1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/module.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/firmware.h>
22 #include <net/vxlan.h>
23 #include <linux/kthread.h>
24 #include "liquidio_common.h"
25 #include "octeon_droq.h"
26 #include "octeon_iq.h"
27 #include "response_manager.h"
28 #include "octeon_device.h"
29 #include "octeon_nic.h"
30 #include "octeon_main.h"
31 #include "octeon_network.h"
32 #include "cn66xx_regs.h"
33 #include "cn66xx_device.h"
34 #include "cn68xx_device.h"
35 #include "cn23xx_pf_device.h"
36 #include "liquidio_image.h"
37 
38 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
39 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
40 MODULE_LICENSE("GPL");
41 MODULE_VERSION(LIQUIDIO_VERSION);
42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
45 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX);
46 
47 static int ddr_timeout = 10000;
48 module_param(ddr_timeout, int, 0644);
49 MODULE_PARM_DESC(ddr_timeout,
50 		 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
51 
52 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
53 
54 static int debug = -1;
55 module_param(debug, int, 0644);
56 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
57 
58 static char fw_type[LIO_MAX_FW_TYPE_LEN];
59 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
60 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
61 
62 static int ptp_enable = 1;
63 
64 /* Polling interval for determining when NIC application is alive */
65 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
66 
67 /* runtime link query interval */
68 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
69 
70 struct liquidio_if_cfg_context {
71 	int octeon_id;
72 
73 	wait_queue_head_t wc;
74 
75 	int cond;
76 };
77 
78 struct liquidio_if_cfg_resp {
79 	u64 rh;
80 	struct liquidio_if_cfg_info cfg_info;
81 	u64 status;
82 };
83 
84 struct liquidio_rx_ctl_context {
85 	int octeon_id;
86 
87 	wait_queue_head_t wc;
88 
89 	int cond;
90 };
91 
92 struct oct_link_status_resp {
93 	u64 rh;
94 	struct oct_link_info link_info;
95 	u64 status;
96 };
97 
98 struct oct_timestamp_resp {
99 	u64 rh;
100 	u64 timestamp;
101 	u64 status;
102 };
103 
104 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
105 
106 union tx_info {
107 	u64 u64;
108 	struct {
109 #ifdef __BIG_ENDIAN_BITFIELD
110 		u16 gso_size;
111 		u16 gso_segs;
112 		u32 reserved;
113 #else
114 		u32 reserved;
115 		u16 gso_segs;
116 		u16 gso_size;
117 #endif
118 	} s;
119 };
120 
121 /** Octeon device properties to be used by the NIC module.
122  * Each octeon device in the system will be represented
123  * by this structure in the NIC module.
124  */
125 
126 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
127 
128 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
129 #define OCTNIC_GSO_MAX_SIZE                                                    \
130 	(CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE)
131 
132 /** Structure of a node in list of gather components maintained by
133  * NIC driver for each network device.
134  */
135 struct octnic_gather {
136 	/** List manipulation. Next and prev pointers. */
137 	struct list_head list;
138 
139 	/** Size of the gather component at sg in bytes. */
140 	int sg_size;
141 
142 	/** Number of bytes that sg was adjusted to make it 8B-aligned. */
143 	int adjust;
144 
145 	/** Gather component that can accommodate max sized fragment list
146 	 *  received from the IP layer.
147 	 */
148 	struct octeon_sg_entry *sg;
149 
150 	dma_addr_t sg_dma_ptr;
151 };
152 
153 struct handshake {
154 	struct completion init;
155 	struct completion started;
156 	struct pci_dev *pci_dev;
157 	int init_ok;
158 	int started_ok;
159 };
160 
161 struct octeon_device_priv {
162 	/** Tasklet structures for this device. */
163 	struct tasklet_struct droq_tasklet;
164 	unsigned long napi_mask;
165 };
166 
167 #ifdef CONFIG_PCI_IOV
168 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs);
169 #endif
170 
171 static int octeon_device_init(struct octeon_device *);
172 static int liquidio_stop(struct net_device *netdev);
173 static void liquidio_remove(struct pci_dev *pdev);
174 static int liquidio_probe(struct pci_dev *pdev,
175 			  const struct pci_device_id *ent);
176 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx,
177 				      int linkstate);
178 
179 static struct handshake handshake[MAX_OCTEON_DEVICES];
180 static struct completion first_stage;
181 
182 static void octeon_droq_bh(unsigned long pdev)
183 {
184 	int q_no;
185 	int reschedule = 0;
186 	struct octeon_device *oct = (struct octeon_device *)pdev;
187 	struct octeon_device_priv *oct_priv =
188 		(struct octeon_device_priv *)oct->priv;
189 
190 	for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) {
191 		if (!(oct->io_qmask.oq & BIT_ULL(q_no)))
192 			continue;
193 		reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
194 							  MAX_PACKET_BUDGET);
195 		lio_enable_irq(oct->droq[q_no], NULL);
196 
197 		if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
198 			/* set time and cnt interrupt thresholds for this DROQ
199 			 * for NAPI
200 			 */
201 			int adjusted_q_no = q_no + oct->sriov_info.pf_srn;
202 
203 			octeon_write_csr64(
204 			    oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no),
205 			    0x5700000040ULL);
206 			octeon_write_csr64(
207 			    oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0);
208 		}
209 	}
210 
211 	if (reschedule)
212 		tasklet_schedule(&oct_priv->droq_tasklet);
213 }
214 
215 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
216 {
217 	struct octeon_device_priv *oct_priv =
218 		(struct octeon_device_priv *)oct->priv;
219 	int retry = 100, pkt_cnt = 0, pending_pkts = 0;
220 	int i;
221 
222 	do {
223 		pending_pkts = 0;
224 
225 		for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
226 			if (!(oct->io_qmask.oq & BIT_ULL(i)))
227 				continue;
228 			pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]);
229 		}
230 		if (pkt_cnt > 0) {
231 			pending_pkts += pkt_cnt;
232 			tasklet_schedule(&oct_priv->droq_tasklet);
233 		}
234 		pkt_cnt = 0;
235 		schedule_timeout_uninterruptible(1);
236 
237 	} while (retry-- && pending_pkts);
238 
239 	return pkt_cnt;
240 }
241 
242 /**
243  * \brief Forces all IO queues off on a given device
244  * @param oct Pointer to Octeon device
245  */
246 static void force_io_queues_off(struct octeon_device *oct)
247 {
248 	if ((oct->chip_id == OCTEON_CN66XX) ||
249 	    (oct->chip_id == OCTEON_CN68XX)) {
250 		/* Reset the Enable bits for Input Queues. */
251 		octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
252 
253 		/* Reset the Enable bits for Output Queues. */
254 		octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
255 	}
256 }
257 
258 /**
259  * \brief wait for all pending requests to complete
260  * @param oct Pointer to Octeon device
261  *
262  * Called during shutdown sequence
263  */
264 static int wait_for_pending_requests(struct octeon_device *oct)
265 {
266 	int i, pcount = 0;
267 
268 	for (i = 0; i < 100; i++) {
269 		pcount =
270 			atomic_read(&oct->response_list
271 				[OCTEON_ORDERED_SC_LIST].pending_req_count);
272 		if (pcount)
273 			schedule_timeout_uninterruptible(HZ / 10);
274 		else
275 			break;
276 	}
277 
278 	if (pcount)
279 		return 1;
280 
281 	return 0;
282 }
283 
284 /**
285  * \brief Cause device to go quiet so it can be safely removed/reset/etc
286  * @param oct Pointer to Octeon device
287  */
288 static inline void pcierror_quiesce_device(struct octeon_device *oct)
289 {
290 	int i;
291 
292 	/* Disable the input and output queues now. No more packets will
293 	 * arrive from Octeon, but we should wait for all packet processing
294 	 * to finish.
295 	 */
296 	force_io_queues_off(oct);
297 
298 	/* To allow for in-flight requests */
299 	schedule_timeout_uninterruptible(100);
300 
301 	if (wait_for_pending_requests(oct))
302 		dev_err(&oct->pci_dev->dev, "There were pending requests\n");
303 
304 	/* Force all requests waiting to be fetched by OCTEON to complete. */
305 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
306 		struct octeon_instr_queue *iq;
307 
308 		if (!(oct->io_qmask.iq & BIT_ULL(i)))
309 			continue;
310 		iq = oct->instr_queue[i];
311 
312 		if (atomic_read(&iq->instr_pending)) {
313 			spin_lock_bh(&iq->lock);
314 			iq->fill_cnt = 0;
315 			iq->octeon_read_index = iq->host_write_index;
316 			iq->stats.instr_processed +=
317 				atomic_read(&iq->instr_pending);
318 			lio_process_iq_request_list(oct, iq, 0);
319 			spin_unlock_bh(&iq->lock);
320 		}
321 	}
322 
323 	/* Force all pending ordered list requests to time out. */
324 	lio_process_ordered_list(oct, 1);
325 
326 	/* We do not need to wait for output queue packets to be processed. */
327 }
328 
329 /**
330  * \brief Cleanup PCI AER uncorrectable error status
331  * @param dev Pointer to PCI device
332  */
333 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
334 {
335 	int pos = 0x100;
336 	u32 status, mask;
337 
338 	pr_info("%s :\n", __func__);
339 
340 	pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
341 	pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
342 	if (dev->error_state == pci_channel_io_normal)
343 		status &= ~mask;        /* Clear corresponding nonfatal bits */
344 	else
345 		status &= mask;         /* Clear corresponding fatal bits */
346 	pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
347 }
348 
349 /**
350  * \brief Stop all PCI IO to a given device
351  * @param dev Pointer to Octeon device
352  */
353 static void stop_pci_io(struct octeon_device *oct)
354 {
355 	/* No more instructions will be forwarded. */
356 	atomic_set(&oct->status, OCT_DEV_IN_RESET);
357 
358 	pci_disable_device(oct->pci_dev);
359 
360 	/* Disable interrupts  */
361 	oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
362 
363 	pcierror_quiesce_device(oct);
364 
365 	/* Release the interrupt line */
366 	free_irq(oct->pci_dev->irq, oct);
367 
368 	if (oct->flags & LIO_FLAG_MSI_ENABLED)
369 		pci_disable_msi(oct->pci_dev);
370 
371 	dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
372 		lio_get_state_string(&oct->status));
373 
374 	/* making it a common function for all OCTEON models */
375 	cleanup_aer_uncorrect_error_status(oct->pci_dev);
376 }
377 
378 /**
379  * \brief called when PCI error is detected
380  * @param pdev Pointer to PCI device
381  * @param state The current pci connection state
382  *
383  * This function is called after a PCI bus error affecting
384  * this device has been detected.
385  */
386 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
387 						     pci_channel_state_t state)
388 {
389 	struct octeon_device *oct = pci_get_drvdata(pdev);
390 
391 	/* Non-correctable Non-fatal errors */
392 	if (state == pci_channel_io_normal) {
393 		dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
394 		cleanup_aer_uncorrect_error_status(oct->pci_dev);
395 		return PCI_ERS_RESULT_CAN_RECOVER;
396 	}
397 
398 	/* Non-correctable Fatal errors */
399 	dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
400 	stop_pci_io(oct);
401 
402 	/* Always return a DISCONNECT. There is no support for recovery but only
403 	 * for a clean shutdown.
404 	 */
405 	return PCI_ERS_RESULT_DISCONNECT;
406 }
407 
408 /**
409  * \brief mmio handler
410  * @param pdev Pointer to PCI device
411  */
412 static pci_ers_result_t liquidio_pcie_mmio_enabled(
413 				struct pci_dev *pdev __attribute__((unused)))
414 {
415 	/* We should never hit this since we never ask for a reset for a Fatal
416 	 * Error. We always return DISCONNECT in io_error above.
417 	 * But play safe and return RECOVERED for now.
418 	 */
419 	return PCI_ERS_RESULT_RECOVERED;
420 }
421 
422 /**
423  * \brief called after the pci bus has been reset.
424  * @param pdev Pointer to PCI device
425  *
426  * Restart the card from scratch, as if from a cold-boot. Implementation
427  * resembles the first-half of the octeon_resume routine.
428  */
429 static pci_ers_result_t liquidio_pcie_slot_reset(
430 				struct pci_dev *pdev __attribute__((unused)))
431 {
432 	/* We should never hit this since we never ask for a reset for a Fatal
433 	 * Error. We always return DISCONNECT in io_error above.
434 	 * But play safe and return RECOVERED for now.
435 	 */
436 	return PCI_ERS_RESULT_RECOVERED;
437 }
438 
439 /**
440  * \brief called when traffic can start flowing again.
441  * @param pdev Pointer to PCI device
442  *
443  * This callback is called when the error recovery driver tells us that
444  * its OK to resume normal operation. Implementation resembles the
445  * second-half of the octeon_resume routine.
446  */
447 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused)))
448 {
449 	/* Nothing to be done here. */
450 }
451 
452 #ifdef CONFIG_PM
453 /**
454  * \brief called when suspending
455  * @param pdev Pointer to PCI device
456  * @param state state to suspend to
457  */
458 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)),
459 			    pm_message_t state __attribute__((unused)))
460 {
461 	return 0;
462 }
463 
464 /**
465  * \brief called when resuming
466  * @param pdev Pointer to PCI device
467  */
468 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused)))
469 {
470 	return 0;
471 }
472 #endif
473 
474 /* For PCI-E Advanced Error Recovery (AER) Interface */
475 static const struct pci_error_handlers liquidio_err_handler = {
476 	.error_detected = liquidio_pcie_error_detected,
477 	.mmio_enabled	= liquidio_pcie_mmio_enabled,
478 	.slot_reset	= liquidio_pcie_slot_reset,
479 	.resume		= liquidio_pcie_resume,
480 };
481 
482 static const struct pci_device_id liquidio_pci_tbl[] = {
483 	{       /* 68xx */
484 		PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
485 	},
486 	{       /* 66xx */
487 		PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
488 	},
489 	{       /* 23xx pf */
490 		PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
491 	},
492 	{
493 		0, 0, 0, 0, 0, 0, 0
494 	}
495 };
496 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
497 
498 static struct pci_driver liquidio_pci_driver = {
499 	.name		= "LiquidIO",
500 	.id_table	= liquidio_pci_tbl,
501 	.probe		= liquidio_probe,
502 	.remove		= liquidio_remove,
503 	.err_handler	= &liquidio_err_handler,    /* For AER */
504 
505 #ifdef CONFIG_PM
506 	.suspend	= liquidio_suspend,
507 	.resume		= liquidio_resume,
508 #endif
509 #ifdef CONFIG_PCI_IOV
510 	.sriov_configure = liquidio_enable_sriov,
511 #endif
512 };
513 
514 /**
515  * \brief register PCI driver
516  */
517 static int liquidio_init_pci(void)
518 {
519 	return pci_register_driver(&liquidio_pci_driver);
520 }
521 
522 /**
523  * \brief unregister PCI driver
524  */
525 static void liquidio_deinit_pci(void)
526 {
527 	pci_unregister_driver(&liquidio_pci_driver);
528 }
529 
530 /**
531  * \brief Stop Tx queues
532  * @param netdev network device
533  */
534 static inline void txqs_stop(struct net_device *netdev)
535 {
536 	if (netif_is_multiqueue(netdev)) {
537 		int i;
538 
539 		for (i = 0; i < netdev->num_tx_queues; i++)
540 			netif_stop_subqueue(netdev, i);
541 	} else {
542 		netif_stop_queue(netdev);
543 	}
544 }
545 
546 /**
547  * \brief Start Tx queues
548  * @param netdev network device
549  */
550 static inline void txqs_start(struct net_device *netdev)
551 {
552 	if (netif_is_multiqueue(netdev)) {
553 		int i;
554 
555 		for (i = 0; i < netdev->num_tx_queues; i++)
556 			netif_start_subqueue(netdev, i);
557 	} else {
558 		netif_start_queue(netdev);
559 	}
560 }
561 
562 /**
563  * \brief Wake Tx queues
564  * @param netdev network device
565  */
566 static inline void txqs_wake(struct net_device *netdev)
567 {
568 	struct lio *lio = GET_LIO(netdev);
569 
570 	if (netif_is_multiqueue(netdev)) {
571 		int i;
572 
573 		for (i = 0; i < netdev->num_tx_queues; i++) {
574 			int qno = lio->linfo.txpciq[i %
575 				(lio->linfo.num_txpciq)].s.q_no;
576 
577 			if (__netif_subqueue_stopped(netdev, i)) {
578 				INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno,
579 							  tx_restart, 1);
580 				netif_wake_subqueue(netdev, i);
581 			}
582 		}
583 	} else {
584 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
585 					  tx_restart, 1);
586 		netif_wake_queue(netdev);
587 	}
588 }
589 
590 /**
591  * \brief Stop Tx queue
592  * @param netdev network device
593  */
594 static void stop_txq(struct net_device *netdev)
595 {
596 	txqs_stop(netdev);
597 }
598 
599 /**
600  * \brief Start Tx queue
601  * @param netdev network device
602  */
603 static void start_txq(struct net_device *netdev)
604 {
605 	struct lio *lio = GET_LIO(netdev);
606 
607 	if (lio->linfo.link.s.link_up) {
608 		txqs_start(netdev);
609 		return;
610 	}
611 }
612 
613 /**
614  * \brief Wake a queue
615  * @param netdev network device
616  * @param q which queue to wake
617  */
618 static inline void wake_q(struct net_device *netdev, int q)
619 {
620 	if (netif_is_multiqueue(netdev))
621 		netif_wake_subqueue(netdev, q);
622 	else
623 		netif_wake_queue(netdev);
624 }
625 
626 /**
627  * \brief Stop a queue
628  * @param netdev network device
629  * @param q which queue to stop
630  */
631 static inline void stop_q(struct net_device *netdev, int q)
632 {
633 	if (netif_is_multiqueue(netdev))
634 		netif_stop_subqueue(netdev, q);
635 	else
636 		netif_stop_queue(netdev);
637 }
638 
639 /**
640  * \brief Check Tx queue status, and take appropriate action
641  * @param lio per-network private data
642  * @returns 0 if full, number of queues woken up otherwise
643  */
644 static inline int check_txq_status(struct lio *lio)
645 {
646 	int ret_val = 0;
647 
648 	if (netif_is_multiqueue(lio->netdev)) {
649 		int numqs = lio->netdev->num_tx_queues;
650 		int q, iq = 0;
651 
652 		/* check each sub-queue state */
653 		for (q = 0; q < numqs; q++) {
654 			iq = lio->linfo.txpciq[q %
655 				(lio->linfo.num_txpciq)].s.q_no;
656 			if (octnet_iq_is_full(lio->oct_dev, iq))
657 				continue;
658 			if (__netif_subqueue_stopped(lio->netdev, q)) {
659 				wake_q(lio->netdev, q);
660 				INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq,
661 							  tx_restart, 1);
662 				ret_val++;
663 			}
664 		}
665 	} else {
666 		if (octnet_iq_is_full(lio->oct_dev, lio->txq))
667 			return 0;
668 		wake_q(lio->netdev, lio->txq);
669 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq,
670 					  tx_restart, 1);
671 		ret_val = 1;
672 	}
673 	return ret_val;
674 }
675 
676 /**
677  * Remove the node at the head of the list. The list would be empty at
678  * the end of this call if there are no more nodes in the list.
679  */
680 static inline struct list_head *list_delete_head(struct list_head *root)
681 {
682 	struct list_head *node;
683 
684 	if ((root->prev == root) && (root->next == root))
685 		node = NULL;
686 	else
687 		node = root->next;
688 
689 	if (node)
690 		list_del(node);
691 
692 	return node;
693 }
694 
695 /**
696  * \brief Delete gather lists
697  * @param lio per-network private data
698  */
699 static void delete_glists(struct lio *lio)
700 {
701 	struct octnic_gather *g;
702 	int i;
703 
704 	kfree(lio->glist_lock);
705 	lio->glist_lock = NULL;
706 
707 	if (!lio->glist)
708 		return;
709 
710 	for (i = 0; i < lio->linfo.num_txpciq; i++) {
711 		do {
712 			g = (struct octnic_gather *)
713 				list_delete_head(&lio->glist[i]);
714 			if (g)
715 				kfree(g);
716 		} while (g);
717 
718 		if (lio->glists_virt_base && lio->glists_virt_base[i] &&
719 		    lio->glists_dma_base && lio->glists_dma_base[i]) {
720 			lio_dma_free(lio->oct_dev,
721 				     lio->glist_entry_size * lio->tx_qsize,
722 				     lio->glists_virt_base[i],
723 				     lio->glists_dma_base[i]);
724 		}
725 	}
726 
727 	kfree(lio->glists_virt_base);
728 	lio->glists_virt_base = NULL;
729 
730 	kfree(lio->glists_dma_base);
731 	lio->glists_dma_base = NULL;
732 
733 	kfree(lio->glist);
734 	lio->glist = NULL;
735 }
736 
737 /**
738  * \brief Setup gather lists
739  * @param lio per-network private data
740  */
741 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs)
742 {
743 	int i, j;
744 	struct octnic_gather *g;
745 
746 	lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock),
747 				  GFP_KERNEL);
748 	if (!lio->glist_lock)
749 		return -ENOMEM;
750 
751 	lio->glist = kcalloc(num_iqs, sizeof(*lio->glist),
752 			     GFP_KERNEL);
753 	if (!lio->glist) {
754 		kfree(lio->glist_lock);
755 		lio->glist_lock = NULL;
756 		return -ENOMEM;
757 	}
758 
759 	lio->glist_entry_size =
760 		ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
761 
762 	/* allocate memory to store virtual and dma base address of
763 	 * per glist consistent memory
764 	 */
765 	lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base),
766 					GFP_KERNEL);
767 	lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base),
768 				       GFP_KERNEL);
769 
770 	if (!lio->glists_virt_base || !lio->glists_dma_base) {
771 		delete_glists(lio);
772 		return -ENOMEM;
773 	}
774 
775 	for (i = 0; i < num_iqs; i++) {
776 		int numa_node = dev_to_node(&oct->pci_dev->dev);
777 
778 		spin_lock_init(&lio->glist_lock[i]);
779 
780 		INIT_LIST_HEAD(&lio->glist[i]);
781 
782 		lio->glists_virt_base[i] =
783 			lio_dma_alloc(oct,
784 				      lio->glist_entry_size * lio->tx_qsize,
785 				      &lio->glists_dma_base[i]);
786 
787 		if (!lio->glists_virt_base[i]) {
788 			delete_glists(lio);
789 			return -ENOMEM;
790 		}
791 
792 		for (j = 0; j < lio->tx_qsize; j++) {
793 			g = kzalloc_node(sizeof(*g), GFP_KERNEL,
794 					 numa_node);
795 			if (!g)
796 				g = kzalloc(sizeof(*g), GFP_KERNEL);
797 			if (!g)
798 				break;
799 
800 			g->sg = lio->glists_virt_base[i] +
801 				(j * lio->glist_entry_size);
802 
803 			g->sg_dma_ptr = lio->glists_dma_base[i] +
804 					(j * lio->glist_entry_size);
805 
806 			list_add_tail(&g->list, &lio->glist[i]);
807 		}
808 
809 		if (j != lio->tx_qsize) {
810 			delete_glists(lio);
811 			return -ENOMEM;
812 		}
813 	}
814 
815 	return 0;
816 }
817 
818 /**
819  * \brief Print link information
820  * @param netdev network device
821  */
822 static void print_link_info(struct net_device *netdev)
823 {
824 	struct lio *lio = GET_LIO(netdev);
825 
826 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
827 		struct oct_link_info *linfo = &lio->linfo;
828 
829 		if (linfo->link.s.link_up) {
830 			netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
831 				   linfo->link.s.speed,
832 				   (linfo->link.s.duplex) ? "Full" : "Half");
833 		} else {
834 			netif_info(lio, link, lio->netdev, "Link Down\n");
835 		}
836 	}
837 }
838 
839 /**
840  * \brief Routine to notify MTU change
841  * @param work work_struct data structure
842  */
843 static void octnet_link_status_change(struct work_struct *work)
844 {
845 	struct cavium_wk *wk = (struct cavium_wk *)work;
846 	struct lio *lio = (struct lio *)wk->ctxptr;
847 
848 	rtnl_lock();
849 	call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev);
850 	rtnl_unlock();
851 }
852 
853 /**
854  * \brief Sets up the mtu status change work
855  * @param netdev network device
856  */
857 static inline int setup_link_status_change_wq(struct net_device *netdev)
858 {
859 	struct lio *lio = GET_LIO(netdev);
860 	struct octeon_device *oct = lio->oct_dev;
861 
862 	lio->link_status_wq.wq = alloc_workqueue("link-status",
863 						 WQ_MEM_RECLAIM, 0);
864 	if (!lio->link_status_wq.wq) {
865 		dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n");
866 		return -1;
867 	}
868 	INIT_DELAYED_WORK(&lio->link_status_wq.wk.work,
869 			  octnet_link_status_change);
870 	lio->link_status_wq.wk.ctxptr = lio;
871 
872 	return 0;
873 }
874 
875 static inline void cleanup_link_status_change_wq(struct net_device *netdev)
876 {
877 	struct lio *lio = GET_LIO(netdev);
878 
879 	if (lio->link_status_wq.wq) {
880 		cancel_delayed_work_sync(&lio->link_status_wq.wk.work);
881 		destroy_workqueue(lio->link_status_wq.wq);
882 	}
883 }
884 
885 /**
886  * \brief Update link status
887  * @param netdev network device
888  * @param ls link status structure
889  *
890  * Called on receipt of a link status response from the core application to
891  * update each interface's link status.
892  */
893 static inline void update_link_status(struct net_device *netdev,
894 				      union oct_link_status *ls)
895 {
896 	struct lio *lio = GET_LIO(netdev);
897 	int changed = (lio->linfo.link.u64 != ls->u64);
898 
899 	lio->linfo.link.u64 = ls->u64;
900 
901 	if ((lio->intf_open) && (changed)) {
902 		print_link_info(netdev);
903 		lio->link_changes++;
904 
905 		if (lio->linfo.link.s.link_up) {
906 			netif_carrier_on(netdev);
907 			txqs_wake(netdev);
908 		} else {
909 			netif_carrier_off(netdev);
910 			stop_txq(netdev);
911 		}
912 	}
913 }
914 
915 /* Runs in interrupt context. */
916 static void update_txq_status(struct octeon_device *oct, int iq_num)
917 {
918 	struct net_device *netdev;
919 	struct lio *lio;
920 	struct octeon_instr_queue *iq = oct->instr_queue[iq_num];
921 
922 	netdev = oct->props[iq->ifidx].netdev;
923 
924 	/* This is needed because the first IQ does not have
925 	 * a netdev associated with it.
926 	 */
927 	if (!netdev)
928 		return;
929 
930 	lio = GET_LIO(netdev);
931 	if (netif_is_multiqueue(netdev)) {
932 		if (__netif_subqueue_stopped(netdev, iq->q_index) &&
933 		    lio->linfo.link.s.link_up &&
934 		    (!octnet_iq_is_full(oct, iq_num))) {
935 			INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num,
936 						  tx_restart, 1);
937 			netif_wake_subqueue(netdev, iq->q_index);
938 		}
939 	} else if (netif_queue_stopped(netdev) &&
940 		   lio->linfo.link.s.link_up &&
941 		   (!octnet_iq_is_full(oct, lio->txq))) {
942 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev,
943 					  lio->txq, tx_restart, 1);
944 		netif_wake_queue(netdev);
945 	}
946 }
947 
948 static
949 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret)
950 {
951 	struct octeon_device *oct = droq->oct_dev;
952 	struct octeon_device_priv *oct_priv =
953 	    (struct octeon_device_priv *)oct->priv;
954 
955 	if (droq->ops.poll_mode) {
956 		droq->ops.napi_fn(droq);
957 	} else {
958 		if (ret & MSIX_PO_INT) {
959 			tasklet_schedule(&oct_priv->droq_tasklet);
960 			return 1;
961 		}
962 		/* this will be flushed periodically by check iq db */
963 		if (ret & MSIX_PI_INT)
964 			return 0;
965 	}
966 	return 0;
967 }
968 
969 /**
970  * \brief Droq packet processor sceduler
971  * @param oct octeon device
972  */
973 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
974 {
975 	struct octeon_device_priv *oct_priv =
976 		(struct octeon_device_priv *)oct->priv;
977 	u64 oq_no;
978 	struct octeon_droq *droq;
979 
980 	if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
981 		for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct);
982 		     oq_no++) {
983 			if (!(oct->droq_intr & BIT_ULL(oq_no)))
984 				continue;
985 
986 			droq = oct->droq[oq_no];
987 
988 			if (droq->ops.poll_mode) {
989 				droq->ops.napi_fn(droq);
990 				oct_priv->napi_mask |= (1 << oq_no);
991 			} else {
992 				tasklet_schedule(&oct_priv->droq_tasklet);
993 			}
994 		}
995 	}
996 }
997 
998 static irqreturn_t
999 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev)
1000 {
1001 	u64 ret;
1002 	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
1003 	struct octeon_device *oct = ioq_vector->oct_dev;
1004 	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
1005 
1006 	ret = oct->fn_list.msix_interrupt_handler(ioq_vector);
1007 
1008 	if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT))
1009 		liquidio_schedule_msix_droq_pkt_handler(droq, ret);
1010 
1011 	return IRQ_HANDLED;
1012 }
1013 
1014 /**
1015  * \brief Interrupt handler for octeon
1016  * @param irq unused
1017  * @param dev octeon device
1018  */
1019 static
1020 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)),
1021 					 void *dev)
1022 {
1023 	struct octeon_device *oct = (struct octeon_device *)dev;
1024 	irqreturn_t ret;
1025 
1026 	/* Disable our interrupts for the duration of ISR */
1027 	oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1028 
1029 	ret = oct->fn_list.process_interrupt_regs(oct);
1030 
1031 	if (ret == IRQ_HANDLED)
1032 		liquidio_schedule_droq_pkt_handlers(oct);
1033 
1034 	/* Re-enable our interrupts  */
1035 	if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
1036 		oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR);
1037 
1038 	return ret;
1039 }
1040 
1041 /**
1042  * \brief Setup interrupt for octeon device
1043  * @param oct octeon device
1044  *
1045  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
1046  */
1047 static int octeon_setup_interrupt(struct octeon_device *oct)
1048 {
1049 	int irqret, err;
1050 	struct msix_entry *msix_entries;
1051 	int i;
1052 	int num_ioq_vectors;
1053 	int num_alloc_ioq_vectors;
1054 	char *queue_irq_names = NULL;
1055 	char *aux_irq_name = NULL;
1056 
1057 	if (OCTEON_CN23XX_PF(oct) && oct->msix_on) {
1058 		oct->num_msix_irqs = oct->sriov_info.num_pf_rings;
1059 		/* one non ioq interrupt for handling sli_mac_pf_int_sum */
1060 		oct->num_msix_irqs += 1;
1061 
1062 		/* allocate storage for the names assigned to each irq */
1063 		oct->irq_name_storage =
1064 			kcalloc((MAX_IOQ_INTERRUPTS_PER_PF + 1), INTRNAMSIZ,
1065 				GFP_KERNEL);
1066 		if (!oct->irq_name_storage) {
1067 			dev_err(&oct->pci_dev->dev, "Irq name storage alloc failed...\n");
1068 			return -ENOMEM;
1069 		}
1070 
1071 		queue_irq_names = oct->irq_name_storage;
1072 		aux_irq_name = &queue_irq_names
1073 				[IRQ_NAME_OFF(MAX_IOQ_INTERRUPTS_PER_PF)];
1074 
1075 		oct->msix_entries = kcalloc(
1076 		    oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL);
1077 		if (!oct->msix_entries) {
1078 			dev_err(&oct->pci_dev->dev, "Memory Alloc failed...\n");
1079 			kfree(oct->irq_name_storage);
1080 			oct->irq_name_storage = NULL;
1081 			return -ENOMEM;
1082 		}
1083 
1084 		msix_entries = (struct msix_entry *)oct->msix_entries;
1085 		/*Assumption is that pf msix vectors start from pf srn to pf to
1086 		 * trs and not from 0. if not change this code
1087 		 */
1088 		for (i = 0; i < oct->num_msix_irqs - 1; i++)
1089 			msix_entries[i].entry = oct->sriov_info.pf_srn + i;
1090 		msix_entries[oct->num_msix_irqs - 1].entry =
1091 		    oct->sriov_info.trs;
1092 		num_alloc_ioq_vectors = pci_enable_msix_range(
1093 						oct->pci_dev, msix_entries,
1094 						oct->num_msix_irqs,
1095 						oct->num_msix_irqs);
1096 		if (num_alloc_ioq_vectors < 0) {
1097 			dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n");
1098 			kfree(oct->msix_entries);
1099 			oct->msix_entries = NULL;
1100 			kfree(oct->irq_name_storage);
1101 			oct->irq_name_storage = NULL;
1102 			return num_alloc_ioq_vectors;
1103 		}
1104 		dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n");
1105 
1106 		num_ioq_vectors = oct->num_msix_irqs;
1107 
1108 		/** For PF, there is one non-ioq interrupt handler */
1109 		num_ioq_vectors -= 1;
1110 
1111 		snprintf(aux_irq_name, INTRNAMSIZ,
1112 			 "LiquidIO%u-pf%u-aux", oct->octeon_id, oct->pf_num);
1113 		irqret = request_irq(msix_entries[num_ioq_vectors].vector,
1114 				     liquidio_legacy_intr_handler, 0,
1115 				     aux_irq_name, oct);
1116 		if (irqret) {
1117 			dev_err(&oct->pci_dev->dev,
1118 				"OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1119 				irqret);
1120 			pci_disable_msix(oct->pci_dev);
1121 			kfree(oct->msix_entries);
1122 			oct->msix_entries = NULL;
1123 			kfree(oct->irq_name_storage);
1124 			oct->irq_name_storage = NULL;
1125 			return irqret;
1126 		}
1127 
1128 		for (i = 0; i < num_ioq_vectors; i++) {
1129 			snprintf(&queue_irq_names[IRQ_NAME_OFF(i)], INTRNAMSIZ,
1130 				 "LiquidIO%u-pf%u-rxtx-%u",
1131 				 oct->octeon_id, oct->pf_num, i);
1132 
1133 			irqret = request_irq(msix_entries[i].vector,
1134 					     liquidio_msix_intr_handler, 0,
1135 					     &queue_irq_names[IRQ_NAME_OFF(i)],
1136 					     &oct->ioq_vector[i]);
1137 			if (irqret) {
1138 				dev_err(&oct->pci_dev->dev,
1139 					"OCTEON: Request_irq failed for MSIX interrupt Error: %d\n",
1140 					irqret);
1141 				/** Freeing the non-ioq irq vector here . */
1142 				free_irq(msix_entries[num_ioq_vectors].vector,
1143 					 oct);
1144 
1145 				while (i) {
1146 					i--;
1147 					/** clearing affinity mask. */
1148 					irq_set_affinity_hint(
1149 						msix_entries[i].vector, NULL);
1150 					free_irq(msix_entries[i].vector,
1151 						 &oct->ioq_vector[i]);
1152 				}
1153 				pci_disable_msix(oct->pci_dev);
1154 				kfree(oct->msix_entries);
1155 				oct->msix_entries = NULL;
1156 				kfree(oct->irq_name_storage);
1157 				oct->irq_name_storage = NULL;
1158 				return irqret;
1159 			}
1160 			oct->ioq_vector[i].vector = msix_entries[i].vector;
1161 			/* assign the cpu mask for this msix interrupt vector */
1162 			irq_set_affinity_hint(
1163 					msix_entries[i].vector,
1164 					(&oct->ioq_vector[i].affinity_mask));
1165 		}
1166 		dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n",
1167 			oct->octeon_id);
1168 	} else {
1169 		err = pci_enable_msi(oct->pci_dev);
1170 		if (err)
1171 			dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
1172 				 err);
1173 		else
1174 			oct->flags |= LIO_FLAG_MSI_ENABLED;
1175 
1176 		/* allocate storage for the names assigned to the irq */
1177 		oct->irq_name_storage = kcalloc(1, INTRNAMSIZ, GFP_KERNEL);
1178 		if (!oct->irq_name_storage)
1179 			return -ENOMEM;
1180 
1181 		queue_irq_names = oct->irq_name_storage;
1182 
1183 		snprintf(&queue_irq_names[IRQ_NAME_OFF(0)], INTRNAMSIZ,
1184 			 "LiquidIO%u-pf%u-rxtx-%u",
1185 			 oct->octeon_id, oct->pf_num, 0);
1186 
1187 		irqret = request_irq(oct->pci_dev->irq,
1188 				     liquidio_legacy_intr_handler,
1189 				     IRQF_SHARED,
1190 				     &queue_irq_names[IRQ_NAME_OFF(0)], oct);
1191 		if (irqret) {
1192 			if (oct->flags & LIO_FLAG_MSI_ENABLED)
1193 				pci_disable_msi(oct->pci_dev);
1194 			dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
1195 				irqret);
1196 			kfree(oct->irq_name_storage);
1197 			oct->irq_name_storage = NULL;
1198 			return irqret;
1199 		}
1200 	}
1201 	return 0;
1202 }
1203 
1204 static struct octeon_device *get_other_octeon_device(struct octeon_device *oct)
1205 {
1206 	struct octeon_device *other_oct;
1207 
1208 	other_oct = lio_get_device(oct->octeon_id + 1);
1209 
1210 	if (other_oct && other_oct->pci_dev) {
1211 		int oct_busnum, other_oct_busnum;
1212 
1213 		oct_busnum = oct->pci_dev->bus->number;
1214 		other_oct_busnum = other_oct->pci_dev->bus->number;
1215 
1216 		if (oct_busnum == other_oct_busnum) {
1217 			int oct_slot, other_oct_slot;
1218 
1219 			oct_slot = PCI_SLOT(oct->pci_dev->devfn);
1220 			other_oct_slot = PCI_SLOT(other_oct->pci_dev->devfn);
1221 
1222 			if (oct_slot == other_oct_slot)
1223 				return other_oct;
1224 		}
1225 	}
1226 
1227 	return NULL;
1228 }
1229 
1230 static void disable_all_vf_links(struct octeon_device *oct)
1231 {
1232 	struct net_device *netdev;
1233 	int max_vfs, vf, i;
1234 
1235 	if (!oct)
1236 		return;
1237 
1238 	max_vfs = oct->sriov_info.max_vfs;
1239 
1240 	for (i = 0; i < oct->ifcount; i++) {
1241 		netdev = oct->props[i].netdev;
1242 		if (!netdev)
1243 			continue;
1244 
1245 		for (vf = 0; vf < max_vfs; vf++)
1246 			liquidio_set_vf_link_state(netdev, vf,
1247 						   IFLA_VF_LINK_STATE_DISABLE);
1248 	}
1249 }
1250 
1251 static int liquidio_watchdog(void *param)
1252 {
1253 	bool err_msg_was_printed[LIO_MAX_CORES];
1254 	u16 mask_of_crashed_or_stuck_cores = 0;
1255 	bool all_vf_links_are_disabled = false;
1256 	struct octeon_device *oct = param;
1257 	struct octeon_device *other_oct;
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 	long refcount, vfs_referencing_pf;
1260 	u64 vfs_mask1, vfs_mask2;
1261 #endif
1262 	int core;
1263 
1264 	memset(err_msg_was_printed, 0, sizeof(err_msg_was_printed));
1265 
1266 	while (!kthread_should_stop()) {
1267 		/* sleep for a couple of seconds so that we don't hog the CPU */
1268 		set_current_state(TASK_INTERRUPTIBLE);
1269 		schedule_timeout(msecs_to_jiffies(2000));
1270 
1271 		mask_of_crashed_or_stuck_cores =
1272 		    (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1273 
1274 		if (!mask_of_crashed_or_stuck_cores)
1275 			continue;
1276 
1277 		WRITE_ONCE(oct->cores_crashed, true);
1278 		other_oct = get_other_octeon_device(oct);
1279 		if (other_oct)
1280 			WRITE_ONCE(other_oct->cores_crashed, true);
1281 
1282 		for (core = 0; core < LIO_MAX_CORES; core++) {
1283 			bool core_crashed_or_got_stuck;
1284 
1285 			core_crashed_or_got_stuck =
1286 						(mask_of_crashed_or_stuck_cores
1287 						 >> core) & 1;
1288 
1289 			if (core_crashed_or_got_stuck &&
1290 			    !err_msg_was_printed[core]) {
1291 				dev_err(&oct->pci_dev->dev,
1292 					"ERROR: Octeon core %d crashed or got stuck!  See oct-fwdump for details.\n",
1293 					core);
1294 					err_msg_was_printed[core] = true;
1295 			}
1296 		}
1297 
1298 		if (all_vf_links_are_disabled)
1299 			continue;
1300 
1301 		disable_all_vf_links(oct);
1302 		disable_all_vf_links(other_oct);
1303 		all_vf_links_are_disabled = true;
1304 
1305 #ifdef CONFIG_MODULE_UNLOAD
1306 		vfs_mask1 = READ_ONCE(oct->sriov_info.vf_drv_loaded_mask);
1307 		vfs_mask2 = READ_ONCE(other_oct->sriov_info.vf_drv_loaded_mask);
1308 
1309 		vfs_referencing_pf  = hweight64(vfs_mask1);
1310 		vfs_referencing_pf += hweight64(vfs_mask2);
1311 
1312 		refcount = module_refcount(THIS_MODULE);
1313 		if (refcount >= vfs_referencing_pf) {
1314 			while (vfs_referencing_pf) {
1315 				module_put(THIS_MODULE);
1316 				vfs_referencing_pf--;
1317 			}
1318 		}
1319 #endif
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 /**
1326  * \brief PCI probe handler
1327  * @param pdev PCI device structure
1328  * @param ent unused
1329  */
1330 static int
1331 liquidio_probe(struct pci_dev *pdev,
1332 	       const struct pci_device_id *ent __attribute__((unused)))
1333 {
1334 	struct octeon_device *oct_dev = NULL;
1335 	struct handshake *hs;
1336 
1337 	oct_dev = octeon_allocate_device(pdev->device,
1338 					 sizeof(struct octeon_device_priv));
1339 	if (!oct_dev) {
1340 		dev_err(&pdev->dev, "Unable to allocate device\n");
1341 		return -ENOMEM;
1342 	}
1343 
1344 	if (pdev->device == OCTEON_CN23XX_PF_VID)
1345 		oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED;
1346 
1347 	dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1348 		 (u32)pdev->vendor, (u32)pdev->device);
1349 
1350 	/* Assign octeon_device for this device to the private data area. */
1351 	pci_set_drvdata(pdev, oct_dev);
1352 
1353 	/* set linux specific device pointer */
1354 	oct_dev->pci_dev = (void *)pdev;
1355 
1356 	hs = &handshake[oct_dev->octeon_id];
1357 	init_completion(&hs->init);
1358 	init_completion(&hs->started);
1359 	hs->pci_dev = pdev;
1360 
1361 	if (oct_dev->octeon_id == 0)
1362 		/* first LiquidIO NIC is detected */
1363 		complete(&first_stage);
1364 
1365 	if (octeon_device_init(oct_dev)) {
1366 		complete(&hs->init);
1367 		liquidio_remove(pdev);
1368 		return -ENOMEM;
1369 	}
1370 
1371 	if (OCTEON_CN23XX_PF(oct_dev)) {
1372 		u64 scratch1;
1373 		u8 bus, device, function;
1374 
1375 		scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1);
1376 		if (!(scratch1 & 4ULL)) {
1377 			/* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that
1378 			 * the lio watchdog kernel thread is running for this
1379 			 * NIC.  Each NIC gets one watchdog kernel thread.
1380 			 */
1381 			scratch1 |= 4ULL;
1382 			octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1,
1383 					   scratch1);
1384 
1385 			bus = pdev->bus->number;
1386 			device = PCI_SLOT(pdev->devfn);
1387 			function = PCI_FUNC(pdev->devfn);
1388 			oct_dev->watchdog_task = kthread_create(
1389 			    liquidio_watchdog, oct_dev,
1390 			    "liowd/%02hhx:%02hhx.%hhx", bus, device, function);
1391 			if (!IS_ERR(oct_dev->watchdog_task)) {
1392 				wake_up_process(oct_dev->watchdog_task);
1393 			} else {
1394 				oct_dev->watchdog_task = NULL;
1395 				dev_err(&oct_dev->pci_dev->dev,
1396 					"failed to create kernel_thread\n");
1397 				liquidio_remove(pdev);
1398 				return -1;
1399 			}
1400 		}
1401 	}
1402 
1403 	oct_dev->rx_pause = 1;
1404 	oct_dev->tx_pause = 1;
1405 
1406 	dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1407 
1408 	return 0;
1409 }
1410 
1411 static bool fw_type_is_none(void)
1412 {
1413 	return strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1414 		       sizeof(LIO_FW_NAME_TYPE_NONE)) == 0;
1415 }
1416 
1417 /**
1418  *\brief Destroy resources associated with octeon device
1419  * @param pdev PCI device structure
1420  * @param ent unused
1421  */
1422 static void octeon_destroy_resources(struct octeon_device *oct)
1423 {
1424 	int i;
1425 	struct msix_entry *msix_entries;
1426 	struct octeon_device_priv *oct_priv =
1427 		(struct octeon_device_priv *)oct->priv;
1428 
1429 	struct handshake *hs;
1430 
1431 	switch (atomic_read(&oct->status)) {
1432 	case OCT_DEV_RUNNING:
1433 	case OCT_DEV_CORE_OK:
1434 
1435 		/* No more instructions will be forwarded. */
1436 		atomic_set(&oct->status, OCT_DEV_IN_RESET);
1437 
1438 		oct->app_mode = CVM_DRV_INVALID_APP;
1439 		dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1440 			lio_get_state_string(&oct->status));
1441 
1442 		schedule_timeout_uninterruptible(HZ / 10);
1443 
1444 		/* fallthrough */
1445 	case OCT_DEV_HOST_OK:
1446 
1447 		/* fallthrough */
1448 	case OCT_DEV_CONSOLE_INIT_DONE:
1449 		/* Remove any consoles */
1450 		octeon_remove_consoles(oct);
1451 
1452 		/* fallthrough */
1453 	case OCT_DEV_IO_QUEUES_DONE:
1454 		if (wait_for_pending_requests(oct))
1455 			dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1456 
1457 		if (lio_wait_for_instr_fetch(oct))
1458 			dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1459 
1460 		/* Disable the input and output queues now. No more packets will
1461 		 * arrive from Octeon, but we should wait for all packet
1462 		 * processing to finish.
1463 		 */
1464 		oct->fn_list.disable_io_queues(oct);
1465 
1466 		if (lio_wait_for_oq_pkts(oct))
1467 			dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1468 
1469 	/* fallthrough */
1470 	case OCT_DEV_INTR_SET_DONE:
1471 		/* Disable interrupts  */
1472 		oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR);
1473 
1474 		if (oct->msix_on) {
1475 			msix_entries = (struct msix_entry *)oct->msix_entries;
1476 			for (i = 0; i < oct->num_msix_irqs - 1; i++) {
1477 				/* clear the affinity_cpumask */
1478 				irq_set_affinity_hint(msix_entries[i].vector,
1479 						      NULL);
1480 				free_irq(msix_entries[i].vector,
1481 					 &oct->ioq_vector[i]);
1482 			}
1483 			/* non-iov vector's argument is oct struct */
1484 			free_irq(msix_entries[i].vector, oct);
1485 
1486 			pci_disable_msix(oct->pci_dev);
1487 			kfree(oct->msix_entries);
1488 			oct->msix_entries = NULL;
1489 		} else {
1490 			/* Release the interrupt line */
1491 			free_irq(oct->pci_dev->irq, oct);
1492 
1493 			if (oct->flags & LIO_FLAG_MSI_ENABLED)
1494 				pci_disable_msi(oct->pci_dev);
1495 		}
1496 
1497 		kfree(oct->irq_name_storage);
1498 		oct->irq_name_storage = NULL;
1499 
1500 	/* fallthrough */
1501 	case OCT_DEV_MSIX_ALLOC_VECTOR_DONE:
1502 		if (OCTEON_CN23XX_PF(oct))
1503 			octeon_free_ioq_vector(oct);
1504 
1505 	/* fallthrough */
1506 	case OCT_DEV_MBOX_SETUP_DONE:
1507 		if (OCTEON_CN23XX_PF(oct))
1508 			oct->fn_list.free_mbox(oct);
1509 
1510 	/* fallthrough */
1511 	case OCT_DEV_IN_RESET:
1512 	case OCT_DEV_DROQ_INIT_DONE:
1513 		/* Wait for any pending operations */
1514 		mdelay(100);
1515 		for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
1516 			if (!(oct->io_qmask.oq & BIT_ULL(i)))
1517 				continue;
1518 			octeon_delete_droq(oct, i);
1519 		}
1520 
1521 		/* Force any pending handshakes to complete */
1522 		for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1523 			hs = &handshake[i];
1524 
1525 			if (hs->pci_dev) {
1526 				handshake[oct->octeon_id].init_ok = 0;
1527 				complete(&handshake[oct->octeon_id].init);
1528 				handshake[oct->octeon_id].started_ok = 0;
1529 				complete(&handshake[oct->octeon_id].started);
1530 			}
1531 		}
1532 
1533 		/* fallthrough */
1534 	case OCT_DEV_RESP_LIST_INIT_DONE:
1535 		octeon_delete_response_list(oct);
1536 
1537 		/* fallthrough */
1538 	case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1539 		for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
1540 			if (!(oct->io_qmask.iq & BIT_ULL(i)))
1541 				continue;
1542 			octeon_delete_instr_queue(oct, i);
1543 		}
1544 #ifdef CONFIG_PCI_IOV
1545 		if (oct->sriov_info.sriov_enabled)
1546 			pci_disable_sriov(oct->pci_dev);
1547 #endif
1548 		/* fallthrough */
1549 	case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1550 		octeon_free_sc_buffer_pool(oct);
1551 
1552 		/* fallthrough */
1553 	case OCT_DEV_DISPATCH_INIT_DONE:
1554 		octeon_delete_dispatch_list(oct);
1555 		cancel_delayed_work_sync(&oct->nic_poll_work.work);
1556 
1557 		/* fallthrough */
1558 	case OCT_DEV_PCI_MAP_DONE:
1559 		if (!fw_type_is_none()) {
1560 			/* Soft reset the octeon device before exiting */
1561 			if (!OCTEON_CN23XX_PF(oct) ||
1562 			    (OCTEON_CN23XX_PF(oct) && !oct->octeon_id))
1563 				oct->fn_list.soft_reset(oct);
1564 		}
1565 
1566 		octeon_unmap_pci_barx(oct, 0);
1567 		octeon_unmap_pci_barx(oct, 1);
1568 
1569 		/* fallthrough */
1570 	case OCT_DEV_PCI_ENABLE_DONE:
1571 		pci_clear_master(oct->pci_dev);
1572 		/* Disable the device, releasing the PCI INT */
1573 		pci_disable_device(oct->pci_dev);
1574 
1575 		/* fallthrough */
1576 	case OCT_DEV_BEGIN_STATE:
1577 		/* Nothing to be done here either */
1578 		break;
1579 	}                       /* end switch (oct->status) */
1580 
1581 	tasklet_kill(&oct_priv->droq_tasklet);
1582 }
1583 
1584 /**
1585  * \brief Callback for rx ctrl
1586  * @param status status of request
1587  * @param buf pointer to resp structure
1588  */
1589 static void rx_ctl_callback(struct octeon_device *oct,
1590 			    u32 status,
1591 			    void *buf)
1592 {
1593 	struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1594 	struct liquidio_rx_ctl_context *ctx;
1595 
1596 	ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1597 
1598 	oct = lio_get_device(ctx->octeon_id);
1599 	if (status)
1600 		dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n",
1601 			CVM_CAST64(status));
1602 	WRITE_ONCE(ctx->cond, 1);
1603 
1604 	/* This barrier is required to be sure that the response has been
1605 	 * written fully before waking up the handler
1606 	 */
1607 	wmb();
1608 
1609 	wake_up_interruptible(&ctx->wc);
1610 }
1611 
1612 /**
1613  * \brief Send Rx control command
1614  * @param lio per-network private data
1615  * @param start_stop whether to start or stop
1616  */
1617 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1618 {
1619 	struct octeon_soft_command *sc;
1620 	struct liquidio_rx_ctl_context *ctx;
1621 	union octnet_cmd *ncmd;
1622 	int ctx_size = sizeof(struct liquidio_rx_ctl_context);
1623 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1624 	int retval;
1625 
1626 	if (oct->props[lio->ifidx].rx_on == start_stop)
1627 		return;
1628 
1629 	sc = (struct octeon_soft_command *)
1630 		octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE,
1631 					  16, ctx_size);
1632 
1633 	ncmd = (union octnet_cmd *)sc->virtdptr;
1634 	ctx  = (struct liquidio_rx_ctl_context *)sc->ctxptr;
1635 
1636 	WRITE_ONCE(ctx->cond, 0);
1637 	ctx->octeon_id = lio_get_device_id(oct);
1638 	init_waitqueue_head(&ctx->wc);
1639 
1640 	ncmd->u64 = 0;
1641 	ncmd->s.cmd = OCTNET_CMD_RX_CTL;
1642 	ncmd->s.param1 = start_stop;
1643 
1644 	octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3));
1645 
1646 	sc->iq_no = lio->linfo.txpciq[0].s.q_no;
1647 
1648 	octeon_prepare_soft_command(oct, sc, OPCODE_NIC,
1649 				    OPCODE_NIC_CMD, 0, 0, 0);
1650 
1651 	sc->callback = rx_ctl_callback;
1652 	sc->callback_arg = sc;
1653 	sc->wait_time = 5000;
1654 
1655 	retval = octeon_send_soft_command(oct, sc);
1656 	if (retval == IQ_SEND_FAILED) {
1657 		netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1658 	} else {
1659 		/* Sleep on a wait queue till the cond flag indicates that the
1660 		 * response arrived or timed-out.
1661 		 */
1662 		if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR)
1663 			return;
1664 		oct->props[lio->ifidx].rx_on = start_stop;
1665 	}
1666 
1667 	octeon_free_soft_command(oct, sc);
1668 }
1669 
1670 /**
1671  * \brief Destroy NIC device interface
1672  * @param oct octeon device
1673  * @param ifidx which interface to destroy
1674  *
1675  * Cleanup associated with each interface for an Octeon device  when NIC
1676  * module is being unloaded or if initialization fails during load.
1677  */
1678 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1679 {
1680 	struct net_device *netdev = oct->props[ifidx].netdev;
1681 	struct lio *lio;
1682 	struct napi_struct *napi, *n;
1683 
1684 	if (!netdev) {
1685 		dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1686 			__func__, ifidx);
1687 		return;
1688 	}
1689 
1690 	lio = GET_LIO(netdev);
1691 
1692 	dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1693 
1694 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1695 		liquidio_stop(netdev);
1696 
1697 	if (fw_type_is_none()) {
1698 		struct octnic_ctrl_pkt nctrl;
1699 
1700 		memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1701 		nctrl.ncmd.s.cmd = OCTNET_CMD_RESET_PF;
1702 		nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
1703 		octnet_send_nic_ctrl_pkt(oct, &nctrl);
1704 	}
1705 
1706 	if (oct->props[lio->ifidx].napi_enabled == 1) {
1707 		list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
1708 			napi_disable(napi);
1709 
1710 		oct->props[lio->ifidx].napi_enabled = 0;
1711 
1712 		if (OCTEON_CN23XX_PF(oct))
1713 			oct->droq[0]->ops.poll_mode = 0;
1714 	}
1715 
1716 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1717 		unregister_netdev(netdev);
1718 
1719 	cleanup_link_status_change_wq(netdev);
1720 
1721 	cleanup_rx_oom_poll_fn(netdev);
1722 
1723 	delete_glists(lio);
1724 
1725 	free_netdev(netdev);
1726 
1727 	oct->props[ifidx].gmxport = -1;
1728 
1729 	oct->props[ifidx].netdev = NULL;
1730 }
1731 
1732 /**
1733  * \brief Stop complete NIC functionality
1734  * @param oct octeon device
1735  */
1736 static int liquidio_stop_nic_module(struct octeon_device *oct)
1737 {
1738 	int i, j;
1739 	struct lio *lio;
1740 
1741 	dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1742 	if (!oct->ifcount) {
1743 		dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1744 		return 1;
1745 	}
1746 
1747 	spin_lock_bh(&oct->cmd_resp_wqlock);
1748 	oct->cmd_resp_state = OCT_DRV_OFFLINE;
1749 	spin_unlock_bh(&oct->cmd_resp_wqlock);
1750 
1751 	for (i = 0; i < oct->ifcount; i++) {
1752 		lio = GET_LIO(oct->props[i].netdev);
1753 		for (j = 0; j < lio->linfo.num_rxpciq; j++)
1754 			octeon_unregister_droq_ops(oct,
1755 						   lio->linfo.rxpciq[j].s.q_no);
1756 	}
1757 
1758 	for (i = 0; i < oct->ifcount; i++)
1759 		liquidio_destroy_nic_device(oct, i);
1760 
1761 	dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1762 	return 0;
1763 }
1764 
1765 /**
1766  * \brief Cleans up resources at unload time
1767  * @param pdev PCI device structure
1768  */
1769 static void liquidio_remove(struct pci_dev *pdev)
1770 {
1771 	struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1772 
1773 	dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1774 
1775 	if (oct_dev->watchdog_task)
1776 		kthread_stop(oct_dev->watchdog_task);
1777 
1778 	if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1779 		liquidio_stop_nic_module(oct_dev);
1780 
1781 	/* Reset the octeon device and cleanup all memory allocated for
1782 	 * the octeon device by driver.
1783 	 */
1784 	octeon_destroy_resources(oct_dev);
1785 
1786 	dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1787 
1788 	/* This octeon device has been removed. Update the global
1789 	 * data structure to reflect this. Free the device structure.
1790 	 */
1791 	octeon_free_device_mem(oct_dev);
1792 }
1793 
1794 /**
1795  * \brief Identify the Octeon device and to map the BAR address space
1796  * @param oct octeon device
1797  */
1798 static int octeon_chip_specific_setup(struct octeon_device *oct)
1799 {
1800 	u32 dev_id, rev_id;
1801 	int ret = 1;
1802 	char *s;
1803 
1804 	pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1805 	pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1806 	oct->rev_id = rev_id & 0xff;
1807 
1808 	switch (dev_id) {
1809 	case OCTEON_CN68XX_PCIID:
1810 		oct->chip_id = OCTEON_CN68XX;
1811 		ret = lio_setup_cn68xx_octeon_device(oct);
1812 		s = "CN68XX";
1813 		break;
1814 
1815 	case OCTEON_CN66XX_PCIID:
1816 		oct->chip_id = OCTEON_CN66XX;
1817 		ret = lio_setup_cn66xx_octeon_device(oct);
1818 		s = "CN66XX";
1819 		break;
1820 
1821 	case OCTEON_CN23XX_PCIID_PF:
1822 		oct->chip_id = OCTEON_CN23XX_PF_VID;
1823 		ret = setup_cn23xx_octeon_pf_device(oct);
1824 		s = "CN23XX";
1825 		break;
1826 
1827 	default:
1828 		s = "?";
1829 		dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1830 			dev_id);
1831 	}
1832 
1833 	if (!ret)
1834 		dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s,
1835 			 OCTEON_MAJOR_REV(oct),
1836 			 OCTEON_MINOR_REV(oct),
1837 			 octeon_get_conf(oct)->card_name,
1838 			 LIQUIDIO_VERSION);
1839 
1840 	return ret;
1841 }
1842 
1843 /**
1844  * \brief PCI initialization for each Octeon device.
1845  * @param oct octeon device
1846  */
1847 static int octeon_pci_os_setup(struct octeon_device *oct)
1848 {
1849 	/* setup PCI stuff first */
1850 	if (pci_enable_device(oct->pci_dev)) {
1851 		dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1852 		return 1;
1853 	}
1854 
1855 	if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1856 		dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1857 		pci_disable_device(oct->pci_dev);
1858 		return 1;
1859 	}
1860 
1861 	/* Enable PCI DMA Master. */
1862 	pci_set_master(oct->pci_dev);
1863 
1864 	return 0;
1865 }
1866 
1867 static inline int skb_iq(struct lio *lio, struct sk_buff *skb)
1868 {
1869 	int q = 0;
1870 
1871 	if (netif_is_multiqueue(lio->netdev))
1872 		q = skb->queue_mapping % lio->linfo.num_txpciq;
1873 
1874 	return q;
1875 }
1876 
1877 /**
1878  * \brief Check Tx queue state for a given network buffer
1879  * @param lio per-network private data
1880  * @param skb network buffer
1881  */
1882 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1883 {
1884 	int q = 0, iq = 0;
1885 
1886 	if (netif_is_multiqueue(lio->netdev)) {
1887 		q = skb->queue_mapping;
1888 		iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no;
1889 	} else {
1890 		iq = lio->txq;
1891 		q = iq;
1892 	}
1893 
1894 	if (octnet_iq_is_full(lio->oct_dev, iq))
1895 		return 0;
1896 
1897 	if (__netif_subqueue_stopped(lio->netdev, q)) {
1898 		INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1);
1899 		wake_q(lio->netdev, q);
1900 	}
1901 	return 1;
1902 }
1903 
1904 /**
1905  * \brief Unmap and free network buffer
1906  * @param buf buffer
1907  */
1908 static void free_netbuf(void *buf)
1909 {
1910 	struct sk_buff *skb;
1911 	struct octnet_buf_free_info *finfo;
1912 	struct lio *lio;
1913 
1914 	finfo = (struct octnet_buf_free_info *)buf;
1915 	skb = finfo->skb;
1916 	lio = finfo->lio;
1917 
1918 	dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1919 			 DMA_TO_DEVICE);
1920 
1921 	check_txq_state(lio, skb);
1922 
1923 	tx_buffer_free(skb);
1924 }
1925 
1926 /**
1927  * \brief Unmap and free gather buffer
1928  * @param buf buffer
1929  */
1930 static void free_netsgbuf(void *buf)
1931 {
1932 	struct octnet_buf_free_info *finfo;
1933 	struct sk_buff *skb;
1934 	struct lio *lio;
1935 	struct octnic_gather *g;
1936 	int i, frags, iq;
1937 
1938 	finfo = (struct octnet_buf_free_info *)buf;
1939 	skb = finfo->skb;
1940 	lio = finfo->lio;
1941 	g = finfo->g;
1942 	frags = skb_shinfo(skb)->nr_frags;
1943 
1944 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1945 			 g->sg[0].ptr[0], (skb->len - skb->data_len),
1946 			 DMA_TO_DEVICE);
1947 
1948 	i = 1;
1949 	while (frags--) {
1950 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1951 
1952 		pci_unmap_page((lio->oct_dev)->pci_dev,
1953 			       g->sg[(i >> 2)].ptr[(i & 3)],
1954 			       frag->size, DMA_TO_DEVICE);
1955 		i++;
1956 	}
1957 
1958 	iq = skb_iq(lio, skb);
1959 	spin_lock(&lio->glist_lock[iq]);
1960 	list_add_tail(&g->list, &lio->glist[iq]);
1961 	spin_unlock(&lio->glist_lock[iq]);
1962 
1963 	check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1964 
1965 	tx_buffer_free(skb);
1966 }
1967 
1968 /**
1969  * \brief Unmap and free gather buffer with response
1970  * @param buf buffer
1971  */
1972 static void free_netsgbuf_with_resp(void *buf)
1973 {
1974 	struct octeon_soft_command *sc;
1975 	struct octnet_buf_free_info *finfo;
1976 	struct sk_buff *skb;
1977 	struct lio *lio;
1978 	struct octnic_gather *g;
1979 	int i, frags, iq;
1980 
1981 	sc = (struct octeon_soft_command *)buf;
1982 	skb = (struct sk_buff *)sc->callback_arg;
1983 	finfo = (struct octnet_buf_free_info *)&skb->cb;
1984 
1985 	lio = finfo->lio;
1986 	g = finfo->g;
1987 	frags = skb_shinfo(skb)->nr_frags;
1988 
1989 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1990 			 g->sg[0].ptr[0], (skb->len - skb->data_len),
1991 			 DMA_TO_DEVICE);
1992 
1993 	i = 1;
1994 	while (frags--) {
1995 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1996 
1997 		pci_unmap_page((lio->oct_dev)->pci_dev,
1998 			       g->sg[(i >> 2)].ptr[(i & 3)],
1999 			       frag->size, DMA_TO_DEVICE);
2000 		i++;
2001 	}
2002 
2003 	iq = skb_iq(lio, skb);
2004 
2005 	spin_lock(&lio->glist_lock[iq]);
2006 	list_add_tail(&g->list, &lio->glist[iq]);
2007 	spin_unlock(&lio->glist_lock[iq]);
2008 
2009 	/* Don't free the skb yet */
2010 
2011 	check_txq_state(lio, skb);
2012 }
2013 
2014 /**
2015  * \brief Adjust ptp frequency
2016  * @param ptp PTP clock info
2017  * @param ppb how much to adjust by, in parts-per-billion
2018  */
2019 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
2020 {
2021 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
2022 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2023 	u64 comp, delta;
2024 	unsigned long flags;
2025 	bool neg_adj = false;
2026 
2027 	if (ppb < 0) {
2028 		neg_adj = true;
2029 		ppb = -ppb;
2030 	}
2031 
2032 	/* The hardware adds the clock compensation value to the
2033 	 * PTP clock on every coprocessor clock cycle, so we
2034 	 * compute the delta in terms of coprocessor clocks.
2035 	 */
2036 	delta = (u64)ppb << 32;
2037 	do_div(delta, oct->coproc_clock_rate);
2038 
2039 	spin_lock_irqsave(&lio->ptp_lock, flags);
2040 	comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
2041 	if (neg_adj)
2042 		comp -= delta;
2043 	else
2044 		comp += delta;
2045 	lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2046 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
2047 
2048 	return 0;
2049 }
2050 
2051 /**
2052  * \brief Adjust ptp time
2053  * @param ptp PTP clock info
2054  * @param delta how much to adjust by, in nanosecs
2055  */
2056 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
2057 {
2058 	unsigned long flags;
2059 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
2060 
2061 	spin_lock_irqsave(&lio->ptp_lock, flags);
2062 	lio->ptp_adjust += delta;
2063 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * \brief Get hardware clock time, including any adjustment
2070  * @param ptp PTP clock info
2071  * @param ts timespec
2072  */
2073 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
2074 				struct timespec64 *ts)
2075 {
2076 	u64 ns;
2077 	unsigned long flags;
2078 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
2079 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2080 
2081 	spin_lock_irqsave(&lio->ptp_lock, flags);
2082 	ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
2083 	ns += lio->ptp_adjust;
2084 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
2085 
2086 	*ts = ns_to_timespec64(ns);
2087 
2088 	return 0;
2089 }
2090 
2091 /**
2092  * \brief Set hardware clock time. Reset adjustment
2093  * @param ptp PTP clock info
2094  * @param ts timespec
2095  */
2096 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
2097 				const struct timespec64 *ts)
2098 {
2099 	u64 ns;
2100 	unsigned long flags;
2101 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
2102 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2103 
2104 	ns = timespec_to_ns(ts);
2105 
2106 	spin_lock_irqsave(&lio->ptp_lock, flags);
2107 	lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
2108 	lio->ptp_adjust = 0;
2109 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
2110 
2111 	return 0;
2112 }
2113 
2114 /**
2115  * \brief Check if PTP is enabled
2116  * @param ptp PTP clock info
2117  * @param rq request
2118  * @param on is it on
2119  */
2120 static int
2121 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)),
2122 		    struct ptp_clock_request *rq __attribute__((unused)),
2123 		    int on __attribute__((unused)))
2124 {
2125 	return -EOPNOTSUPP;
2126 }
2127 
2128 /**
2129  * \brief Open PTP clock source
2130  * @param netdev network device
2131  */
2132 static void oct_ptp_open(struct net_device *netdev)
2133 {
2134 	struct lio *lio = GET_LIO(netdev);
2135 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
2136 
2137 	spin_lock_init(&lio->ptp_lock);
2138 
2139 	snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
2140 	lio->ptp_info.owner = THIS_MODULE;
2141 	lio->ptp_info.max_adj = 250000000;
2142 	lio->ptp_info.n_alarm = 0;
2143 	lio->ptp_info.n_ext_ts = 0;
2144 	lio->ptp_info.n_per_out = 0;
2145 	lio->ptp_info.pps = 0;
2146 	lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
2147 	lio->ptp_info.adjtime = liquidio_ptp_adjtime;
2148 	lio->ptp_info.gettime64 = liquidio_ptp_gettime;
2149 	lio->ptp_info.settime64 = liquidio_ptp_settime;
2150 	lio->ptp_info.enable = liquidio_ptp_enable;
2151 
2152 	lio->ptp_adjust = 0;
2153 
2154 	lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
2155 					     &oct->pci_dev->dev);
2156 
2157 	if (IS_ERR(lio->ptp_clock))
2158 		lio->ptp_clock = NULL;
2159 }
2160 
2161 /**
2162  * \brief Init PTP clock
2163  * @param oct octeon device
2164  */
2165 static void liquidio_ptp_init(struct octeon_device *oct)
2166 {
2167 	u64 clock_comp, cfg;
2168 
2169 	clock_comp = (u64)NSEC_PER_SEC << 32;
2170 	do_div(clock_comp, oct->coproc_clock_rate);
2171 	lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
2172 
2173 	/* Enable */
2174 	cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
2175 	lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
2176 }
2177 
2178 /**
2179  * \brief Load firmware to device
2180  * @param oct octeon device
2181  *
2182  * Maps device to firmware filename, requests firmware, and downloads it
2183  */
2184 static int load_firmware(struct octeon_device *oct)
2185 {
2186 	int ret = 0;
2187 	const struct firmware *fw;
2188 	char fw_name[LIO_MAX_FW_FILENAME_LEN];
2189 	char *tmp_fw_type;
2190 
2191 	if (fw_type_is_none()) {
2192 		dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
2193 		return ret;
2194 	}
2195 
2196 	if (fw_type[0] == '\0')
2197 		tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
2198 	else
2199 		tmp_fw_type = fw_type;
2200 
2201 	sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
2202 		octeon_get_conf(oct)->card_name, tmp_fw_type,
2203 		LIO_FW_NAME_SUFFIX);
2204 
2205 	ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
2206 	if (ret) {
2207 		dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
2208 			fw_name);
2209 		release_firmware(fw);
2210 		return ret;
2211 	}
2212 
2213 	ret = octeon_download_firmware(oct, fw->data, fw->size);
2214 
2215 	release_firmware(fw);
2216 
2217 	return ret;
2218 }
2219 
2220 /**
2221  * \brief Setup output queue
2222  * @param oct octeon device
2223  * @param q_no which queue
2224  * @param num_descs how many descriptors
2225  * @param desc_size size of each descriptor
2226  * @param app_ctx application context
2227  */
2228 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
2229 			     int desc_size, void *app_ctx)
2230 {
2231 	int ret_val = 0;
2232 
2233 	dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
2234 	/* droq creation and local register settings. */
2235 	ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
2236 	if (ret_val < 0)
2237 		return ret_val;
2238 
2239 	if (ret_val == 1) {
2240 		dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
2241 		return 0;
2242 	}
2243 	/* tasklet creation for the droq */
2244 
2245 	/* Enable the droq queues */
2246 	octeon_set_droq_pkt_op(oct, q_no, 1);
2247 
2248 	/* Send Credit for Octeon Output queues. Credits are always
2249 	 * sent after the output queue is enabled.
2250 	 */
2251 	writel(oct->droq[q_no]->max_count,
2252 	       oct->droq[q_no]->pkts_credit_reg);
2253 
2254 	return ret_val;
2255 }
2256 
2257 /**
2258  * \brief Callback for getting interface configuration
2259  * @param status status of request
2260  * @param buf pointer to resp structure
2261  */
2262 static void if_cfg_callback(struct octeon_device *oct,
2263 			    u32 status __attribute__((unused)),
2264 			    void *buf)
2265 {
2266 	struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
2267 	struct liquidio_if_cfg_resp *resp;
2268 	struct liquidio_if_cfg_context *ctx;
2269 
2270 	resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
2271 	ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
2272 
2273 	oct = lio_get_device(ctx->octeon_id);
2274 	if (resp->status)
2275 		dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: 0x%llx (0x%08x)\n",
2276 			CVM_CAST64(resp->status), status);
2277 	WRITE_ONCE(ctx->cond, 1);
2278 
2279 	snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s",
2280 		 resp->cfg_info.liquidio_firmware_version);
2281 
2282 	/* This barrier is required to be sure that the response has been
2283 	 * written fully before waking up the handler
2284 	 */
2285 	wmb();
2286 
2287 	wake_up_interruptible(&ctx->wc);
2288 }
2289 
2290 /** Routine to push packets arriving on Octeon interface upto network layer.
2291  * @param oct_id   - octeon device id.
2292  * @param skbuff   - skbuff struct to be passed to network layer.
2293  * @param len      - size of total data received.
2294  * @param rh       - Control header associated with the packet
2295  * @param param    - additional control data with the packet
2296  * @param arg	   - farg registered in droq_ops
2297  */
2298 static void
2299 liquidio_push_packet(u32 octeon_id __attribute__((unused)),
2300 		     void *skbuff,
2301 		     u32 len,
2302 		     union octeon_rh *rh,
2303 		     void *param,
2304 		     void *arg)
2305 {
2306 	struct napi_struct *napi = param;
2307 	struct sk_buff *skb = (struct sk_buff *)skbuff;
2308 	struct skb_shared_hwtstamps *shhwtstamps;
2309 	u64 ns;
2310 	u16 vtag = 0;
2311 	u32 r_dh_off;
2312 	struct net_device *netdev = (struct net_device *)arg;
2313 	struct octeon_droq *droq = container_of(param, struct octeon_droq,
2314 						napi);
2315 	if (netdev) {
2316 		int packet_was_received;
2317 		struct lio *lio = GET_LIO(netdev);
2318 		struct octeon_device *oct = lio->oct_dev;
2319 
2320 		/* Do not proceed if the interface is not in RUNNING state. */
2321 		if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
2322 			recv_buffer_free(skb);
2323 			droq->stats.rx_dropped++;
2324 			return;
2325 		}
2326 
2327 		skb->dev = netdev;
2328 
2329 		skb_record_rx_queue(skb, droq->q_no);
2330 		if (likely(len > MIN_SKB_SIZE)) {
2331 			struct octeon_skb_page_info *pg_info;
2332 			unsigned char *va;
2333 
2334 			pg_info = ((struct octeon_skb_page_info *)(skb->cb));
2335 			if (pg_info->page) {
2336 				/* For Paged allocation use the frags */
2337 				va = page_address(pg_info->page) +
2338 					pg_info->page_offset;
2339 				memcpy(skb->data, va, MIN_SKB_SIZE);
2340 				skb_put(skb, MIN_SKB_SIZE);
2341 				skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2342 						pg_info->page,
2343 						pg_info->page_offset +
2344 						MIN_SKB_SIZE,
2345 						len - MIN_SKB_SIZE,
2346 						LIO_RXBUFFER_SZ);
2347 			}
2348 		} else {
2349 			struct octeon_skb_page_info *pg_info =
2350 				((struct octeon_skb_page_info *)(skb->cb));
2351 			skb_copy_to_linear_data(skb, page_address(pg_info->page)
2352 						+ pg_info->page_offset, len);
2353 			skb_put(skb, len);
2354 			put_page(pg_info->page);
2355 		}
2356 
2357 		r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT;
2358 
2359 		if (((oct->chip_id == OCTEON_CN66XX) ||
2360 		     (oct->chip_id == OCTEON_CN68XX)) &&
2361 		    ptp_enable) {
2362 			if (rh->r_dh.has_hwtstamp) {
2363 				/* timestamp is included from the hardware at
2364 				 * the beginning of the packet.
2365 				 */
2366 				if (ifstate_check
2367 				    (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
2368 					/* Nanoseconds are in the first 64-bits
2369 					 * of the packet.
2370 					 */
2371 					memcpy(&ns, (skb->data + r_dh_off),
2372 					       sizeof(ns));
2373 					r_dh_off -= BYTES_PER_DHLEN_UNIT;
2374 					shhwtstamps = skb_hwtstamps(skb);
2375 					shhwtstamps->hwtstamp =
2376 						ns_to_ktime(ns +
2377 							    lio->ptp_adjust);
2378 				}
2379 			}
2380 		}
2381 
2382 		if (rh->r_dh.has_hash) {
2383 			__be32 *hash_be = (__be32 *)(skb->data + r_dh_off);
2384 			u32 hash = be32_to_cpu(*hash_be);
2385 
2386 			skb_set_hash(skb, hash, PKT_HASH_TYPE_L4);
2387 			r_dh_off -= BYTES_PER_DHLEN_UNIT;
2388 		}
2389 
2390 		skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT);
2391 
2392 		skb->protocol = eth_type_trans(skb, skb->dev);
2393 		if ((netdev->features & NETIF_F_RXCSUM) &&
2394 		    (((rh->r_dh.encap_on) &&
2395 		      (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) ||
2396 		     (!(rh->r_dh.encap_on) &&
2397 		      (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED))))
2398 			/* checksum has already been verified */
2399 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2400 		else
2401 			skb->ip_summed = CHECKSUM_NONE;
2402 
2403 		/* Setting Encapsulation field on basis of status received
2404 		 * from the firmware
2405 		 */
2406 		if (rh->r_dh.encap_on) {
2407 			skb->encapsulation = 1;
2408 			skb->csum_level = 1;
2409 			droq->stats.rx_vxlan++;
2410 		}
2411 
2412 		/* inbound VLAN tag */
2413 		if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
2414 		    (rh->r_dh.vlan != 0)) {
2415 			u16 vid = rh->r_dh.vlan;
2416 			u16 priority = rh->r_dh.priority;
2417 
2418 			vtag = priority << 13 | vid;
2419 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
2420 		}
2421 
2422 		packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
2423 
2424 		if (packet_was_received) {
2425 			droq->stats.rx_bytes_received += len;
2426 			droq->stats.rx_pkts_received++;
2427 		} else {
2428 			droq->stats.rx_dropped++;
2429 			netif_info(lio, rx_err, lio->netdev,
2430 				   "droq:%d  error rx_dropped:%llu\n",
2431 				   droq->q_no, droq->stats.rx_dropped);
2432 		}
2433 
2434 	} else {
2435 		recv_buffer_free(skb);
2436 	}
2437 }
2438 
2439 /**
2440  * \brief wrapper for calling napi_schedule
2441  * @param param parameters to pass to napi_schedule
2442  *
2443  * Used when scheduling on different CPUs
2444  */
2445 static void napi_schedule_wrapper(void *param)
2446 {
2447 	struct napi_struct *napi = param;
2448 
2449 	napi_schedule(napi);
2450 }
2451 
2452 /**
2453  * \brief callback when receive interrupt occurs and we are in NAPI mode
2454  * @param arg pointer to octeon output queue
2455  */
2456 static void liquidio_napi_drv_callback(void *arg)
2457 {
2458 	struct octeon_device *oct;
2459 	struct octeon_droq *droq = arg;
2460 	int this_cpu = smp_processor_id();
2461 
2462 	oct = droq->oct_dev;
2463 
2464 	if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) {
2465 		napi_schedule_irqoff(&droq->napi);
2466 	} else {
2467 		struct call_single_data *csd = &droq->csd;
2468 
2469 		csd->func = napi_schedule_wrapper;
2470 		csd->info = &droq->napi;
2471 		csd->flags = 0;
2472 
2473 		smp_call_function_single_async(droq->cpu_id, csd);
2474 	}
2475 }
2476 
2477 /**
2478  * \brief Entry point for NAPI polling
2479  * @param napi NAPI structure
2480  * @param budget maximum number of items to process
2481  */
2482 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
2483 {
2484 	struct octeon_droq *droq;
2485 	int work_done;
2486 	int tx_done = 0, iq_no;
2487 	struct octeon_instr_queue *iq;
2488 	struct octeon_device *oct;
2489 
2490 	droq = container_of(napi, struct octeon_droq, napi);
2491 	oct = droq->oct_dev;
2492 	iq_no = droq->q_no;
2493 	/* Handle Droq descriptors */
2494 	work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
2495 						 POLL_EVENT_PROCESS_PKTS,
2496 						 budget);
2497 
2498 	/* Flush the instruction queue */
2499 	iq = oct->instr_queue[iq_no];
2500 	if (iq) {
2501 		if (atomic_read(&iq->instr_pending))
2502 			/* Process iq buffers with in the budget limits */
2503 			tx_done = octeon_flush_iq(oct, iq, budget);
2504 		else
2505 			tx_done = 1;
2506 		/* Update iq read-index rather than waiting for next interrupt.
2507 		 * Return back if tx_done is false.
2508 		 */
2509 		update_txq_status(oct, iq_no);
2510 	} else {
2511 		dev_err(&oct->pci_dev->dev, "%s:  iq (%d) num invalid\n",
2512 			__func__, iq_no);
2513 	}
2514 
2515 	/* force enable interrupt if reg cnts are high to avoid wraparound */
2516 	if ((work_done < budget && tx_done) ||
2517 	    (iq && iq->pkt_in_done >= MAX_REG_CNT) ||
2518 	    (droq->pkt_count >= MAX_REG_CNT)) {
2519 		tx_done = 1;
2520 		napi_complete_done(napi, work_done);
2521 		octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
2522 					     POLL_EVENT_ENABLE_INTR, 0);
2523 		return 0;
2524 	}
2525 
2526 	return (!tx_done) ? (budget) : (work_done);
2527 }
2528 
2529 /**
2530  * \brief Setup input and output queues
2531  * @param octeon_dev octeon device
2532  * @param ifidx  Interface Index
2533  *
2534  * Note: Queues are with respect to the octeon device. Thus
2535  * an input queue is for egress packets, and output queues
2536  * are for ingress packets.
2537  */
2538 static inline int setup_io_queues(struct octeon_device *octeon_dev,
2539 				  int ifidx)
2540 {
2541 	struct octeon_droq_ops droq_ops;
2542 	struct net_device *netdev;
2543 	static int cpu_id;
2544 	static int cpu_id_modulus;
2545 	struct octeon_droq *droq;
2546 	struct napi_struct *napi;
2547 	int q, q_no, retval = 0;
2548 	struct lio *lio;
2549 	int num_tx_descs;
2550 
2551 	netdev = octeon_dev->props[ifidx].netdev;
2552 
2553 	lio = GET_LIO(netdev);
2554 
2555 	memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
2556 
2557 	droq_ops.fptr = liquidio_push_packet;
2558 	droq_ops.farg = (void *)netdev;
2559 
2560 	droq_ops.poll_mode = 1;
2561 	droq_ops.napi_fn = liquidio_napi_drv_callback;
2562 	cpu_id = 0;
2563 	cpu_id_modulus = num_present_cpus();
2564 
2565 	/* set up DROQs. */
2566 	for (q = 0; q < lio->linfo.num_rxpciq; q++) {
2567 		q_no = lio->linfo.rxpciq[q].s.q_no;
2568 		dev_dbg(&octeon_dev->pci_dev->dev,
2569 			"setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n",
2570 			q, q_no);
2571 		retval = octeon_setup_droq(octeon_dev, q_no,
2572 					   CFG_GET_NUM_RX_DESCS_NIC_IF
2573 						   (octeon_get_conf(octeon_dev),
2574 						   lio->ifidx),
2575 					   CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
2576 						   (octeon_get_conf(octeon_dev),
2577 						   lio->ifidx), NULL);
2578 		if (retval) {
2579 			dev_err(&octeon_dev->pci_dev->dev,
2580 				"%s : Runtime DROQ(RxQ) creation failed.\n",
2581 				__func__);
2582 			return 1;
2583 		}
2584 
2585 		droq = octeon_dev->droq[q_no];
2586 		napi = &droq->napi;
2587 		dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n",
2588 			(u64)netdev, (u64)octeon_dev, octeon_dev->pf_num);
2589 		netif_napi_add(netdev, napi, liquidio_napi_poll, 64);
2590 
2591 		/* designate a CPU for this droq */
2592 		droq->cpu_id = cpu_id;
2593 		cpu_id++;
2594 		if (cpu_id >= cpu_id_modulus)
2595 			cpu_id = 0;
2596 
2597 		octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
2598 	}
2599 
2600 	if (OCTEON_CN23XX_PF(octeon_dev)) {
2601 		/* 23XX PF can receive control messages (via the first PF-owned
2602 		 * droq) from the firmware even if the ethX interface is down,
2603 		 * so that's why poll_mode must be off for the first droq.
2604 		 */
2605 		octeon_dev->droq[0]->ops.poll_mode = 0;
2606 	}
2607 
2608 	/* set up IQs. */
2609 	for (q = 0; q < lio->linfo.num_txpciq; q++) {
2610 		num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
2611 							   (octeon_dev),
2612 							   lio->ifidx);
2613 		retval = octeon_setup_iq(octeon_dev, ifidx, q,
2614 					 lio->linfo.txpciq[q], num_tx_descs,
2615 					 netdev_get_tx_queue(netdev, q));
2616 		if (retval) {
2617 			dev_err(&octeon_dev->pci_dev->dev,
2618 				" %s : Runtime IQ(TxQ) creation failed.\n",
2619 				__func__);
2620 			return 1;
2621 		}
2622 
2623 		if (octeon_dev->ioq_vector) {
2624 			struct octeon_ioq_vector *ioq_vector;
2625 
2626 			ioq_vector = &octeon_dev->ioq_vector[q];
2627 			netif_set_xps_queue(netdev,
2628 					    &ioq_vector->affinity_mask,
2629 					    ioq_vector->iq_index);
2630 		}
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 /**
2637  * \brief Poll routine for checking transmit queue status
2638  * @param work work_struct data structure
2639  */
2640 static void octnet_poll_check_txq_status(struct work_struct *work)
2641 {
2642 	struct cavium_wk *wk = (struct cavium_wk *)work;
2643 	struct lio *lio = (struct lio *)wk->ctxptr;
2644 
2645 	if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2646 		return;
2647 
2648 	check_txq_status(lio);
2649 	queue_delayed_work(lio->txq_status_wq.wq,
2650 			   &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2651 }
2652 
2653 /**
2654  * \brief Sets up the txq poll check
2655  * @param netdev network device
2656  */
2657 static inline int setup_tx_poll_fn(struct net_device *netdev)
2658 {
2659 	struct lio *lio = GET_LIO(netdev);
2660 	struct octeon_device *oct = lio->oct_dev;
2661 
2662 	lio->txq_status_wq.wq = alloc_workqueue("txq-status",
2663 						WQ_MEM_RECLAIM, 0);
2664 	if (!lio->txq_status_wq.wq) {
2665 		dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2666 		return -1;
2667 	}
2668 	INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2669 			  octnet_poll_check_txq_status);
2670 	lio->txq_status_wq.wk.ctxptr = lio;
2671 	queue_delayed_work(lio->txq_status_wq.wq,
2672 			   &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2673 	return 0;
2674 }
2675 
2676 static inline void cleanup_tx_poll_fn(struct net_device *netdev)
2677 {
2678 	struct lio *lio = GET_LIO(netdev);
2679 
2680 	if (lio->txq_status_wq.wq) {
2681 		cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2682 		destroy_workqueue(lio->txq_status_wq.wq);
2683 	}
2684 }
2685 
2686 /**
2687  * \brief Net device open for LiquidIO
2688  * @param netdev network device
2689  */
2690 static int liquidio_open(struct net_device *netdev)
2691 {
2692 	struct lio *lio = GET_LIO(netdev);
2693 	struct octeon_device *oct = lio->oct_dev;
2694 	struct napi_struct *napi, *n;
2695 
2696 	if (oct->props[lio->ifidx].napi_enabled == 0) {
2697 		list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2698 			napi_enable(napi);
2699 
2700 		oct->props[lio->ifidx].napi_enabled = 1;
2701 
2702 		if (OCTEON_CN23XX_PF(oct))
2703 			oct->droq[0]->ops.poll_mode = 1;
2704 	}
2705 
2706 	if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) &&
2707 	    ptp_enable)
2708 		oct_ptp_open(netdev);
2709 
2710 	ifstate_set(lio, LIO_IFSTATE_RUNNING);
2711 
2712 	/* Ready for link status updates */
2713 	lio->intf_open = 1;
2714 
2715 	netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2716 
2717 	if (OCTEON_CN23XX_PF(oct)) {
2718 		if (!oct->msix_on)
2719 			if (setup_tx_poll_fn(netdev))
2720 				return -1;
2721 	} else {
2722 		if (setup_tx_poll_fn(netdev))
2723 			return -1;
2724 	}
2725 
2726 	start_txq(netdev);
2727 
2728 	/* tell Octeon to start forwarding packets to host */
2729 	send_rx_ctrl_cmd(lio, 1);
2730 
2731 	dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2732 		 netdev->name);
2733 
2734 	return 0;
2735 }
2736 
2737 /**
2738  * \brief Net device stop for LiquidIO
2739  * @param netdev network device
2740  */
2741 static int liquidio_stop(struct net_device *netdev)
2742 {
2743 	struct lio *lio = GET_LIO(netdev);
2744 	struct octeon_device *oct = lio->oct_dev;
2745 
2746 	ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2747 
2748 	netif_tx_disable(netdev);
2749 
2750 	/* Inform that netif carrier is down */
2751 	netif_carrier_off(netdev);
2752 	lio->intf_open = 0;
2753 	lio->linfo.link.s.link_up = 0;
2754 	lio->link_changes++;
2755 
2756 	/* Tell Octeon that nic interface is down. */
2757 	send_rx_ctrl_cmd(lio, 0);
2758 
2759 	if (OCTEON_CN23XX_PF(oct)) {
2760 		if (!oct->msix_on)
2761 			cleanup_tx_poll_fn(netdev);
2762 	} else {
2763 		cleanup_tx_poll_fn(netdev);
2764 	}
2765 
2766 	if (lio->ptp_clock) {
2767 		ptp_clock_unregister(lio->ptp_clock);
2768 		lio->ptp_clock = NULL;
2769 	}
2770 
2771 	dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2772 
2773 	return 0;
2774 }
2775 
2776 /**
2777  * \brief Converts a mask based on net device flags
2778  * @param netdev network device
2779  *
2780  * This routine generates a octnet_ifflags mask from the net device flags
2781  * received from the OS.
2782  */
2783 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2784 {
2785 	enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2786 
2787 	if (netdev->flags & IFF_PROMISC)
2788 		f |= OCTNET_IFFLAG_PROMISC;
2789 
2790 	if (netdev->flags & IFF_ALLMULTI)
2791 		f |= OCTNET_IFFLAG_ALLMULTI;
2792 
2793 	if (netdev->flags & IFF_MULTICAST) {
2794 		f |= OCTNET_IFFLAG_MULTICAST;
2795 
2796 		/* Accept all multicast addresses if there are more than we
2797 		 * can handle
2798 		 */
2799 		if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2800 			f |= OCTNET_IFFLAG_ALLMULTI;
2801 	}
2802 
2803 	if (netdev->flags & IFF_BROADCAST)
2804 		f |= OCTNET_IFFLAG_BROADCAST;
2805 
2806 	return f;
2807 }
2808 
2809 /**
2810  * \brief Net device set_multicast_list
2811  * @param netdev network device
2812  */
2813 static void liquidio_set_mcast_list(struct net_device *netdev)
2814 {
2815 	struct lio *lio = GET_LIO(netdev);
2816 	struct octeon_device *oct = lio->oct_dev;
2817 	struct octnic_ctrl_pkt nctrl;
2818 	struct netdev_hw_addr *ha;
2819 	u64 *mc;
2820 	int ret;
2821 	int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2822 
2823 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2824 
2825 	/* Create a ctrl pkt command to be sent to core app. */
2826 	nctrl.ncmd.u64 = 0;
2827 	nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2828 	nctrl.ncmd.s.param1 = get_new_flags(netdev);
2829 	nctrl.ncmd.s.param2 = mc_count;
2830 	nctrl.ncmd.s.more = mc_count;
2831 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2832 	nctrl.netpndev = (u64)netdev;
2833 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2834 
2835 	/* copy all the addresses into the udd */
2836 	mc = &nctrl.udd[0];
2837 	netdev_for_each_mc_addr(ha, netdev) {
2838 		*mc = 0;
2839 		memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2840 		/* no need to swap bytes */
2841 
2842 		if (++mc > &nctrl.udd[mc_count])
2843 			break;
2844 	}
2845 
2846 	/* Apparently, any activity in this call from the kernel has to
2847 	 * be atomic. So we won't wait for response.
2848 	 */
2849 	nctrl.wait_time = 0;
2850 
2851 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2852 	if (ret < 0) {
2853 		dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2854 			ret);
2855 	}
2856 }
2857 
2858 /**
2859  * \brief Net device set_mac_address
2860  * @param netdev network device
2861  */
2862 static int liquidio_set_mac(struct net_device *netdev, void *p)
2863 {
2864 	int ret = 0;
2865 	struct lio *lio = GET_LIO(netdev);
2866 	struct octeon_device *oct = lio->oct_dev;
2867 	struct sockaddr *addr = (struct sockaddr *)p;
2868 	struct octnic_ctrl_pkt nctrl;
2869 
2870 	if (!is_valid_ether_addr(addr->sa_data))
2871 		return -EADDRNOTAVAIL;
2872 
2873 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2874 
2875 	nctrl.ncmd.u64 = 0;
2876 	nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2877 	nctrl.ncmd.s.param1 = 0;
2878 	nctrl.ncmd.s.more = 1;
2879 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2880 	nctrl.netpndev = (u64)netdev;
2881 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2882 	nctrl.wait_time = 100;
2883 
2884 	nctrl.udd[0] = 0;
2885 	/* The MAC Address is presented in network byte order. */
2886 	memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2887 
2888 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2889 	if (ret < 0) {
2890 		dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2891 		return -ENOMEM;
2892 	}
2893 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2894 	memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2895 
2896 	return 0;
2897 }
2898 
2899 /**
2900  * \brief Net device get_stats
2901  * @param netdev network device
2902  */
2903 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2904 {
2905 	struct lio *lio = GET_LIO(netdev);
2906 	struct net_device_stats *stats = &netdev->stats;
2907 	struct octeon_device *oct;
2908 	u64 pkts = 0, drop = 0, bytes = 0;
2909 	struct oct_droq_stats *oq_stats;
2910 	struct oct_iq_stats *iq_stats;
2911 	int i, iq_no, oq_no;
2912 
2913 	oct = lio->oct_dev;
2914 
2915 	for (i = 0; i < lio->linfo.num_txpciq; i++) {
2916 		iq_no = lio->linfo.txpciq[i].s.q_no;
2917 		iq_stats = &oct->instr_queue[iq_no]->stats;
2918 		pkts += iq_stats->tx_done;
2919 		drop += iq_stats->tx_dropped;
2920 		bytes += iq_stats->tx_tot_bytes;
2921 	}
2922 
2923 	stats->tx_packets = pkts;
2924 	stats->tx_bytes = bytes;
2925 	stats->tx_dropped = drop;
2926 
2927 	pkts = 0;
2928 	drop = 0;
2929 	bytes = 0;
2930 
2931 	for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2932 		oq_no = lio->linfo.rxpciq[i].s.q_no;
2933 		oq_stats = &oct->droq[oq_no]->stats;
2934 		pkts += oq_stats->rx_pkts_received;
2935 		drop += (oq_stats->rx_dropped +
2936 			 oq_stats->dropped_nodispatch +
2937 			 oq_stats->dropped_toomany +
2938 			 oq_stats->dropped_nomem);
2939 		bytes += oq_stats->rx_bytes_received;
2940 	}
2941 
2942 	stats->rx_bytes = bytes;
2943 	stats->rx_packets = pkts;
2944 	stats->rx_dropped = drop;
2945 
2946 	return stats;
2947 }
2948 
2949 /**
2950  * \brief Net device change_mtu
2951  * @param netdev network device
2952  */
2953 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2954 {
2955 	struct lio *lio = GET_LIO(netdev);
2956 	struct octeon_device *oct = lio->oct_dev;
2957 	struct octnic_ctrl_pkt nctrl;
2958 	int ret = 0;
2959 
2960 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2961 
2962 	nctrl.ncmd.u64 = 0;
2963 	nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2964 	nctrl.ncmd.s.param1 = new_mtu;
2965 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
2966 	nctrl.wait_time = 100;
2967 	nctrl.netpndev = (u64)netdev;
2968 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2969 
2970 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
2971 	if (ret < 0) {
2972 		dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2973 		return -1;
2974 	}
2975 
2976 	lio->mtu = new_mtu;
2977 
2978 	return 0;
2979 }
2980 
2981 /**
2982  * \brief Handler for SIOCSHWTSTAMP ioctl
2983  * @param netdev network device
2984  * @param ifr interface request
2985  * @param cmd command
2986  */
2987 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
2988 {
2989 	struct hwtstamp_config conf;
2990 	struct lio *lio = GET_LIO(netdev);
2991 
2992 	if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2993 		return -EFAULT;
2994 
2995 	if (conf.flags)
2996 		return -EINVAL;
2997 
2998 	switch (conf.tx_type) {
2999 	case HWTSTAMP_TX_ON:
3000 	case HWTSTAMP_TX_OFF:
3001 		break;
3002 	default:
3003 		return -ERANGE;
3004 	}
3005 
3006 	switch (conf.rx_filter) {
3007 	case HWTSTAMP_FILTER_NONE:
3008 		break;
3009 	case HWTSTAMP_FILTER_ALL:
3010 	case HWTSTAMP_FILTER_SOME:
3011 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3012 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3013 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3014 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3015 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3016 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3017 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3018 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3019 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3020 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3021 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3022 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3023 		conf.rx_filter = HWTSTAMP_FILTER_ALL;
3024 		break;
3025 	default:
3026 		return -ERANGE;
3027 	}
3028 
3029 	if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
3030 		ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
3031 
3032 	else
3033 		ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
3034 
3035 	return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
3036 }
3037 
3038 /**
3039  * \brief ioctl handler
3040  * @param netdev network device
3041  * @param ifr interface request
3042  * @param cmd command
3043  */
3044 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3045 {
3046 	struct lio *lio = GET_LIO(netdev);
3047 
3048 	switch (cmd) {
3049 	case SIOCSHWTSTAMP:
3050 		if ((lio->oct_dev->chip_id == OCTEON_CN66XX ||
3051 		     lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable)
3052 			return hwtstamp_ioctl(netdev, ifr);
3053 	default:
3054 		return -EOPNOTSUPP;
3055 	}
3056 }
3057 
3058 /**
3059  * \brief handle a Tx timestamp response
3060  * @param status response status
3061  * @param buf pointer to skb
3062  */
3063 static void handle_timestamp(struct octeon_device *oct,
3064 			     u32 status,
3065 			     void *buf)
3066 {
3067 	struct octnet_buf_free_info *finfo;
3068 	struct octeon_soft_command *sc;
3069 	struct oct_timestamp_resp *resp;
3070 	struct lio *lio;
3071 	struct sk_buff *skb = (struct sk_buff *)buf;
3072 
3073 	finfo = (struct octnet_buf_free_info *)skb->cb;
3074 	lio = finfo->lio;
3075 	sc = finfo->sc;
3076 	oct = lio->oct_dev;
3077 	resp = (struct oct_timestamp_resp *)sc->virtrptr;
3078 
3079 	if (status != OCTEON_REQUEST_DONE) {
3080 		dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
3081 			CVM_CAST64(status));
3082 		resp->timestamp = 0;
3083 	}
3084 
3085 	octeon_swap_8B_data(&resp->timestamp, 1);
3086 
3087 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
3088 		struct skb_shared_hwtstamps ts;
3089 		u64 ns = resp->timestamp;
3090 
3091 		netif_info(lio, tx_done, lio->netdev,
3092 			   "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
3093 			   skb, (unsigned long long)ns);
3094 		ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
3095 		skb_tstamp_tx(skb, &ts);
3096 	}
3097 
3098 	octeon_free_soft_command(oct, sc);
3099 	tx_buffer_free(skb);
3100 }
3101 
3102 /* \brief Send a data packet that will be timestamped
3103  * @param oct octeon device
3104  * @param ndata pointer to network data
3105  * @param finfo pointer to private network data
3106  */
3107 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
3108 					 struct octnic_data_pkt *ndata,
3109 					 struct octnet_buf_free_info *finfo)
3110 {
3111 	int retval;
3112 	struct octeon_soft_command *sc;
3113 	struct lio *lio;
3114 	int ring_doorbell;
3115 	u32 len;
3116 
3117 	lio = finfo->lio;
3118 
3119 	sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
3120 					    sizeof(struct oct_timestamp_resp));
3121 	finfo->sc = sc;
3122 
3123 	if (!sc) {
3124 		dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
3125 		return IQ_SEND_FAILED;
3126 	}
3127 
3128 	if (ndata->reqtype == REQTYPE_NORESP_NET)
3129 		ndata->reqtype = REQTYPE_RESP_NET;
3130 	else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
3131 		ndata->reqtype = REQTYPE_RESP_NET_SG;
3132 
3133 	sc->callback = handle_timestamp;
3134 	sc->callback_arg = finfo->skb;
3135 	sc->iq_no = ndata->q_no;
3136 
3137 	if (OCTEON_CN23XX_PF(oct))
3138 		len = (u32)((struct octeon_instr_ih3 *)
3139 			    (&sc->cmd.cmd3.ih3))->dlengsz;
3140 	else
3141 		len = (u32)((struct octeon_instr_ih2 *)
3142 			    (&sc->cmd.cmd2.ih2))->dlengsz;
3143 
3144 	ring_doorbell = 1;
3145 
3146 	retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
3147 				     sc, len, ndata->reqtype);
3148 
3149 	if (retval == IQ_SEND_FAILED) {
3150 		dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
3151 			retval);
3152 		octeon_free_soft_command(oct, sc);
3153 	} else {
3154 		netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
3155 	}
3156 
3157 	return retval;
3158 }
3159 
3160 /** \brief Transmit networks packets to the Octeon interface
3161  * @param skbuff   skbuff struct to be passed to network layer.
3162  * @param netdev    pointer to network device
3163  * @returns whether the packet was transmitted to the device okay or not
3164  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
3165  */
3166 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
3167 {
3168 	struct lio *lio;
3169 	struct octnet_buf_free_info *finfo;
3170 	union octnic_cmd_setup cmdsetup;
3171 	struct octnic_data_pkt ndata;
3172 	struct octeon_device *oct;
3173 	struct oct_iq_stats *stats;
3174 	struct octeon_instr_irh *irh;
3175 	union tx_info *tx_info;
3176 	int status = 0;
3177 	int q_idx = 0, iq_no = 0;
3178 	int j;
3179 	u64 dptr = 0;
3180 	u32 tag = 0;
3181 
3182 	lio = GET_LIO(netdev);
3183 	oct = lio->oct_dev;
3184 
3185 	if (netif_is_multiqueue(netdev)) {
3186 		q_idx = skb->queue_mapping;
3187 		q_idx = (q_idx % (lio->linfo.num_txpciq));
3188 		tag = q_idx;
3189 		iq_no = lio->linfo.txpciq[q_idx].s.q_no;
3190 	} else {
3191 		iq_no = lio->txq;
3192 	}
3193 
3194 	stats = &oct->instr_queue[iq_no]->stats;
3195 
3196 	/* Check for all conditions in which the current packet cannot be
3197 	 * transmitted.
3198 	 */
3199 	if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
3200 	    (!lio->linfo.link.s.link_up) ||
3201 	    (skb->len <= 0)) {
3202 		netif_info(lio, tx_err, lio->netdev,
3203 			   "Transmit failed link_status : %d\n",
3204 			   lio->linfo.link.s.link_up);
3205 		goto lio_xmit_failed;
3206 	}
3207 
3208 	/* Use space in skb->cb to store info used to unmap and
3209 	 * free the buffers.
3210 	 */
3211 	finfo = (struct octnet_buf_free_info *)skb->cb;
3212 	finfo->lio = lio;
3213 	finfo->skb = skb;
3214 	finfo->sc = NULL;
3215 
3216 	/* Prepare the attributes for the data to be passed to OSI. */
3217 	memset(&ndata, 0, sizeof(struct octnic_data_pkt));
3218 
3219 	ndata.buf = (void *)finfo;
3220 
3221 	ndata.q_no = iq_no;
3222 
3223 	if (netif_is_multiqueue(netdev)) {
3224 		if (octnet_iq_is_full(oct, ndata.q_no)) {
3225 			/* defer sending if queue is full */
3226 			netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3227 				   ndata.q_no);
3228 			stats->tx_iq_busy++;
3229 			return NETDEV_TX_BUSY;
3230 		}
3231 	} else {
3232 		if (octnet_iq_is_full(oct, lio->txq)) {
3233 			/* defer sending if queue is full */
3234 			stats->tx_iq_busy++;
3235 			netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
3236 				   lio->txq);
3237 			return NETDEV_TX_BUSY;
3238 		}
3239 	}
3240 	/* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
3241 	 *	lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no);
3242 	 */
3243 
3244 	ndata.datasize = skb->len;
3245 
3246 	cmdsetup.u64 = 0;
3247 	cmdsetup.s.iq_no = iq_no;
3248 
3249 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3250 		if (skb->encapsulation) {
3251 			cmdsetup.s.tnl_csum = 1;
3252 			stats->tx_vxlan++;
3253 		} else {
3254 			cmdsetup.s.transport_csum = 1;
3255 		}
3256 	}
3257 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3258 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3259 		cmdsetup.s.timestamp = 1;
3260 	}
3261 
3262 	if (skb_shinfo(skb)->nr_frags == 0) {
3263 		cmdsetup.s.u.datasize = skb->len;
3264 		octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3265 
3266 		/* Offload checksum calculation for TCP/UDP packets */
3267 		dptr = dma_map_single(&oct->pci_dev->dev,
3268 				      skb->data,
3269 				      skb->len,
3270 				      DMA_TO_DEVICE);
3271 		if (dma_mapping_error(&oct->pci_dev->dev, dptr)) {
3272 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
3273 				__func__);
3274 			return NETDEV_TX_BUSY;
3275 		}
3276 
3277 		if (OCTEON_CN23XX_PF(oct))
3278 			ndata.cmd.cmd3.dptr = dptr;
3279 		else
3280 			ndata.cmd.cmd2.dptr = dptr;
3281 		finfo->dptr = dptr;
3282 		ndata.reqtype = REQTYPE_NORESP_NET;
3283 
3284 	} else {
3285 		int i, frags;
3286 		struct skb_frag_struct *frag;
3287 		struct octnic_gather *g;
3288 
3289 		spin_lock(&lio->glist_lock[q_idx]);
3290 		g = (struct octnic_gather *)
3291 			list_delete_head(&lio->glist[q_idx]);
3292 		spin_unlock(&lio->glist_lock[q_idx]);
3293 
3294 		if (!g) {
3295 			netif_info(lio, tx_err, lio->netdev,
3296 				   "Transmit scatter gather: glist null!\n");
3297 			goto lio_xmit_failed;
3298 		}
3299 
3300 		cmdsetup.s.gather = 1;
3301 		cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
3302 		octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag);
3303 
3304 		memset(g->sg, 0, g->sg_size);
3305 
3306 		g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
3307 						 skb->data,
3308 						 (skb->len - skb->data_len),
3309 						 DMA_TO_DEVICE);
3310 		if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
3311 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
3312 				__func__);
3313 			return NETDEV_TX_BUSY;
3314 		}
3315 		add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
3316 
3317 		frags = skb_shinfo(skb)->nr_frags;
3318 		i = 1;
3319 		while (frags--) {
3320 			frag = &skb_shinfo(skb)->frags[i - 1];
3321 
3322 			g->sg[(i >> 2)].ptr[(i & 3)] =
3323 				dma_map_page(&oct->pci_dev->dev,
3324 					     frag->page.p,
3325 					     frag->page_offset,
3326 					     frag->size,
3327 					     DMA_TO_DEVICE);
3328 
3329 			if (dma_mapping_error(&oct->pci_dev->dev,
3330 					      g->sg[i >> 2].ptr[i & 3])) {
3331 				dma_unmap_single(&oct->pci_dev->dev,
3332 						 g->sg[0].ptr[0],
3333 						 skb->len - skb->data_len,
3334 						 DMA_TO_DEVICE);
3335 				for (j = 1; j < i; j++) {
3336 					frag = &skb_shinfo(skb)->frags[j - 1];
3337 					dma_unmap_page(&oct->pci_dev->dev,
3338 						       g->sg[j >> 2].ptr[j & 3],
3339 						       frag->size,
3340 						       DMA_TO_DEVICE);
3341 				}
3342 				dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
3343 					__func__);
3344 				return NETDEV_TX_BUSY;
3345 			}
3346 
3347 			add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
3348 			i++;
3349 		}
3350 
3351 		dptr = g->sg_dma_ptr;
3352 
3353 		if (OCTEON_CN23XX_PF(oct))
3354 			ndata.cmd.cmd3.dptr = dptr;
3355 		else
3356 			ndata.cmd.cmd2.dptr = dptr;
3357 		finfo->dptr = dptr;
3358 		finfo->g = g;
3359 
3360 		ndata.reqtype = REQTYPE_NORESP_NET_SG;
3361 	}
3362 
3363 	if (OCTEON_CN23XX_PF(oct)) {
3364 		irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh;
3365 		tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0];
3366 	} else {
3367 		irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh;
3368 		tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0];
3369 	}
3370 
3371 	if (skb_shinfo(skb)->gso_size) {
3372 		tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
3373 		tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
3374 		stats->tx_gso++;
3375 	}
3376 
3377 	/* HW insert VLAN tag */
3378 	if (skb_vlan_tag_present(skb)) {
3379 		irh->priority = skb_vlan_tag_get(skb) >> 13;
3380 		irh->vlan = skb_vlan_tag_get(skb) & 0xfff;
3381 	}
3382 
3383 	if (unlikely(cmdsetup.s.timestamp))
3384 		status = send_nic_timestamp_pkt(oct, &ndata, finfo);
3385 	else
3386 		status = octnet_send_nic_data_pkt(oct, &ndata);
3387 	if (status == IQ_SEND_FAILED)
3388 		goto lio_xmit_failed;
3389 
3390 	netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
3391 
3392 	if (status == IQ_SEND_STOP)
3393 		stop_q(lio->netdev, q_idx);
3394 
3395 	netif_trans_update(netdev);
3396 
3397 	if (tx_info->s.gso_segs)
3398 		stats->tx_done += tx_info->s.gso_segs;
3399 	else
3400 		stats->tx_done++;
3401 	stats->tx_tot_bytes += ndata.datasize;
3402 
3403 	return NETDEV_TX_OK;
3404 
3405 lio_xmit_failed:
3406 	stats->tx_dropped++;
3407 	netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
3408 		   iq_no, stats->tx_dropped);
3409 	if (dptr)
3410 		dma_unmap_single(&oct->pci_dev->dev, dptr,
3411 				 ndata.datasize, DMA_TO_DEVICE);
3412 	tx_buffer_free(skb);
3413 	return NETDEV_TX_OK;
3414 }
3415 
3416 /** \brief Network device Tx timeout
3417  * @param netdev    pointer to network device
3418  */
3419 static void liquidio_tx_timeout(struct net_device *netdev)
3420 {
3421 	struct lio *lio;
3422 
3423 	lio = GET_LIO(netdev);
3424 
3425 	netif_info(lio, tx_err, lio->netdev,
3426 		   "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
3427 		   netdev->stats.tx_dropped);
3428 	netif_trans_update(netdev);
3429 	txqs_wake(netdev);
3430 }
3431 
3432 static int liquidio_vlan_rx_add_vid(struct net_device *netdev,
3433 				    __be16 proto __attribute__((unused)),
3434 				    u16 vid)
3435 {
3436 	struct lio *lio = GET_LIO(netdev);
3437 	struct octeon_device *oct = lio->oct_dev;
3438 	struct octnic_ctrl_pkt nctrl;
3439 	int ret = 0;
3440 
3441 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3442 
3443 	nctrl.ncmd.u64 = 0;
3444 	nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3445 	nctrl.ncmd.s.param1 = vid;
3446 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3447 	nctrl.wait_time = 100;
3448 	nctrl.netpndev = (u64)netdev;
3449 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3450 
3451 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3452 	if (ret < 0) {
3453 		dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3454 			ret);
3455 	}
3456 
3457 	return ret;
3458 }
3459 
3460 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev,
3461 				     __be16 proto __attribute__((unused)),
3462 				     u16 vid)
3463 {
3464 	struct lio *lio = GET_LIO(netdev);
3465 	struct octeon_device *oct = lio->oct_dev;
3466 	struct octnic_ctrl_pkt nctrl;
3467 	int ret = 0;
3468 
3469 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3470 
3471 	nctrl.ncmd.u64 = 0;
3472 	nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3473 	nctrl.ncmd.s.param1 = vid;
3474 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3475 	nctrl.wait_time = 100;
3476 	nctrl.netpndev = (u64)netdev;
3477 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3478 
3479 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3480 	if (ret < 0) {
3481 		dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n",
3482 			ret);
3483 	}
3484 	return ret;
3485 }
3486 
3487 /** Sending command to enable/disable RX checksum offload
3488  * @param netdev                pointer to network device
3489  * @param command               OCTNET_CMD_TNL_RX_CSUM_CTL
3490  * @param rx_cmd_bit            OCTNET_CMD_RXCSUM_ENABLE/
3491  *                              OCTNET_CMD_RXCSUM_DISABLE
3492  * @returns                     SUCCESS or FAILURE
3493  */
3494 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command,
3495 				       u8 rx_cmd)
3496 {
3497 	struct lio *lio = GET_LIO(netdev);
3498 	struct octeon_device *oct = lio->oct_dev;
3499 	struct octnic_ctrl_pkt nctrl;
3500 	int ret = 0;
3501 
3502 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3503 
3504 	nctrl.ncmd.u64 = 0;
3505 	nctrl.ncmd.s.cmd = command;
3506 	nctrl.ncmd.s.param1 = rx_cmd;
3507 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3508 	nctrl.wait_time = 100;
3509 	nctrl.netpndev = (u64)netdev;
3510 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3511 
3512 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3513 	if (ret < 0) {
3514 		dev_err(&oct->pci_dev->dev,
3515 			"DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n",
3516 			ret);
3517 	}
3518 	return ret;
3519 }
3520 
3521 /** Sending command to add/delete VxLAN UDP port to firmware
3522  * @param netdev                pointer to network device
3523  * @param command               OCTNET_CMD_VXLAN_PORT_CONFIG
3524  * @param vxlan_port            VxLAN port to be added or deleted
3525  * @param vxlan_cmd_bit         OCTNET_CMD_VXLAN_PORT_ADD,
3526  *                              OCTNET_CMD_VXLAN_PORT_DEL
3527  * @returns                     SUCCESS or FAILURE
3528  */
3529 static int liquidio_vxlan_port_command(struct net_device *netdev, int command,
3530 				       u16 vxlan_port, u8 vxlan_cmd_bit)
3531 {
3532 	struct lio *lio = GET_LIO(netdev);
3533 	struct octeon_device *oct = lio->oct_dev;
3534 	struct octnic_ctrl_pkt nctrl;
3535 	int ret = 0;
3536 
3537 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3538 
3539 	nctrl.ncmd.u64 = 0;
3540 	nctrl.ncmd.s.cmd = command;
3541 	nctrl.ncmd.s.more = vxlan_cmd_bit;
3542 	nctrl.ncmd.s.param1 = vxlan_port;
3543 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3544 	nctrl.wait_time = 100;
3545 	nctrl.netpndev = (u64)netdev;
3546 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3547 
3548 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl);
3549 	if (ret < 0) {
3550 		dev_err(&oct->pci_dev->dev,
3551 			"VxLAN port add/delete failed in core (ret:0x%x)\n",
3552 			ret);
3553 	}
3554 	return ret;
3555 }
3556 
3557 /** \brief Net device fix features
3558  * @param netdev  pointer to network device
3559  * @param request features requested
3560  * @returns updated features list
3561  */
3562 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
3563 					       netdev_features_t request)
3564 {
3565 	struct lio *lio = netdev_priv(netdev);
3566 
3567 	if ((request & NETIF_F_RXCSUM) &&
3568 	    !(lio->dev_capability & NETIF_F_RXCSUM))
3569 		request &= ~NETIF_F_RXCSUM;
3570 
3571 	if ((request & NETIF_F_HW_CSUM) &&
3572 	    !(lio->dev_capability & NETIF_F_HW_CSUM))
3573 		request &= ~NETIF_F_HW_CSUM;
3574 
3575 	if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
3576 		request &= ~NETIF_F_TSO;
3577 
3578 	if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
3579 		request &= ~NETIF_F_TSO6;
3580 
3581 	if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
3582 		request &= ~NETIF_F_LRO;
3583 
3584 	/*Disable LRO if RXCSUM is off */
3585 	if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
3586 	    (lio->dev_capability & NETIF_F_LRO))
3587 		request &= ~NETIF_F_LRO;
3588 
3589 	return request;
3590 }
3591 
3592 /** \brief Net device set features
3593  * @param netdev  pointer to network device
3594  * @param features features to enable/disable
3595  */
3596 static int liquidio_set_features(struct net_device *netdev,
3597 				 netdev_features_t features)
3598 {
3599 	struct lio *lio = netdev_priv(netdev);
3600 
3601 	if (!((netdev->features ^ features) & NETIF_F_LRO))
3602 		return 0;
3603 
3604 	if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3605 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
3606 				     OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3607 	else if (!(features & NETIF_F_LRO) &&
3608 		 (lio->dev_capability & NETIF_F_LRO))
3609 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE,
3610 				     OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
3611 
3612 	/* Sending command to firmware to enable/disable RX checksum
3613 	 * offload settings using ethtool
3614 	 */
3615 	if (!(netdev->features & NETIF_F_RXCSUM) &&
3616 	    (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3617 	    (features & NETIF_F_RXCSUM))
3618 		liquidio_set_rxcsum_command(netdev,
3619 					    OCTNET_CMD_TNL_RX_CSUM_CTL,
3620 					    OCTNET_CMD_RXCSUM_ENABLE);
3621 	else if ((netdev->features & NETIF_F_RXCSUM) &&
3622 		 (lio->enc_dev_capability & NETIF_F_RXCSUM) &&
3623 		 !(features & NETIF_F_RXCSUM))
3624 		liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
3625 					    OCTNET_CMD_RXCSUM_DISABLE);
3626 
3627 	return 0;
3628 }
3629 
3630 static void liquidio_add_vxlan_port(struct net_device *netdev,
3631 				    struct udp_tunnel_info *ti)
3632 {
3633 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3634 		return;
3635 
3636 	liquidio_vxlan_port_command(netdev,
3637 				    OCTNET_CMD_VXLAN_PORT_CONFIG,
3638 				    htons(ti->port),
3639 				    OCTNET_CMD_VXLAN_PORT_ADD);
3640 }
3641 
3642 static void liquidio_del_vxlan_port(struct net_device *netdev,
3643 				    struct udp_tunnel_info *ti)
3644 {
3645 	if (ti->type != UDP_TUNNEL_TYPE_VXLAN)
3646 		return;
3647 
3648 	liquidio_vxlan_port_command(netdev,
3649 				    OCTNET_CMD_VXLAN_PORT_CONFIG,
3650 				    htons(ti->port),
3651 				    OCTNET_CMD_VXLAN_PORT_DEL);
3652 }
3653 
3654 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx,
3655 				 u8 *mac, bool is_admin_assigned)
3656 {
3657 	struct lio *lio = GET_LIO(netdev);
3658 	struct octeon_device *oct = lio->oct_dev;
3659 	struct octnic_ctrl_pkt nctrl;
3660 
3661 	if (!is_valid_ether_addr(mac))
3662 		return -EINVAL;
3663 
3664 	if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs)
3665 		return -EINVAL;
3666 
3667 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3668 
3669 	nctrl.ncmd.u64 = 0;
3670 	nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
3671 	/* vfidx is 0 based, but vf_num (param1) is 1 based */
3672 	nctrl.ncmd.s.param1 = vfidx + 1;
3673 	nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0);
3674 	nctrl.ncmd.s.more = 1;
3675 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3676 	nctrl.netpndev = (u64)netdev;
3677 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
3678 	nctrl.wait_time = LIO_CMD_WAIT_TM;
3679 
3680 	nctrl.udd[0] = 0;
3681 	/* The MAC Address is presented in network byte order. */
3682 	ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac);
3683 
3684 	oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0];
3685 
3686 	octnet_send_nic_ctrl_pkt(oct, &nctrl);
3687 
3688 	return 0;
3689 }
3690 
3691 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac)
3692 {
3693 	struct lio *lio = GET_LIO(netdev);
3694 	struct octeon_device *oct = lio->oct_dev;
3695 	int retval;
3696 
3697 	retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true);
3698 	if (!retval)
3699 		cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac);
3700 
3701 	return retval;
3702 }
3703 
3704 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx,
3705 				u16 vlan, u8 qos, __be16 vlan_proto)
3706 {
3707 	struct lio *lio = GET_LIO(netdev);
3708 	struct octeon_device *oct = lio->oct_dev;
3709 	struct octnic_ctrl_pkt nctrl;
3710 	u16 vlantci;
3711 
3712 	if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3713 		return -EINVAL;
3714 
3715 	if (vlan_proto != htons(ETH_P_8021Q))
3716 		return -EPROTONOSUPPORT;
3717 
3718 	if (vlan >= VLAN_N_VID || qos > 7)
3719 		return -EINVAL;
3720 
3721 	if (vlan)
3722 		vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT;
3723 	else
3724 		vlantci = 0;
3725 
3726 	if (oct->sriov_info.vf_vlantci[vfidx] == vlantci)
3727 		return 0;
3728 
3729 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3730 
3731 	if (vlan)
3732 		nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER;
3733 	else
3734 		nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER;
3735 
3736 	nctrl.ncmd.s.param1 = vlantci;
3737 	nctrl.ncmd.s.param2 =
3738 	    vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */
3739 	nctrl.ncmd.s.more = 0;
3740 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3741 	nctrl.cb_fn = 0;
3742 	nctrl.wait_time = LIO_CMD_WAIT_TM;
3743 
3744 	octnet_send_nic_ctrl_pkt(oct, &nctrl);
3745 
3746 	oct->sriov_info.vf_vlantci[vfidx] = vlantci;
3747 
3748 	return 0;
3749 }
3750 
3751 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx,
3752 				  struct ifla_vf_info *ivi)
3753 {
3754 	struct lio *lio = GET_LIO(netdev);
3755 	struct octeon_device *oct = lio->oct_dev;
3756 	u8 *macaddr;
3757 
3758 	if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3759 		return -EINVAL;
3760 
3761 	ivi->vf = vfidx;
3762 	macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx];
3763 	ether_addr_copy(&ivi->mac[0], macaddr);
3764 	ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK;
3765 	ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT;
3766 	ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx];
3767 	return 0;
3768 }
3769 
3770 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx,
3771 				      int linkstate)
3772 {
3773 	struct lio *lio = GET_LIO(netdev);
3774 	struct octeon_device *oct = lio->oct_dev;
3775 	struct octnic_ctrl_pkt nctrl;
3776 
3777 	if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced)
3778 		return -EINVAL;
3779 
3780 	if (oct->sriov_info.vf_linkstate[vfidx] == linkstate)
3781 		return 0;
3782 
3783 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
3784 	nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE;
3785 	nctrl.ncmd.s.param1 =
3786 	    vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */
3787 	nctrl.ncmd.s.param2 = linkstate;
3788 	nctrl.ncmd.s.more = 0;
3789 	nctrl.iq_no = lio->linfo.txpciq[0].s.q_no;
3790 	nctrl.cb_fn = 0;
3791 	nctrl.wait_time = LIO_CMD_WAIT_TM;
3792 
3793 	octnet_send_nic_ctrl_pkt(oct, &nctrl);
3794 
3795 	oct->sriov_info.vf_linkstate[vfidx] = linkstate;
3796 
3797 	return 0;
3798 }
3799 
3800 static const struct net_device_ops lionetdevops = {
3801 	.ndo_open		= liquidio_open,
3802 	.ndo_stop		= liquidio_stop,
3803 	.ndo_start_xmit		= liquidio_xmit,
3804 	.ndo_get_stats		= liquidio_get_stats,
3805 	.ndo_set_mac_address	= liquidio_set_mac,
3806 	.ndo_set_rx_mode	= liquidio_set_mcast_list,
3807 	.ndo_tx_timeout		= liquidio_tx_timeout,
3808 
3809 	.ndo_vlan_rx_add_vid    = liquidio_vlan_rx_add_vid,
3810 	.ndo_vlan_rx_kill_vid   = liquidio_vlan_rx_kill_vid,
3811 	.ndo_change_mtu		= liquidio_change_mtu,
3812 	.ndo_do_ioctl		= liquidio_ioctl,
3813 	.ndo_fix_features	= liquidio_fix_features,
3814 	.ndo_set_features	= liquidio_set_features,
3815 	.ndo_udp_tunnel_add	= liquidio_add_vxlan_port,
3816 	.ndo_udp_tunnel_del	= liquidio_del_vxlan_port,
3817 	.ndo_set_vf_mac		= liquidio_set_vf_mac,
3818 	.ndo_set_vf_vlan	= liquidio_set_vf_vlan,
3819 	.ndo_get_vf_config	= liquidio_get_vf_config,
3820 	.ndo_set_vf_link_state  = liquidio_set_vf_link_state,
3821 };
3822 
3823 /** \brief Entry point for the liquidio module
3824  */
3825 static int __init liquidio_init(void)
3826 {
3827 	int i;
3828 	struct handshake *hs;
3829 
3830 	init_completion(&first_stage);
3831 
3832 	octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT);
3833 
3834 	if (liquidio_init_pci())
3835 		return -EINVAL;
3836 
3837 	wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3838 
3839 	for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3840 		hs = &handshake[i];
3841 		if (hs->pci_dev) {
3842 			wait_for_completion(&hs->init);
3843 			if (!hs->init_ok) {
3844 				/* init handshake failed */
3845 				dev_err(&hs->pci_dev->dev,
3846 					"Failed to init device\n");
3847 				liquidio_deinit_pci();
3848 				return -EIO;
3849 			}
3850 		}
3851 	}
3852 
3853 	for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3854 		hs = &handshake[i];
3855 		if (hs->pci_dev) {
3856 			wait_for_completion_timeout(&hs->started,
3857 						    msecs_to_jiffies(30000));
3858 			if (!hs->started_ok) {
3859 				/* starter handshake failed */
3860 				dev_err(&hs->pci_dev->dev,
3861 					"Firmware failed to start\n");
3862 				liquidio_deinit_pci();
3863 				return -EIO;
3864 			}
3865 		}
3866 	}
3867 
3868 	return 0;
3869 }
3870 
3871 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3872 {
3873 	struct octeon_device *oct = (struct octeon_device *)buf;
3874 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3875 	int gmxport = 0;
3876 	union oct_link_status *ls;
3877 	int i;
3878 
3879 	if (recv_pkt->buffer_size[0] != sizeof(*ls)) {
3880 		dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3881 			recv_pkt->buffer_size[0],
3882 			recv_pkt->rh.r_nic_info.gmxport);
3883 		goto nic_info_err;
3884 	}
3885 
3886 	gmxport = recv_pkt->rh.r_nic_info.gmxport;
3887 	ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3888 
3889 	octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3890 	for (i = 0; i < oct->ifcount; i++) {
3891 		if (oct->props[i].gmxport == gmxport) {
3892 			update_link_status(oct->props[i].netdev, ls);
3893 			break;
3894 		}
3895 	}
3896 
3897 nic_info_err:
3898 	for (i = 0; i < recv_pkt->buffer_count; i++)
3899 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
3900 	octeon_free_recv_info(recv_info);
3901 	return 0;
3902 }
3903 
3904 /**
3905  * \brief Setup network interfaces
3906  * @param octeon_dev  octeon device
3907  *
3908  * Called during init time for each device. It assumes the NIC
3909  * is already up and running.  The link information for each
3910  * interface is passed in link_info.
3911  */
3912 static int setup_nic_devices(struct octeon_device *octeon_dev)
3913 {
3914 	struct lio *lio = NULL;
3915 	struct net_device *netdev;
3916 	u8 mac[6], i, j;
3917 	struct octeon_soft_command *sc;
3918 	struct liquidio_if_cfg_context *ctx;
3919 	struct liquidio_if_cfg_resp *resp;
3920 	struct octdev_props *props;
3921 	int retval, num_iqueues, num_oqueues;
3922 	union oct_nic_if_cfg if_cfg;
3923 	unsigned int base_queue;
3924 	unsigned int gmx_port_id;
3925 	u32 resp_size, ctx_size, data_size;
3926 	u32 ifidx_or_pfnum;
3927 	struct lio_version *vdata;
3928 
3929 	/* This is to handle link status changes */
3930 	octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3931 				    OPCODE_NIC_INFO,
3932 				    lio_nic_info, octeon_dev);
3933 
3934 	/* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3935 	 * They are handled directly.
3936 	 */
3937 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3938 					free_netbuf);
3939 
3940 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3941 					free_netsgbuf);
3942 
3943 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3944 					free_netsgbuf_with_resp);
3945 
3946 	for (i = 0; i < octeon_dev->ifcount; i++) {
3947 		resp_size = sizeof(struct liquidio_if_cfg_resp);
3948 		ctx_size = sizeof(struct liquidio_if_cfg_context);
3949 		data_size = sizeof(struct lio_version);
3950 		sc = (struct octeon_soft_command *)
3951 			octeon_alloc_soft_command(octeon_dev, data_size,
3952 						  resp_size, ctx_size);
3953 		resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3954 		ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3955 		vdata = (struct lio_version *)sc->virtdptr;
3956 
3957 		*((u64 *)vdata) = 0;
3958 		vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION);
3959 		vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION);
3960 		vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION);
3961 
3962 		if (OCTEON_CN23XX_PF(octeon_dev)) {
3963 			num_iqueues = octeon_dev->sriov_info.num_pf_rings;
3964 			num_oqueues = octeon_dev->sriov_info.num_pf_rings;
3965 			base_queue = octeon_dev->sriov_info.pf_srn;
3966 
3967 			gmx_port_id = octeon_dev->pf_num;
3968 			ifidx_or_pfnum = octeon_dev->pf_num;
3969 		} else {
3970 			num_iqueues = CFG_GET_NUM_TXQS_NIC_IF(
3971 						octeon_get_conf(octeon_dev), i);
3972 			num_oqueues = CFG_GET_NUM_RXQS_NIC_IF(
3973 						octeon_get_conf(octeon_dev), i);
3974 			base_queue = CFG_GET_BASE_QUE_NIC_IF(
3975 						octeon_get_conf(octeon_dev), i);
3976 			gmx_port_id = CFG_GET_GMXID_NIC_IF(
3977 						octeon_get_conf(octeon_dev), i);
3978 			ifidx_or_pfnum = i;
3979 		}
3980 
3981 		dev_dbg(&octeon_dev->pci_dev->dev,
3982 			"requesting config for interface %d, iqs %d, oqs %d\n",
3983 			ifidx_or_pfnum, num_iqueues, num_oqueues);
3984 		WRITE_ONCE(ctx->cond, 0);
3985 		ctx->octeon_id = lio_get_device_id(octeon_dev);
3986 		init_waitqueue_head(&ctx->wc);
3987 
3988 		if_cfg.u64 = 0;
3989 		if_cfg.s.num_iqueues = num_iqueues;
3990 		if_cfg.s.num_oqueues = num_oqueues;
3991 		if_cfg.s.base_queue = base_queue;
3992 		if_cfg.s.gmx_port_id = gmx_port_id;
3993 
3994 		sc->iq_no = 0;
3995 
3996 		octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3997 					    OPCODE_NIC_IF_CFG, 0,
3998 					    if_cfg.u64, 0);
3999 
4000 		sc->callback = if_cfg_callback;
4001 		sc->callback_arg = sc;
4002 		sc->wait_time = 3000;
4003 
4004 		retval = octeon_send_soft_command(octeon_dev, sc);
4005 		if (retval == IQ_SEND_FAILED) {
4006 			dev_err(&octeon_dev->pci_dev->dev,
4007 				"iq/oq config failed status: %x\n",
4008 				retval);
4009 			/* Soft instr is freed by driver in case of failure. */
4010 			goto setup_nic_dev_fail;
4011 		}
4012 
4013 		/* Sleep on a wait queue till the cond flag indicates that the
4014 		 * response arrived or timed-out.
4015 		 */
4016 		if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) {
4017 			dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n");
4018 			goto setup_nic_wait_intr;
4019 		}
4020 
4021 		retval = resp->status;
4022 		if (retval) {
4023 			dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
4024 			goto setup_nic_dev_fail;
4025 		}
4026 
4027 		octeon_swap_8B_data((u64 *)(&resp->cfg_info),
4028 				    (sizeof(struct liquidio_if_cfg_info)) >> 3);
4029 
4030 		num_iqueues = hweight64(resp->cfg_info.iqmask);
4031 		num_oqueues = hweight64(resp->cfg_info.oqmask);
4032 
4033 		if (!(num_iqueues) || !(num_oqueues)) {
4034 			dev_err(&octeon_dev->pci_dev->dev,
4035 				"Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
4036 				resp->cfg_info.iqmask,
4037 				resp->cfg_info.oqmask);
4038 			goto setup_nic_dev_fail;
4039 		}
4040 		dev_dbg(&octeon_dev->pci_dev->dev,
4041 			"interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
4042 			i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
4043 			num_iqueues, num_oqueues);
4044 		netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
4045 
4046 		if (!netdev) {
4047 			dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
4048 			goto setup_nic_dev_fail;
4049 		}
4050 
4051 		SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev);
4052 
4053 		/* Associate the routines that will handle different
4054 		 * netdev tasks.
4055 		 */
4056 		netdev->netdev_ops = &lionetdevops;
4057 
4058 		lio = GET_LIO(netdev);
4059 
4060 		memset(lio, 0, sizeof(struct lio));
4061 
4062 		lio->ifidx = ifidx_or_pfnum;
4063 
4064 		props = &octeon_dev->props[i];
4065 		props->gmxport = resp->cfg_info.linfo.gmxport;
4066 		props->netdev = netdev;
4067 
4068 		lio->linfo.num_rxpciq = num_oqueues;
4069 		lio->linfo.num_txpciq = num_iqueues;
4070 		for (j = 0; j < num_oqueues; j++) {
4071 			lio->linfo.rxpciq[j].u64 =
4072 				resp->cfg_info.linfo.rxpciq[j].u64;
4073 		}
4074 		for (j = 0; j < num_iqueues; j++) {
4075 			lio->linfo.txpciq[j].u64 =
4076 				resp->cfg_info.linfo.txpciq[j].u64;
4077 		}
4078 		lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
4079 		lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
4080 		lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
4081 
4082 		lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4083 
4084 		if (OCTEON_CN23XX_PF(octeon_dev) ||
4085 		    OCTEON_CN6XXX(octeon_dev)) {
4086 			lio->dev_capability = NETIF_F_HIGHDMA
4087 					      | NETIF_F_IP_CSUM
4088 					      | NETIF_F_IPV6_CSUM
4089 					      | NETIF_F_SG | NETIF_F_RXCSUM
4090 					      | NETIF_F_GRO
4091 					      | NETIF_F_TSO | NETIF_F_TSO6
4092 					      | NETIF_F_LRO;
4093 		}
4094 		netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
4095 
4096 		/*  Copy of transmit encapsulation capabilities:
4097 		 *  TSO, TSO6, Checksums for this device
4098 		 */
4099 		lio->enc_dev_capability = NETIF_F_IP_CSUM
4100 					  | NETIF_F_IPV6_CSUM
4101 					  | NETIF_F_GSO_UDP_TUNNEL
4102 					  | NETIF_F_HW_CSUM | NETIF_F_SG
4103 					  | NETIF_F_RXCSUM
4104 					  | NETIF_F_TSO | NETIF_F_TSO6
4105 					  | NETIF_F_LRO;
4106 
4107 		netdev->hw_enc_features = (lio->enc_dev_capability &
4108 					   ~NETIF_F_LRO);
4109 
4110 		lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL;
4111 
4112 		netdev->vlan_features = lio->dev_capability;
4113 		/* Add any unchangeable hw features */
4114 		lio->dev_capability |=  NETIF_F_HW_VLAN_CTAG_FILTER |
4115 					NETIF_F_HW_VLAN_CTAG_RX |
4116 					NETIF_F_HW_VLAN_CTAG_TX;
4117 
4118 		netdev->features = (lio->dev_capability & ~NETIF_F_LRO);
4119 
4120 		netdev->hw_features = lio->dev_capability;
4121 		/*HW_VLAN_RX and HW_VLAN_FILTER is always on*/
4122 		netdev->hw_features = netdev->hw_features &
4123 			~NETIF_F_HW_VLAN_CTAG_RX;
4124 
4125 		/* MTU range: 68 - 16000 */
4126 		netdev->min_mtu = LIO_MIN_MTU_SIZE;
4127 		netdev->max_mtu = LIO_MAX_MTU_SIZE;
4128 
4129 		/* Point to the  properties for octeon device to which this
4130 		 * interface belongs.
4131 		 */
4132 		lio->oct_dev = octeon_dev;
4133 		lio->octprops = props;
4134 		lio->netdev = netdev;
4135 
4136 		dev_dbg(&octeon_dev->pci_dev->dev,
4137 			"if%d gmx: %d hw_addr: 0x%llx\n", i,
4138 			lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
4139 
4140 		for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) {
4141 			u8 vfmac[ETH_ALEN];
4142 
4143 			random_ether_addr(&vfmac[0]);
4144 			if (__liquidio_set_vf_mac(netdev, j,
4145 						  &vfmac[0], false)) {
4146 				dev_err(&octeon_dev->pci_dev->dev,
4147 					"Error setting VF%d MAC address\n",
4148 					j);
4149 				goto setup_nic_dev_fail;
4150 			}
4151 		}
4152 
4153 		/* 64-bit swap required on LE machines */
4154 		octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
4155 		for (j = 0; j < 6; j++)
4156 			mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
4157 
4158 		/* Copy MAC Address to OS network device structure */
4159 
4160 		ether_addr_copy(netdev->dev_addr, mac);
4161 
4162 		/* By default all interfaces on a single Octeon uses the same
4163 		 * tx and rx queues
4164 		 */
4165 		lio->txq = lio->linfo.txpciq[0].s.q_no;
4166 		lio->rxq = lio->linfo.rxpciq[0].s.q_no;
4167 		if (setup_io_queues(octeon_dev, i)) {
4168 			dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
4169 			goto setup_nic_dev_fail;
4170 		}
4171 
4172 		ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
4173 
4174 		lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
4175 		lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
4176 
4177 		if (setup_glists(octeon_dev, lio, num_iqueues)) {
4178 			dev_err(&octeon_dev->pci_dev->dev,
4179 				"Gather list allocation failed\n");
4180 			goto setup_nic_dev_fail;
4181 		}
4182 
4183 		/* Register ethtool support */
4184 		liquidio_set_ethtool_ops(netdev);
4185 		if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID)
4186 			octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT;
4187 		else
4188 			octeon_dev->priv_flags = 0x0;
4189 
4190 		if (netdev->features & NETIF_F_LRO)
4191 			liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE,
4192 					     OCTNIC_LROIPV4 | OCTNIC_LROIPV6);
4193 
4194 		liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0);
4195 
4196 		if ((debug != -1) && (debug & NETIF_MSG_HW))
4197 			liquidio_set_feature(netdev,
4198 					     OCTNET_CMD_VERBOSE_ENABLE, 0);
4199 
4200 		if (setup_link_status_change_wq(netdev))
4201 			goto setup_nic_dev_fail;
4202 
4203 		if (setup_rx_oom_poll_fn(netdev))
4204 			goto setup_nic_dev_fail;
4205 
4206 		/* Register the network device with the OS */
4207 		if (register_netdev(netdev)) {
4208 			dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
4209 			goto setup_nic_dev_fail;
4210 		}
4211 
4212 		dev_dbg(&octeon_dev->pci_dev->dev,
4213 			"Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
4214 			i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4215 		netif_carrier_off(netdev);
4216 		lio->link_changes++;
4217 
4218 		ifstate_set(lio, LIO_IFSTATE_REGISTERED);
4219 
4220 		/* Sending command to firmware to enable Rx checksum offload
4221 		 * by default at the time of setup of Liquidio driver for
4222 		 * this device
4223 		 */
4224 		liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL,
4225 					    OCTNET_CMD_RXCSUM_ENABLE);
4226 		liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL,
4227 				     OCTNET_CMD_TXCSUM_ENABLE);
4228 
4229 		dev_dbg(&octeon_dev->pci_dev->dev,
4230 			"NIC ifidx:%d Setup successful\n", i);
4231 
4232 		octeon_free_soft_command(octeon_dev, sc);
4233 	}
4234 
4235 	return 0;
4236 
4237 setup_nic_dev_fail:
4238 
4239 	octeon_free_soft_command(octeon_dev, sc);
4240 
4241 setup_nic_wait_intr:
4242 
4243 	while (i--) {
4244 		dev_err(&octeon_dev->pci_dev->dev,
4245 			"NIC ifidx:%d Setup failed\n", i);
4246 		liquidio_destroy_nic_device(octeon_dev, i);
4247 	}
4248 	return -ENODEV;
4249 }
4250 
4251 #ifdef CONFIG_PCI_IOV
4252 static int octeon_enable_sriov(struct octeon_device *oct)
4253 {
4254 	unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced;
4255 	struct pci_dev *vfdev;
4256 	int err;
4257 	u32 u;
4258 
4259 	if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) {
4260 		err = pci_enable_sriov(oct->pci_dev,
4261 				       oct->sriov_info.num_vfs_alloced);
4262 		if (err) {
4263 			dev_err(&oct->pci_dev->dev,
4264 				"OCTEON: Failed to enable PCI sriov: %d\n",
4265 				err);
4266 			oct->sriov_info.num_vfs_alloced = 0;
4267 			return err;
4268 		}
4269 		oct->sriov_info.sriov_enabled = 1;
4270 
4271 		/* init lookup table that maps DPI ring number to VF pci_dev
4272 		 * struct pointer
4273 		 */
4274 		u = 0;
4275 		vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4276 				       OCTEON_CN23XX_VF_VID, NULL);
4277 		while (vfdev) {
4278 			if (vfdev->is_virtfn &&
4279 			    (vfdev->physfn == oct->pci_dev)) {
4280 				oct->sriov_info.dpiring_to_vfpcidev_lut[u] =
4281 					vfdev;
4282 				u += oct->sriov_info.rings_per_vf;
4283 			}
4284 			vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
4285 					       OCTEON_CN23XX_VF_VID, vfdev);
4286 		}
4287 	}
4288 
4289 	return num_vfs_alloced;
4290 }
4291 
4292 static int lio_pci_sriov_disable(struct octeon_device *oct)
4293 {
4294 	int u;
4295 
4296 	if (pci_vfs_assigned(oct->pci_dev)) {
4297 		dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n");
4298 		return -EPERM;
4299 	}
4300 
4301 	pci_disable_sriov(oct->pci_dev);
4302 
4303 	u = 0;
4304 	while (u < MAX_POSSIBLE_VFS) {
4305 		oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL;
4306 		u += oct->sriov_info.rings_per_vf;
4307 	}
4308 
4309 	oct->sriov_info.num_vfs_alloced = 0;
4310 	dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n",
4311 		 oct->pf_num);
4312 
4313 	return 0;
4314 }
4315 
4316 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs)
4317 {
4318 	struct octeon_device *oct = pci_get_drvdata(dev);
4319 	int ret = 0;
4320 
4321 	if ((num_vfs == oct->sriov_info.num_vfs_alloced) &&
4322 	    (oct->sriov_info.sriov_enabled)) {
4323 		dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n",
4324 			 oct->pf_num, num_vfs);
4325 		return 0;
4326 	}
4327 
4328 	if (!num_vfs) {
4329 		ret = lio_pci_sriov_disable(oct);
4330 	} else if (num_vfs > oct->sriov_info.max_vfs) {
4331 		dev_err(&oct->pci_dev->dev,
4332 			"OCTEON: Max allowed VFs:%d user requested:%d",
4333 			oct->sriov_info.max_vfs, num_vfs);
4334 		ret = -EPERM;
4335 	} else {
4336 		oct->sriov_info.num_vfs_alloced = num_vfs;
4337 		ret = octeon_enable_sriov(oct);
4338 		dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n",
4339 			 oct->pf_num, num_vfs);
4340 	}
4341 
4342 	return ret;
4343 }
4344 #endif
4345 
4346 /**
4347  * \brief initialize the NIC
4348  * @param oct octeon device
4349  *
4350  * This initialization routine is called once the Octeon device application is
4351  * up and running
4352  */
4353 static int liquidio_init_nic_module(struct octeon_device *oct)
4354 {
4355 	int i, retval = 0;
4356 	int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
4357 
4358 	dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
4359 
4360 	/* only default iq and oq were initialized
4361 	 * initialize the rest as well
4362 	 */
4363 	/* run port_config command for each port */
4364 	oct->ifcount = num_nic_ports;
4365 
4366 	memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports);
4367 
4368 	for (i = 0; i < MAX_OCTEON_LINKS; i++)
4369 		oct->props[i].gmxport = -1;
4370 
4371 	retval = setup_nic_devices(oct);
4372 	if (retval) {
4373 		dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
4374 		goto octnet_init_failure;
4375 	}
4376 
4377 	liquidio_ptp_init(oct);
4378 
4379 	dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
4380 
4381 	return retval;
4382 
4383 octnet_init_failure:
4384 
4385 	oct->ifcount = 0;
4386 
4387 	return retval;
4388 }
4389 
4390 /**
4391  * \brief starter callback that invokes the remaining initialization work after
4392  * the NIC is up and running.
4393  * @param octptr  work struct work_struct
4394  */
4395 static void nic_starter(struct work_struct *work)
4396 {
4397 	struct octeon_device *oct;
4398 	struct cavium_wk *wk = (struct cavium_wk *)work;
4399 
4400 	oct = (struct octeon_device *)wk->ctxptr;
4401 
4402 	if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
4403 		return;
4404 
4405 	/* If the status of the device is CORE_OK, the core
4406 	 * application has reported its application type. Call
4407 	 * any registered handlers now and move to the RUNNING
4408 	 * state.
4409 	 */
4410 	if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
4411 		schedule_delayed_work(&oct->nic_poll_work.work,
4412 				      LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4413 		return;
4414 	}
4415 
4416 	atomic_set(&oct->status, OCT_DEV_RUNNING);
4417 
4418 	if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
4419 		dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
4420 
4421 		if (liquidio_init_nic_module(oct))
4422 			dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
4423 		else
4424 			handshake[oct->octeon_id].started_ok = 1;
4425 	} else {
4426 		dev_err(&oct->pci_dev->dev,
4427 			"Unexpected application running on NIC (%d). Check firmware.\n",
4428 			oct->app_mode);
4429 	}
4430 
4431 	complete(&handshake[oct->octeon_id].started);
4432 }
4433 
4434 static int
4435 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf)
4436 {
4437 	struct octeon_device *oct = (struct octeon_device *)buf;
4438 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
4439 	int i, notice, vf_idx;
4440 	bool cores_crashed;
4441 	u64 *data, vf_num;
4442 
4443 	notice = recv_pkt->rh.r.ossp;
4444 	data = (u64 *)get_rbd(recv_pkt->buffer_ptr[0]);
4445 
4446 	/* the first 64-bit word of data is the vf_num */
4447 	vf_num = data[0];
4448 	octeon_swap_8B_data(&vf_num, 1);
4449 	vf_idx = (int)vf_num - 1;
4450 
4451 	cores_crashed = READ_ONCE(oct->cores_crashed);
4452 
4453 	if (notice == VF_DRV_LOADED) {
4454 		if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) {
4455 			oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx);
4456 			dev_info(&oct->pci_dev->dev,
4457 				 "driver for VF%d was loaded\n", vf_idx);
4458 			if (!cores_crashed)
4459 				try_module_get(THIS_MODULE);
4460 		}
4461 	} else if (notice == VF_DRV_REMOVED) {
4462 		if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) {
4463 			oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx);
4464 			dev_info(&oct->pci_dev->dev,
4465 				 "driver for VF%d was removed\n", vf_idx);
4466 			if (!cores_crashed)
4467 				module_put(THIS_MODULE);
4468 		}
4469 	} else if (notice == VF_DRV_MACADDR_CHANGED) {
4470 		u8 *b = (u8 *)&data[1];
4471 
4472 		oct->sriov_info.vf_macaddr[vf_idx] = data[1];
4473 		dev_info(&oct->pci_dev->dev,
4474 			 "VF driver changed VF%d's MAC address to %pM\n",
4475 			 vf_idx, b + 2);
4476 	}
4477 
4478 	for (i = 0; i < recv_pkt->buffer_count; i++)
4479 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
4480 	octeon_free_recv_info(recv_info);
4481 
4482 	return 0;
4483 }
4484 
4485 /**
4486  * \brief Device initialization for each Octeon device that is probed
4487  * @param octeon_dev  octeon device
4488  */
4489 static int octeon_device_init(struct octeon_device *octeon_dev)
4490 {
4491 	int j, ret;
4492 	int fw_loaded = 0;
4493 	char bootcmd[] = "\n";
4494 	struct octeon_device_priv *oct_priv =
4495 		(struct octeon_device_priv *)octeon_dev->priv;
4496 	atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
4497 
4498 	/* Enable access to the octeon device and make its DMA capability
4499 	 * known to the OS.
4500 	 */
4501 	if (octeon_pci_os_setup(octeon_dev))
4502 		return 1;
4503 
4504 	atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE);
4505 
4506 	/* Identify the Octeon type and map the BAR address space. */
4507 	if (octeon_chip_specific_setup(octeon_dev)) {
4508 		dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
4509 		return 1;
4510 	}
4511 
4512 	atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
4513 
4514 	octeon_dev->app_mode = CVM_DRV_INVALID_APP;
4515 
4516 	if (OCTEON_CN23XX_PF(octeon_dev)) {
4517 		if (!cn23xx_fw_loaded(octeon_dev)) {
4518 			fw_loaded = 0;
4519 			if (!fw_type_is_none()) {
4520 				/* Do a soft reset of the Octeon device. */
4521 				if (octeon_dev->fn_list.soft_reset(octeon_dev))
4522 					return 1;
4523 				/* things might have changed */
4524 				if (!cn23xx_fw_loaded(octeon_dev))
4525 					fw_loaded = 0;
4526 				else
4527 					fw_loaded = 1;
4528 			}
4529 		} else {
4530 			fw_loaded = 1;
4531 		}
4532 	} else if (octeon_dev->fn_list.soft_reset(octeon_dev)) {
4533 		return 1;
4534 	}
4535 
4536 	/* Initialize the dispatch mechanism used to push packets arriving on
4537 	 * Octeon Output queues.
4538 	 */
4539 	if (octeon_init_dispatch_list(octeon_dev))
4540 		return 1;
4541 
4542 	octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4543 				    OPCODE_NIC_CORE_DRV_ACTIVE,
4544 				    octeon_core_drv_init,
4545 				    octeon_dev);
4546 
4547 	octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
4548 				    OPCODE_NIC_VF_DRV_NOTICE,
4549 				    octeon_recv_vf_drv_notice, octeon_dev);
4550 	INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
4551 	octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
4552 	schedule_delayed_work(&octeon_dev->nic_poll_work.work,
4553 			      LIQUIDIO_STARTER_POLL_INTERVAL_MS);
4554 
4555 	atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
4556 
4557 	if (octeon_set_io_queues_off(octeon_dev)) {
4558 		dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n");
4559 		return 1;
4560 	}
4561 
4562 	if (OCTEON_CN23XX_PF(octeon_dev)) {
4563 		ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4564 		if (ret) {
4565 			dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n");
4566 			return ret;
4567 		}
4568 	}
4569 
4570 	/* Initialize soft command buffer pool
4571 	 */
4572 	if (octeon_setup_sc_buffer_pool(octeon_dev)) {
4573 		dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
4574 		return 1;
4575 	}
4576 	atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
4577 
4578 	/*  Setup the data structures that manage this Octeon's Input queues. */
4579 	if (octeon_setup_instr_queues(octeon_dev)) {
4580 		dev_err(&octeon_dev->pci_dev->dev,
4581 			"instruction queue initialization failed\n");
4582 		return 1;
4583 	}
4584 	atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
4585 
4586 	/* Initialize lists to manage the requests of different types that
4587 	 * arrive from user & kernel applications for this octeon device.
4588 	 */
4589 	if (octeon_setup_response_list(octeon_dev)) {
4590 		dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
4591 		return 1;
4592 	}
4593 	atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
4594 
4595 	if (octeon_setup_output_queues(octeon_dev)) {
4596 		dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
4597 		return 1;
4598 	}
4599 
4600 	atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
4601 
4602 	if (OCTEON_CN23XX_PF(octeon_dev)) {
4603 		if (octeon_dev->fn_list.setup_mbox(octeon_dev)) {
4604 			dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n");
4605 			return 1;
4606 		}
4607 		atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE);
4608 
4609 		if (octeon_allocate_ioq_vector(octeon_dev)) {
4610 			dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n");
4611 			return 1;
4612 		}
4613 		atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE);
4614 
4615 	} else {
4616 		/* The input and output queue registers were setup earlier (the
4617 		 * queues were not enabled). Any additional registers
4618 		 * that need to be programmed should be done now.
4619 		 */
4620 		ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
4621 		if (ret) {
4622 			dev_err(&octeon_dev->pci_dev->dev,
4623 				"Failed to configure device registers\n");
4624 			return ret;
4625 		}
4626 	}
4627 
4628 	/* Initialize the tasklet that handles output queue packet processing.*/
4629 	dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
4630 	tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
4631 		     (unsigned long)octeon_dev);
4632 
4633 	/* Setup the interrupt handler and record the INT SUM register address
4634 	 */
4635 	if (octeon_setup_interrupt(octeon_dev))
4636 		return 1;
4637 
4638 	/* Enable Octeon device interrupts */
4639 	octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR);
4640 
4641 	atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE);
4642 
4643 	/* Enable the input and output queues for this Octeon device */
4644 	ret = octeon_dev->fn_list.enable_io_queues(octeon_dev);
4645 	if (ret) {
4646 		dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues");
4647 		return ret;
4648 	}
4649 
4650 	atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
4651 
4652 	if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) {
4653 		dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
4654 		if (!ddr_timeout) {
4655 			dev_info(&octeon_dev->pci_dev->dev,
4656 				 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
4657 		}
4658 
4659 		schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
4660 
4661 		/* Wait for the octeon to initialize DDR after the soft-reset.*/
4662 		while (!ddr_timeout) {
4663 			set_current_state(TASK_INTERRUPTIBLE);
4664 			if (schedule_timeout(HZ / 10)) {
4665 				/* user probably pressed Control-C */
4666 				return 1;
4667 			}
4668 		}
4669 		ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
4670 		if (ret) {
4671 			dev_err(&octeon_dev->pci_dev->dev,
4672 				"DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
4673 				ret);
4674 			return 1;
4675 		}
4676 
4677 		if (octeon_wait_for_bootloader(octeon_dev, 1000)) {
4678 			dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
4679 			return 1;
4680 		}
4681 
4682 		/* Divert uboot to take commands from host instead. */
4683 		ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50);
4684 
4685 		dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
4686 		ret = octeon_init_consoles(octeon_dev);
4687 		if (ret) {
4688 			dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
4689 			return 1;
4690 		}
4691 		ret = octeon_add_console(octeon_dev, 0);
4692 		if (ret) {
4693 			dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
4694 			return 1;
4695 		}
4696 
4697 		atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
4698 
4699 		dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
4700 		ret = load_firmware(octeon_dev);
4701 		if (ret) {
4702 			dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
4703 			return 1;
4704 		}
4705 		/* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is
4706 		 * loaded
4707 		 */
4708 		if (OCTEON_CN23XX_PF(octeon_dev))
4709 			octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1,
4710 					   2ULL);
4711 	}
4712 
4713 	handshake[octeon_dev->octeon_id].init_ok = 1;
4714 	complete(&handshake[octeon_dev->octeon_id].init);
4715 
4716 	atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
4717 
4718 	/* Send Credit for Octeon Output queues. Credits are always sent after
4719 	 * the output queue is enabled.
4720 	 */
4721 	for (j = 0; j < octeon_dev->num_oqs; j++)
4722 		writel(octeon_dev->droq[j]->max_count,
4723 		       octeon_dev->droq[j]->pkts_credit_reg);
4724 
4725 	/* Packets can start arriving on the output queues from this point. */
4726 	return 0;
4727 }
4728 
4729 /**
4730  * \brief Exits the module
4731  */
4732 static void __exit liquidio_exit(void)
4733 {
4734 	liquidio_deinit_pci();
4735 
4736 	pr_info("LiquidIO network module is now unloaded\n");
4737 }
4738 
4739 module_init(liquidio_init);
4740 module_exit(liquidio_exit);
4741