, flags); 2062 lio->ptp_adjust += delta; 2063 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2064 2065 return 0; 2066 } 2067 2068 /** 2069 * \brief Get hardware clock time, including any adjustment 2070 * @param ptp PTP clock info 2071 * @param ts timespec 2072 */ 2073 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp, 2074 struct timespec64 *ts) 2075 { 2076 u64 ns; 2077 unsigned long flags; 2078 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2079 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2080 2081 spin_lock_irqsave(&lio->ptp_lock, flags); 2082 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI); 2083 ns += lio->ptp_adjust; 2084 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2085 2086 *ts = ns_to_timespec64(ns); 2087 2088 return 0; 2089 } 2090 2091 /** 2092 * \brief Set hardware clock time. Reset adjustment 2093 * @param ptp PTP clock info 2094 * @param ts timespec 2095 */ 2096 static int liquidio_ptp_settime(struct ptp_clock_info *ptp, 2097 const struct timespec64 *ts) 2098 { 2099 u64 ns; 2100 unsigned long flags; 2101 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2102 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2103 2104 ns = timespec_to_ns(ts); 2105 2106 spin_lock_irqsave(&lio->ptp_lock, flags); 2107 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI); 2108 lio->ptp_adjust = 0; 2109 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2110 2111 return 0; 2112 } 2113 2114 /** 2115 * \brief Check if PTP is enabled 2116 * @param ptp PTP clock info 2117 * @param rq request 2118 * @param on is it on 2119 */ 2120 static int 2121 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)), 2122 struct ptp_clock_request *rq __attribute__((unused)), 2123 int on __attribute__((unused))) 2124 { 2125 return -EOPNOTSUPP; 2126 } 2127 2128 /** 2129 * \brief Open PTP clock source 2130 * @param netdev network device 2131 */ 2132 static void oct_ptp_open(struct net_device *netdev) 2133 { 2134 struct lio *lio = GET_LIO(netdev); 2135 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2136 2137 spin_lock_init(&lio->ptp_lock); 2138 2139 snprintf(lio->ptp_info.name, 16, "%s", netdev->name); 2140 lio->ptp_info.owner = THIS_MODULE; 2141 lio->ptp_info.max_adj = 250000000; 2142 lio->ptp_info.n_alarm = 0; 2143 lio->ptp_info.n_ext_ts = 0; 2144 lio->ptp_info.n_per_out = 0; 2145 lio->ptp_info.pps = 0; 2146 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq; 2147 lio->ptp_info.adjtime = liquidio_ptp_adjtime; 2148 lio->ptp_info.gettime64 = liquidio_ptp_gettime; 2149 lio->ptp_info.settime64 = liquidio_ptp_settime; 2150 lio->ptp_info.enable = liquidio_ptp_enable; 2151 2152 lio->ptp_adjust = 0; 2153 2154 lio->ptp_clock = ptp_clock_register(&lio->ptp_info, 2155 &oct->pci_dev->dev); 2156 2157 if (IS_ERR(lio->ptp_clock)) 2158 lio->ptp_clock = NULL; 2159 } 2160 2161 /** 2162 * \brief Init PTP clock 2163 * @param oct octeon device 2164 */ 2165 static void liquidio_ptp_init(struct octeon_device *oct) 2166 { 2167 u64 clock_comp, cfg; 2168 2169 clock_comp = (u64)NSEC_PER_SEC << 32; 2170 do_div(clock_comp, oct->coproc_clock_rate); 2171 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP); 2172 2173 /* Enable */ 2174 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG); 2175 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG); 2176 } 2177 2178 /** 2179 * \brief Load firmware to device 2180 * @param oct octeon device 2181 * 2182 * Maps device to firmware filename, requests firmware, and downloads it 2183 */ 2184 static int load_firmware(struct octeon_device *oct) 2185 { 2186 int ret = 0; 2187 const struct firmware *fw; 2188 char fw_name[LIO_MAX_FW_FILENAME_LEN]; 2189 char *tmp_fw_type; 2190 2191 if (fw_type_is_none()) { 2192 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n"); 2193 return ret; 2194 } 2195 2196 if (fw_type[0] == '\0') 2197 tmp_fw_type = LIO_FW_NAME_TYPE_NIC; 2198 else 2199 tmp_fw_type = fw_type; 2200 2201 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME, 2202 octeon_get_conf(oct)->card_name, tmp_fw_type, 2203 LIO_FW_NAME_SUFFIX); 2204 2205 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev); 2206 if (ret) { 2207 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.", 2208 fw_name); 2209 release_firmware(fw); 2210 return ret; 2211 } 2212 2213 ret = octeon_download_firmware(oct, fw->data, fw->size); 2214 2215 release_firmware(fw); 2216 2217 return ret; 2218 } 2219 2220 /** 2221 * \brief Setup output queue 2222 * @param oct octeon device 2223 * @param q_no which queue 2224 * @param num_descs how many descriptors 2225 * @param desc_size size of each descriptor 2226 * @param app_ctx application context 2227 */ 2228 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs, 2229 int desc_size, void *app_ctx) 2230 { 2231 int ret_val = 0; 2232 2233 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no); 2234 /* droq creation and local register settings. */ 2235 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx); 2236 if (ret_val < 0) 2237 return ret_val; 2238 2239 if (ret_val == 1) { 2240 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no); 2241 return 0; 2242 } 2243 /* tasklet creation for the droq */ 2244 2245 /* Enable the droq queues */ 2246 octeon_set_droq_pkt_op(oct, q_no, 1); 2247 2248 /* Send Credit for Octeon Output queues. Credits are always 2249 * sent after the output queue is enabled. 2250 */ 2251 writel(oct->droq[q_no]->max_count, 2252 oct->droq[q_no]->pkts_credit_reg); 2253 2254 return ret_val; 2255 } 2256 2257 /** 2258 * \brief Callback for getting interface configuration 2259 * @param status status of request 2260 * @param buf pointer to resp structure 2261 */ 2262 static void if_cfg_callback(struct octeon_device *oct, 2263 u32 status __attribute__((unused)), 2264 void *buf) 2265 { 2266 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 2267 struct liquidio_if_cfg_resp *resp; 2268 struct liquidio_if_cfg_context *ctx; 2269 2270 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 2271 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 2272 2273 oct = lio_get_device(ctx->octeon_id); 2274 if (resp->status) 2275 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: 0x%llx (0x%08x)\n", 2276 CVM_CAST64(resp->status), status); 2277 WRITE_ONCE(ctx->cond, 1); 2278 2279 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s", 2280 resp->cfg_info.liquidio_firmware_version); 2281 2282 /* This barrier is required to be sure that the response has been 2283 * written fully before waking up the handler 2284 */ 2285 wmb(); 2286 2287 wake_up_interruptible(&ctx->wc); 2288 } 2289 2290 /** Routine to push packets arriving on Octeon interface upto network layer. 2291 * @param oct_id - octeon device id. 2292 * @param skbuff - skbuff struct to be passed to network layer. 2293 * @param len - size of total data received. 2294 * @param rh - Control header associated with the packet 2295 * @param param - additional control data with the packet 2296 * @param arg - farg registered in droq_ops 2297 */ 2298 static void 2299 liquidio_push_packet(u32 octeon_id __attribute__((unused)), 2300 void *skbuff, 2301 u32 len, 2302 union octeon_rh *rh, 2303 void *param, 2304 void *arg) 2305 { 2306 struct napi_struct *napi = param; 2307 struct sk_buff *skb = (struct sk_buff *)skbuff; 2308 struct skb_shared_hwtstamps *shhwtstamps; 2309 u64 ns; 2310 u16 vtag = 0; 2311 u32 r_dh_off; 2312 struct net_device *netdev = (struct net_device *)arg; 2313 struct octeon_droq *droq = container_of(param, struct octeon_droq, 2314 napi); 2315 if (netdev) { 2316 int packet_was_received; 2317 struct lio *lio = GET_LIO(netdev); 2318 struct octeon_device *oct = lio->oct_dev; 2319 2320 /* Do not proceed if the interface is not in RUNNING state. */ 2321 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) { 2322 recv_buffer_free(skb); 2323 droq->stats.rx_dropped++; 2324 return; 2325 } 2326 2327 skb->dev = netdev; 2328 2329 skb_record_rx_queue(skb, droq->q_no); 2330 if (likely(len > MIN_SKB_SIZE)) { 2331 struct octeon_skb_page_info *pg_info; 2332 unsigned char *va; 2333 2334 pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 2335 if (pg_info->page) { 2336 /* For Paged allocation use the frags */ 2337 va = page_address(pg_info->page) + 2338 pg_info->page_offset; 2339 memcpy(skb->data, va, MIN_SKB_SIZE); 2340 skb_put(skb, MIN_SKB_SIZE); 2341 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2342 pg_info->page, 2343 pg_info->page_offset + 2344 MIN_SKB_SIZE, 2345 len - MIN_SKB_SIZE, 2346 LIO_RXBUFFER_SZ); 2347 } 2348 } else { 2349 struct octeon_skb_page_info *pg_info = 2350 ((struct octeon_skb_page_info *)(skb->cb)); 2351 skb_copy_to_linear_data(skb, page_address(pg_info->page) 2352 + pg_info->page_offset, len); 2353 skb_put(skb, len); 2354 put_page(pg_info->page); 2355 } 2356 2357 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT; 2358 2359 if (((oct->chip_id == OCTEON_CN66XX) || 2360 (oct->chip_id == OCTEON_CN68XX)) && 2361 ptp_enable) { 2362 if (rh->r_dh.has_hwtstamp) { 2363 /* timestamp is included from the hardware at 2364 * the beginning of the packet. 2365 */ 2366 if (ifstate_check 2367 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) { 2368 /* Nanoseconds are in the first 64-bits 2369 * of the packet. 2370 */ 2371 memcpy(&ns, (skb->data + r_dh_off), 2372 sizeof(ns)); 2373 r_dh_off -= BYTES_PER_DHLEN_UNIT; 2374 shhwtstamps = skb_hwtstamps(skb); 2375 shhwtstamps->hwtstamp = 2376 ns_to_ktime(ns + 2377 lio->ptp_adjust); 2378 } 2379 } 2380 } 2381 2382 if (rh->r_dh.has_hash) { 2383 __be32 *hash_be = (__be32 *)(skb->data + r_dh_off); 2384 u32 hash = be32_to_cpu(*hash_be); 2385 2386 skb_set_hash(skb, hash, PKT_HASH_TYPE_L4); 2387 r_dh_off -= BYTES_PER_DHLEN_UNIT; 2388 } 2389 2390 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT); 2391 2392 skb->protocol = eth_type_trans(skb, skb->dev); 2393 if ((netdev->features & NETIF_F_RXCSUM) && 2394 (((rh->r_dh.encap_on) && 2395 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) || 2396 (!(rh->r_dh.encap_on) && 2397 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED)))) 2398 /* checksum has already been verified */ 2399 skb->ip_summed = CHECKSUM_UNNECESSARY; 2400 else 2401 skb->ip_summed = CHECKSUM_NONE; 2402 2403 /* Setting Encapsulation field on basis of status received 2404 * from the firmware 2405 */ 2406 if (rh->r_dh.encap_on) { 2407 skb->encapsulation = 1; 2408 skb->csum_level = 1; 2409 droq->stats.rx_vxlan++; 2410 } 2411 2412 /* inbound VLAN tag */ 2413 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 2414 (rh->r_dh.vlan != 0)) { 2415 u16 vid = rh->r_dh.vlan; 2416 u16 priority = rh->r_dh.priority; 2417 2418 vtag = priority << 13 | vid; 2419 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 2420 } 2421 2422 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP; 2423 2424 if (packet_was_received) { 2425 droq->stats.rx_bytes_received += len; 2426 droq->stats.rx_pkts_received++; 2427 } else { 2428 droq->stats.rx_dropped++; 2429 netif_info(lio, rx_err, lio->netdev, 2430 "droq:%d error rx_dropped:%llu\n", 2431 droq->q_no, droq->stats.rx_dropped); 2432 } 2433 2434 } else { 2435 recv_buffer_free(skb); 2436 } 2437 } 2438 2439 /** 2440 * \brief wrapper for calling napi_schedule 2441 * @param param parameters to pass to napi_schedule 2442 * 2443 * Used when scheduling on different CPUs 2444 */ 2445 static void napi_schedule_wrapper(void *param) 2446 { 2447 struct napi_struct *napi = param; 2448 2449 napi_schedule(napi); 2450 } 2451 2452 /** 2453 * \brief callback when receive interrupt occurs and we are in NAPI mode 2454 * @param arg pointer to octeon output queue 2455 */ 2456 static void liquidio_napi_drv_callback(void *arg) 2457 { 2458 struct octeon_device *oct; 2459 struct octeon_droq *droq = arg; 2460 int this_cpu = smp_processor_id(); 2461 2462 oct = droq->oct_dev; 2463 2464 if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) { 2465 napi_schedule_irqoff(&droq->napi); 2466 } else { 2467 struct call_single_data *csd = &droq->csd; 2468 2469 csd->func = napi_schedule_wrapper; 2470 csd->info = &droq->napi; 2471 csd->flags = 0; 2472 2473 smp_call_function_single_async(droq->cpu_id, csd); 2474 } 2475 } 2476 2477 /** 2478 * \brief Entry point for NAPI polling 2479 * @param napi NAPI structure 2480 * @param budget maximum number of items to process 2481 */ 2482 static int liquidio_napi_poll(struct napi_struct *napi, int budget) 2483 { 2484 struct octeon_droq *droq; 2485 int work_done; 2486 int tx_done = 0, iq_no; 2487 struct octeon_instr_queue *iq; 2488 struct octeon_device *oct; 2489 2490 droq = container_of(napi, struct octeon_droq, napi); 2491 oct = droq->oct_dev; 2492 iq_no = droq->q_no; 2493 /* Handle Droq descriptors */ 2494 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no, 2495 POLL_EVENT_PROCESS_PKTS, 2496 budget); 2497 2498 /* Flush the instruction queue */ 2499 iq = oct->instr_queue[iq_no]; 2500 if (iq) { 2501 if (atomic_read(&iq->instr_pending)) 2502 /* Process iq buffers with in the budget limits */ 2503 tx_done = octeon_flush_iq(oct, iq, budget); 2504 else 2505 tx_done = 1; 2506 /* Update iq read-index rather than waiting for next interrupt. 2507 * Return back if tx_done is false. 2508 */ 2509 update_txq_status(oct, iq_no); 2510 } else { 2511 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n", 2512 __func__, iq_no); 2513 } 2514 2515 /* force enable interrupt if reg cnts are high to avoid wraparound */ 2516 if ((work_done < budget && tx_done) || 2517 (iq && iq->pkt_in_done >= MAX_REG_CNT) || 2518 (droq->pkt_count >= MAX_REG_CNT)) { 2519 tx_done = 1; 2520 napi_complete_done(napi, work_done); 2521 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no, 2522 POLL_EVENT_ENABLE_INTR, 0); 2523 return 0; 2524 } 2525 2526 return (!tx_done) ? (budget) : (work_done); 2527 } 2528 2529 /** 2530 * \brief Setup input and output queues 2531 * @param octeon_dev octeon device 2532 * @param ifidx Interface Index 2533 * 2534 * Note: Queues are with respect to the octeon device. Thus 2535 * an input queue is for egress packets, and output queues 2536 * are for ingress packets. 2537 */ 2538 static inline int setup_io_queues(struct octeon_device *octeon_dev, 2539 int ifidx) 2540 { 2541 struct octeon_droq_ops droq_ops; 2542 struct net_device *netdev; 2543 static int cpu_id; 2544 static int cpu_id_modulus; 2545 struct octeon_droq *droq; 2546 struct napi_struct *napi; 2547 int q, q_no, retval = 0; 2548 struct lio *lio; 2549 int num_tx_descs; 2550 2551 netdev = octeon_dev->props[ifidx].netdev; 2552 2553 lio = GET_LIO(netdev); 2554 2555 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops)); 2556 2557 droq_ops.fptr = liquidio_push_packet; 2558 droq_ops.farg = (void *)netdev; 2559 2560 droq_ops.poll_mode = 1; 2561 droq_ops.napi_fn = liquidio_napi_drv_callback; 2562 cpu_id = 0; 2563 cpu_id_modulus = num_present_cpus(); 2564 2565 /* set up DROQs. */ 2566 for (q = 0; q < lio->linfo.num_rxpciq; q++) { 2567 q_no = lio->linfo.rxpciq[q].s.q_no; 2568 dev_dbg(&octeon_dev->pci_dev->dev, 2569 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n", 2570 q, q_no); 2571 retval = octeon_setup_droq(octeon_dev, q_no, 2572 CFG_GET_NUM_RX_DESCS_NIC_IF 2573 (octeon_get_conf(octeon_dev), 2574 lio->ifidx), 2575 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF 2576 (octeon_get_conf(octeon_dev), 2577 lio->ifidx), NULL); 2578 if (retval) { 2579 dev_err(&octeon_dev->pci_dev->dev, 2580 "%s : Runtime DROQ(RxQ) creation failed.\n", 2581 __func__); 2582 return 1; 2583 } 2584 2585 droq = octeon_dev->droq[q_no]; 2586 napi = &droq->napi; 2587 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n", 2588 (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num); 2589 netif_napi_add(netdev, napi, liquidio_napi_poll, 64); 2590 2591 /* designate a CPU for this droq */ 2592 droq->cpu_id = cpu_id; 2593 cpu_id++; 2594 if (cpu_id >= cpu_id_modulus) 2595 cpu_id = 0; 2596 2597 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops); 2598 } 2599 2600 if (OCTEON_CN23XX_PF(octeon_dev)) { 2601 /* 23XX PF can receive control messages (via the first PF-owned 2602 * droq) from the firmware even if the ethX interface is down, 2603 * so that's why poll_mode must be off for the first droq. 2604 */ 2605 octeon_dev->droq[0]->ops.poll_mode = 0; 2606 } 2607 2608 /* set up IQs. */ 2609 for (q = 0; q < lio->linfo.num_txpciq; q++) { 2610 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf 2611 (octeon_dev), 2612 lio->ifidx); 2613 retval = octeon_setup_iq(octeon_dev, ifidx, q, 2614 lio->linfo.txpciq[q], num_tx_descs, 2615 netdev_get_tx_queue(netdev, q)); 2616 if (retval) { 2617 dev_err(&octeon_dev->pci_dev->dev, 2618 " %s : Runtime IQ(TxQ) creation failed.\n", 2619 __func__); 2620 return 1; 2621 } 2622 2623 if (octeon_dev->ioq_vector) { 2624 struct octeon_ioq_vector *ioq_vector; 2625 2626 ioq_vector = &octeon_dev->ioq_vector[q]; 2627 netif_set_xps_queue(netdev, 2628 &ioq_vector->affinity_mask, 2629 ioq_vector->iq_index); 2630 } 2631 } 2632 2633 return 0; 2634 } 2635 2636 /** 2637 * \brief Poll routine for checking transmit queue status 2638 * @param work work_struct data structure 2639 */ 2640 static void octnet_poll_check_txq_status(struct work_struct *work) 2641 { 2642 struct cavium_wk *wk = (struct cavium_wk *)work; 2643 struct lio *lio = (struct lio *)wk->ctxptr; 2644 2645 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) 2646 return; 2647 2648 check_txq_status(lio); 2649 queue_delayed_work(lio->txq_status_wq.wq, 2650 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2651 } 2652 2653 /** 2654 * \brief Sets up the txq poll check 2655 * @param netdev network device 2656 */ 2657 static inline int setup_tx_poll_fn(struct net_device *netdev) 2658 { 2659 struct lio *lio = GET_LIO(netdev); 2660 struct octeon_device *oct = lio->oct_dev; 2661 2662 lio->txq_status_wq.wq = alloc_workqueue("txq-status", 2663 WQ_MEM_RECLAIM, 0); 2664 if (!lio->txq_status_wq.wq) { 2665 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n"); 2666 return -1; 2667 } 2668 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work, 2669 octnet_poll_check_txq_status); 2670 lio->txq_status_wq.wk.ctxptr = lio; 2671 queue_delayed_work(lio->txq_status_wq.wq, 2672 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2673 return 0; 2674 } 2675 2676 static inline void cleanup_tx_poll_fn(struct net_device *netdev) 2677 { 2678 struct lio *lio = GET_LIO(netdev); 2679 2680 if (lio->txq_status_wq.wq) { 2681 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work); 2682 destroy_workqueue(lio->txq_status_wq.wq); 2683 } 2684 } 2685 2686 /** 2687 * \brief Net device open for LiquidIO 2688 * @param netdev network device 2689 */ 2690 static int liquidio_open(struct net_device *netdev) 2691 { 2692 struct lio *lio = GET_LIO(netdev); 2693 struct octeon_device *oct = lio->oct_dev; 2694 struct napi_struct *napi, *n; 2695 2696 if (oct->props[lio->ifidx].napi_enabled == 0) { 2697 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2698 napi_enable(napi); 2699 2700 oct->props[lio->ifidx].napi_enabled = 1; 2701 2702 if (OCTEON_CN23XX_PF(oct)) 2703 oct->droq[0]->ops.poll_mode = 1; 2704 } 2705 2706 if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) && 2707 ptp_enable) 2708 oct_ptp_open(netdev); 2709 2710 ifstate_set(lio, LIO_IFSTATE_RUNNING); 2711 2712 /* Ready for link status updates */ 2713 lio->intf_open = 1; 2714 2715 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n"); 2716 2717 if (OCTEON_CN23XX_PF(oct)) { 2718 if (!oct->msix_on) 2719 if (setup_tx_poll_fn(netdev)) 2720 return -1; 2721 } else { 2722 if (setup_tx_poll_fn(netdev)) 2723 return -1; 2724 } 2725 2726 start_txq(netdev); 2727 2728 /* tell Octeon to start forwarding packets to host */ 2729 send_rx_ctrl_cmd(lio, 1); 2730 2731 dev_info(&oct->pci_dev->dev, "%s interface is opened\n", 2732 netdev->name); 2733 2734 return 0; 2735 } 2736 2737 /** 2738 * \brief Net device stop for LiquidIO 2739 * @param netdev network device 2740 */ 2741 static int liquidio_stop(struct net_device *netdev) 2742 { 2743 struct lio *lio = GET_LIO(netdev); 2744 struct octeon_device *oct = lio->oct_dev; 2745 2746 ifstate_reset(lio, LIO_IFSTATE_RUNNING); 2747 2748 netif_tx_disable(netdev); 2749 2750 /* Inform that netif carrier is down */ 2751 netif_carrier_off(netdev); 2752 lio->intf_open = 0; 2753 lio->linfo.link.s.link_up = 0; 2754 lio->link_changes++; 2755 2756 /* Tell Octeon that nic interface is down. */ 2757 send_rx_ctrl_cmd(lio, 0); 2758 2759 if (OCTEON_CN23XX_PF(oct)) { 2760 if (!oct->msix_on) 2761 cleanup_tx_poll_fn(netdev); 2762 } else { 2763 cleanup_tx_poll_fn(netdev); 2764 } 2765 2766 if (lio->ptp_clock) { 2767 ptp_clock_unregister(lio->ptp_clock); 2768 lio->ptp_clock = NULL; 2769 } 2770 2771 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name); 2772 2773 return 0; 2774 } 2775 2776 /** 2777 * \brief Converts a mask based on net device flags 2778 * @param netdev network device 2779 * 2780 * This routine generates a octnet_ifflags mask from the net device flags 2781 * received from the OS. 2782 */ 2783 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev) 2784 { 2785 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST; 2786 2787 if (netdev->flags & IFF_PROMISC) 2788 f |= OCTNET_IFFLAG_PROMISC; 2789 2790 if (netdev->flags & IFF_ALLMULTI) 2791 f |= OCTNET_IFFLAG_ALLMULTI; 2792 2793 if (netdev->flags & IFF_MULTICAST) { 2794 f |= OCTNET_IFFLAG_MULTICAST; 2795 2796 /* Accept all multicast addresses if there are more than we 2797 * can handle 2798 */ 2799 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR) 2800 f |= OCTNET_IFFLAG_ALLMULTI; 2801 } 2802 2803 if (netdev->flags & IFF_BROADCAST) 2804 f |= OCTNET_IFFLAG_BROADCAST; 2805 2806 return f; 2807 } 2808 2809 /** 2810 * \brief Net device set_multicast_list 2811 * @param netdev network device 2812 */ 2813 static void liquidio_set_mcast_list(struct net_device *netdev) 2814 { 2815 struct lio *lio = GET_LIO(netdev); 2816 struct octeon_device *oct = lio->oct_dev; 2817 struct octnic_ctrl_pkt nctrl; 2818 struct netdev_hw_addr *ha; 2819 u64 *mc; 2820 int ret; 2821 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR); 2822 2823 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2824 2825 /* Create a ctrl pkt command to be sent to core app. */ 2826 nctrl.ncmd.u64 = 0; 2827 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST; 2828 nctrl.ncmd.s.param1 = get_new_flags(netdev); 2829 nctrl.ncmd.s.param2 = mc_count; 2830 nctrl.ncmd.s.more = mc_count; 2831 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2832 nctrl.netpndev = (u64)netdev; 2833 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2834 2835 /* copy all the addresses into the udd */ 2836 mc = &nctrl.udd[0]; 2837 netdev_for_each_mc_addr(ha, netdev) { 2838 *mc = 0; 2839 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN); 2840 /* no need to swap bytes */ 2841 2842 if (++mc > &nctrl.udd[mc_count]) 2843 break; 2844 } 2845 2846 /* Apparently, any activity in this call from the kernel has to 2847 * be atomic. So we won't wait for response. 2848 */ 2849 nctrl.wait_time = 0; 2850 2851 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2852 if (ret < 0) { 2853 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n", 2854 ret); 2855 } 2856 } 2857 2858 /** 2859 * \brief Net device set_mac_address 2860 * @param netdev network device 2861 */ 2862 static int liquidio_set_mac(struct net_device *netdev, void *p) 2863 { 2864 int ret = 0; 2865 struct lio *lio = GET_LIO(netdev); 2866 struct octeon_device *oct = lio->oct_dev; 2867 struct sockaddr *addr = (struct sockaddr *)p; 2868 struct octnic_ctrl_pkt nctrl; 2869 2870 if (!is_valid_ether_addr(addr->sa_data)) 2871 return -EADDRNOTAVAIL; 2872 2873 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2874 2875 nctrl.ncmd.u64 = 0; 2876 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 2877 nctrl.ncmd.s.param1 = 0; 2878 nctrl.ncmd.s.more = 1; 2879 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2880 nctrl.netpndev = (u64)netdev; 2881 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2882 nctrl.wait_time = 100; 2883 2884 nctrl.udd[0] = 0; 2885 /* The MAC Address is presented in network byte order. */ 2886 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN); 2887 2888 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2889 if (ret < 0) { 2890 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n"); 2891 return -ENOMEM; 2892 } 2893 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2894 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN); 2895 2896 return 0; 2897 } 2898 2899 /** 2900 * \brief Net device get_stats 2901 * @param netdev network device 2902 */ 2903 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev) 2904 { 2905 struct lio *lio = GET_LIO(netdev); 2906 struct net_device_stats *stats = &netdev->stats; 2907 struct octeon_device *oct; 2908 u64 pkts = 0, drop = 0, bytes = 0; 2909 struct oct_droq_stats *oq_stats; 2910 struct oct_iq_stats *iq_stats; 2911 int i, iq_no, oq_no; 2912 2913 oct = lio->oct_dev; 2914 2915 for (i = 0; i < lio->linfo.num_txpciq; i++) { 2916 iq_no = lio->linfo.txpciq[i].s.q_no; 2917 iq_stats = &oct->instr_queue[iq_no]->stats; 2918 pkts += iq_stats->tx_done; 2919 drop += iq_stats->tx_dropped; 2920 bytes += iq_stats->tx_tot_bytes; 2921 } 2922 2923 stats->tx_packets = pkts; 2924 stats->tx_bytes = bytes; 2925 stats->tx_dropped = drop; 2926 2927 pkts = 0; 2928 drop = 0; 2929 bytes = 0; 2930 2931 for (i = 0; i < lio->linfo.num_rxpciq; i++) { 2932 oq_no = lio->linfo.rxpciq[i].s.q_no; 2933 oq_stats = &oct->droq[oq_no]->stats; 2934 pkts += oq_stats->rx_pkts_received; 2935 drop += (oq_stats->rx_dropped + 2936 oq_stats->dropped_nodispatch + 2937 oq_stats->dropped_toomany + 2938 oq_stats->dropped_nomem); 2939 bytes += oq_stats->rx_bytes_received; 2940 } 2941 2942 stats->rx_bytes = bytes; 2943 stats->rx_packets = pkts; 2944 stats->rx_dropped = drop; 2945 2946 return stats; 2947 } 2948 2949 /** 2950 * \brief Net device change_mtu 2951 * @param netdev network device 2952 */ 2953 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu) 2954 { 2955 struct lio *lio = GET_LIO(netdev); 2956 struct octeon_device *oct = lio->oct_dev; 2957 struct octnic_ctrl_pkt nctrl; 2958 int ret = 0; 2959 2960 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2961 2962 nctrl.ncmd.u64 = 0; 2963 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU; 2964 nctrl.ncmd.s.param1 = new_mtu; 2965 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2966 nctrl.wait_time = 100; 2967 nctrl.netpndev = (u64)netdev; 2968 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2969 2970 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2971 if (ret < 0) { 2972 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n"); 2973 return -1; 2974 } 2975 2976 lio->mtu = new_mtu; 2977 2978 return 0; 2979 } 2980 2981 /** 2982 * \brief Handler for SIOCSHWTSTAMP ioctl 2983 * @param netdev network device 2984 * @param ifr interface request 2985 * @param cmd command 2986 */ 2987 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr) 2988 { 2989 struct hwtstamp_config conf; 2990 struct lio *lio = GET_LIO(netdev); 2991 2992 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf))) 2993 return -EFAULT; 2994 2995 if (conf.flags) 2996 return -EINVAL; 2997 2998 switch (conf.tx_type) { 2999 case HWTSTAMP_TX_ON: 3000 case HWTSTAMP_TX_OFF: 3001 break; 3002 default: 3003 return -ERANGE; 3004 } 3005 3006 switch (conf.rx_filter) { 3007 case HWTSTAMP_FILTER_NONE: 3008 break; 3009 case HWTSTAMP_FILTER_ALL: 3010 case HWTSTAMP_FILTER_SOME: 3011 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3012 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3013 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3014 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3015 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3016 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3017 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3018 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3019 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3020 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3021 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3022 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3023 conf.rx_filter = HWTSTAMP_FILTER_ALL; 3024 break; 3025 default: 3026 return -ERANGE; 3027 } 3028 3029 if (conf.rx_filter == HWTSTAMP_FILTER_ALL) 3030 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 3031 3032 else 3033 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 3034 3035 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0; 3036 } 3037 3038 /** 3039 * \brief ioctl handler 3040 * @param netdev network device 3041 * @param ifr interface request 3042 * @param cmd command 3043 */ 3044 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 3045 { 3046 struct lio *lio = GET_LIO(netdev); 3047 3048 switch (cmd) { 3049 case SIOCSHWTSTAMP: 3050 if ((lio->oct_dev->chip_id == OCTEON_CN66XX || 3051 lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable) 3052 return hwtstamp_ioctl(netdev, ifr); 3053 default: 3054 return -EOPNOTSUPP; 3055 } 3056 } 3057 3058 /** 3059 * \brief handle a Tx timestamp response 3060 * @param status response status 3061 * @param buf pointer to skb 3062 */ 3063 static void handle_timestamp(struct octeon_device *oct, 3064 u32 status, 3065 void *buf) 3066 { 3067 struct octnet_buf_free_info *finfo; 3068 struct octeon_soft_command *sc; 3069 struct oct_timestamp_resp *resp; 3070 struct lio *lio; 3071 struct sk_buff *skb = (struct sk_buff *)buf; 3072 3073 finfo = (struct octnet_buf_free_info *)skb->cb; 3074 lio = finfo->lio; 3075 sc = finfo->sc; 3076 oct = lio->oct_dev; 3077 resp = (struct oct_timestamp_resp *)sc->virtrptr; 3078 3079 if (status != OCTEON_REQUEST_DONE) { 3080 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n", 3081 CVM_CAST64(status)); 3082 resp->timestamp = 0; 3083 } 3084 3085 octeon_swap_8B_data(&resp->timestamp, 1); 3086 3087 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) { 3088 struct skb_shared_hwtstamps ts; 3089 u64 ns = resp->timestamp; 3090 3091 netif_info(lio, tx_done, lio->netdev, 3092 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n", 3093 skb, (unsigned long long)ns); 3094 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust); 3095 skb_tstamp_tx(skb, &ts); 3096 } 3097 3098 octeon_free_soft_command(oct, sc); 3099 tx_buffer_free(skb); 3100 } 3101 3102 /* \brief Send a data packet that will be timestamped 3103 * @param oct octeon device 3104 * @param ndata pointer to network data 3105 * @param finfo pointer to private network data 3106 */ 3107 static inline int send_nic_timestamp_pkt(struct octeon_device *oct, 3108 struct octnic_data_pkt *ndata, 3109 struct octnet_buf_free_info *finfo) 3110 { 3111 int retval; 3112 struct octeon_soft_command *sc; 3113 struct lio *lio; 3114 int ring_doorbell; 3115 u32 len; 3116 3117 lio = finfo->lio; 3118 3119 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd, 3120 sizeof(struct oct_timestamp_resp)); 3121 finfo->sc = sc; 3122 3123 if (!sc) { 3124 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n"); 3125 return IQ_SEND_FAILED; 3126 } 3127 3128 if (ndata->reqtype == REQTYPE_NORESP_NET) 3129 ndata->reqtype = REQTYPE_RESP_NET; 3130 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG) 3131 ndata->reqtype = REQTYPE_RESP_NET_SG; 3132 3133 sc->callback = handle_timestamp; 3134 sc->callback_arg = finfo->skb; 3135 sc->iq_no = ndata->q_no; 3136 3137 if (OCTEON_CN23XX_PF(oct)) 3138 len = (u32)((struct octeon_instr_ih3 *) 3139 (&sc->cmd.cmd3.ih3))->dlengsz; 3140 else 3141 len = (u32)((struct octeon_instr_ih2 *) 3142 (&sc->cmd.cmd2.ih2))->dlengsz; 3143 3144 ring_doorbell = 1; 3145 3146 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd, 3147 sc, len, ndata->reqtype); 3148 3149 if (retval == IQ_SEND_FAILED) { 3150 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n", 3151 retval); 3152 octeon_free_soft_command(oct, sc); 3153 } else { 3154 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n"); 3155 } 3156 3157 return retval; 3158 } 3159 3160 /** \brief Transmit networks packets to the Octeon interface 3161 * @param skbuff skbuff struct to be passed to network layer. 3162 * @param netdev pointer to network device 3163 * @returns whether the packet was transmitted to the device okay or not 3164 * (NETDEV_TX_OK or NETDEV_TX_BUSY) 3165 */ 3166 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev) 3167 { 3168 struct lio *lio; 3169 struct octnet_buf_free_info *finfo; 3170 union octnic_cmd_setup cmdsetup; 3171 struct octnic_data_pkt ndata; 3172 struct octeon_device *oct; 3173 struct oct_iq_stats *stats; 3174 struct octeon_instr_irh *irh; 3175 union tx_info *tx_info; 3176 int status = 0; 3177 int q_idx = 0, iq_no = 0; 3178 int j; 3179 u64 dptr = 0; 3180 u32 tag = 0; 3181 3182 lio = GET_LIO(netdev); 3183 oct = lio->oct_dev; 3184 3185 if (netif_is_multiqueue(netdev)) { 3186 q_idx = skb->queue_mapping; 3187 q_idx = (q_idx % (lio->linfo.num_txpciq)); 3188 tag = q_idx; 3189 iq_no = lio->linfo.txpciq[q_idx].s.q_no; 3190 } else { 3191 iq_no = lio->txq; 3192 } 3193 3194 stats = &oct->instr_queue[iq_no]->stats; 3195 3196 /* Check for all conditions in which the current packet cannot be 3197 * transmitted. 3198 */ 3199 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) || 3200 (!lio->linfo.link.s.link_up) || 3201 (skb->len <= 0)) { 3202 netif_info(lio, tx_err, lio->netdev, 3203 "Transmit failed link_status : %d\n", 3204 lio->linfo.link.s.link_up); 3205 goto lio_xmit_failed; 3206 } 3207 3208 /* Use space in skb->cb to store info used to unmap and 3209 * free the buffers. 3210 */ 3211 finfo = (struct octnet_buf_free_info *)skb->cb; 3212 finfo->lio = lio; 3213 finfo->skb = skb; 3214 finfo->sc = NULL; 3215 3216 /* Prepare the attributes for the data to be passed to OSI. */ 3217 memset(&ndata, 0, sizeof(struct octnic_data_pkt)); 3218 3219 ndata.buf = (void *)finfo; 3220 3221 ndata.q_no = iq_no; 3222 3223 if (netif_is_multiqueue(netdev)) { 3224 if (octnet_iq_is_full(oct, ndata.q_no)) { 3225 /* defer sending if queue is full */ 3226 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 3227 ndata.q_no); 3228 stats->tx_iq_busy++; 3229 return NETDEV_TX_BUSY; 3230 } 3231 } else { 3232 if (octnet_iq_is_full(oct, lio->txq)) { 3233 /* defer sending if queue is full */ 3234 stats->tx_iq_busy++; 3235 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 3236 lio->txq); 3237 return NETDEV_TX_BUSY; 3238 } 3239 } 3240 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n", 3241 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no); 3242 */ 3243 3244 ndata.datasize = skb->len; 3245 3246 cmdsetup.u64 = 0; 3247 cmdsetup.s.iq_no = iq_no; 3248 3249 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3250 if (skb->encapsulation) { 3251 cmdsetup.s.tnl_csum = 1; 3252 stats->tx_vxlan++; 3253 } else { 3254 cmdsetup.s.transport_csum = 1; 3255 } 3256 } 3257 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3258 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3259 cmdsetup.s.timestamp = 1; 3260 } 3261 3262 if (skb_shinfo(skb)->nr_frags == 0) { 3263 cmdsetup.s.u.datasize = skb->len; 3264 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 3265 3266 /* Offload checksum calculation for TCP/UDP packets */ 3267 dptr = dma_map_single(&oct->pci_dev->dev, 3268 skb->data, 3269 skb->len, 3270 DMA_TO_DEVICE); 3271 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) { 3272 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n", 3273 __func__); 3274 return NETDEV_TX_BUSY; 3275 } 3276 3277 if (OCTEON_CN23XX_PF(oct)) 3278 ndata.cmd.cmd3.dptr = dptr; 3279 else 3280 ndata.cmd.cmd2.dptr = dptr; 3281 finfo->dptr = dptr; 3282 ndata.reqtype = REQTYPE_NORESP_NET; 3283 3284 } else { 3285 int i, frags; 3286 struct skb_frag_struct *frag; 3287 struct octnic_gather *g; 3288 3289 spin_lock(&lio->glist_lock[q_idx]); 3290 g = (struct octnic_gather *) 3291 list_delete_head(&lio->glist[q_idx]); 3292 spin_unlock(&lio->glist_lock[q_idx]); 3293 3294 if (!g) { 3295 netif_info(lio, tx_err, lio->netdev, 3296 "Transmit scatter gather: glist null!\n"); 3297 goto lio_xmit_failed; 3298 } 3299 3300 cmdsetup.s.gather = 1; 3301 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1); 3302 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 3303 3304 memset(g->sg, 0, g->sg_size); 3305 3306 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev, 3307 skb->data, 3308 (skb->len - skb->data_len), 3309 DMA_TO_DEVICE); 3310 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) { 3311 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n", 3312 __func__); 3313 return NETDEV_TX_BUSY; 3314 } 3315 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0); 3316 3317 frags = skb_shinfo(skb)->nr_frags; 3318 i = 1; 3319 while (frags--) { 3320 frag = &skb_shinfo(skb)->frags[i - 1]; 3321 3322 g->sg[(i >> 2)].ptr[(i & 3)] = 3323 dma_map_page(&oct->pci_dev->dev, 3324 frag->page.p, 3325 frag->page_offset, 3326 frag->size, 3327 DMA_TO_DEVICE); 3328 3329 if (dma_mapping_error(&oct->pci_dev->dev, 3330 g->sg[i >> 2].ptr[i & 3])) { 3331 dma_unmap_single(&oct->pci_dev->dev, 3332 g->sg[0].ptr[0], 3333 skb->len - skb->data_len, 3334 DMA_TO_DEVICE); 3335 for (j = 1; j < i; j++) { 3336 frag = &skb_shinfo(skb)->frags[j - 1]; 3337 dma_unmap_page(&oct->pci_dev->dev, 3338 g->sg[j >> 2].ptr[j & 3], 3339 frag->size, 3340 DMA_TO_DEVICE); 3341 } 3342 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n", 3343 __func__); 3344 return NETDEV_TX_BUSY; 3345 } 3346 3347 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3)); 3348 i++; 3349 } 3350 3351 dptr = g->sg_dma_ptr; 3352 3353 if (OCTEON_CN23XX_PF(oct)) 3354 ndata.cmd.cmd3.dptr = dptr; 3355 else 3356 ndata.cmd.cmd2.dptr = dptr; 3357 finfo->dptr = dptr; 3358 finfo->g = g; 3359 3360 ndata.reqtype = REQTYPE_NORESP_NET_SG; 3361 } 3362 3363 if (OCTEON_CN23XX_PF(oct)) { 3364 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh; 3365 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0]; 3366 } else { 3367 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh; 3368 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0]; 3369 } 3370 3371 if (skb_shinfo(skb)->gso_size) { 3372 tx_info->s.gso_size = skb_shinfo(skb)->gso_size; 3373 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs; 3374 stats->tx_gso++; 3375 } 3376 3377 /* HW insert VLAN tag */ 3378 if (skb_vlan_tag_present(skb)) { 3379 irh->priority = skb_vlan_tag_get(skb) >> 13; 3380 irh->vlan = skb_vlan_tag_get(skb) & 0xfff; 3381 } 3382 3383 if (unlikely(cmdsetup.s.timestamp)) 3384 status = send_nic_timestamp_pkt(oct, &ndata, finfo); 3385 else 3386 status = octnet_send_nic_data_pkt(oct, &ndata); 3387 if (status == IQ_SEND_FAILED) 3388 goto lio_xmit_failed; 3389 3390 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n"); 3391 3392 if (status == IQ_SEND_STOP) 3393 stop_q(lio->netdev, q_idx); 3394 3395 netif_trans_update(netdev); 3396 3397 if (tx_info->s.gso_segs) 3398 stats->tx_done += tx_info->s.gso_segs; 3399 else 3400 stats->tx_done++; 3401 stats->tx_tot_bytes += ndata.datasize; 3402 3403 return NETDEV_TX_OK; 3404 3405 lio_xmit_failed: 3406 stats->tx_dropped++; 3407 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n", 3408 iq_no, stats->tx_dropped); 3409 if (dptr) 3410 dma_unmap_single(&oct->pci_dev->dev, dptr, 3411 ndata.datasize, DMA_TO_DEVICE); 3412 tx_buffer_free(skb); 3413 return NETDEV_TX_OK; 3414 } 3415 3416 /** \brief Network device Tx timeout 3417 * @param netdev pointer to network device 3418 */ 3419 static void liquidio_tx_timeout(struct net_device *netdev) 3420 { 3421 struct lio *lio; 3422 3423 lio = GET_LIO(netdev); 3424 3425 netif_info(lio, tx_err, lio->netdev, 3426 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n", 3427 netdev->stats.tx_dropped); 3428 netif_trans_update(netdev); 3429 txqs_wake(netdev); 3430 } 3431 3432 static int liquidio_vlan_rx_add_vid(struct net_device *netdev, 3433 __be16 proto __attribute__((unused)), 3434 u16 vid) 3435 { 3436 struct lio *lio = GET_LIO(netdev); 3437 struct octeon_device *oct = lio->oct_dev; 3438 struct octnic_ctrl_pkt nctrl; 3439 int ret = 0; 3440 3441 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3442 3443 nctrl.ncmd.u64 = 0; 3444 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3445 nctrl.ncmd.s.param1 = vid; 3446 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3447 nctrl.wait_time = 100; 3448 nctrl.netpndev = (u64)netdev; 3449 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3450 3451 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3452 if (ret < 0) { 3453 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 3454 ret); 3455 } 3456 3457 return ret; 3458 } 3459 3460 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev, 3461 __be16 proto __attribute__((unused)), 3462 u16 vid) 3463 { 3464 struct lio *lio = GET_LIO(netdev); 3465 struct octeon_device *oct = lio->oct_dev; 3466 struct octnic_ctrl_pkt nctrl; 3467 int ret = 0; 3468 3469 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3470 3471 nctrl.ncmd.u64 = 0; 3472 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3473 nctrl.ncmd.s.param1 = vid; 3474 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3475 nctrl.wait_time = 100; 3476 nctrl.netpndev = (u64)netdev; 3477 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3478 3479 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3480 if (ret < 0) { 3481 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 3482 ret); 3483 } 3484 return ret; 3485 } 3486 3487 /** Sending command to enable/disable RX checksum offload 3488 * @param netdev pointer to network device 3489 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL 3490 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/ 3491 * OCTNET_CMD_RXCSUM_DISABLE 3492 * @returns SUCCESS or FAILURE 3493 */ 3494 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command, 3495 u8 rx_cmd) 3496 { 3497 struct lio *lio = GET_LIO(netdev); 3498 struct octeon_device *oct = lio->oct_dev; 3499 struct octnic_ctrl_pkt nctrl; 3500 int ret = 0; 3501 3502 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3503 3504 nctrl.ncmd.u64 = 0; 3505 nctrl.ncmd.s.cmd = command; 3506 nctrl.ncmd.s.param1 = rx_cmd; 3507 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3508 nctrl.wait_time = 100; 3509 nctrl.netpndev = (u64)netdev; 3510 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3511 3512 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3513 if (ret < 0) { 3514 dev_err(&oct->pci_dev->dev, 3515 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n", 3516 ret); 3517 } 3518 return ret; 3519 } 3520 3521 /** Sending command to add/delete VxLAN UDP port to firmware 3522 * @param netdev pointer to network device 3523 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG 3524 * @param vxlan_port VxLAN port to be added or deleted 3525 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD, 3526 * OCTNET_CMD_VXLAN_PORT_DEL 3527 * @returns SUCCESS or FAILURE 3528 */ 3529 static int liquidio_vxlan_port_command(struct net_device *netdev, int command, 3530 u16 vxlan_port, u8 vxlan_cmd_bit) 3531 { 3532 struct lio *lio = GET_LIO(netdev); 3533 struct octeon_device *oct = lio->oct_dev; 3534 struct octnic_ctrl_pkt nctrl; 3535 int ret = 0; 3536 3537 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3538 3539 nctrl.ncmd.u64 = 0; 3540 nctrl.ncmd.s.cmd = command; 3541 nctrl.ncmd.s.more = vxlan_cmd_bit; 3542 nctrl.ncmd.s.param1 = vxlan_port; 3543 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3544 nctrl.wait_time = 100; 3545 nctrl.netpndev = (u64)netdev; 3546 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3547 3548 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3549 if (ret < 0) { 3550 dev_err(&oct->pci_dev->dev, 3551 "VxLAN port add/delete failed in core (ret:0x%x)\n", 3552 ret); 3553 } 3554 return ret; 3555 } 3556 3557 /** \brief Net device fix features 3558 * @param netdev pointer to network device 3559 * @param request features requested 3560 * @returns updated features list 3561 */ 3562 static netdev_features_t liquidio_fix_features(struct net_device *netdev, 3563 netdev_features_t request) 3564 { 3565 struct lio *lio = netdev_priv(netdev); 3566 3567 if ((request & NETIF_F_RXCSUM) && 3568 !(lio->dev_capability & NETIF_F_RXCSUM)) 3569 request &= ~NETIF_F_RXCSUM; 3570 3571 if ((request & NETIF_F_HW_CSUM) && 3572 !(lio->dev_capability & NETIF_F_HW_CSUM)) 3573 request &= ~NETIF_F_HW_CSUM; 3574 3575 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO)) 3576 request &= ~NETIF_F_TSO; 3577 3578 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6)) 3579 request &= ~NETIF_F_TSO6; 3580 3581 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO)) 3582 request &= ~NETIF_F_LRO; 3583 3584 /*Disable LRO if RXCSUM is off */ 3585 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) && 3586 (lio->dev_capability & NETIF_F_LRO)) 3587 request &= ~NETIF_F_LRO; 3588 3589 return request; 3590 } 3591 3592 /** \brief Net device set features 3593 * @param netdev pointer to network device 3594 * @param features features to enable/disable 3595 */ 3596 static int liquidio_set_features(struct net_device *netdev, 3597 netdev_features_t features) 3598 { 3599 struct lio *lio = netdev_priv(netdev); 3600 3601 if (!((netdev->features ^ features) & NETIF_F_LRO)) 3602 return 0; 3603 3604 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO)) 3605 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 3606 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3607 else if (!(features & NETIF_F_LRO) && 3608 (lio->dev_capability & NETIF_F_LRO)) 3609 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE, 3610 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3611 3612 /* Sending command to firmware to enable/disable RX checksum 3613 * offload settings using ethtool 3614 */ 3615 if (!(netdev->features & NETIF_F_RXCSUM) && 3616 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 3617 (features & NETIF_F_RXCSUM)) 3618 liquidio_set_rxcsum_command(netdev, 3619 OCTNET_CMD_TNL_RX_CSUM_CTL, 3620 OCTNET_CMD_RXCSUM_ENABLE); 3621 else if ((netdev->features & NETIF_F_RXCSUM) && 3622 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 3623 !(features & NETIF_F_RXCSUM)) 3624 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 3625 OCTNET_CMD_RXCSUM_DISABLE); 3626 3627 return 0; 3628 } 3629 3630 static void liquidio_add_vxlan_port(struct net_device *netdev, 3631 struct udp_tunnel_info *ti) 3632 { 3633 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3634 return; 3635 3636 liquidio_vxlan_port_command(netdev, 3637 OCTNET_CMD_VXLAN_PORT_CONFIG, 3638 htons(ti->port), 3639 OCTNET_CMD_VXLAN_PORT_ADD); 3640 } 3641 3642 static void liquidio_del_vxlan_port(struct net_device *netdev, 3643 struct udp_tunnel_info *ti) 3644 { 3645 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3646 return; 3647 3648 liquidio_vxlan_port_command(netdev, 3649 OCTNET_CMD_VXLAN_PORT_CONFIG, 3650 htons(ti->port), 3651 OCTNET_CMD_VXLAN_PORT_DEL); 3652 } 3653 3654 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx, 3655 u8 *mac, bool is_admin_assigned) 3656 { 3657 struct lio *lio = GET_LIO(netdev); 3658 struct octeon_device *oct = lio->oct_dev; 3659 struct octnic_ctrl_pkt nctrl; 3660 3661 if (!is_valid_ether_addr(mac)) 3662 return -EINVAL; 3663 3664 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs) 3665 return -EINVAL; 3666 3667 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3668 3669 nctrl.ncmd.u64 = 0; 3670 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 3671 /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3672 nctrl.ncmd.s.param1 = vfidx + 1; 3673 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0); 3674 nctrl.ncmd.s.more = 1; 3675 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3676 nctrl.netpndev = (u64)netdev; 3677 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3678 nctrl.wait_time = LIO_CMD_WAIT_TM; 3679 3680 nctrl.udd[0] = 0; 3681 /* The MAC Address is presented in network byte order. */ 3682 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac); 3683 3684 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0]; 3685 3686 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3687 3688 return 0; 3689 } 3690 3691 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac) 3692 { 3693 struct lio *lio = GET_LIO(netdev); 3694 struct octeon_device *oct = lio->oct_dev; 3695 int retval; 3696 3697 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true); 3698 if (!retval) 3699 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac); 3700 3701 return retval; 3702 } 3703 3704 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx, 3705 u16 vlan, u8 qos, __be16 vlan_proto) 3706 { 3707 struct lio *lio = GET_LIO(netdev); 3708 struct octeon_device *oct = lio->oct_dev; 3709 struct octnic_ctrl_pkt nctrl; 3710 u16 vlantci; 3711 3712 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3713 return -EINVAL; 3714 3715 if (vlan_proto != htons(ETH_P_8021Q)) 3716 return -EPROTONOSUPPORT; 3717 3718 if (vlan >= VLAN_N_VID || qos > 7) 3719 return -EINVAL; 3720 3721 if (vlan) 3722 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT; 3723 else 3724 vlantci = 0; 3725 3726 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci) 3727 return 0; 3728 3729 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3730 3731 if (vlan) 3732 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3733 else 3734 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3735 3736 nctrl.ncmd.s.param1 = vlantci; 3737 nctrl.ncmd.s.param2 = 3738 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */ 3739 nctrl.ncmd.s.more = 0; 3740 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3741 nctrl.cb_fn = 0; 3742 nctrl.wait_time = LIO_CMD_WAIT_TM; 3743 3744 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3745 3746 oct->sriov_info.vf_vlantci[vfidx] = vlantci; 3747 3748 return 0; 3749 } 3750 3751 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx, 3752 struct ifla_vf_info *ivi) 3753 { 3754 struct lio *lio = GET_LIO(netdev); 3755 struct octeon_device *oct = lio->oct_dev; 3756 u8 *macaddr; 3757 3758 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3759 return -EINVAL; 3760 3761 ivi->vf = vfidx; 3762 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx]; 3763 ether_addr_copy(&ivi->mac[0], macaddr); 3764 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK; 3765 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT; 3766 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx]; 3767 return 0; 3768 } 3769 3770 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 3771 int linkstate) 3772 { 3773 struct lio *lio = GET_LIO(netdev); 3774 struct octeon_device *oct = lio->oct_dev; 3775 struct octnic_ctrl_pkt nctrl; 3776 3777 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3778 return -EINVAL; 3779 3780 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate) 3781 return 0; 3782 3783 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3784 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE; 3785 nctrl.ncmd.s.param1 = 3786 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3787 nctrl.ncmd.s.param2 = linkstate; 3788 nctrl.ncmd.s.more = 0; 3789 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3790 nctrl.cb_fn = 0; 3791 nctrl.wait_time = LIO_CMD_WAIT_TM; 3792 3793 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3794 3795 oct->sriov_info.vf_linkstate[vfidx] = linkstate; 3796 3797 return 0; 3798 } 3799 3800 static const struct net_device_ops lionetdevops = { 3801 .ndo_open = liquidio_open, 3802 .ndo_stop = liquidio_stop, 3803 .ndo_start_xmit = liquidio_xmit, 3804 .ndo_get_stats = liquidio_get_stats, 3805 .ndo_set_mac_address = liquidio_set_mac, 3806 .ndo_set_rx_mode = liquidio_set_mcast_list, 3807 .ndo_tx_timeout = liquidio_tx_timeout, 3808 3809 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid, 3810 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid, 3811 .ndo_change_mtu = liquidio_change_mtu, 3812 .ndo_do_ioctl = liquidio_ioctl, 3813 .ndo_fix_features = liquidio_fix_features, 3814 .ndo_set_features = liquidio_set_features, 3815 .ndo_udp_tunnel_add = liquidio_add_vxlan_port, 3816 .ndo_udp_tunnel_del = liquidio_del_vxlan_port, 3817 .ndo_set_vf_mac = liquidio_set_vf_mac, 3818 .ndo_set_vf_vlan = liquidio_set_vf_vlan, 3819 .ndo_get_vf_config = liquidio_get_vf_config, 3820 .ndo_set_vf_link_state = liquidio_set_vf_link_state, 3821 }; 3822 3823 /** \brief Entry point for the liquidio module 3824 */ 3825 static int __init liquidio_init(void) 3826 { 3827 int i; 3828 struct handshake *hs; 3829 3830 init_completion(&first_stage); 3831 3832 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT); 3833 3834 if (liquidio_init_pci()) 3835 return -EINVAL; 3836 3837 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000)); 3838 3839 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3840 hs = &handshake[i]; 3841 if (hs->pci_dev) { 3842 wait_for_completion(&hs->init); 3843 if (!hs->init_ok) { 3844 /* init handshake failed */ 3845 dev_err(&hs->pci_dev->dev, 3846 "Failed to init device\n"); 3847 liquidio_deinit_pci(); 3848 return -EIO; 3849 } 3850 } 3851 } 3852 3853 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3854 hs = &handshake[i]; 3855 if (hs->pci_dev) { 3856 wait_for_completion_timeout(&hs->started, 3857 msecs_to_jiffies(30000)); 3858 if (!hs->started_ok) { 3859 /* starter handshake failed */ 3860 dev_err(&hs->pci_dev->dev, 3861 "Firmware failed to start\n"); 3862 liquidio_deinit_pci(); 3863 return -EIO; 3864 } 3865 } 3866 } 3867 3868 return 0; 3869 } 3870 3871 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf) 3872 { 3873 struct octeon_device *oct = (struct octeon_device *)buf; 3874 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 3875 int gmxport = 0; 3876 union oct_link_status *ls; 3877 int i; 3878 3879 if (recv_pkt->buffer_size[0] != sizeof(*ls)) { 3880 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n", 3881 recv_pkt->buffer_size[0], 3882 recv_pkt->rh.r_nic_info.gmxport); 3883 goto nic_info_err; 3884 } 3885 3886 gmxport = recv_pkt->rh.r_nic_info.gmxport; 3887 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]); 3888 3889 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3); 3890 for (i = 0; i < oct->ifcount; i++) { 3891 if (oct->props[i].gmxport == gmxport) { 3892 update_link_status(oct->props[i].netdev, ls); 3893 break; 3894 } 3895 } 3896 3897 nic_info_err: 3898 for (i = 0; i < recv_pkt->buffer_count; i++) 3899 recv_buffer_free(recv_pkt->buffer_ptr[i]); 3900 octeon_free_recv_info(recv_info); 3901 return 0; 3902 } 3903 3904 /** 3905 * \brief Setup network interfaces 3906 * @param octeon_dev octeon device 3907 * 3908 * Called during init time for each device. It assumes the NIC 3909 * is already up and running. The link information for each 3910 * interface is passed in link_info. 3911 */ 3912 static int setup_nic_devices(struct octeon_device *octeon_dev) 3913 { 3914 struct lio *lio = NULL; 3915 struct net_device *netdev; 3916 u8 mac[6], i, j; 3917 struct octeon_soft_command *sc; 3918 struct liquidio_if_cfg_context *ctx; 3919 struct liquidio_if_cfg_resp *resp; 3920 struct octdev_props *props; 3921 int retval, num_iqueues, num_oqueues; 3922 union oct_nic_if_cfg if_cfg; 3923 unsigned int base_queue; 3924 unsigned int gmx_port_id; 3925 u32 resp_size, ctx_size, data_size; 3926 u32 ifidx_or_pfnum; 3927 struct lio_version *vdata; 3928 3929 /* This is to handle link status changes */ 3930 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3931 OPCODE_NIC_INFO, 3932 lio_nic_info, octeon_dev); 3933 3934 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions. 3935 * They are handled directly. 3936 */ 3937 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET, 3938 free_netbuf); 3939 3940 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG, 3941 free_netsgbuf); 3942 3943 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG, 3944 free_netsgbuf_with_resp); 3945 3946 for (i = 0; i < octeon_dev->ifcount; i++) { 3947 resp_size = sizeof(struct liquidio_if_cfg_resp); 3948 ctx_size = sizeof(struct liquidio_if_cfg_context); 3949 data_size = sizeof(struct lio_version); 3950 sc = (struct octeon_soft_command *) 3951 octeon_alloc_soft_command(octeon_dev, data_size, 3952 resp_size, ctx_size); 3953 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 3954 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 3955 vdata = (struct lio_version *)sc->virtdptr; 3956 3957 *((u64 *)vdata) = 0; 3958 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION); 3959 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION); 3960 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION); 3961 3962 if (OCTEON_CN23XX_PF(octeon_dev)) { 3963 num_iqueues = octeon_dev->sriov_info.num_pf_rings; 3964 num_oqueues = octeon_dev->sriov_info.num_pf_rings; 3965 base_queue = octeon_dev->sriov_info.pf_srn; 3966 3967 gmx_port_id = octeon_dev->pf_num; 3968 ifidx_or_pfnum = octeon_dev->pf_num; 3969 } else { 3970 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF( 3971 octeon_get_conf(octeon_dev), i); 3972 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF( 3973 octeon_get_conf(octeon_dev), i); 3974 base_queue = CFG_GET_BASE_QUE_NIC_IF( 3975 octeon_get_conf(octeon_dev), i); 3976 gmx_port_id = CFG_GET_GMXID_NIC_IF( 3977 octeon_get_conf(octeon_dev), i); 3978 ifidx_or_pfnum = i; 3979 } 3980 3981 dev_dbg(&octeon_dev->pci_dev->dev, 3982 "requesting config for interface %d, iqs %d, oqs %d\n", 3983 ifidx_or_pfnum, num_iqueues, num_oqueues); 3984 WRITE_ONCE(ctx->cond, 0); 3985 ctx->octeon_id = lio_get_device_id(octeon_dev); 3986 init_waitqueue_head(&ctx->wc); 3987 3988 if_cfg.u64 = 0; 3989 if_cfg.s.num_iqueues = num_iqueues; 3990 if_cfg.s.num_oqueues = num_oqueues; 3991 if_cfg.s.base_queue = base_queue; 3992 if_cfg.s.gmx_port_id = gmx_port_id; 3993 3994 sc->iq_no = 0; 3995 3996 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC, 3997 OPCODE_NIC_IF_CFG, 0, 3998 if_cfg.u64, 0); 3999 4000 sc->callback = if_cfg_callback; 4001 sc->callback_arg = sc; 4002 sc->wait_time = 3000; 4003 4004 retval = octeon_send_soft_command(octeon_dev, sc); 4005 if (retval == IQ_SEND_FAILED) { 4006 dev_err(&octeon_dev->pci_dev->dev, 4007 "iq/oq config failed status: %x\n", 4008 retval); 4009 /* Soft instr is freed by driver in case of failure. */ 4010 goto setup_nic_dev_fail; 4011 } 4012 4013 /* Sleep on a wait queue till the cond flag indicates that the 4014 * response arrived or timed-out. 4015 */ 4016 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) { 4017 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n"); 4018 goto setup_nic_wait_intr; 4019 } 4020 4021 retval = resp->status; 4022 if (retval) { 4023 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n"); 4024 goto setup_nic_dev_fail; 4025 } 4026 4027 octeon_swap_8B_data((u64 *)(&resp->cfg_info), 4028 (sizeof(struct liquidio_if_cfg_info)) >> 3); 4029 4030 num_iqueues = hweight64(resp->cfg_info.iqmask); 4031 num_oqueues = hweight64(resp->cfg_info.oqmask); 4032 4033 if (!(num_iqueues) || !(num_oqueues)) { 4034 dev_err(&octeon_dev->pci_dev->dev, 4035 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n", 4036 resp->cfg_info.iqmask, 4037 resp->cfg_info.oqmask); 4038 goto setup_nic_dev_fail; 4039 } 4040 dev_dbg(&octeon_dev->pci_dev->dev, 4041 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n", 4042 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask, 4043 num_iqueues, num_oqueues); 4044 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues); 4045 4046 if (!netdev) { 4047 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n"); 4048 goto setup_nic_dev_fail; 4049 } 4050 4051 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev); 4052 4053 /* Associate the routines that will handle different 4054 * netdev tasks. 4055 */ 4056 netdev->netdev_ops = &lionetdevops; 4057 4058 lio = GET_LIO(netdev); 4059 4060 memset(lio, 0, sizeof(struct lio)); 4061 4062 lio->ifidx = ifidx_or_pfnum; 4063 4064 props = &octeon_dev->props[i]; 4065 props->gmxport = resp->cfg_info.linfo.gmxport; 4066 props->netdev = netdev; 4067 4068 lio->linfo.num_rxpciq = num_oqueues; 4069 lio->linfo.num_txpciq = num_iqueues; 4070 for (j = 0; j < num_oqueues; j++) { 4071 lio->linfo.rxpciq[j].u64 = 4072 resp->cfg_info.linfo.rxpciq[j].u64; 4073 } 4074 for (j = 0; j < num_iqueues; j++) { 4075 lio->linfo.txpciq[j].u64 = 4076 resp->cfg_info.linfo.txpciq[j].u64; 4077 } 4078 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr; 4079 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport; 4080 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64; 4081 4082 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4083 4084 if (OCTEON_CN23XX_PF(octeon_dev) || 4085 OCTEON_CN6XXX(octeon_dev)) { 4086 lio->dev_capability = NETIF_F_HIGHDMA 4087 | NETIF_F_IP_CSUM 4088 | NETIF_F_IPV6_CSUM 4089 | NETIF_F_SG | NETIF_F_RXCSUM 4090 | NETIF_F_GRO 4091 | NETIF_F_TSO | NETIF_F_TSO6 4092 | NETIF_F_LRO; 4093 } 4094 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE); 4095 4096 /* Copy of transmit encapsulation capabilities: 4097 * TSO, TSO6, Checksums for this device 4098 */ 4099 lio->enc_dev_capability = NETIF_F_IP_CSUM 4100 | NETIF_F_IPV6_CSUM 4101 | NETIF_F_GSO_UDP_TUNNEL 4102 | NETIF_F_HW_CSUM | NETIF_F_SG 4103 | NETIF_F_RXCSUM 4104 | NETIF_F_TSO | NETIF_F_TSO6 4105 | NETIF_F_LRO; 4106 4107 netdev->hw_enc_features = (lio->enc_dev_capability & 4108 ~NETIF_F_LRO); 4109 4110 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL; 4111 4112 netdev->vlan_features = lio->dev_capability; 4113 /* Add any unchangeable hw features */ 4114 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER | 4115 NETIF_F_HW_VLAN_CTAG_RX | 4116 NETIF_F_HW_VLAN_CTAG_TX; 4117 4118 netdev->features = (lio->dev_capability & ~NETIF_F_LRO); 4119 4120 netdev->hw_features = lio->dev_capability; 4121 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/ 4122 netdev->hw_features = netdev->hw_features & 4123 ~NETIF_F_HW_VLAN_CTAG_RX; 4124 4125 /* MTU range: 68 - 16000 */ 4126 netdev->min_mtu = LIO_MIN_MTU_SIZE; 4127 netdev->max_mtu = LIO_MAX_MTU_SIZE; 4128 4129 /* Point to the properties for octeon device to which this 4130 * interface belongs. 4131 */ 4132 lio->oct_dev = octeon_dev; 4133 lio->octprops = props; 4134 lio->netdev = netdev; 4135 4136 dev_dbg(&octeon_dev->pci_dev->dev, 4137 "if%d gmx: %d hw_addr: 0x%llx\n", i, 4138 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr)); 4139 4140 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) { 4141 u8 vfmac[ETH_ALEN]; 4142 4143 random_ether_addr(&vfmac[0]); 4144 if (__liquidio_set_vf_mac(netdev, j, 4145 &vfmac[0], false)) { 4146 dev_err(&octeon_dev->pci_dev->dev, 4147 "Error setting VF%d MAC address\n", 4148 j); 4149 goto setup_nic_dev_fail; 4150 } 4151 } 4152 4153 /* 64-bit swap required on LE machines */ 4154 octeon_swap_8B_data(&lio->linfo.hw_addr, 1); 4155 for (j = 0; j < 6; j++) 4156 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j)); 4157 4158 /* Copy MAC Address to OS network device structure */ 4159 4160 ether_addr_copy(netdev->dev_addr, mac); 4161 4162 /* By default all interfaces on a single Octeon uses the same 4163 * tx and rx queues 4164 */ 4165 lio->txq = lio->linfo.txpciq[0].s.q_no; 4166 lio->rxq = lio->linfo.rxpciq[0].s.q_no; 4167 if (setup_io_queues(octeon_dev, i)) { 4168 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n"); 4169 goto setup_nic_dev_fail; 4170 } 4171 4172 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS); 4173 4174 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq); 4175 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq); 4176 4177 if (setup_glists(octeon_dev, lio, num_iqueues)) { 4178 dev_err(&octeon_dev->pci_dev->dev, 4179 "Gather list allocation failed\n"); 4180 goto setup_nic_dev_fail; 4181 } 4182 4183 /* Register ethtool support */ 4184 liquidio_set_ethtool_ops(netdev); 4185 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID) 4186 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT; 4187 else 4188 octeon_dev->priv_flags = 0x0; 4189 4190 if (netdev->features & NETIF_F_LRO) 4191 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 4192 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 4193 4194 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0); 4195 4196 if ((debug != -1) && (debug & NETIF_MSG_HW)) 4197 liquidio_set_feature(netdev, 4198 OCTNET_CMD_VERBOSE_ENABLE, 0); 4199 4200 if (setup_link_status_change_wq(netdev)) 4201 goto setup_nic_dev_fail; 4202 4203 if (setup_rx_oom_poll_fn(netdev)) 4204 goto setup_nic_dev_fail; 4205 4206 /* Register the network device with the OS */ 4207 if (register_netdev(netdev)) { 4208 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n"); 4209 goto setup_nic_dev_fail; 4210 } 4211 4212 dev_dbg(&octeon_dev->pci_dev->dev, 4213 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n", 4214 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 4215 netif_carrier_off(netdev); 4216 lio->link_changes++; 4217 4218 ifstate_set(lio, LIO_IFSTATE_REGISTERED); 4219 4220 /* Sending command to firmware to enable Rx checksum offload 4221 * by default at the time of setup of Liquidio driver for 4222 * this device 4223 */ 4224 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 4225 OCTNET_CMD_RXCSUM_ENABLE); 4226 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL, 4227 OCTNET_CMD_TXCSUM_ENABLE); 4228 4229 dev_dbg(&octeon_dev->pci_dev->dev, 4230 "NIC ifidx:%d Setup successful\n", i); 4231 4232 octeon_free_soft_command(octeon_dev, sc); 4233 } 4234 4235 return 0; 4236 4237 setup_nic_dev_fail: 4238 4239 octeon_free_soft_command(octeon_dev, sc); 4240 4241 setup_nic_wait_intr: 4242 4243 while (i--) { 4244 dev_err(&octeon_dev->pci_dev->dev, 4245 "NIC ifidx:%d Setup failed\n", i); 4246 liquidio_destroy_nic_device(octeon_dev, i); 4247 } 4248 return -ENODEV; 4249 } 4250 4251 #ifdef CONFIG_PCI_IOV 4252 static int octeon_enable_sriov(struct octeon_device *oct) 4253 { 4254 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced; 4255 struct pci_dev *vfdev; 4256 int err; 4257 u32 u; 4258 4259 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) { 4260 err = pci_enable_sriov(oct->pci_dev, 4261 oct->sriov_info.num_vfs_alloced); 4262 if (err) { 4263 dev_err(&oct->pci_dev->dev, 4264 "OCTEON: Failed to enable PCI sriov: %d\n", 4265 err); 4266 oct->sriov_info.num_vfs_alloced = 0; 4267 return err; 4268 } 4269 oct->sriov_info.sriov_enabled = 1; 4270 4271 /* init lookup table that maps DPI ring number to VF pci_dev 4272 * struct pointer 4273 */ 4274 u = 0; 4275 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 4276 OCTEON_CN23XX_VF_VID, NULL); 4277 while (vfdev) { 4278 if (vfdev->is_virtfn && 4279 (vfdev->physfn == oct->pci_dev)) { 4280 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = 4281 vfdev; 4282 u += oct->sriov_info.rings_per_vf; 4283 } 4284 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 4285 OCTEON_CN23XX_VF_VID, vfdev); 4286 } 4287 } 4288 4289 return num_vfs_alloced; 4290 } 4291 4292 static int lio_pci_sriov_disable(struct octeon_device *oct) 4293 { 4294 int u; 4295 4296 if (pci_vfs_assigned(oct->pci_dev)) { 4297 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n"); 4298 return -EPERM; 4299 } 4300 4301 pci_disable_sriov(oct->pci_dev); 4302 4303 u = 0; 4304 while (u < MAX_POSSIBLE_VFS) { 4305 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL; 4306 u += oct->sriov_info.rings_per_vf; 4307 } 4308 4309 oct->sriov_info.num_vfs_alloced = 0; 4310 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n", 4311 oct->pf_num); 4312 4313 return 0; 4314 } 4315 4316 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs) 4317 { 4318 struct octeon_device *oct = pci_get_drvdata(dev); 4319 int ret = 0; 4320 4321 if ((num_vfs == oct->sriov_info.num_vfs_alloced) && 4322 (oct->sriov_info.sriov_enabled)) { 4323 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n", 4324 oct->pf_num, num_vfs); 4325 return 0; 4326 } 4327 4328 if (!num_vfs) { 4329 ret = lio_pci_sriov_disable(oct); 4330 } else if (num_vfs > oct->sriov_info.max_vfs) { 4331 dev_err(&oct->pci_dev->dev, 4332 "OCTEON: Max allowed VFs:%d user requested:%d", 4333 oct->sriov_info.max_vfs, num_vfs); 4334 ret = -EPERM; 4335 } else { 4336 oct->sriov_info.num_vfs_alloced = num_vfs; 4337 ret = octeon_enable_sriov(oct); 4338 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n", 4339 oct->pf_num, num_vfs); 4340 } 4341 4342 return ret; 4343 } 4344 #endif 4345 4346 /** 4347 * \brief initialize the NIC 4348 * @param oct octeon device 4349 * 4350 * This initialization routine is called once the Octeon device application is 4351 * up and running 4352 */ 4353 static int liquidio_init_nic_module(struct octeon_device *oct) 4354 { 4355 int i, retval = 0; 4356 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct)); 4357 4358 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n"); 4359 4360 /* only default iq and oq were initialized 4361 * initialize the rest as well 4362 */ 4363 /* run port_config command for each port */ 4364 oct->ifcount = num_nic_ports; 4365 4366 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports); 4367 4368 for (i = 0; i < MAX_OCTEON_LINKS; i++) 4369 oct->props[i].gmxport = -1; 4370 4371 retval = setup_nic_devices(oct); 4372 if (retval) { 4373 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n"); 4374 goto octnet_init_failure; 4375 } 4376 4377 liquidio_ptp_init(oct); 4378 4379 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n"); 4380 4381 return retval; 4382 4383 octnet_init_failure: 4384 4385 oct->ifcount = 0; 4386 4387 return retval; 4388 } 4389 4390 /** 4391 * \brief starter callback that invokes the remaining initialization work after 4392 * the NIC is up and running. 4393 * @param octptr work struct work_struct 4394 */ 4395 static void nic_starter(struct work_struct *work) 4396 { 4397 struct octeon_device *oct; 4398 struct cavium_wk *wk = (struct cavium_wk *)work; 4399 4400 oct = (struct octeon_device *)wk->ctxptr; 4401 4402 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) 4403 return; 4404 4405 /* If the status of the device is CORE_OK, the core 4406 * application has reported its application type. Call 4407 * any registered handlers now and move to the RUNNING 4408 * state. 4409 */ 4410 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) { 4411 schedule_delayed_work(&oct->nic_poll_work.work, 4412 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4413 return; 4414 } 4415 4416 atomic_set(&oct->status, OCT_DEV_RUNNING); 4417 4418 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) { 4419 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n"); 4420 4421 if (liquidio_init_nic_module(oct)) 4422 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n"); 4423 else 4424 handshake[oct->octeon_id].started_ok = 1; 4425 } else { 4426 dev_err(&oct->pci_dev->dev, 4427 "Unexpected application running on NIC (%d). Check firmware.\n", 4428 oct->app_mode); 4429 } 4430 4431 complete(&handshake[oct->octeon_id].started); 4432 } 4433 4434 static int 4435 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf) 4436 { 4437 struct octeon_device *oct = (struct octeon_device *)buf; 4438 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 4439 int i, notice, vf_idx; 4440 bool cores_crashed; 4441 u64 *data, vf_num; 4442 4443 notice = recv_pkt->rh.r.ossp; 4444 data = (u64 *)get_rbd(recv_pkt->buffer_ptr[0]); 4445 4446 /* the first 64-bit word of data is the vf_num */ 4447 vf_num = data[0]; 4448 octeon_swap_8B_data(&vf_num, 1); 4449 vf_idx = (int)vf_num - 1; 4450 4451 cores_crashed = READ_ONCE(oct->cores_crashed); 4452 4453 if (notice == VF_DRV_LOADED) { 4454 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) { 4455 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx); 4456 dev_info(&oct->pci_dev->dev, 4457 "driver for VF%d was loaded\n", vf_idx); 4458 if (!cores_crashed) 4459 try_module_get(THIS_MODULE); 4460 } 4461 } else if (notice == VF_DRV_REMOVED) { 4462 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) { 4463 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx); 4464 dev_info(&oct->pci_dev->dev, 4465 "driver for VF%d was removed\n", vf_idx); 4466 if (!cores_crashed) 4467 module_put(THIS_MODULE); 4468 } 4469 } else if (notice == VF_DRV_MACADDR_CHANGED) { 4470 u8 *b = (u8 *)&data[1]; 4471 4472 oct->sriov_info.vf_macaddr[vf_idx] = data[1]; 4473 dev_info(&oct->pci_dev->dev, 4474 "VF driver changed VF%d's MAC address to %pM\n", 4475 vf_idx, b + 2); 4476 } 4477 4478 for (i = 0; i < recv_pkt->buffer_count; i++) 4479 recv_buffer_free(recv_pkt->buffer_ptr[i]); 4480 octeon_free_recv_info(recv_info); 4481 4482 return 0; 4483 } 4484 4485 /** 4486 * \brief Device initialization for each Octeon device that is probed 4487 * @param octeon_dev octeon device 4488 */ 4489 static int octeon_device_init(struct octeon_device *octeon_dev) 4490 { 4491 int j, ret; 4492 int fw_loaded = 0; 4493 char bootcmd[] = "\n"; 4494 struct octeon_device_priv *oct_priv = 4495 (struct octeon_device_priv *)octeon_dev->priv; 4496 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE); 4497 4498 /* Enable access to the octeon device and make its DMA capability 4499 * known to the OS. 4500 */ 4501 if (octeon_pci_os_setup(octeon_dev)) 4502 return 1; 4503 4504 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE); 4505 4506 /* Identify the Octeon type and map the BAR address space. */ 4507 if (octeon_chip_specific_setup(octeon_dev)) { 4508 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n"); 4509 return 1; 4510 } 4511 4512 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE); 4513 4514 octeon_dev->app_mode = CVM_DRV_INVALID_APP; 4515 4516 if (OCTEON_CN23XX_PF(octeon_dev)) { 4517 if (!cn23xx_fw_loaded(octeon_dev)) { 4518 fw_loaded = 0; 4519 if (!fw_type_is_none()) { 4520 /* Do a soft reset of the Octeon device. */ 4521 if (octeon_dev->fn_list.soft_reset(octeon_dev)) 4522 return 1; 4523 /* things might have changed */ 4524 if (!cn23xx_fw_loaded(octeon_dev)) 4525 fw_loaded = 0; 4526 else 4527 fw_loaded = 1; 4528 } 4529 } else { 4530 fw_loaded = 1; 4531 } 4532 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) { 4533 return 1; 4534 } 4535 4536 /* Initialize the dispatch mechanism used to push packets arriving on 4537 * Octeon Output queues. 4538 */ 4539 if (octeon_init_dispatch_list(octeon_dev)) 4540 return 1; 4541 4542 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4543 OPCODE_NIC_CORE_DRV_ACTIVE, 4544 octeon_core_drv_init, 4545 octeon_dev); 4546 4547 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4548 OPCODE_NIC_VF_DRV_NOTICE, 4549 octeon_recv_vf_drv_notice, octeon_dev); 4550 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter); 4551 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev; 4552 schedule_delayed_work(&octeon_dev->nic_poll_work.work, 4553 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4554 4555 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE); 4556 4557 if (octeon_set_io_queues_off(octeon_dev)) { 4558 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n"); 4559 return 1; 4560 } 4561 4562 if (OCTEON_CN23XX_PF(octeon_dev)) { 4563 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4564 if (ret) { 4565 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n"); 4566 return ret; 4567 } 4568 } 4569 4570 /* Initialize soft command buffer pool 4571 */ 4572 if (octeon_setup_sc_buffer_pool(octeon_dev)) { 4573 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n"); 4574 return 1; 4575 } 4576 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE); 4577 4578 /* Setup the data structures that manage this Octeon's Input queues. */ 4579 if (octeon_setup_instr_queues(octeon_dev)) { 4580 dev_err(&octeon_dev->pci_dev->dev, 4581 "instruction queue initialization failed\n"); 4582 return 1; 4583 } 4584 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE); 4585 4586 /* Initialize lists to manage the requests of different types that 4587 * arrive from user & kernel applications for this octeon device. 4588 */ 4589 if (octeon_setup_response_list(octeon_dev)) { 4590 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n"); 4591 return 1; 4592 } 4593 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE); 4594 4595 if (octeon_setup_output_queues(octeon_dev)) { 4596 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n"); 4597 return 1; 4598 } 4599 4600 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE); 4601 4602 if (OCTEON_CN23XX_PF(octeon_dev)) { 4603 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) { 4604 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n"); 4605 return 1; 4606 } 4607 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE); 4608 4609 if (octeon_allocate_ioq_vector(octeon_dev)) { 4610 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n"); 4611 return 1; 4612 } 4613 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE); 4614 4615 } else { 4616 /* The input and output queue registers were setup earlier (the 4617 * queues were not enabled). Any additional registers 4618 * that need to be programmed should be done now. 4619 */ 4620 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4621 if (ret) { 4622 dev_err(&octeon_dev->pci_dev->dev, 4623 "Failed to configure device registers\n"); 4624 return ret; 4625 } 4626 } 4627 4628 /* Initialize the tasklet that handles output queue packet processing.*/ 4629 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n"); 4630 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh, 4631 (unsigned long)octeon_dev); 4632 4633 /* Setup the interrupt handler and record the INT SUM register address 4634 */ 4635 if (octeon_setup_interrupt(octeon_dev)) 4636 return 1; 4637 4638 /* Enable Octeon device interrupts */ 4639 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR); 4640 4641 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE); 4642 4643 /* Enable the input and output queues for this Octeon device */ 4644 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev); 4645 if (ret) { 4646 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues"); 4647 return ret; 4648 } 4649 4650 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE); 4651 4652 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) { 4653 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n"); 4654 if (!ddr_timeout) { 4655 dev_info(&octeon_dev->pci_dev->dev, 4656 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n"); 4657 } 4658 4659 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS); 4660 4661 /* Wait for the octeon to initialize DDR after the soft-reset.*/ 4662 while (!ddr_timeout) { 4663 set_current_state(TASK_INTERRUPTIBLE); 4664 if (schedule_timeout(HZ / 10)) { 4665 /* user probably pressed Control-C */ 4666 return 1; 4667 } 4668 } 4669 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout); 4670 if (ret) { 4671 dev_err(&octeon_dev->pci_dev->dev, 4672 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n", 4673 ret); 4674 return 1; 4675 } 4676 4677 if (octeon_wait_for_bootloader(octeon_dev, 1000)) { 4678 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n"); 4679 return 1; 4680 } 4681 4682 /* Divert uboot to take commands from host instead. */ 4683 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50); 4684 4685 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n"); 4686 ret = octeon_init_consoles(octeon_dev); 4687 if (ret) { 4688 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n"); 4689 return 1; 4690 } 4691 ret = octeon_add_console(octeon_dev, 0); 4692 if (ret) { 4693 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n"); 4694 return 1; 4695 } 4696 4697 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE); 4698 4699 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n"); 4700 ret = load_firmware(octeon_dev); 4701 if (ret) { 4702 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n"); 4703 return 1; 4704 } 4705 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is 4706 * loaded 4707 */ 4708 if (OCTEON_CN23XX_PF(octeon_dev)) 4709 octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1, 4710 2ULL); 4711 } 4712 4713 handshake[octeon_dev->octeon_id].init_ok = 1; 4714 complete(&handshake[octeon_dev->octeon_id].init); 4715 4716 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK); 4717 4718 /* Send Credit for Octeon Output queues. Credits are always sent after 4719 * the output queue is enabled. 4720 */ 4721 for (j = 0; j < octeon_dev->num_oqs; j++) 4722 writel(octeon_dev->droq[j]->max_count, 4723 octeon_dev->droq[j]->pkts_credit_reg); 4724 4725 /* Packets can start arriving on the output queues from this point. */ 4726 return 0; 4727 } 4728 4729 /** 4730 * \brief Exits the module 4731 */ 4732 static void __exit liquidio_exit(void) 4733 { 4734 liquidio_deinit_pci(); 4735 4736 pr_info("LiquidIO network module is now unloaded\n"); 4737 } 4738 4739 module_init(liquidio_init); 4740 module_exit(liquidio_exit); 4741