1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/module.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/firmware.h> 22 #include <net/vxlan.h> 23 #include <linux/kthread.h> 24 #include "liquidio_common.h" 25 #include "octeon_droq.h" 26 #include "octeon_iq.h" 27 #include "response_manager.h" 28 #include "octeon_device.h" 29 #include "octeon_nic.h" 30 #include "octeon_main.h" 31 #include "octeon_network.h" 32 #include "cn66xx_regs.h" 33 #include "cn66xx_device.h" 34 #include "cn68xx_device.h" 35 #include "cn23xx_pf_device.h" 36 #include "liquidio_image.h" 37 38 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>"); 39 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver"); 40 MODULE_LICENSE("GPL"); 41 MODULE_VERSION(LIQUIDIO_VERSION); 42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX); 43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX); 44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX); 45 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX); 46 47 static int ddr_timeout = 10000; 48 module_param(ddr_timeout, int, 0644); 49 MODULE_PARM_DESC(ddr_timeout, 50 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check"); 51 52 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 53 54 static int debug = -1; 55 module_param(debug, int, 0644); 56 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits"); 57 58 static char fw_type[LIO_MAX_FW_TYPE_LEN]; 59 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000); 60 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\""); 61 62 static int ptp_enable = 1; 63 64 /* Polling interval for determining when NIC application is alive */ 65 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100 66 67 /* runtime link query interval */ 68 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000 69 70 struct liquidio_if_cfg_context { 71 int octeon_id; 72 73 wait_queue_head_t wc; 74 75 int cond; 76 }; 77 78 struct liquidio_if_cfg_resp { 79 u64 rh; 80 struct liquidio_if_cfg_info cfg_info; 81 u64 status; 82 }; 83 84 struct liquidio_rx_ctl_context { 85 int octeon_id; 86 87 wait_queue_head_t wc; 88 89 int cond; 90 }; 91 92 struct oct_link_status_resp { 93 u64 rh; 94 struct oct_link_info link_info; 95 u64 status; 96 }; 97 98 struct oct_timestamp_resp { 99 u64 rh; 100 u64 timestamp; 101 u64 status; 102 }; 103 104 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp)) 105 106 union tx_info { 107 u64 u64; 108 struct { 109 #ifdef __BIG_ENDIAN_BITFIELD 110 u16 gso_size; 111 u16 gso_segs; 112 u32 reserved; 113 #else 114 u32 reserved; 115 u16 gso_segs; 116 u16 gso_size; 117 #endif 118 } s; 119 }; 120 121 /** Octeon device properties to be used by the NIC module. 122 * Each octeon device in the system will be represented 123 * by this structure in the NIC module. 124 */ 125 126 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS) 127 128 #define OCTNIC_GSO_MAX_HEADER_SIZE 128 129 #define OCTNIC_GSO_MAX_SIZE \ 130 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE) 131 132 /** Structure of a node in list of gather components maintained by 133 * NIC driver for each network device. 134 */ 135 struct octnic_gather { 136 /** List manipulation. Next and prev pointers. */ 137 struct list_head list; 138 139 /** Size of the gather component at sg in bytes. */ 140 int sg_size; 141 142 /** Number of bytes that sg was adjusted to make it 8B-aligned. */ 143 int adjust; 144 145 /** Gather component that can accommodate max sized fragment list 146 * received from the IP layer. 147 */ 148 struct octeon_sg_entry *sg; 149 150 dma_addr_t sg_dma_ptr; 151 }; 152 153 struct handshake { 154 struct completion init; 155 struct completion started; 156 struct pci_dev *pci_dev; 157 int init_ok; 158 int started_ok; 159 }; 160 161 struct octeon_device_priv { 162 /** Tasklet structures for this device. */ 163 struct tasklet_struct droq_tasklet; 164 unsigned long napi_mask; 165 }; 166 167 #ifdef CONFIG_PCI_IOV 168 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs); 169 #endif 170 171 static int octeon_device_init(struct octeon_device *); 172 static int liquidio_stop(struct net_device *netdev); 173 static void liquidio_remove(struct pci_dev *pdev); 174 static int liquidio_probe(struct pci_dev *pdev, 175 const struct pci_device_id *ent); 176 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 177 int linkstate); 178 179 static struct handshake handshake[MAX_OCTEON_DEVICES]; 180 static struct completion first_stage; 181 182 static void octeon_droq_bh(unsigned long pdev) 183 { 184 int q_no; 185 int reschedule = 0; 186 struct octeon_device *oct = (struct octeon_device *)pdev; 187 struct octeon_device_priv *oct_priv = 188 (struct octeon_device_priv *)oct->priv; 189 190 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) { 191 if (!(oct->io_qmask.oq & BIT_ULL(q_no))) 192 continue; 193 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no], 194 MAX_PACKET_BUDGET); 195 lio_enable_irq(oct->droq[q_no], NULL); 196 197 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 198 /* set time and cnt interrupt thresholds for this DROQ 199 * for NAPI 200 */ 201 int adjusted_q_no = q_no + oct->sriov_info.pf_srn; 202 203 octeon_write_csr64( 204 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no), 205 0x5700000040ULL); 206 octeon_write_csr64( 207 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0); 208 } 209 } 210 211 if (reschedule) 212 tasklet_schedule(&oct_priv->droq_tasklet); 213 } 214 215 static int lio_wait_for_oq_pkts(struct octeon_device *oct) 216 { 217 struct octeon_device_priv *oct_priv = 218 (struct octeon_device_priv *)oct->priv; 219 int retry = 100, pkt_cnt = 0, pending_pkts = 0; 220 int i; 221 222 do { 223 pending_pkts = 0; 224 225 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 226 if (!(oct->io_qmask.oq & BIT_ULL(i))) 227 continue; 228 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]); 229 } 230 if (pkt_cnt > 0) { 231 pending_pkts += pkt_cnt; 232 tasklet_schedule(&oct_priv->droq_tasklet); 233 } 234 pkt_cnt = 0; 235 schedule_timeout_uninterruptible(1); 236 237 } while (retry-- && pending_pkts); 238 239 return pkt_cnt; 240 } 241 242 /** 243 * \brief Forces all IO queues off on a given device 244 * @param oct Pointer to Octeon device 245 */ 246 static void force_io_queues_off(struct octeon_device *oct) 247 { 248 if ((oct->chip_id == OCTEON_CN66XX) || 249 (oct->chip_id == OCTEON_CN68XX)) { 250 /* Reset the Enable bits for Input Queues. */ 251 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0); 252 253 /* Reset the Enable bits for Output Queues. */ 254 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0); 255 } 256 } 257 258 /** 259 * \brief wait for all pending requests to complete 260 * @param oct Pointer to Octeon device 261 * 262 * Called during shutdown sequence 263 */ 264 static int wait_for_pending_requests(struct octeon_device *oct) 265 { 266 int i, pcount = 0; 267 268 for (i = 0; i < 100; i++) { 269 pcount = 270 atomic_read(&oct->response_list 271 [OCTEON_ORDERED_SC_LIST].pending_req_count); 272 if (pcount) 273 schedule_timeout_uninterruptible(HZ / 10); 274 else 275 break; 276 } 277 278 if (pcount) 279 return 1; 280 281 return 0; 282 } 283 284 /** 285 * \brief Cause device to go quiet so it can be safely removed/reset/etc 286 * @param oct Pointer to Octeon device 287 */ 288 static inline void pcierror_quiesce_device(struct octeon_device *oct) 289 { 290 int i; 291 292 /* Disable the input and output queues now. No more packets will 293 * arrive from Octeon, but we should wait for all packet processing 294 * to finish. 295 */ 296 force_io_queues_off(oct); 297 298 /* To allow for in-flight requests */ 299 schedule_timeout_uninterruptible(100); 300 301 if (wait_for_pending_requests(oct)) 302 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 303 304 /* Force all requests waiting to be fetched by OCTEON to complete. */ 305 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 306 struct octeon_instr_queue *iq; 307 308 if (!(oct->io_qmask.iq & BIT_ULL(i))) 309 continue; 310 iq = oct->instr_queue[i]; 311 312 if (atomic_read(&iq->instr_pending)) { 313 spin_lock_bh(&iq->lock); 314 iq->fill_cnt = 0; 315 iq->octeon_read_index = iq->host_write_index; 316 iq->stats.instr_processed += 317 atomic_read(&iq->instr_pending); 318 lio_process_iq_request_list(oct, iq, 0); 319 spin_unlock_bh(&iq->lock); 320 } 321 } 322 323 /* Force all pending ordered list requests to time out. */ 324 lio_process_ordered_list(oct, 1); 325 326 /* We do not need to wait for output queue packets to be processed. */ 327 } 328 329 /** 330 * \brief Cleanup PCI AER uncorrectable error status 331 * @param dev Pointer to PCI device 332 */ 333 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev) 334 { 335 int pos = 0x100; 336 u32 status, mask; 337 338 pr_info("%s :\n", __func__); 339 340 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status); 341 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask); 342 if (dev->error_state == pci_channel_io_normal) 343 status &= ~mask; /* Clear corresponding nonfatal bits */ 344 else 345 status &= mask; /* Clear corresponding fatal bits */ 346 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status); 347 } 348 349 /** 350 * \brief Stop all PCI IO to a given device 351 * @param dev Pointer to Octeon device 352 */ 353 static void stop_pci_io(struct octeon_device *oct) 354 { 355 /* No more instructions will be forwarded. */ 356 atomic_set(&oct->status, OCT_DEV_IN_RESET); 357 358 pci_disable_device(oct->pci_dev); 359 360 /* Disable interrupts */ 361 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 362 363 pcierror_quiesce_device(oct); 364 365 /* Release the interrupt line */ 366 free_irq(oct->pci_dev->irq, oct); 367 368 if (oct->flags & LIO_FLAG_MSI_ENABLED) 369 pci_disable_msi(oct->pci_dev); 370 371 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 372 lio_get_state_string(&oct->status)); 373 374 /* making it a common function for all OCTEON models */ 375 cleanup_aer_uncorrect_error_status(oct->pci_dev); 376 } 377 378 /** 379 * \brief called when PCI error is detected 380 * @param pdev Pointer to PCI device 381 * @param state The current pci connection state 382 * 383 * This function is called after a PCI bus error affecting 384 * this device has been detected. 385 */ 386 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev, 387 pci_channel_state_t state) 388 { 389 struct octeon_device *oct = pci_get_drvdata(pdev); 390 391 /* Non-correctable Non-fatal errors */ 392 if (state == pci_channel_io_normal) { 393 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n"); 394 cleanup_aer_uncorrect_error_status(oct->pci_dev); 395 return PCI_ERS_RESULT_CAN_RECOVER; 396 } 397 398 /* Non-correctable Fatal errors */ 399 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n"); 400 stop_pci_io(oct); 401 402 /* Always return a DISCONNECT. There is no support for recovery but only 403 * for a clean shutdown. 404 */ 405 return PCI_ERS_RESULT_DISCONNECT; 406 } 407 408 /** 409 * \brief mmio handler 410 * @param pdev Pointer to PCI device 411 */ 412 static pci_ers_result_t liquidio_pcie_mmio_enabled( 413 struct pci_dev *pdev __attribute__((unused))) 414 { 415 /* We should never hit this since we never ask for a reset for a Fatal 416 * Error. We always return DISCONNECT in io_error above. 417 * But play safe and return RECOVERED for now. 418 */ 419 return PCI_ERS_RESULT_RECOVERED; 420 } 421 422 /** 423 * \brief called after the pci bus has been reset. 424 * @param pdev Pointer to PCI device 425 * 426 * Restart the card from scratch, as if from a cold-boot. Implementation 427 * resembles the first-half of the octeon_resume routine. 428 */ 429 static pci_ers_result_t liquidio_pcie_slot_reset( 430 struct pci_dev *pdev __attribute__((unused))) 431 { 432 /* We should never hit this since we never ask for a reset for a Fatal 433 * Error. We always return DISCONNECT in io_error above. 434 * But play safe and return RECOVERED for now. 435 */ 436 return PCI_ERS_RESULT_RECOVERED; 437 } 438 439 /** 440 * \brief called when traffic can start flowing again. 441 * @param pdev Pointer to PCI device 442 * 443 * This callback is called when the error recovery driver tells us that 444 * its OK to resume normal operation. Implementation resembles the 445 * second-half of the octeon_resume routine. 446 */ 447 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused))) 448 { 449 /* Nothing to be done here. */ 450 } 451 452 #ifdef CONFIG_PM 453 /** 454 * \brief called when suspending 455 * @param pdev Pointer to PCI device 456 * @param state state to suspend to 457 */ 458 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)), 459 pm_message_t state __attribute__((unused))) 460 { 461 return 0; 462 } 463 464 /** 465 * \brief called when resuming 466 * @param pdev Pointer to PCI device 467 */ 468 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused))) 469 { 470 return 0; 471 } 472 #endif 473 474 /* For PCI-E Advanced Error Recovery (AER) Interface */ 475 static const struct pci_error_handlers liquidio_err_handler = { 476 .error_detected = liquidio_pcie_error_detected, 477 .mmio_enabled = liquidio_pcie_mmio_enabled, 478 .slot_reset = liquidio_pcie_slot_reset, 479 .resume = liquidio_pcie_resume, 480 }; 481 482 static const struct pci_device_id liquidio_pci_tbl[] = { 483 { /* 68xx */ 484 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 485 }, 486 { /* 66xx */ 487 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 488 }, 489 { /* 23xx pf */ 490 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 491 }, 492 { 493 0, 0, 0, 0, 0, 0, 0 494 } 495 }; 496 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl); 497 498 static struct pci_driver liquidio_pci_driver = { 499 .name = "LiquidIO", 500 .id_table = liquidio_pci_tbl, 501 .probe = liquidio_probe, 502 .remove = liquidio_remove, 503 .err_handler = &liquidio_err_handler, /* For AER */ 504 505 #ifdef CONFIG_PM 506 .suspend = liquidio_suspend, 507 .resume = liquidio_resume, 508 #endif 509 #ifdef CONFIG_PCI_IOV 510 .sriov_configure = liquidio_enable_sriov, 511 #endif 512 }; 513 514 /** 515 * \brief register PCI driver 516 */ 517 static int liquidio_init_pci(void) 518 { 519 return pci_register_driver(&liquidio_pci_driver); 520 } 521 522 /** 523 * \brief unregister PCI driver 524 */ 525 static void liquidio_deinit_pci(void) 526 { 527 pci_unregister_driver(&liquidio_pci_driver); 528 } 529 530 /** 531 * \brief Stop Tx queues 532 * @param netdev network device 533 */ 534 static inline void txqs_stop(struct net_device *netdev) 535 { 536 if (netif_is_multiqueue(netdev)) { 537 int i; 538 539 for (i = 0; i < netdev->num_tx_queues; i++) 540 netif_stop_subqueue(netdev, i); 541 } else { 542 netif_stop_queue(netdev); 543 } 544 } 545 546 /** 547 * \brief Start Tx queues 548 * @param netdev network device 549 */ 550 static inline void txqs_start(struct net_device *netdev) 551 { 552 if (netif_is_multiqueue(netdev)) { 553 int i; 554 555 for (i = 0; i < netdev->num_tx_queues; i++) 556 netif_start_subqueue(netdev, i); 557 } else { 558 netif_start_queue(netdev); 559 } 560 } 561 562 /** 563 * \brief Wake Tx queues 564 * @param netdev network device 565 */ 566 static inline void txqs_wake(struct net_device *netdev) 567 { 568 struct lio *lio = GET_LIO(netdev); 569 570 if (netif_is_multiqueue(netdev)) { 571 int i; 572 573 for (i = 0; i < netdev->num_tx_queues; i++) { 574 int qno = lio->linfo.txpciq[i % 575 (lio->linfo.num_txpciq)].s.q_no; 576 577 if (__netif_subqueue_stopped(netdev, i)) { 578 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno, 579 tx_restart, 1); 580 netif_wake_subqueue(netdev, i); 581 } 582 } 583 } else { 584 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 585 tx_restart, 1); 586 netif_wake_queue(netdev); 587 } 588 } 589 590 /** 591 * \brief Stop Tx queue 592 * @param netdev network device 593 */ 594 static void stop_txq(struct net_device *netdev) 595 { 596 txqs_stop(netdev); 597 } 598 599 /** 600 * \brief Start Tx queue 601 * @param netdev network device 602 */ 603 static void start_txq(struct net_device *netdev) 604 { 605 struct lio *lio = GET_LIO(netdev); 606 607 if (lio->linfo.link.s.link_up) { 608 txqs_start(netdev); 609 return; 610 } 611 } 612 613 /** 614 * \brief Wake a queue 615 * @param netdev network device 616 * @param q which queue to wake 617 */ 618 static inline void wake_q(struct net_device *netdev, int q) 619 { 620 if (netif_is_multiqueue(netdev)) 621 netif_wake_subqueue(netdev, q); 622 else 623 netif_wake_queue(netdev); 624 } 625 626 /** 627 * \brief Stop a queue 628 * @param netdev network device 629 * @param q which queue to stop 630 */ 631 static inline void stop_q(struct net_device *netdev, int q) 632 { 633 if (netif_is_multiqueue(netdev)) 634 netif_stop_subqueue(netdev, q); 635 else 636 netif_stop_queue(netdev); 637 } 638 639 /** 640 * \brief Check Tx queue status, and take appropriate action 641 * @param lio per-network private data 642 * @returns 0 if full, number of queues woken up otherwise 643 */ 644 static inline int check_txq_status(struct lio *lio) 645 { 646 int ret_val = 0; 647 648 if (netif_is_multiqueue(lio->netdev)) { 649 int numqs = lio->netdev->num_tx_queues; 650 int q, iq = 0; 651 652 /* check each sub-queue state */ 653 for (q = 0; q < numqs; q++) { 654 iq = lio->linfo.txpciq[q % 655 (lio->linfo.num_txpciq)].s.q_no; 656 if (octnet_iq_is_full(lio->oct_dev, iq)) 657 continue; 658 if (__netif_subqueue_stopped(lio->netdev, q)) { 659 wake_q(lio->netdev, q); 660 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, 661 tx_restart, 1); 662 ret_val++; 663 } 664 } 665 } else { 666 if (octnet_iq_is_full(lio->oct_dev, lio->txq)) 667 return 0; 668 wake_q(lio->netdev, lio->txq); 669 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 670 tx_restart, 1); 671 ret_val = 1; 672 } 673 return ret_val; 674 } 675 676 /** 677 * Remove the node at the head of the list. The list would be empty at 678 * the end of this call if there are no more nodes in the list. 679 */ 680 static inline struct list_head *list_delete_head(struct list_head *root) 681 { 682 struct list_head *node; 683 684 if ((root->prev == root) && (root->next == root)) 685 node = NULL; 686 else 687 node = root->next; 688 689 if (node) 690 list_del(node); 691 692 return node; 693 } 694 695 /** 696 * \brief Delete gather lists 697 * @param lio per-network private data 698 */ 699 static void delete_glists(struct lio *lio) 700 { 701 struct octnic_gather *g; 702 int i; 703 704 kfree(lio->glist_lock); 705 lio->glist_lock = NULL; 706 707 if (!lio->glist) 708 return; 709 710 for (i = 0; i < lio->linfo.num_txpciq; i++) { 711 do { 712 g = (struct octnic_gather *) 713 list_delete_head(&lio->glist[i]); 714 if (g) 715 kfree(g); 716 } while (g); 717 718 if (lio->glists_virt_base && lio->glists_virt_base[i] && 719 lio->glists_dma_base && lio->glists_dma_base[i]) { 720 lio_dma_free(lio->oct_dev, 721 lio->glist_entry_size * lio->tx_qsize, 722 lio->glists_virt_base[i], 723 lio->glists_dma_base[i]); 724 } 725 } 726 727 kfree(lio->glists_virt_base); 728 lio->glists_virt_base = NULL; 729 730 kfree(lio->glists_dma_base); 731 lio->glists_dma_base = NULL; 732 733 kfree(lio->glist); 734 lio->glist = NULL; 735 } 736 737 /** 738 * \brief Setup gather lists 739 * @param lio per-network private data 740 */ 741 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs) 742 { 743 int i, j; 744 struct octnic_gather *g; 745 746 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock), 747 GFP_KERNEL); 748 if (!lio->glist_lock) 749 return -ENOMEM; 750 751 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist), 752 GFP_KERNEL); 753 if (!lio->glist) { 754 kfree(lio->glist_lock); 755 lio->glist_lock = NULL; 756 return -ENOMEM; 757 } 758 759 lio->glist_entry_size = 760 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE); 761 762 /* allocate memory to store virtual and dma base address of 763 * per glist consistent memory 764 */ 765 lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base), 766 GFP_KERNEL); 767 lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base), 768 GFP_KERNEL); 769 770 if (!lio->glists_virt_base || !lio->glists_dma_base) { 771 delete_glists(lio); 772 return -ENOMEM; 773 } 774 775 for (i = 0; i < num_iqs; i++) { 776 int numa_node = dev_to_node(&oct->pci_dev->dev); 777 778 spin_lock_init(&lio->glist_lock[i]); 779 780 INIT_LIST_HEAD(&lio->glist[i]); 781 782 lio->glists_virt_base[i] = 783 lio_dma_alloc(oct, 784 lio->glist_entry_size * lio->tx_qsize, 785 &lio->glists_dma_base[i]); 786 787 if (!lio->glists_virt_base[i]) { 788 delete_glists(lio); 789 return -ENOMEM; 790 } 791 792 for (j = 0; j < lio->tx_qsize; j++) { 793 g = kzalloc_node(sizeof(*g), GFP_KERNEL, 794 numa_node); 795 if (!g) 796 g = kzalloc(sizeof(*g), GFP_KERNEL); 797 if (!g) 798 break; 799 800 g->sg = lio->glists_virt_base[i] + 801 (j * lio->glist_entry_size); 802 803 g->sg_dma_ptr = lio->glists_dma_base[i] + 804 (j * lio->glist_entry_size); 805 806 list_add_tail(&g->list, &lio->glist[i]); 807 } 808 809 if (j != lio->tx_qsize) { 810 delete_glists(lio); 811 return -ENOMEM; 812 } 813 } 814 815 return 0; 816 } 817 818 /** 819 * \brief Print link information 820 * @param netdev network device 821 */ 822 static void print_link_info(struct net_device *netdev) 823 { 824 struct lio *lio = GET_LIO(netdev); 825 826 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) { 827 struct oct_link_info *linfo = &lio->linfo; 828 829 if (linfo->link.s.link_up) { 830 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n", 831 linfo->link.s.speed, 832 (linfo->link.s.duplex) ? "Full" : "Half"); 833 } else { 834 netif_info(lio, link, lio->netdev, "Link Down\n"); 835 } 836 } 837 } 838 839 /** 840 * \brief Routine to notify MTU change 841 * @param work work_struct data structure 842 */ 843 static void octnet_link_status_change(struct work_struct *work) 844 { 845 struct cavium_wk *wk = (struct cavium_wk *)work; 846 struct lio *lio = (struct lio *)wk->ctxptr; 847 848 rtnl_lock(); 849 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev); 850 rtnl_unlock(); 851 } 852 853 /** 854 * \brief Sets up the mtu status change work 855 * @param netdev network device 856 */ 857 static inline int setup_link_status_change_wq(struct net_device *netdev) 858 { 859 struct lio *lio = GET_LIO(netdev); 860 struct octeon_device *oct = lio->oct_dev; 861 862 lio->link_status_wq.wq = alloc_workqueue("link-status", 863 WQ_MEM_RECLAIM, 0); 864 if (!lio->link_status_wq.wq) { 865 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n"); 866 return -1; 867 } 868 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work, 869 octnet_link_status_change); 870 lio->link_status_wq.wk.ctxptr = lio; 871 872 return 0; 873 } 874 875 static inline void cleanup_link_status_change_wq(struct net_device *netdev) 876 { 877 struct lio *lio = GET_LIO(netdev); 878 879 if (lio->link_status_wq.wq) { 880 cancel_delayed_work_sync(&lio->link_status_wq.wk.work); 881 destroy_workqueue(lio->link_status_wq.wq); 882 } 883 } 884 885 /** 886 * \brief Update link status 887 * @param netdev network device 888 * @param ls link status structure 889 * 890 * Called on receipt of a link status response from the core application to 891 * update each interface's link status. 892 */ 893 static inline void update_link_status(struct net_device *netdev, 894 union oct_link_status *ls) 895 { 896 struct lio *lio = GET_LIO(netdev); 897 int changed = (lio->linfo.link.u64 != ls->u64); 898 899 lio->linfo.link.u64 = ls->u64; 900 901 if ((lio->intf_open) && (changed)) { 902 print_link_info(netdev); 903 lio->link_changes++; 904 905 if (lio->linfo.link.s.link_up) { 906 netif_carrier_on(netdev); 907 txqs_wake(netdev); 908 } else { 909 netif_carrier_off(netdev); 910 stop_txq(netdev); 911 } 912 } 913 } 914 915 /* Runs in interrupt context. */ 916 static void update_txq_status(struct octeon_device *oct, int iq_num) 917 { 918 struct net_device *netdev; 919 struct lio *lio; 920 struct octeon_instr_queue *iq = oct->instr_queue[iq_num]; 921 922 netdev = oct->props[iq->ifidx].netdev; 923 924 /* This is needed because the first IQ does not have 925 * a netdev associated with it. 926 */ 927 if (!netdev) 928 return; 929 930 lio = GET_LIO(netdev); 931 if (netif_is_multiqueue(netdev)) { 932 if (__netif_subqueue_stopped(netdev, iq->q_index) && 933 lio->linfo.link.s.link_up && 934 (!octnet_iq_is_full(oct, iq_num))) { 935 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num, 936 tx_restart, 1); 937 netif_wake_subqueue(netdev, iq->q_index); 938 } 939 } else if (netif_queue_stopped(netdev) && 940 lio->linfo.link.s.link_up && 941 (!octnet_iq_is_full(oct, lio->txq))) { 942 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, 943 lio->txq, tx_restart, 1); 944 netif_wake_queue(netdev); 945 } 946 } 947 948 static 949 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret) 950 { 951 struct octeon_device *oct = droq->oct_dev; 952 struct octeon_device_priv *oct_priv = 953 (struct octeon_device_priv *)oct->priv; 954 955 if (droq->ops.poll_mode) { 956 droq->ops.napi_fn(droq); 957 } else { 958 if (ret & MSIX_PO_INT) { 959 tasklet_schedule(&oct_priv->droq_tasklet); 960 return 1; 961 } 962 /* this will be flushed periodically by check iq db */ 963 if (ret & MSIX_PI_INT) 964 return 0; 965 } 966 return 0; 967 } 968 969 /** 970 * \brief Droq packet processor sceduler 971 * @param oct octeon device 972 */ 973 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct) 974 { 975 struct octeon_device_priv *oct_priv = 976 (struct octeon_device_priv *)oct->priv; 977 u64 oq_no; 978 struct octeon_droq *droq; 979 980 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) { 981 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); 982 oq_no++) { 983 if (!(oct->droq_intr & BIT_ULL(oq_no))) 984 continue; 985 986 droq = oct->droq[oq_no]; 987 988 if (droq->ops.poll_mode) { 989 droq->ops.napi_fn(droq); 990 oct_priv->napi_mask |= (1 << oq_no); 991 } else { 992 tasklet_schedule(&oct_priv->droq_tasklet); 993 } 994 } 995 } 996 } 997 998 static irqreturn_t 999 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev) 1000 { 1001 u64 ret; 1002 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; 1003 struct octeon_device *oct = ioq_vector->oct_dev; 1004 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; 1005 1006 ret = oct->fn_list.msix_interrupt_handler(ioq_vector); 1007 1008 if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT)) 1009 liquidio_schedule_msix_droq_pkt_handler(droq, ret); 1010 1011 return IRQ_HANDLED; 1012 } 1013 1014 /** 1015 * \brief Interrupt handler for octeon 1016 * @param irq unused 1017 * @param dev octeon device 1018 */ 1019 static 1020 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)), 1021 void *dev) 1022 { 1023 struct octeon_device *oct = (struct octeon_device *)dev; 1024 irqreturn_t ret; 1025 1026 /* Disable our interrupts for the duration of ISR */ 1027 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1028 1029 ret = oct->fn_list.process_interrupt_regs(oct); 1030 1031 if (ret == IRQ_HANDLED) 1032 liquidio_schedule_droq_pkt_handlers(oct); 1033 1034 /* Re-enable our interrupts */ 1035 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET)) 1036 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR); 1037 1038 return ret; 1039 } 1040 1041 /** 1042 * \brief Setup interrupt for octeon device 1043 * @param oct octeon device 1044 * 1045 * Enable interrupt in Octeon device as given in the PCI interrupt mask. 1046 */ 1047 static int octeon_setup_interrupt(struct octeon_device *oct) 1048 { 1049 int irqret, err; 1050 struct msix_entry *msix_entries; 1051 int i; 1052 int num_ioq_vectors; 1053 int num_alloc_ioq_vectors; 1054 char *queue_irq_names = NULL; 1055 char *aux_irq_name = NULL; 1056 1057 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 1058 oct->num_msix_irqs = oct->sriov_info.num_pf_rings; 1059 /* one non ioq interrupt for handling sli_mac_pf_int_sum */ 1060 oct->num_msix_irqs += 1; 1061 1062 /* allocate storage for the names assigned to each irq */ 1063 oct->irq_name_storage = 1064 kcalloc((MAX_IOQ_INTERRUPTS_PER_PF + 1), INTRNAMSIZ, 1065 GFP_KERNEL); 1066 if (!oct->irq_name_storage) { 1067 dev_err(&oct->pci_dev->dev, "Irq name storage alloc failed...\n"); 1068 return -ENOMEM; 1069 } 1070 1071 queue_irq_names = oct->irq_name_storage; 1072 aux_irq_name = &queue_irq_names 1073 [IRQ_NAME_OFF(MAX_IOQ_INTERRUPTS_PER_PF)]; 1074 1075 oct->msix_entries = kcalloc( 1076 oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL); 1077 if (!oct->msix_entries) { 1078 dev_err(&oct->pci_dev->dev, "Memory Alloc failed...\n"); 1079 kfree(oct->irq_name_storage); 1080 oct->irq_name_storage = NULL; 1081 return -ENOMEM; 1082 } 1083 1084 msix_entries = (struct msix_entry *)oct->msix_entries; 1085 /*Assumption is that pf msix vectors start from pf srn to pf to 1086 * trs and not from 0. if not change this code 1087 */ 1088 for (i = 0; i < oct->num_msix_irqs - 1; i++) 1089 msix_entries[i].entry = oct->sriov_info.pf_srn + i; 1090 msix_entries[oct->num_msix_irqs - 1].entry = 1091 oct->sriov_info.trs; 1092 num_alloc_ioq_vectors = pci_enable_msix_range( 1093 oct->pci_dev, msix_entries, 1094 oct->num_msix_irqs, 1095 oct->num_msix_irqs); 1096 if (num_alloc_ioq_vectors < 0) { 1097 dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n"); 1098 kfree(oct->msix_entries); 1099 oct->msix_entries = NULL; 1100 kfree(oct->irq_name_storage); 1101 oct->irq_name_storage = NULL; 1102 return num_alloc_ioq_vectors; 1103 } 1104 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n"); 1105 1106 num_ioq_vectors = oct->num_msix_irqs; 1107 1108 /** For PF, there is one non-ioq interrupt handler */ 1109 num_ioq_vectors -= 1; 1110 1111 snprintf(aux_irq_name, INTRNAMSIZ, 1112 "LiquidIO%u-pf%u-aux", oct->octeon_id, oct->pf_num); 1113 irqret = request_irq(msix_entries[num_ioq_vectors].vector, 1114 liquidio_legacy_intr_handler, 0, 1115 aux_irq_name, oct); 1116 if (irqret) { 1117 dev_err(&oct->pci_dev->dev, 1118 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n", 1119 irqret); 1120 pci_disable_msix(oct->pci_dev); 1121 kfree(oct->msix_entries); 1122 oct->msix_entries = NULL; 1123 kfree(oct->irq_name_storage); 1124 oct->irq_name_storage = NULL; 1125 return irqret; 1126 } 1127 1128 for (i = 0; i < num_ioq_vectors; i++) { 1129 snprintf(&queue_irq_names[IRQ_NAME_OFF(i)], INTRNAMSIZ, 1130 "LiquidIO%u-pf%u-rxtx-%u", 1131 oct->octeon_id, oct->pf_num, i); 1132 1133 irqret = request_irq(msix_entries[i].vector, 1134 liquidio_msix_intr_handler, 0, 1135 &queue_irq_names[IRQ_NAME_OFF(i)], 1136 &oct->ioq_vector[i]); 1137 if (irqret) { 1138 dev_err(&oct->pci_dev->dev, 1139 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n", 1140 irqret); 1141 /** Freeing the non-ioq irq vector here . */ 1142 free_irq(msix_entries[num_ioq_vectors].vector, 1143 oct); 1144 1145 while (i) { 1146 i--; 1147 /** clearing affinity mask. */ 1148 irq_set_affinity_hint( 1149 msix_entries[i].vector, NULL); 1150 free_irq(msix_entries[i].vector, 1151 &oct->ioq_vector[i]); 1152 } 1153 pci_disable_msix(oct->pci_dev); 1154 kfree(oct->msix_entries); 1155 oct->msix_entries = NULL; 1156 kfree(oct->irq_name_storage); 1157 oct->irq_name_storage = NULL; 1158 return irqret; 1159 } 1160 oct->ioq_vector[i].vector = msix_entries[i].vector; 1161 /* assign the cpu mask for this msix interrupt vector */ 1162 irq_set_affinity_hint( 1163 msix_entries[i].vector, 1164 (&oct->ioq_vector[i].affinity_mask)); 1165 } 1166 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n", 1167 oct->octeon_id); 1168 } else { 1169 err = pci_enable_msi(oct->pci_dev); 1170 if (err) 1171 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n", 1172 err); 1173 else 1174 oct->flags |= LIO_FLAG_MSI_ENABLED; 1175 1176 /* allocate storage for the names assigned to the irq */ 1177 oct->irq_name_storage = kcalloc(1, INTRNAMSIZ, GFP_KERNEL); 1178 if (!oct->irq_name_storage) 1179 return -ENOMEM; 1180 1181 queue_irq_names = oct->irq_name_storage; 1182 1183 snprintf(&queue_irq_names[IRQ_NAME_OFF(0)], INTRNAMSIZ, 1184 "LiquidIO%u-pf%u-rxtx-%u", 1185 oct->octeon_id, oct->pf_num, 0); 1186 1187 irqret = request_irq(oct->pci_dev->irq, 1188 liquidio_legacy_intr_handler, 1189 IRQF_SHARED, 1190 &queue_irq_names[IRQ_NAME_OFF(0)], oct); 1191 if (irqret) { 1192 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1193 pci_disable_msi(oct->pci_dev); 1194 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n", 1195 irqret); 1196 kfree(oct->irq_name_storage); 1197 oct->irq_name_storage = NULL; 1198 return irqret; 1199 } 1200 } 1201 return 0; 1202 } 1203 1204 static struct octeon_device *get_other_octeon_device(struct octeon_device *oct) 1205 { 1206 struct octeon_device *other_oct; 1207 1208 other_oct = lio_get_device(oct->octeon_id + 1); 1209 1210 if (other_oct && other_oct->pci_dev) { 1211 int oct_busnum, other_oct_busnum; 1212 1213 oct_busnum = oct->pci_dev->bus->number; 1214 other_oct_busnum = other_oct->pci_dev->bus->number; 1215 1216 if (oct_busnum == other_oct_busnum) { 1217 int oct_slot, other_oct_slot; 1218 1219 oct_slot = PCI_SLOT(oct->pci_dev->devfn); 1220 other_oct_slot = PCI_SLOT(other_oct->pci_dev->devfn); 1221 1222 if (oct_slot == other_oct_slot) 1223 return other_oct; 1224 } 1225 } 1226 1227 return NULL; 1228 } 1229 1230 static void disable_all_vf_links(struct octeon_device *oct) 1231 { 1232 struct net_device *netdev; 1233 int max_vfs, vf, i; 1234 1235 if (!oct) 1236 return; 1237 1238 max_vfs = oct->sriov_info.max_vfs; 1239 1240 for (i = 0; i < oct->ifcount; i++) { 1241 netdev = oct->props[i].netdev; 1242 if (!netdev) 1243 continue; 1244 1245 for (vf = 0; vf < max_vfs; vf++) 1246 liquidio_set_vf_link_state(netdev, vf, 1247 IFLA_VF_LINK_STATE_DISABLE); 1248 } 1249 } 1250 1251 static int liquidio_watchdog(void *param) 1252 { 1253 bool err_msg_was_printed[LIO_MAX_CORES]; 1254 u16 mask_of_crashed_or_stuck_cores = 0; 1255 bool all_vf_links_are_disabled = false; 1256 struct octeon_device *oct = param; 1257 struct octeon_device *other_oct; 1258 #ifdef CONFIG_MODULE_UNLOAD 1259 long refcount, vfs_referencing_pf; 1260 u64 vfs_mask1, vfs_mask2; 1261 #endif 1262 int core; 1263 1264 memset(err_msg_was_printed, 0, sizeof(err_msg_was_printed)); 1265 1266 while (!kthread_should_stop()) { 1267 /* sleep for a couple of seconds so that we don't hog the CPU */ 1268 set_current_state(TASK_INTERRUPTIBLE); 1269 schedule_timeout(msecs_to_jiffies(2000)); 1270 1271 mask_of_crashed_or_stuck_cores = 1272 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 1273 1274 if (!mask_of_crashed_or_stuck_cores) 1275 continue; 1276 1277 WRITE_ONCE(oct->cores_crashed, true); 1278 other_oct = get_other_octeon_device(oct); 1279 if (other_oct) 1280 WRITE_ONCE(other_oct->cores_crashed, true); 1281 1282 for (core = 0; core < LIO_MAX_CORES; core++) { 1283 bool core_crashed_or_got_stuck; 1284 1285 core_crashed_or_got_stuck = 1286 (mask_of_crashed_or_stuck_cores 1287 >> core) & 1; 1288 1289 if (core_crashed_or_got_stuck && 1290 !err_msg_was_printed[core]) { 1291 dev_err(&oct->pci_dev->dev, 1292 "ERROR: Octeon core %d crashed or got stuck! See oct-fwdump for details.\n", 1293 core); 1294 err_msg_was_printed[core] = true; 1295 } 1296 } 1297 1298 if (all_vf_links_are_disabled) 1299 continue; 1300 1301 disable_all_vf_links(oct); 1302 disable_all_vf_links(other_oct); 1303 all_vf_links_are_disabled = true; 1304 1305 #ifdef CONFIG_MODULE_UNLOAD 1306 vfs_mask1 = READ_ONCE(oct->sriov_info.vf_drv_loaded_mask); 1307 vfs_mask2 = READ_ONCE(other_oct->sriov_info.vf_drv_loaded_mask); 1308 1309 vfs_referencing_pf = hweight64(vfs_mask1); 1310 vfs_referencing_pf += hweight64(vfs_mask2); 1311 1312 refcount = module_refcount(THIS_MODULE); 1313 if (refcount >= vfs_referencing_pf) { 1314 while (vfs_referencing_pf) { 1315 module_put(THIS_MODULE); 1316 vfs_referencing_pf--; 1317 } 1318 } 1319 #endif 1320 } 1321 1322 return 0; 1323 } 1324 1325 /** 1326 * \brief PCI probe handler 1327 * @param pdev PCI device structure 1328 * @param ent unused 1329 */ 1330 static int 1331 liquidio_probe(struct pci_dev *pdev, 1332 const struct pci_device_id *ent __attribute__((unused))) 1333 { 1334 struct octeon_device *oct_dev = NULL; 1335 struct handshake *hs; 1336 1337 oct_dev = octeon_allocate_device(pdev->device, 1338 sizeof(struct octeon_device_priv)); 1339 if (!oct_dev) { 1340 dev_err(&pdev->dev, "Unable to allocate device\n"); 1341 return -ENOMEM; 1342 } 1343 1344 if (pdev->device == OCTEON_CN23XX_PF_VID) 1345 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED; 1346 1347 dev_info(&pdev->dev, "Initializing device %x:%x.\n", 1348 (u32)pdev->vendor, (u32)pdev->device); 1349 1350 /* Assign octeon_device for this device to the private data area. */ 1351 pci_set_drvdata(pdev, oct_dev); 1352 1353 /* set linux specific device pointer */ 1354 oct_dev->pci_dev = (void *)pdev; 1355 1356 hs = &handshake[oct_dev->octeon_id]; 1357 init_completion(&hs->init); 1358 init_completion(&hs->started); 1359 hs->pci_dev = pdev; 1360 1361 if (oct_dev->octeon_id == 0) 1362 /* first LiquidIO NIC is detected */ 1363 complete(&first_stage); 1364 1365 if (octeon_device_init(oct_dev)) { 1366 complete(&hs->init); 1367 liquidio_remove(pdev); 1368 return -ENOMEM; 1369 } 1370 1371 if (OCTEON_CN23XX_PF(oct_dev)) { 1372 u64 scratch1; 1373 u8 bus, device, function; 1374 1375 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1); 1376 if (!(scratch1 & 4ULL)) { 1377 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that 1378 * the lio watchdog kernel thread is running for this 1379 * NIC. Each NIC gets one watchdog kernel thread. 1380 */ 1381 scratch1 |= 4ULL; 1382 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1, 1383 scratch1); 1384 1385 bus = pdev->bus->number; 1386 device = PCI_SLOT(pdev->devfn); 1387 function = PCI_FUNC(pdev->devfn); 1388 oct_dev->watchdog_task = kthread_create( 1389 liquidio_watchdog, oct_dev, 1390 "liowd/%02hhx:%02hhx.%hhx", bus, device, function); 1391 if (!IS_ERR(oct_dev->watchdog_task)) { 1392 wake_up_process(oct_dev->watchdog_task); 1393 } else { 1394 oct_dev->watchdog_task = NULL; 1395 dev_err(&oct_dev->pci_dev->dev, 1396 "failed to create kernel_thread\n"); 1397 liquidio_remove(pdev); 1398 return -1; 1399 } 1400 } 1401 } 1402 1403 oct_dev->rx_pause = 1; 1404 oct_dev->tx_pause = 1; 1405 1406 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n"); 1407 1408 return 0; 1409 } 1410 1411 static bool fw_type_is_none(void) 1412 { 1413 return strncmp(fw_type, LIO_FW_NAME_TYPE_NONE, 1414 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0; 1415 } 1416 1417 /** 1418 *\brief Destroy resources associated with octeon device 1419 * @param pdev PCI device structure 1420 * @param ent unused 1421 */ 1422 static void octeon_destroy_resources(struct octeon_device *oct) 1423 { 1424 int i, refcount; 1425 struct msix_entry *msix_entries; 1426 struct octeon_device_priv *oct_priv = 1427 (struct octeon_device_priv *)oct->priv; 1428 1429 struct handshake *hs; 1430 1431 switch (atomic_read(&oct->status)) { 1432 case OCT_DEV_RUNNING: 1433 case OCT_DEV_CORE_OK: 1434 1435 /* No more instructions will be forwarded. */ 1436 atomic_set(&oct->status, OCT_DEV_IN_RESET); 1437 1438 oct->app_mode = CVM_DRV_INVALID_APP; 1439 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 1440 lio_get_state_string(&oct->status)); 1441 1442 schedule_timeout_uninterruptible(HZ / 10); 1443 1444 /* fallthrough */ 1445 case OCT_DEV_HOST_OK: 1446 1447 /* fallthrough */ 1448 case OCT_DEV_CONSOLE_INIT_DONE: 1449 /* Remove any consoles */ 1450 octeon_remove_consoles(oct); 1451 1452 /* fallthrough */ 1453 case OCT_DEV_IO_QUEUES_DONE: 1454 if (wait_for_pending_requests(oct)) 1455 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 1456 1457 if (lio_wait_for_instr_fetch(oct)) 1458 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n"); 1459 1460 /* Disable the input and output queues now. No more packets will 1461 * arrive from Octeon, but we should wait for all packet 1462 * processing to finish. 1463 */ 1464 oct->fn_list.disable_io_queues(oct); 1465 1466 if (lio_wait_for_oq_pkts(oct)) 1467 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n"); 1468 1469 /* fallthrough */ 1470 case OCT_DEV_INTR_SET_DONE: 1471 /* Disable interrupts */ 1472 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1473 1474 if (oct->msix_on) { 1475 msix_entries = (struct msix_entry *)oct->msix_entries; 1476 for (i = 0; i < oct->num_msix_irqs - 1; i++) { 1477 /* clear the affinity_cpumask */ 1478 irq_set_affinity_hint(msix_entries[i].vector, 1479 NULL); 1480 free_irq(msix_entries[i].vector, 1481 &oct->ioq_vector[i]); 1482 } 1483 /* non-iov vector's argument is oct struct */ 1484 free_irq(msix_entries[i].vector, oct); 1485 1486 pci_disable_msix(oct->pci_dev); 1487 kfree(oct->msix_entries); 1488 oct->msix_entries = NULL; 1489 } else { 1490 /* Release the interrupt line */ 1491 free_irq(oct->pci_dev->irq, oct); 1492 1493 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1494 pci_disable_msi(oct->pci_dev); 1495 } 1496 1497 kfree(oct->irq_name_storage); 1498 oct->irq_name_storage = NULL; 1499 1500 /* fallthrough */ 1501 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE: 1502 if (OCTEON_CN23XX_PF(oct)) 1503 octeon_free_ioq_vector(oct); 1504 1505 /* fallthrough */ 1506 case OCT_DEV_MBOX_SETUP_DONE: 1507 if (OCTEON_CN23XX_PF(oct)) 1508 oct->fn_list.free_mbox(oct); 1509 1510 /* fallthrough */ 1511 case OCT_DEV_IN_RESET: 1512 case OCT_DEV_DROQ_INIT_DONE: 1513 /* Wait for any pending operations */ 1514 mdelay(100); 1515 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 1516 if (!(oct->io_qmask.oq & BIT_ULL(i))) 1517 continue; 1518 octeon_delete_droq(oct, i); 1519 } 1520 1521 /* Force any pending handshakes to complete */ 1522 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 1523 hs = &handshake[i]; 1524 1525 if (hs->pci_dev) { 1526 handshake[oct->octeon_id].init_ok = 0; 1527 complete(&handshake[oct->octeon_id].init); 1528 handshake[oct->octeon_id].started_ok = 0; 1529 complete(&handshake[oct->octeon_id].started); 1530 } 1531 } 1532 1533 /* fallthrough */ 1534 case OCT_DEV_RESP_LIST_INIT_DONE: 1535 octeon_delete_response_list(oct); 1536 1537 /* fallthrough */ 1538 case OCT_DEV_INSTR_QUEUE_INIT_DONE: 1539 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 1540 if (!(oct->io_qmask.iq & BIT_ULL(i))) 1541 continue; 1542 octeon_delete_instr_queue(oct, i); 1543 } 1544 #ifdef CONFIG_PCI_IOV 1545 if (oct->sriov_info.sriov_enabled) 1546 pci_disable_sriov(oct->pci_dev); 1547 #endif 1548 /* fallthrough */ 1549 case OCT_DEV_SC_BUFF_POOL_INIT_DONE: 1550 octeon_free_sc_buffer_pool(oct); 1551 1552 /* fallthrough */ 1553 case OCT_DEV_DISPATCH_INIT_DONE: 1554 octeon_delete_dispatch_list(oct); 1555 cancel_delayed_work_sync(&oct->nic_poll_work.work); 1556 1557 /* fallthrough */ 1558 case OCT_DEV_PCI_MAP_DONE: 1559 refcount = octeon_deregister_device(oct); 1560 1561 if (!fw_type_is_none()) { 1562 /* Soft reset the octeon device before exiting. 1563 * Implementation note: here, we reset the device 1564 * if it is a CN6XXX OR the last CN23XX device. 1565 */ 1566 if (OCTEON_CN6XXX(oct) || !refcount) 1567 oct->fn_list.soft_reset(oct); 1568 } 1569 1570 octeon_unmap_pci_barx(oct, 0); 1571 octeon_unmap_pci_barx(oct, 1); 1572 1573 /* fallthrough */ 1574 case OCT_DEV_PCI_ENABLE_DONE: 1575 pci_clear_master(oct->pci_dev); 1576 /* Disable the device, releasing the PCI INT */ 1577 pci_disable_device(oct->pci_dev); 1578 1579 /* fallthrough */ 1580 case OCT_DEV_BEGIN_STATE: 1581 /* Nothing to be done here either */ 1582 break; 1583 } /* end switch (oct->status) */ 1584 1585 tasklet_kill(&oct_priv->droq_tasklet); 1586 } 1587 1588 /** 1589 * \brief Callback for rx ctrl 1590 * @param status status of request 1591 * @param buf pointer to resp structure 1592 */ 1593 static void rx_ctl_callback(struct octeon_device *oct, 1594 u32 status, 1595 void *buf) 1596 { 1597 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1598 struct liquidio_rx_ctl_context *ctx; 1599 1600 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1601 1602 oct = lio_get_device(ctx->octeon_id); 1603 if (status) 1604 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n", 1605 CVM_CAST64(status)); 1606 WRITE_ONCE(ctx->cond, 1); 1607 1608 /* This barrier is required to be sure that the response has been 1609 * written fully before waking up the handler 1610 */ 1611 wmb(); 1612 1613 wake_up_interruptible(&ctx->wc); 1614 } 1615 1616 /** 1617 * \brief Send Rx control command 1618 * @param lio per-network private data 1619 * @param start_stop whether to start or stop 1620 */ 1621 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop) 1622 { 1623 struct octeon_soft_command *sc; 1624 struct liquidio_rx_ctl_context *ctx; 1625 union octnet_cmd *ncmd; 1626 int ctx_size = sizeof(struct liquidio_rx_ctl_context); 1627 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1628 int retval; 1629 1630 if (oct->props[lio->ifidx].rx_on == start_stop) 1631 return; 1632 1633 sc = (struct octeon_soft_command *) 1634 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE, 1635 16, ctx_size); 1636 1637 ncmd = (union octnet_cmd *)sc->virtdptr; 1638 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1639 1640 WRITE_ONCE(ctx->cond, 0); 1641 ctx->octeon_id = lio_get_device_id(oct); 1642 init_waitqueue_head(&ctx->wc); 1643 1644 ncmd->u64 = 0; 1645 ncmd->s.cmd = OCTNET_CMD_RX_CTL; 1646 ncmd->s.param1 = start_stop; 1647 1648 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3)); 1649 1650 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 1651 1652 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 1653 OPCODE_NIC_CMD, 0, 0, 0); 1654 1655 sc->callback = rx_ctl_callback; 1656 sc->callback_arg = sc; 1657 sc->wait_time = 5000; 1658 1659 retval = octeon_send_soft_command(oct, sc); 1660 if (retval == IQ_SEND_FAILED) { 1661 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n"); 1662 } else { 1663 /* Sleep on a wait queue till the cond flag indicates that the 1664 * response arrived or timed-out. 1665 */ 1666 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) 1667 return; 1668 oct->props[lio->ifidx].rx_on = start_stop; 1669 } 1670 1671 octeon_free_soft_command(oct, sc); 1672 } 1673 1674 /** 1675 * \brief Destroy NIC device interface 1676 * @param oct octeon device 1677 * @param ifidx which interface to destroy 1678 * 1679 * Cleanup associated with each interface for an Octeon device when NIC 1680 * module is being unloaded or if initialization fails during load. 1681 */ 1682 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx) 1683 { 1684 struct net_device *netdev = oct->props[ifidx].netdev; 1685 struct lio *lio; 1686 struct napi_struct *napi, *n; 1687 1688 if (!netdev) { 1689 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n", 1690 __func__, ifidx); 1691 return; 1692 } 1693 1694 lio = GET_LIO(netdev); 1695 1696 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n"); 1697 1698 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) 1699 liquidio_stop(netdev); 1700 1701 if (fw_type_is_none()) { 1702 struct octnic_ctrl_pkt nctrl; 1703 1704 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 1705 nctrl.ncmd.s.cmd = OCTNET_CMD_RESET_PF; 1706 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 1707 octnet_send_nic_ctrl_pkt(oct, &nctrl); 1708 } 1709 1710 if (oct->props[lio->ifidx].napi_enabled == 1) { 1711 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1712 napi_disable(napi); 1713 1714 oct->props[lio->ifidx].napi_enabled = 0; 1715 1716 if (OCTEON_CN23XX_PF(oct)) 1717 oct->droq[0]->ops.poll_mode = 0; 1718 } 1719 1720 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) 1721 unregister_netdev(netdev); 1722 1723 cleanup_link_status_change_wq(netdev); 1724 1725 cleanup_rx_oom_poll_fn(netdev); 1726 1727 delete_glists(lio); 1728 1729 free_netdev(netdev); 1730 1731 oct->props[ifidx].gmxport = -1; 1732 1733 oct->props[ifidx].netdev = NULL; 1734 } 1735 1736 /** 1737 * \brief Stop complete NIC functionality 1738 * @param oct octeon device 1739 */ 1740 static int liquidio_stop_nic_module(struct octeon_device *oct) 1741 { 1742 int i, j; 1743 struct lio *lio; 1744 1745 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n"); 1746 if (!oct->ifcount) { 1747 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n"); 1748 return 1; 1749 } 1750 1751 spin_lock_bh(&oct->cmd_resp_wqlock); 1752 oct->cmd_resp_state = OCT_DRV_OFFLINE; 1753 spin_unlock_bh(&oct->cmd_resp_wqlock); 1754 1755 for (i = 0; i < oct->ifcount; i++) { 1756 lio = GET_LIO(oct->props[i].netdev); 1757 for (j = 0; j < lio->linfo.num_rxpciq; j++) 1758 octeon_unregister_droq_ops(oct, 1759 lio->linfo.rxpciq[j].s.q_no); 1760 } 1761 1762 for (i = 0; i < oct->ifcount; i++) 1763 liquidio_destroy_nic_device(oct, i); 1764 1765 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n"); 1766 return 0; 1767 } 1768 1769 /** 1770 * \brief Cleans up resources at unload time 1771 * @param pdev PCI device structure 1772 */ 1773 static void liquidio_remove(struct pci_dev *pdev) 1774 { 1775 struct octeon_device *oct_dev = pci_get_drvdata(pdev); 1776 1777 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n"); 1778 1779 if (oct_dev->watchdog_task) 1780 kthread_stop(oct_dev->watchdog_task); 1781 1782 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP)) 1783 liquidio_stop_nic_module(oct_dev); 1784 1785 /* Reset the octeon device and cleanup all memory allocated for 1786 * the octeon device by driver. 1787 */ 1788 octeon_destroy_resources(oct_dev); 1789 1790 dev_info(&oct_dev->pci_dev->dev, "Device removed\n"); 1791 1792 /* This octeon device has been removed. Update the global 1793 * data structure to reflect this. Free the device structure. 1794 */ 1795 octeon_free_device_mem(oct_dev); 1796 } 1797 1798 /** 1799 * \brief Identify the Octeon device and to map the BAR address space 1800 * @param oct octeon device 1801 */ 1802 static int octeon_chip_specific_setup(struct octeon_device *oct) 1803 { 1804 u32 dev_id, rev_id; 1805 int ret = 1; 1806 char *s; 1807 1808 pci_read_config_dword(oct->pci_dev, 0, &dev_id); 1809 pci_read_config_dword(oct->pci_dev, 8, &rev_id); 1810 oct->rev_id = rev_id & 0xff; 1811 1812 switch (dev_id) { 1813 case OCTEON_CN68XX_PCIID: 1814 oct->chip_id = OCTEON_CN68XX; 1815 ret = lio_setup_cn68xx_octeon_device(oct); 1816 s = "CN68XX"; 1817 break; 1818 1819 case OCTEON_CN66XX_PCIID: 1820 oct->chip_id = OCTEON_CN66XX; 1821 ret = lio_setup_cn66xx_octeon_device(oct); 1822 s = "CN66XX"; 1823 break; 1824 1825 case OCTEON_CN23XX_PCIID_PF: 1826 oct->chip_id = OCTEON_CN23XX_PF_VID; 1827 ret = setup_cn23xx_octeon_pf_device(oct); 1828 s = "CN23XX"; 1829 break; 1830 1831 default: 1832 s = "?"; 1833 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n", 1834 dev_id); 1835 } 1836 1837 if (!ret) 1838 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s, 1839 OCTEON_MAJOR_REV(oct), 1840 OCTEON_MINOR_REV(oct), 1841 octeon_get_conf(oct)->card_name, 1842 LIQUIDIO_VERSION); 1843 1844 return ret; 1845 } 1846 1847 /** 1848 * \brief PCI initialization for each Octeon device. 1849 * @param oct octeon device 1850 */ 1851 static int octeon_pci_os_setup(struct octeon_device *oct) 1852 { 1853 /* setup PCI stuff first */ 1854 if (pci_enable_device(oct->pci_dev)) { 1855 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n"); 1856 return 1; 1857 } 1858 1859 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) { 1860 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n"); 1861 pci_disable_device(oct->pci_dev); 1862 return 1; 1863 } 1864 1865 /* Enable PCI DMA Master. */ 1866 pci_set_master(oct->pci_dev); 1867 1868 return 0; 1869 } 1870 1871 static inline int skb_iq(struct lio *lio, struct sk_buff *skb) 1872 { 1873 int q = 0; 1874 1875 if (netif_is_multiqueue(lio->netdev)) 1876 q = skb->queue_mapping % lio->linfo.num_txpciq; 1877 1878 return q; 1879 } 1880 1881 /** 1882 * \brief Check Tx queue state for a given network buffer 1883 * @param lio per-network private data 1884 * @param skb network buffer 1885 */ 1886 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb) 1887 { 1888 int q = 0, iq = 0; 1889 1890 if (netif_is_multiqueue(lio->netdev)) { 1891 q = skb->queue_mapping; 1892 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no; 1893 } else { 1894 iq = lio->txq; 1895 q = iq; 1896 } 1897 1898 if (octnet_iq_is_full(lio->oct_dev, iq)) 1899 return 0; 1900 1901 if (__netif_subqueue_stopped(lio->netdev, q)) { 1902 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1); 1903 wake_q(lio->netdev, q); 1904 } 1905 return 1; 1906 } 1907 1908 /** 1909 * \brief Unmap and free network buffer 1910 * @param buf buffer 1911 */ 1912 static void free_netbuf(void *buf) 1913 { 1914 struct sk_buff *skb; 1915 struct octnet_buf_free_info *finfo; 1916 struct lio *lio; 1917 1918 finfo = (struct octnet_buf_free_info *)buf; 1919 skb = finfo->skb; 1920 lio = finfo->lio; 1921 1922 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len, 1923 DMA_TO_DEVICE); 1924 1925 check_txq_state(lio, skb); 1926 1927 tx_buffer_free(skb); 1928 } 1929 1930 /** 1931 * \brief Unmap and free gather buffer 1932 * @param buf buffer 1933 */ 1934 static void free_netsgbuf(void *buf) 1935 { 1936 struct octnet_buf_free_info *finfo; 1937 struct sk_buff *skb; 1938 struct lio *lio; 1939 struct octnic_gather *g; 1940 int i, frags, iq; 1941 1942 finfo = (struct octnet_buf_free_info *)buf; 1943 skb = finfo->skb; 1944 lio = finfo->lio; 1945 g = finfo->g; 1946 frags = skb_shinfo(skb)->nr_frags; 1947 1948 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1949 g->sg[0].ptr[0], (skb->len - skb->data_len), 1950 DMA_TO_DEVICE); 1951 1952 i = 1; 1953 while (frags--) { 1954 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1955 1956 pci_unmap_page((lio->oct_dev)->pci_dev, 1957 g->sg[(i >> 2)].ptr[(i & 3)], 1958 frag->size, DMA_TO_DEVICE); 1959 i++; 1960 } 1961 1962 iq = skb_iq(lio, skb); 1963 spin_lock(&lio->glist_lock[iq]); 1964 list_add_tail(&g->list, &lio->glist[iq]); 1965 spin_unlock(&lio->glist_lock[iq]); 1966 1967 check_txq_state(lio, skb); /* mq support: sub-queue state check */ 1968 1969 tx_buffer_free(skb); 1970 } 1971 1972 /** 1973 * \brief Unmap and free gather buffer with response 1974 * @param buf buffer 1975 */ 1976 static void free_netsgbuf_with_resp(void *buf) 1977 { 1978 struct octeon_soft_command *sc; 1979 struct octnet_buf_free_info *finfo; 1980 struct sk_buff *skb; 1981 struct lio *lio; 1982 struct octnic_gather *g; 1983 int i, frags, iq; 1984 1985 sc = (struct octeon_soft_command *)buf; 1986 skb = (struct sk_buff *)sc->callback_arg; 1987 finfo = (struct octnet_buf_free_info *)&skb->cb; 1988 1989 lio = finfo->lio; 1990 g = finfo->g; 1991 frags = skb_shinfo(skb)->nr_frags; 1992 1993 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1994 g->sg[0].ptr[0], (skb->len - skb->data_len), 1995 DMA_TO_DEVICE); 1996 1997 i = 1; 1998 while (frags--) { 1999 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2000 2001 pci_unmap_page((lio->oct_dev)->pci_dev, 2002 g->sg[(i >> 2)].ptr[(i & 3)], 2003 frag->size, DMA_TO_DEVICE); 2004 i++; 2005 } 2006 2007 iq = skb_iq(lio, skb); 2008 2009 spin_lock(&lio->glist_lock[iq]); 2010 list_add_tail(&g->list, &lio->glist[iq]); 2011 spin_unlock(&lio->glist_lock[iq]); 2012 2013 /* Don't free the skb yet */ 2014 2015 check_txq_state(lio, skb); 2016 } 2017 2018 /** 2019 * \brief Adjust ptp frequency 2020 * @param ptp PTP clock info 2021 * @param ppb how much to adjust by, in parts-per-billion 2022 */ 2023 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 2024 { 2025 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2026 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2027 u64 comp, delta; 2028 unsigned long flags; 2029 bool neg_adj = false; 2030 2031 if (ppb < 0) { 2032 neg_adj = true; 2033 ppb = -ppb; 2034 } 2035 2036 /* The hardware adds the clock compensation value to the 2037 * PTP clock on every coprocessor clock cycle, so we 2038 * compute the delta in terms of coprocessor clocks. 2039 */ 2040 delta = (u64)ppb << 32; 2041 do_div(delta, oct->coproc_clock_rate); 2042 2043 spin_lock_irqsave(&lio->ptp_lock, flags); 2044 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP); 2045 if (neg_adj) 2046 comp -= delta; 2047 else 2048 comp += delta; 2049 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP); 2050 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2051 2052 return 0; 2053 } 2054 2055 /** 2056 * \brief Adjust ptp time 2057 * @param ptp PTP clock info 2058 * @param delta how much to adjust by, in nanosecs 2059 */ 2060 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 2061 { 2062 unsigned long flags; 2063 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2064 2065 spin_lock_irqsave(&lio->ptp_lock, flags); 2066 lio->ptp_adjust += delta; 2067 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * \brief Get hardware clock time, including any adjustment 2074 * @param ptp PTP clock info 2075 * @param ts timespec 2076 */ 2077 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp, 2078 struct timespec64 *ts) 2079 { 2080 u64 ns; 2081 unsigned long flags; 2082 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2083 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2084 2085 spin_lock_irqsave(&lio->ptp_lock, flags); 2086 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI); 2087 ns += lio->ptp_adjust; 2088 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2089 2090 *ts = ns_to_timespec64(ns); 2091 2092 return 0; 2093 } 2094 2095 /** 2096 * \brief Set hardware clock time. Reset adjustment 2097 * @param ptp PTP clock info 2098 * @param ts timespec 2099 */ 2100 static int liquidio_ptp_settime(struct ptp_clock_info *ptp, 2101 const struct timespec64 *ts) 2102 { 2103 u64 ns; 2104 unsigned long flags; 2105 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2106 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2107 2108 ns = timespec_to_ns(ts); 2109 2110 spin_lock_irqsave(&lio->ptp_lock, flags); 2111 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI); 2112 lio->ptp_adjust = 0; 2113 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2114 2115 return 0; 2116 } 2117 2118 /** 2119 * \brief Check if PTP is enabled 2120 * @param ptp PTP clock info 2121 * @param rq request 2122 * @param on is it on 2123 */ 2124 static int 2125 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)), 2126 struct ptp_clock_request *rq __attribute__((unused)), 2127 int on __attribute__((unused))) 2128 { 2129 return -EOPNOTSUPP; 2130 } 2131 2132 /** 2133 * \brief Open PTP clock source 2134 * @param netdev network device 2135 */ 2136 static void oct_ptp_open(struct net_device *netdev) 2137 { 2138 struct lio *lio = GET_LIO(netdev); 2139 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2140 2141 spin_lock_init(&lio->ptp_lock); 2142 2143 snprintf(lio->ptp_info.name, 16, "%s", netdev->name); 2144 lio->ptp_info.owner = THIS_MODULE; 2145 lio->ptp_info.max_adj = 250000000; 2146 lio->ptp_info.n_alarm = 0; 2147 lio->ptp_info.n_ext_ts = 0; 2148 lio->ptp_info.n_per_out = 0; 2149 lio->ptp_info.pps = 0; 2150 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq; 2151 lio->ptp_info.adjtime = liquidio_ptp_adjtime; 2152 lio->ptp_info.gettime64 = liquidio_ptp_gettime; 2153 lio->ptp_info.settime64 = liquidio_ptp_settime; 2154 lio->ptp_info.enable = liquidio_ptp_enable; 2155 2156 lio->ptp_adjust = 0; 2157 2158 lio->ptp_clock = ptp_clock_register(&lio->ptp_info, 2159 &oct->pci_dev->dev); 2160 2161 if (IS_ERR(lio->ptp_clock)) 2162 lio->ptp_clock = NULL; 2163 } 2164 2165 /** 2166 * \brief Init PTP clock 2167 * @param oct octeon device 2168 */ 2169 static void liquidio_ptp_init(struct octeon_device *oct) 2170 { 2171 u64 clock_comp, cfg; 2172 2173 clock_comp = (u64)NSEC_PER_SEC << 32; 2174 do_div(clock_comp, oct->coproc_clock_rate); 2175 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP); 2176 2177 /* Enable */ 2178 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG); 2179 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG); 2180 } 2181 2182 /** 2183 * \brief Load firmware to device 2184 * @param oct octeon device 2185 * 2186 * Maps device to firmware filename, requests firmware, and downloads it 2187 */ 2188 static int load_firmware(struct octeon_device *oct) 2189 { 2190 int ret = 0; 2191 const struct firmware *fw; 2192 char fw_name[LIO_MAX_FW_FILENAME_LEN]; 2193 char *tmp_fw_type; 2194 2195 if (fw_type_is_none()) { 2196 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n"); 2197 return ret; 2198 } 2199 2200 if (fw_type[0] == '\0') 2201 tmp_fw_type = LIO_FW_NAME_TYPE_NIC; 2202 else 2203 tmp_fw_type = fw_type; 2204 2205 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME, 2206 octeon_get_conf(oct)->card_name, tmp_fw_type, 2207 LIO_FW_NAME_SUFFIX); 2208 2209 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev); 2210 if (ret) { 2211 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.", 2212 fw_name); 2213 release_firmware(fw); 2214 return ret; 2215 } 2216 2217 ret = octeon_download_firmware(oct, fw->data, fw->size); 2218 2219 release_firmware(fw); 2220 2221 return ret; 2222 } 2223 2224 /** 2225 * \brief Setup output queue 2226 * @param oct octeon device 2227 * @param q_no which queue 2228 * @param num_descs how many descriptors 2229 * @param desc_size size of each descriptor 2230 * @param app_ctx application context 2231 */ 2232 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs, 2233 int desc_size, void *app_ctx) 2234 { 2235 int ret_val = 0; 2236 2237 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no); 2238 /* droq creation and local register settings. */ 2239 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx); 2240 if (ret_val < 0) 2241 return ret_val; 2242 2243 if (ret_val == 1) { 2244 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no); 2245 return 0; 2246 } 2247 /* tasklet creation for the droq */ 2248 2249 /* Enable the droq queues */ 2250 octeon_set_droq_pkt_op(oct, q_no, 1); 2251 2252 /* Send Credit for Octeon Output queues. Credits are always 2253 * sent after the output queue is enabled. 2254 */ 2255 writel(oct->droq[q_no]->max_count, 2256 oct->droq[q_no]->pkts_credit_reg); 2257 2258 return ret_val; 2259 } 2260 2261 /** 2262 * \brief Callback for getting interface configuration 2263 * @param status status of request 2264 * @param buf pointer to resp structure 2265 */ 2266 static void if_cfg_callback(struct octeon_device *oct, 2267 u32 status __attribute__((unused)), 2268 void *buf) 2269 { 2270 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 2271 struct liquidio_if_cfg_resp *resp; 2272 struct liquidio_if_cfg_context *ctx; 2273 2274 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 2275 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 2276 2277 oct = lio_get_device(ctx->octeon_id); 2278 if (resp->status) 2279 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: 0x%llx (0x%08x)\n", 2280 CVM_CAST64(resp->status), status); 2281 WRITE_ONCE(ctx->cond, 1); 2282 2283 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s", 2284 resp->cfg_info.liquidio_firmware_version); 2285 2286 /* This barrier is required to be sure that the response has been 2287 * written fully before waking up the handler 2288 */ 2289 wmb(); 2290 2291 wake_up_interruptible(&ctx->wc); 2292 } 2293 2294 /** Routine to push packets arriving on Octeon interface upto network layer. 2295 * @param oct_id - octeon device id. 2296 * @param skbuff - skbuff struct to be passed to network layer. 2297 * @param len - size of total data received. 2298 * @param rh - Control header associated with the packet 2299 * @param param - additional control data with the packet 2300 * @param arg - farg registered in droq_ops 2301 */ 2302 static void 2303 liquidio_push_packet(u32 octeon_id __attribute__((unused)), 2304 void *skbuff, 2305 u32 len, 2306 union octeon_rh *rh, 2307 void *param, 2308 void *arg) 2309 { 2310 struct napi_struct *napi = param; 2311 struct sk_buff *skb = (struct sk_buff *)skbuff; 2312 struct skb_shared_hwtstamps *shhwtstamps; 2313 u64 ns; 2314 u16 vtag = 0; 2315 u32 r_dh_off; 2316 struct net_device *netdev = (struct net_device *)arg; 2317 struct octeon_droq *droq = container_of(param, struct octeon_droq, 2318 napi); 2319 if (netdev) { 2320 int packet_was_received; 2321 struct lio *lio = GET_LIO(netdev); 2322 struct octeon_device *oct = lio->oct_dev; 2323 2324 /* Do not proceed if the interface is not in RUNNING state. */ 2325 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) { 2326 recv_buffer_free(skb); 2327 droq->stats.rx_dropped++; 2328 return; 2329 } 2330 2331 skb->dev = netdev; 2332 2333 skb_record_rx_queue(skb, droq->q_no); 2334 if (likely(len > MIN_SKB_SIZE)) { 2335 struct octeon_skb_page_info *pg_info; 2336 unsigned char *va; 2337 2338 pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 2339 if (pg_info->page) { 2340 /* For Paged allocation use the frags */ 2341 va = page_address(pg_info->page) + 2342 pg_info->page_offset; 2343 memcpy(skb->data, va, MIN_SKB_SIZE); 2344 skb_put(skb, MIN_SKB_SIZE); 2345 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2346 pg_info->page, 2347 pg_info->page_offset + 2348 MIN_SKB_SIZE, 2349 len - MIN_SKB_SIZE, 2350 LIO_RXBUFFER_SZ); 2351 } 2352 } else { 2353 struct octeon_skb_page_info *pg_info = 2354 ((struct octeon_skb_page_info *)(skb->cb)); 2355 skb_copy_to_linear_data(skb, page_address(pg_info->page) 2356 + pg_info->page_offset, len); 2357 skb_put(skb, len); 2358 put_page(pg_info->page); 2359 } 2360 2361 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT; 2362 2363 if (((oct->chip_id == OCTEON_CN66XX) || 2364 (oct->chip_id == OCTEON_CN68XX)) && 2365 ptp_enable) { 2366 if (rh->r_dh.has_hwtstamp) { 2367 /* timestamp is included from the hardware at 2368 * the beginning of the packet. 2369 */ 2370 if (ifstate_check 2371 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) { 2372 /* Nanoseconds are in the first 64-bits 2373 * of the packet. 2374 */ 2375 memcpy(&ns, (skb->data + r_dh_off), 2376 sizeof(ns)); 2377 r_dh_off -= BYTES_PER_DHLEN_UNIT; 2378 shhwtstamps = skb_hwtstamps(skb); 2379 shhwtstamps->hwtstamp = 2380 ns_to_ktime(ns + 2381 lio->ptp_adjust); 2382 } 2383 } 2384 } 2385 2386 if (rh->r_dh.has_hash) { 2387 __be32 *hash_be = (__be32 *)(skb->data + r_dh_off); 2388 u32 hash = be32_to_cpu(*hash_be); 2389 2390 skb_set_hash(skb, hash, PKT_HASH_TYPE_L4); 2391 r_dh_off -= BYTES_PER_DHLEN_UNIT; 2392 } 2393 2394 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT); 2395 2396 skb->protocol = eth_type_trans(skb, skb->dev); 2397 if ((netdev->features & NETIF_F_RXCSUM) && 2398 (((rh->r_dh.encap_on) && 2399 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) || 2400 (!(rh->r_dh.encap_on) && 2401 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED)))) 2402 /* checksum has already been verified */ 2403 skb->ip_summed = CHECKSUM_UNNECESSARY; 2404 else 2405 skb->ip_summed = CHECKSUM_NONE; 2406 2407 /* Setting Encapsulation field on basis of status received 2408 * from the firmware 2409 */ 2410 if (rh->r_dh.encap_on) { 2411 skb->encapsulation = 1; 2412 skb->csum_level = 1; 2413 droq->stats.rx_vxlan++; 2414 } 2415 2416 /* inbound VLAN tag */ 2417 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 2418 (rh->r_dh.vlan != 0)) { 2419 u16 vid = rh->r_dh.vlan; 2420 u16 priority = rh->r_dh.priority; 2421 2422 vtag = priority << 13 | vid; 2423 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 2424 } 2425 2426 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP; 2427 2428 if (packet_was_received) { 2429 droq->stats.rx_bytes_received += len; 2430 droq->stats.rx_pkts_received++; 2431 } else { 2432 droq->stats.rx_dropped++; 2433 netif_info(lio, rx_err, lio->netdev, 2434 "droq:%d error rx_dropped:%llu\n", 2435 droq->q_no, droq->stats.rx_dropped); 2436 } 2437 2438 } else { 2439 recv_buffer_free(skb); 2440 } 2441 } 2442 2443 /** 2444 * \brief wrapper for calling napi_schedule 2445 * @param param parameters to pass to napi_schedule 2446 * 2447 * Used when scheduling on different CPUs 2448 */ 2449 static void napi_schedule_wrapper(void *param) 2450 { 2451 struct napi_struct *napi = param; 2452 2453 napi_schedule(napi); 2454 } 2455 2456 /** 2457 * \brief callback when receive interrupt occurs and we are in NAPI mode 2458 * @param arg pointer to octeon output queue 2459 */ 2460 static void liquidio_napi_drv_callback(void *arg) 2461 { 2462 struct octeon_device *oct; 2463 struct octeon_droq *droq = arg; 2464 int this_cpu = smp_processor_id(); 2465 2466 oct = droq->oct_dev; 2467 2468 if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) { 2469 napi_schedule_irqoff(&droq->napi); 2470 } else { 2471 struct call_single_data *csd = &droq->csd; 2472 2473 csd->func = napi_schedule_wrapper; 2474 csd->info = &droq->napi; 2475 csd->flags = 0; 2476 2477 smp_call_function_single_async(droq->cpu_id, csd); 2478 } 2479 } 2480 2481 /** 2482 * \brief Entry point for NAPI polling 2483 * @param napi NAPI structure 2484 * @param budget maximum number of items to process 2485 */ 2486 static int liquidio_napi_poll(struct napi_struct *napi, int budget) 2487 { 2488 struct octeon_droq *droq; 2489 int work_done; 2490 int tx_done = 0, iq_no; 2491 struct octeon_instr_queue *iq; 2492 struct octeon_device *oct; 2493 2494 droq = container_of(napi, struct octeon_droq, napi); 2495 oct = droq->oct_dev; 2496 iq_no = droq->q_no; 2497 /* Handle Droq descriptors */ 2498 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no, 2499 POLL_EVENT_PROCESS_PKTS, 2500 budget); 2501 2502 /* Flush the instruction queue */ 2503 iq = oct->instr_queue[iq_no]; 2504 if (iq) { 2505 if (atomic_read(&iq->instr_pending)) 2506 /* Process iq buffers with in the budget limits */ 2507 tx_done = octeon_flush_iq(oct, iq, budget); 2508 else 2509 tx_done = 1; 2510 /* Update iq read-index rather than waiting for next interrupt. 2511 * Return back if tx_done is false. 2512 */ 2513 update_txq_status(oct, iq_no); 2514 } else { 2515 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n", 2516 __func__, iq_no); 2517 } 2518 2519 /* force enable interrupt if reg cnts are high to avoid wraparound */ 2520 if ((work_done < budget && tx_done) || 2521 (iq && iq->pkt_in_done >= MAX_REG_CNT) || 2522 (droq->pkt_count >= MAX_REG_CNT)) { 2523 tx_done = 1; 2524 napi_complete_done(napi, work_done); 2525 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no, 2526 POLL_EVENT_ENABLE_INTR, 0); 2527 return 0; 2528 } 2529 2530 return (!tx_done) ? (budget) : (work_done); 2531 } 2532 2533 /** 2534 * \brief Setup input and output queues 2535 * @param octeon_dev octeon device 2536 * @param ifidx Interface Index 2537 * 2538 * Note: Queues are with respect to the octeon device. Thus 2539 * an input queue is for egress packets, and output queues 2540 * are for ingress packets. 2541 */ 2542 static inline int setup_io_queues(struct octeon_device *octeon_dev, 2543 int ifidx) 2544 { 2545 struct octeon_droq_ops droq_ops; 2546 struct net_device *netdev; 2547 static int cpu_id; 2548 static int cpu_id_modulus; 2549 struct octeon_droq *droq; 2550 struct napi_struct *napi; 2551 int q, q_no, retval = 0; 2552 struct lio *lio; 2553 int num_tx_descs; 2554 2555 netdev = octeon_dev->props[ifidx].netdev; 2556 2557 lio = GET_LIO(netdev); 2558 2559 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops)); 2560 2561 droq_ops.fptr = liquidio_push_packet; 2562 droq_ops.farg = (void *)netdev; 2563 2564 droq_ops.poll_mode = 1; 2565 droq_ops.napi_fn = liquidio_napi_drv_callback; 2566 cpu_id = 0; 2567 cpu_id_modulus = num_present_cpus(); 2568 2569 /* set up DROQs. */ 2570 for (q = 0; q < lio->linfo.num_rxpciq; q++) { 2571 q_no = lio->linfo.rxpciq[q].s.q_no; 2572 dev_dbg(&octeon_dev->pci_dev->dev, 2573 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n", 2574 q, q_no); 2575 retval = octeon_setup_droq(octeon_dev, q_no, 2576 CFG_GET_NUM_RX_DESCS_NIC_IF 2577 (octeon_get_conf(octeon_dev), 2578 lio->ifidx), 2579 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF 2580 (octeon_get_conf(octeon_dev), 2581 lio->ifidx), NULL); 2582 if (retval) { 2583 dev_err(&octeon_dev->pci_dev->dev, 2584 "%s : Runtime DROQ(RxQ) creation failed.\n", 2585 __func__); 2586 return 1; 2587 } 2588 2589 droq = octeon_dev->droq[q_no]; 2590 napi = &droq->napi; 2591 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n", 2592 (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num); 2593 netif_napi_add(netdev, napi, liquidio_napi_poll, 64); 2594 2595 /* designate a CPU for this droq */ 2596 droq->cpu_id = cpu_id; 2597 cpu_id++; 2598 if (cpu_id >= cpu_id_modulus) 2599 cpu_id = 0; 2600 2601 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops); 2602 } 2603 2604 if (OCTEON_CN23XX_PF(octeon_dev)) { 2605 /* 23XX PF can receive control messages (via the first PF-owned 2606 * droq) from the firmware even if the ethX interface is down, 2607 * so that's why poll_mode must be off for the first droq. 2608 */ 2609 octeon_dev->droq[0]->ops.poll_mode = 0; 2610 } 2611 2612 /* set up IQs. */ 2613 for (q = 0; q < lio->linfo.num_txpciq; q++) { 2614 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf 2615 (octeon_dev), 2616 lio->ifidx); 2617 retval = octeon_setup_iq(octeon_dev, ifidx, q, 2618 lio->linfo.txpciq[q], num_tx_descs, 2619 netdev_get_tx_queue(netdev, q)); 2620 if (retval) { 2621 dev_err(&octeon_dev->pci_dev->dev, 2622 " %s : Runtime IQ(TxQ) creation failed.\n", 2623 __func__); 2624 return 1; 2625 } 2626 2627 if (octeon_dev->ioq_vector) { 2628 struct octeon_ioq_vector *ioq_vector; 2629 2630 ioq_vector = &octeon_dev->ioq_vector[q]; 2631 netif_set_xps_queue(netdev, 2632 &ioq_vector->affinity_mask, 2633 ioq_vector->iq_index); 2634 } 2635 } 2636 2637 return 0; 2638 } 2639 2640 /** 2641 * \brief Poll routine for checking transmit queue status 2642 * @param work work_struct data structure 2643 */ 2644 static void octnet_poll_check_txq_status(struct work_struct *work) 2645 { 2646 struct cavium_wk *wk = (struct cavium_wk *)work; 2647 struct lio *lio = (struct lio *)wk->ctxptr; 2648 2649 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) 2650 return; 2651 2652 check_txq_status(lio); 2653 queue_delayed_work(lio->txq_status_wq.wq, 2654 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2655 } 2656 2657 /** 2658 * \brief Sets up the txq poll check 2659 * @param netdev network device 2660 */ 2661 static inline int setup_tx_poll_fn(struct net_device *netdev) 2662 { 2663 struct lio *lio = GET_LIO(netdev); 2664 struct octeon_device *oct = lio->oct_dev; 2665 2666 lio->txq_status_wq.wq = alloc_workqueue("txq-status", 2667 WQ_MEM_RECLAIM, 0); 2668 if (!lio->txq_status_wq.wq) { 2669 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n"); 2670 return -1; 2671 } 2672 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work, 2673 octnet_poll_check_txq_status); 2674 lio->txq_status_wq.wk.ctxptr = lio; 2675 queue_delayed_work(lio->txq_status_wq.wq, 2676 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2677 return 0; 2678 } 2679 2680 static inline void cleanup_tx_poll_fn(struct net_device *netdev) 2681 { 2682 struct lio *lio = GET_LIO(netdev); 2683 2684 if (lio->txq_status_wq.wq) { 2685 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work); 2686 destroy_workqueue(lio->txq_status_wq.wq); 2687 } 2688 } 2689 2690 /** 2691 * \brief Net device open for LiquidIO 2692 * @param netdev network device 2693 */ 2694 static int liquidio_open(struct net_device *netdev) 2695 { 2696 struct lio *lio = GET_LIO(netdev); 2697 struct octeon_device *oct = lio->oct_dev; 2698 struct napi_struct *napi, *n; 2699 2700 if (oct->props[lio->ifidx].napi_enabled == 0) { 2701 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2702 napi_enable(napi); 2703 2704 oct->props[lio->ifidx].napi_enabled = 1; 2705 2706 if (OCTEON_CN23XX_PF(oct)) 2707 oct->droq[0]->ops.poll_mode = 1; 2708 } 2709 2710 if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) && 2711 ptp_enable) 2712 oct_ptp_open(netdev); 2713 2714 ifstate_set(lio, LIO_IFSTATE_RUNNING); 2715 2716 /* Ready for link status updates */ 2717 lio->intf_open = 1; 2718 2719 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n"); 2720 2721 if (OCTEON_CN23XX_PF(oct)) { 2722 if (!oct->msix_on) 2723 if (setup_tx_poll_fn(netdev)) 2724 return -1; 2725 } else { 2726 if (setup_tx_poll_fn(netdev)) 2727 return -1; 2728 } 2729 2730 start_txq(netdev); 2731 2732 /* tell Octeon to start forwarding packets to host */ 2733 send_rx_ctrl_cmd(lio, 1); 2734 2735 dev_info(&oct->pci_dev->dev, "%s interface is opened\n", 2736 netdev->name); 2737 2738 return 0; 2739 } 2740 2741 /** 2742 * \brief Net device stop for LiquidIO 2743 * @param netdev network device 2744 */ 2745 static int liquidio_stop(struct net_device *netdev) 2746 { 2747 struct lio *lio = GET_LIO(netdev); 2748 struct octeon_device *oct = lio->oct_dev; 2749 2750 ifstate_reset(lio, LIO_IFSTATE_RUNNING); 2751 2752 netif_tx_disable(netdev); 2753 2754 /* Inform that netif carrier is down */ 2755 netif_carrier_off(netdev); 2756 lio->intf_open = 0; 2757 lio->linfo.link.s.link_up = 0; 2758 lio->link_changes++; 2759 2760 /* Tell Octeon that nic interface is down. */ 2761 send_rx_ctrl_cmd(lio, 0); 2762 2763 if (OCTEON_CN23XX_PF(oct)) { 2764 if (!oct->msix_on) 2765 cleanup_tx_poll_fn(netdev); 2766 } else { 2767 cleanup_tx_poll_fn(netdev); 2768 } 2769 2770 if (lio->ptp_clock) { 2771 ptp_clock_unregister(lio->ptp_clock); 2772 lio->ptp_clock = NULL; 2773 } 2774 2775 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name); 2776 2777 return 0; 2778 } 2779 2780 /** 2781 * \brief Converts a mask based on net device flags 2782 * @param netdev network device 2783 * 2784 * This routine generates a octnet_ifflags mask from the net device flags 2785 * received from the OS. 2786 */ 2787 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev) 2788 { 2789 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST; 2790 2791 if (netdev->flags & IFF_PROMISC) 2792 f |= OCTNET_IFFLAG_PROMISC; 2793 2794 if (netdev->flags & IFF_ALLMULTI) 2795 f |= OCTNET_IFFLAG_ALLMULTI; 2796 2797 if (netdev->flags & IFF_MULTICAST) { 2798 f |= OCTNET_IFFLAG_MULTICAST; 2799 2800 /* Accept all multicast addresses if there are more than we 2801 * can handle 2802 */ 2803 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR) 2804 f |= OCTNET_IFFLAG_ALLMULTI; 2805 } 2806 2807 if (netdev->flags & IFF_BROADCAST) 2808 f |= OCTNET_IFFLAG_BROADCAST; 2809 2810 return f; 2811 } 2812 2813 /** 2814 * \brief Net device set_multicast_list 2815 * @param netdev network device 2816 */ 2817 static void liquidio_set_mcast_list(struct net_device *netdev) 2818 { 2819 struct lio *lio = GET_LIO(netdev); 2820 struct octeon_device *oct = lio->oct_dev; 2821 struct octnic_ctrl_pkt nctrl; 2822 struct netdev_hw_addr *ha; 2823 u64 *mc; 2824 int ret; 2825 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR); 2826 2827 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2828 2829 /* Create a ctrl pkt command to be sent to core app. */ 2830 nctrl.ncmd.u64 = 0; 2831 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST; 2832 nctrl.ncmd.s.param1 = get_new_flags(netdev); 2833 nctrl.ncmd.s.param2 = mc_count; 2834 nctrl.ncmd.s.more = mc_count; 2835 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2836 nctrl.netpndev = (u64)netdev; 2837 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2838 2839 /* copy all the addresses into the udd */ 2840 mc = &nctrl.udd[0]; 2841 netdev_for_each_mc_addr(ha, netdev) { 2842 *mc = 0; 2843 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN); 2844 /* no need to swap bytes */ 2845 2846 if (++mc > &nctrl.udd[mc_count]) 2847 break; 2848 } 2849 2850 /* Apparently, any activity in this call from the kernel has to 2851 * be atomic. So we won't wait for response. 2852 */ 2853 nctrl.wait_time = 0; 2854 2855 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2856 if (ret < 0) { 2857 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n", 2858 ret); 2859 } 2860 } 2861 2862 /** 2863 * \brief Net device set_mac_address 2864 * @param netdev network device 2865 */ 2866 static int liquidio_set_mac(struct net_device *netdev, void *p) 2867 { 2868 int ret = 0; 2869 struct lio *lio = GET_LIO(netdev); 2870 struct octeon_device *oct = lio->oct_dev; 2871 struct sockaddr *addr = (struct sockaddr *)p; 2872 struct octnic_ctrl_pkt nctrl; 2873 2874 if (!is_valid_ether_addr(addr->sa_data)) 2875 return -EADDRNOTAVAIL; 2876 2877 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2878 2879 nctrl.ncmd.u64 = 0; 2880 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 2881 nctrl.ncmd.s.param1 = 0; 2882 nctrl.ncmd.s.more = 1; 2883 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2884 nctrl.netpndev = (u64)netdev; 2885 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2886 nctrl.wait_time = 100; 2887 2888 nctrl.udd[0] = 0; 2889 /* The MAC Address is presented in network byte order. */ 2890 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN); 2891 2892 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2893 if (ret < 0) { 2894 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n"); 2895 return -ENOMEM; 2896 } 2897 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2898 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN); 2899 2900 return 0; 2901 } 2902 2903 /** 2904 * \brief Net device get_stats 2905 * @param netdev network device 2906 */ 2907 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev) 2908 { 2909 struct lio *lio = GET_LIO(netdev); 2910 struct net_device_stats *stats = &netdev->stats; 2911 struct octeon_device *oct; 2912 u64 pkts = 0, drop = 0, bytes = 0; 2913 struct oct_droq_stats *oq_stats; 2914 struct oct_iq_stats *iq_stats; 2915 int i, iq_no, oq_no; 2916 2917 oct = lio->oct_dev; 2918 2919 for (i = 0; i < lio->linfo.num_txpciq; i++) { 2920 iq_no = lio->linfo.txpciq[i].s.q_no; 2921 iq_stats = &oct->instr_queue[iq_no]->stats; 2922 pkts += iq_stats->tx_done; 2923 drop += iq_stats->tx_dropped; 2924 bytes += iq_stats->tx_tot_bytes; 2925 } 2926 2927 stats->tx_packets = pkts; 2928 stats->tx_bytes = bytes; 2929 stats->tx_dropped = drop; 2930 2931 pkts = 0; 2932 drop = 0; 2933 bytes = 0; 2934 2935 for (i = 0; i < lio->linfo.num_rxpciq; i++) { 2936 oq_no = lio->linfo.rxpciq[i].s.q_no; 2937 oq_stats = &oct->droq[oq_no]->stats; 2938 pkts += oq_stats->rx_pkts_received; 2939 drop += (oq_stats->rx_dropped + 2940 oq_stats->dropped_nodispatch + 2941 oq_stats->dropped_toomany + 2942 oq_stats->dropped_nomem); 2943 bytes += oq_stats->rx_bytes_received; 2944 } 2945 2946 stats->rx_bytes = bytes; 2947 stats->rx_packets = pkts; 2948 stats->rx_dropped = drop; 2949 2950 return stats; 2951 } 2952 2953 /** 2954 * \brief Net device change_mtu 2955 * @param netdev network device 2956 */ 2957 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu) 2958 { 2959 struct lio *lio = GET_LIO(netdev); 2960 struct octeon_device *oct = lio->oct_dev; 2961 struct octnic_ctrl_pkt nctrl; 2962 int ret = 0; 2963 2964 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2965 2966 nctrl.ncmd.u64 = 0; 2967 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU; 2968 nctrl.ncmd.s.param1 = new_mtu; 2969 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2970 nctrl.wait_time = 100; 2971 nctrl.netpndev = (u64)netdev; 2972 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2973 2974 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2975 if (ret < 0) { 2976 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n"); 2977 return -1; 2978 } 2979 2980 lio->mtu = new_mtu; 2981 2982 return 0; 2983 } 2984 2985 /** 2986 * \brief Handler for SIOCSHWTSTAMP ioctl 2987 * @param netdev network device 2988 * @param ifr interface request 2989 * @param cmd command 2990 */ 2991 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr) 2992 { 2993 struct hwtstamp_config conf; 2994 struct lio *lio = GET_LIO(netdev); 2995 2996 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf))) 2997 return -EFAULT; 2998 2999 if (conf.flags) 3000 return -EINVAL; 3001 3002 switch (conf.tx_type) { 3003 case HWTSTAMP_TX_ON: 3004 case HWTSTAMP_TX_OFF: 3005 break; 3006 default: 3007 return -ERANGE; 3008 } 3009 3010 switch (conf.rx_filter) { 3011 case HWTSTAMP_FILTER_NONE: 3012 break; 3013 case HWTSTAMP_FILTER_ALL: 3014 case HWTSTAMP_FILTER_SOME: 3015 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3016 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3017 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3018 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3019 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3020 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3021 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3022 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3023 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3024 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3025 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3026 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3027 case HWTSTAMP_FILTER_NTP_ALL: 3028 conf.rx_filter = HWTSTAMP_FILTER_ALL; 3029 break; 3030 default: 3031 return -ERANGE; 3032 } 3033 3034 if (conf.rx_filter == HWTSTAMP_FILTER_ALL) 3035 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 3036 3037 else 3038 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 3039 3040 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0; 3041 } 3042 3043 /** 3044 * \brief ioctl handler 3045 * @param netdev network device 3046 * @param ifr interface request 3047 * @param cmd command 3048 */ 3049 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 3050 { 3051 struct lio *lio = GET_LIO(netdev); 3052 3053 switch (cmd) { 3054 case SIOCSHWTSTAMP: 3055 if ((lio->oct_dev->chip_id == OCTEON_CN66XX || 3056 lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable) 3057 return hwtstamp_ioctl(netdev, ifr); 3058 default: 3059 return -EOPNOTSUPP; 3060 } 3061 } 3062 3063 /** 3064 * \brief handle a Tx timestamp response 3065 * @param status response status 3066 * @param buf pointer to skb 3067 */ 3068 static void handle_timestamp(struct octeon_device *oct, 3069 u32 status, 3070 void *buf) 3071 { 3072 struct octnet_buf_free_info *finfo; 3073 struct octeon_soft_command *sc; 3074 struct oct_timestamp_resp *resp; 3075 struct lio *lio; 3076 struct sk_buff *skb = (struct sk_buff *)buf; 3077 3078 finfo = (struct octnet_buf_free_info *)skb->cb; 3079 lio = finfo->lio; 3080 sc = finfo->sc; 3081 oct = lio->oct_dev; 3082 resp = (struct oct_timestamp_resp *)sc->virtrptr; 3083 3084 if (status != OCTEON_REQUEST_DONE) { 3085 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n", 3086 CVM_CAST64(status)); 3087 resp->timestamp = 0; 3088 } 3089 3090 octeon_swap_8B_data(&resp->timestamp, 1); 3091 3092 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) { 3093 struct skb_shared_hwtstamps ts; 3094 u64 ns = resp->timestamp; 3095 3096 netif_info(lio, tx_done, lio->netdev, 3097 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n", 3098 skb, (unsigned long long)ns); 3099 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust); 3100 skb_tstamp_tx(skb, &ts); 3101 } 3102 3103 octeon_free_soft_command(oct, sc); 3104 tx_buffer_free(skb); 3105 } 3106 3107 /* \brief Send a data packet that will be timestamped 3108 * @param oct octeon device 3109 * @param ndata pointer to network data 3110 * @param finfo pointer to private network data 3111 */ 3112 static inline int send_nic_timestamp_pkt(struct octeon_device *oct, 3113 struct octnic_data_pkt *ndata, 3114 struct octnet_buf_free_info *finfo) 3115 { 3116 int retval; 3117 struct octeon_soft_command *sc; 3118 struct lio *lio; 3119 int ring_doorbell; 3120 u32 len; 3121 3122 lio = finfo->lio; 3123 3124 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd, 3125 sizeof(struct oct_timestamp_resp)); 3126 finfo->sc = sc; 3127 3128 if (!sc) { 3129 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n"); 3130 return IQ_SEND_FAILED; 3131 } 3132 3133 if (ndata->reqtype == REQTYPE_NORESP_NET) 3134 ndata->reqtype = REQTYPE_RESP_NET; 3135 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG) 3136 ndata->reqtype = REQTYPE_RESP_NET_SG; 3137 3138 sc->callback = handle_timestamp; 3139 sc->callback_arg = finfo->skb; 3140 sc->iq_no = ndata->q_no; 3141 3142 if (OCTEON_CN23XX_PF(oct)) 3143 len = (u32)((struct octeon_instr_ih3 *) 3144 (&sc->cmd.cmd3.ih3))->dlengsz; 3145 else 3146 len = (u32)((struct octeon_instr_ih2 *) 3147 (&sc->cmd.cmd2.ih2))->dlengsz; 3148 3149 ring_doorbell = 1; 3150 3151 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd, 3152 sc, len, ndata->reqtype); 3153 3154 if (retval == IQ_SEND_FAILED) { 3155 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n", 3156 retval); 3157 octeon_free_soft_command(oct, sc); 3158 } else { 3159 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n"); 3160 } 3161 3162 return retval; 3163 } 3164 3165 /** \brief Transmit networks packets to the Octeon interface 3166 * @param skbuff skbuff struct to be passed to network layer. 3167 * @param netdev pointer to network device 3168 * @returns whether the packet was transmitted to the device okay or not 3169 * (NETDEV_TX_OK or NETDEV_TX_BUSY) 3170 */ 3171 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev) 3172 { 3173 struct lio *lio; 3174 struct octnet_buf_free_info *finfo; 3175 union octnic_cmd_setup cmdsetup; 3176 struct octnic_data_pkt ndata; 3177 struct octeon_device *oct; 3178 struct oct_iq_stats *stats; 3179 struct octeon_instr_irh *irh; 3180 union tx_info *tx_info; 3181 int status = 0; 3182 int q_idx = 0, iq_no = 0; 3183 int j; 3184 u64 dptr = 0; 3185 u32 tag = 0; 3186 3187 lio = GET_LIO(netdev); 3188 oct = lio->oct_dev; 3189 3190 if (netif_is_multiqueue(netdev)) { 3191 q_idx = skb->queue_mapping; 3192 q_idx = (q_idx % (lio->linfo.num_txpciq)); 3193 tag = q_idx; 3194 iq_no = lio->linfo.txpciq[q_idx].s.q_no; 3195 } else { 3196 iq_no = lio->txq; 3197 } 3198 3199 stats = &oct->instr_queue[iq_no]->stats; 3200 3201 /* Check for all conditions in which the current packet cannot be 3202 * transmitted. 3203 */ 3204 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) || 3205 (!lio->linfo.link.s.link_up) || 3206 (skb->len <= 0)) { 3207 netif_info(lio, tx_err, lio->netdev, 3208 "Transmit failed link_status : %d\n", 3209 lio->linfo.link.s.link_up); 3210 goto lio_xmit_failed; 3211 } 3212 3213 /* Use space in skb->cb to store info used to unmap and 3214 * free the buffers. 3215 */ 3216 finfo = (struct octnet_buf_free_info *)skb->cb; 3217 finfo->lio = lio; 3218 finfo->skb = skb; 3219 finfo->sc = NULL; 3220 3221 /* Prepare the attributes for the data to be passed to OSI. */ 3222 memset(&ndata, 0, sizeof(struct octnic_data_pkt)); 3223 3224 ndata.buf = (void *)finfo; 3225 3226 ndata.q_no = iq_no; 3227 3228 if (netif_is_multiqueue(netdev)) { 3229 if (octnet_iq_is_full(oct, ndata.q_no)) { 3230 /* defer sending if queue is full */ 3231 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 3232 ndata.q_no); 3233 stats->tx_iq_busy++; 3234 return NETDEV_TX_BUSY; 3235 } 3236 } else { 3237 if (octnet_iq_is_full(oct, lio->txq)) { 3238 /* defer sending if queue is full */ 3239 stats->tx_iq_busy++; 3240 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 3241 lio->txq); 3242 return NETDEV_TX_BUSY; 3243 } 3244 } 3245 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n", 3246 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no); 3247 */ 3248 3249 ndata.datasize = skb->len; 3250 3251 cmdsetup.u64 = 0; 3252 cmdsetup.s.iq_no = iq_no; 3253 3254 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3255 if (skb->encapsulation) { 3256 cmdsetup.s.tnl_csum = 1; 3257 stats->tx_vxlan++; 3258 } else { 3259 cmdsetup.s.transport_csum = 1; 3260 } 3261 } 3262 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3263 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3264 cmdsetup.s.timestamp = 1; 3265 } 3266 3267 if (skb_shinfo(skb)->nr_frags == 0) { 3268 cmdsetup.s.u.datasize = skb->len; 3269 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 3270 3271 /* Offload checksum calculation for TCP/UDP packets */ 3272 dptr = dma_map_single(&oct->pci_dev->dev, 3273 skb->data, 3274 skb->len, 3275 DMA_TO_DEVICE); 3276 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) { 3277 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n", 3278 __func__); 3279 return NETDEV_TX_BUSY; 3280 } 3281 3282 if (OCTEON_CN23XX_PF(oct)) 3283 ndata.cmd.cmd3.dptr = dptr; 3284 else 3285 ndata.cmd.cmd2.dptr = dptr; 3286 finfo->dptr = dptr; 3287 ndata.reqtype = REQTYPE_NORESP_NET; 3288 3289 } else { 3290 int i, frags; 3291 struct skb_frag_struct *frag; 3292 struct octnic_gather *g; 3293 3294 spin_lock(&lio->glist_lock[q_idx]); 3295 g = (struct octnic_gather *) 3296 list_delete_head(&lio->glist[q_idx]); 3297 spin_unlock(&lio->glist_lock[q_idx]); 3298 3299 if (!g) { 3300 netif_info(lio, tx_err, lio->netdev, 3301 "Transmit scatter gather: glist null!\n"); 3302 goto lio_xmit_failed; 3303 } 3304 3305 cmdsetup.s.gather = 1; 3306 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1); 3307 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 3308 3309 memset(g->sg, 0, g->sg_size); 3310 3311 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev, 3312 skb->data, 3313 (skb->len - skb->data_len), 3314 DMA_TO_DEVICE); 3315 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) { 3316 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n", 3317 __func__); 3318 return NETDEV_TX_BUSY; 3319 } 3320 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0); 3321 3322 frags = skb_shinfo(skb)->nr_frags; 3323 i = 1; 3324 while (frags--) { 3325 frag = &skb_shinfo(skb)->frags[i - 1]; 3326 3327 g->sg[(i >> 2)].ptr[(i & 3)] = 3328 dma_map_page(&oct->pci_dev->dev, 3329 frag->page.p, 3330 frag->page_offset, 3331 frag->size, 3332 DMA_TO_DEVICE); 3333 3334 if (dma_mapping_error(&oct->pci_dev->dev, 3335 g->sg[i >> 2].ptr[i & 3])) { 3336 dma_unmap_single(&oct->pci_dev->dev, 3337 g->sg[0].ptr[0], 3338 skb->len - skb->data_len, 3339 DMA_TO_DEVICE); 3340 for (j = 1; j < i; j++) { 3341 frag = &skb_shinfo(skb)->frags[j - 1]; 3342 dma_unmap_page(&oct->pci_dev->dev, 3343 g->sg[j >> 2].ptr[j & 3], 3344 frag->size, 3345 DMA_TO_DEVICE); 3346 } 3347 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n", 3348 __func__); 3349 return NETDEV_TX_BUSY; 3350 } 3351 3352 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3)); 3353 i++; 3354 } 3355 3356 dptr = g->sg_dma_ptr; 3357 3358 if (OCTEON_CN23XX_PF(oct)) 3359 ndata.cmd.cmd3.dptr = dptr; 3360 else 3361 ndata.cmd.cmd2.dptr = dptr; 3362 finfo->dptr = dptr; 3363 finfo->g = g; 3364 3365 ndata.reqtype = REQTYPE_NORESP_NET_SG; 3366 } 3367 3368 if (OCTEON_CN23XX_PF(oct)) { 3369 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh; 3370 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0]; 3371 } else { 3372 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh; 3373 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0]; 3374 } 3375 3376 if (skb_shinfo(skb)->gso_size) { 3377 tx_info->s.gso_size = skb_shinfo(skb)->gso_size; 3378 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs; 3379 stats->tx_gso++; 3380 } 3381 3382 /* HW insert VLAN tag */ 3383 if (skb_vlan_tag_present(skb)) { 3384 irh->priority = skb_vlan_tag_get(skb) >> 13; 3385 irh->vlan = skb_vlan_tag_get(skb) & 0xfff; 3386 } 3387 3388 if (unlikely(cmdsetup.s.timestamp)) 3389 status = send_nic_timestamp_pkt(oct, &ndata, finfo); 3390 else 3391 status = octnet_send_nic_data_pkt(oct, &ndata); 3392 if (status == IQ_SEND_FAILED) 3393 goto lio_xmit_failed; 3394 3395 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n"); 3396 3397 if (status == IQ_SEND_STOP) 3398 stop_q(lio->netdev, q_idx); 3399 3400 netif_trans_update(netdev); 3401 3402 if (tx_info->s.gso_segs) 3403 stats->tx_done += tx_info->s.gso_segs; 3404 else 3405 stats->tx_done++; 3406 stats->tx_tot_bytes += ndata.datasize; 3407 3408 return NETDEV_TX_OK; 3409 3410 lio_xmit_failed: 3411 stats->tx_dropped++; 3412 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n", 3413 iq_no, stats->tx_dropped); 3414 if (dptr) 3415 dma_unmap_single(&oct->pci_dev->dev, dptr, 3416 ndata.datasize, DMA_TO_DEVICE); 3417 tx_buffer_free(skb); 3418 return NETDEV_TX_OK; 3419 } 3420 3421 /** \brief Network device Tx timeout 3422 * @param netdev pointer to network device 3423 */ 3424 static void liquidio_tx_timeout(struct net_device *netdev) 3425 { 3426 struct lio *lio; 3427 3428 lio = GET_LIO(netdev); 3429 3430 netif_info(lio, tx_err, lio->netdev, 3431 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n", 3432 netdev->stats.tx_dropped); 3433 netif_trans_update(netdev); 3434 txqs_wake(netdev); 3435 } 3436 3437 static int liquidio_vlan_rx_add_vid(struct net_device *netdev, 3438 __be16 proto __attribute__((unused)), 3439 u16 vid) 3440 { 3441 struct lio *lio = GET_LIO(netdev); 3442 struct octeon_device *oct = lio->oct_dev; 3443 struct octnic_ctrl_pkt nctrl; 3444 int ret = 0; 3445 3446 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3447 3448 nctrl.ncmd.u64 = 0; 3449 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3450 nctrl.ncmd.s.param1 = vid; 3451 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3452 nctrl.wait_time = 100; 3453 nctrl.netpndev = (u64)netdev; 3454 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3455 3456 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3457 if (ret < 0) { 3458 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 3459 ret); 3460 } 3461 3462 return ret; 3463 } 3464 3465 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev, 3466 __be16 proto __attribute__((unused)), 3467 u16 vid) 3468 { 3469 struct lio *lio = GET_LIO(netdev); 3470 struct octeon_device *oct = lio->oct_dev; 3471 struct octnic_ctrl_pkt nctrl; 3472 int ret = 0; 3473 3474 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3475 3476 nctrl.ncmd.u64 = 0; 3477 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3478 nctrl.ncmd.s.param1 = vid; 3479 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3480 nctrl.wait_time = 100; 3481 nctrl.netpndev = (u64)netdev; 3482 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3483 3484 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3485 if (ret < 0) { 3486 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 3487 ret); 3488 } 3489 return ret; 3490 } 3491 3492 /** Sending command to enable/disable RX checksum offload 3493 * @param netdev pointer to network device 3494 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL 3495 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/ 3496 * OCTNET_CMD_RXCSUM_DISABLE 3497 * @returns SUCCESS or FAILURE 3498 */ 3499 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command, 3500 u8 rx_cmd) 3501 { 3502 struct lio *lio = GET_LIO(netdev); 3503 struct octeon_device *oct = lio->oct_dev; 3504 struct octnic_ctrl_pkt nctrl; 3505 int ret = 0; 3506 3507 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3508 3509 nctrl.ncmd.u64 = 0; 3510 nctrl.ncmd.s.cmd = command; 3511 nctrl.ncmd.s.param1 = rx_cmd; 3512 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3513 nctrl.wait_time = 100; 3514 nctrl.netpndev = (u64)netdev; 3515 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3516 3517 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3518 if (ret < 0) { 3519 dev_err(&oct->pci_dev->dev, 3520 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n", 3521 ret); 3522 } 3523 return ret; 3524 } 3525 3526 /** Sending command to add/delete VxLAN UDP port to firmware 3527 * @param netdev pointer to network device 3528 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG 3529 * @param vxlan_port VxLAN port to be added or deleted 3530 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD, 3531 * OCTNET_CMD_VXLAN_PORT_DEL 3532 * @returns SUCCESS or FAILURE 3533 */ 3534 static int liquidio_vxlan_port_command(struct net_device *netdev, int command, 3535 u16 vxlan_port, u8 vxlan_cmd_bit) 3536 { 3537 struct lio *lio = GET_LIO(netdev); 3538 struct octeon_device *oct = lio->oct_dev; 3539 struct octnic_ctrl_pkt nctrl; 3540 int ret = 0; 3541 3542 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3543 3544 nctrl.ncmd.u64 = 0; 3545 nctrl.ncmd.s.cmd = command; 3546 nctrl.ncmd.s.more = vxlan_cmd_bit; 3547 nctrl.ncmd.s.param1 = vxlan_port; 3548 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3549 nctrl.wait_time = 100; 3550 nctrl.netpndev = (u64)netdev; 3551 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3552 3553 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3554 if (ret < 0) { 3555 dev_err(&oct->pci_dev->dev, 3556 "VxLAN port add/delete failed in core (ret:0x%x)\n", 3557 ret); 3558 } 3559 return ret; 3560 } 3561 3562 /** \brief Net device fix features 3563 * @param netdev pointer to network device 3564 * @param request features requested 3565 * @returns updated features list 3566 */ 3567 static netdev_features_t liquidio_fix_features(struct net_device *netdev, 3568 netdev_features_t request) 3569 { 3570 struct lio *lio = netdev_priv(netdev); 3571 3572 if ((request & NETIF_F_RXCSUM) && 3573 !(lio->dev_capability & NETIF_F_RXCSUM)) 3574 request &= ~NETIF_F_RXCSUM; 3575 3576 if ((request & NETIF_F_HW_CSUM) && 3577 !(lio->dev_capability & NETIF_F_HW_CSUM)) 3578 request &= ~NETIF_F_HW_CSUM; 3579 3580 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO)) 3581 request &= ~NETIF_F_TSO; 3582 3583 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6)) 3584 request &= ~NETIF_F_TSO6; 3585 3586 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO)) 3587 request &= ~NETIF_F_LRO; 3588 3589 /*Disable LRO if RXCSUM is off */ 3590 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) && 3591 (lio->dev_capability & NETIF_F_LRO)) 3592 request &= ~NETIF_F_LRO; 3593 3594 if ((request & NETIF_F_HW_VLAN_CTAG_FILTER) && 3595 !(lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER)) 3596 request &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 3597 3598 return request; 3599 } 3600 3601 /** \brief Net device set features 3602 * @param netdev pointer to network device 3603 * @param features features to enable/disable 3604 */ 3605 static int liquidio_set_features(struct net_device *netdev, 3606 netdev_features_t features) 3607 { 3608 struct lio *lio = netdev_priv(netdev); 3609 3610 if ((features & NETIF_F_LRO) && 3611 (lio->dev_capability & NETIF_F_LRO) && 3612 !(netdev->features & NETIF_F_LRO)) 3613 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 3614 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3615 else if (!(features & NETIF_F_LRO) && 3616 (lio->dev_capability & NETIF_F_LRO) && 3617 (netdev->features & NETIF_F_LRO)) 3618 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE, 3619 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3620 3621 /* Sending command to firmware to enable/disable RX checksum 3622 * offload settings using ethtool 3623 */ 3624 if (!(netdev->features & NETIF_F_RXCSUM) && 3625 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 3626 (features & NETIF_F_RXCSUM)) 3627 liquidio_set_rxcsum_command(netdev, 3628 OCTNET_CMD_TNL_RX_CSUM_CTL, 3629 OCTNET_CMD_RXCSUM_ENABLE); 3630 else if ((netdev->features & NETIF_F_RXCSUM) && 3631 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 3632 !(features & NETIF_F_RXCSUM)) 3633 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 3634 OCTNET_CMD_RXCSUM_DISABLE); 3635 3636 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3637 (lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER) && 3638 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3639 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 3640 OCTNET_CMD_VLAN_FILTER_ENABLE); 3641 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3642 (lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER) && 3643 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3644 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 3645 OCTNET_CMD_VLAN_FILTER_DISABLE); 3646 3647 return 0; 3648 } 3649 3650 static void liquidio_add_vxlan_port(struct net_device *netdev, 3651 struct udp_tunnel_info *ti) 3652 { 3653 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3654 return; 3655 3656 liquidio_vxlan_port_command(netdev, 3657 OCTNET_CMD_VXLAN_PORT_CONFIG, 3658 htons(ti->port), 3659 OCTNET_CMD_VXLAN_PORT_ADD); 3660 } 3661 3662 static void liquidio_del_vxlan_port(struct net_device *netdev, 3663 struct udp_tunnel_info *ti) 3664 { 3665 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3666 return; 3667 3668 liquidio_vxlan_port_command(netdev, 3669 OCTNET_CMD_VXLAN_PORT_CONFIG, 3670 htons(ti->port), 3671 OCTNET_CMD_VXLAN_PORT_DEL); 3672 } 3673 3674 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx, 3675 u8 *mac, bool is_admin_assigned) 3676 { 3677 struct lio *lio = GET_LIO(netdev); 3678 struct octeon_device *oct = lio->oct_dev; 3679 struct octnic_ctrl_pkt nctrl; 3680 3681 if (!is_valid_ether_addr(mac)) 3682 return -EINVAL; 3683 3684 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs) 3685 return -EINVAL; 3686 3687 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3688 3689 nctrl.ncmd.u64 = 0; 3690 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 3691 /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3692 nctrl.ncmd.s.param1 = vfidx + 1; 3693 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0); 3694 nctrl.ncmd.s.more = 1; 3695 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3696 nctrl.netpndev = (u64)netdev; 3697 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3698 nctrl.wait_time = LIO_CMD_WAIT_TM; 3699 3700 nctrl.udd[0] = 0; 3701 /* The MAC Address is presented in network byte order. */ 3702 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac); 3703 3704 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0]; 3705 3706 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3707 3708 return 0; 3709 } 3710 3711 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac) 3712 { 3713 struct lio *lio = GET_LIO(netdev); 3714 struct octeon_device *oct = lio->oct_dev; 3715 int retval; 3716 3717 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3718 return -EINVAL; 3719 3720 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true); 3721 if (!retval) 3722 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac); 3723 3724 return retval; 3725 } 3726 3727 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx, 3728 u16 vlan, u8 qos, __be16 vlan_proto) 3729 { 3730 struct lio *lio = GET_LIO(netdev); 3731 struct octeon_device *oct = lio->oct_dev; 3732 struct octnic_ctrl_pkt nctrl; 3733 u16 vlantci; 3734 3735 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3736 return -EINVAL; 3737 3738 if (vlan_proto != htons(ETH_P_8021Q)) 3739 return -EPROTONOSUPPORT; 3740 3741 if (vlan >= VLAN_N_VID || qos > 7) 3742 return -EINVAL; 3743 3744 if (vlan) 3745 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT; 3746 else 3747 vlantci = 0; 3748 3749 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci) 3750 return 0; 3751 3752 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3753 3754 if (vlan) 3755 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3756 else 3757 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3758 3759 nctrl.ncmd.s.param1 = vlantci; 3760 nctrl.ncmd.s.param2 = 3761 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */ 3762 nctrl.ncmd.s.more = 0; 3763 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3764 nctrl.cb_fn = 0; 3765 nctrl.wait_time = LIO_CMD_WAIT_TM; 3766 3767 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3768 3769 oct->sriov_info.vf_vlantci[vfidx] = vlantci; 3770 3771 return 0; 3772 } 3773 3774 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx, 3775 struct ifla_vf_info *ivi) 3776 { 3777 struct lio *lio = GET_LIO(netdev); 3778 struct octeon_device *oct = lio->oct_dev; 3779 u8 *macaddr; 3780 3781 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3782 return -EINVAL; 3783 3784 ivi->vf = vfidx; 3785 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx]; 3786 ether_addr_copy(&ivi->mac[0], macaddr); 3787 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK; 3788 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT; 3789 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx]; 3790 return 0; 3791 } 3792 3793 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 3794 int linkstate) 3795 { 3796 struct lio *lio = GET_LIO(netdev); 3797 struct octeon_device *oct = lio->oct_dev; 3798 struct octnic_ctrl_pkt nctrl; 3799 3800 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3801 return -EINVAL; 3802 3803 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate) 3804 return 0; 3805 3806 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3807 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE; 3808 nctrl.ncmd.s.param1 = 3809 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3810 nctrl.ncmd.s.param2 = linkstate; 3811 nctrl.ncmd.s.more = 0; 3812 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3813 nctrl.cb_fn = 0; 3814 nctrl.wait_time = LIO_CMD_WAIT_TM; 3815 3816 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3817 3818 oct->sriov_info.vf_linkstate[vfidx] = linkstate; 3819 3820 return 0; 3821 } 3822 3823 static const struct net_device_ops lionetdevops = { 3824 .ndo_open = liquidio_open, 3825 .ndo_stop = liquidio_stop, 3826 .ndo_start_xmit = liquidio_xmit, 3827 .ndo_get_stats = liquidio_get_stats, 3828 .ndo_set_mac_address = liquidio_set_mac, 3829 .ndo_set_rx_mode = liquidio_set_mcast_list, 3830 .ndo_tx_timeout = liquidio_tx_timeout, 3831 3832 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid, 3833 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid, 3834 .ndo_change_mtu = liquidio_change_mtu, 3835 .ndo_do_ioctl = liquidio_ioctl, 3836 .ndo_fix_features = liquidio_fix_features, 3837 .ndo_set_features = liquidio_set_features, 3838 .ndo_udp_tunnel_add = liquidio_add_vxlan_port, 3839 .ndo_udp_tunnel_del = liquidio_del_vxlan_port, 3840 .ndo_set_vf_mac = liquidio_set_vf_mac, 3841 .ndo_set_vf_vlan = liquidio_set_vf_vlan, 3842 .ndo_get_vf_config = liquidio_get_vf_config, 3843 .ndo_set_vf_link_state = liquidio_set_vf_link_state, 3844 }; 3845 3846 /** \brief Entry point for the liquidio module 3847 */ 3848 static int __init liquidio_init(void) 3849 { 3850 int i; 3851 struct handshake *hs; 3852 3853 init_completion(&first_stage); 3854 3855 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT); 3856 3857 if (liquidio_init_pci()) 3858 return -EINVAL; 3859 3860 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000)); 3861 3862 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3863 hs = &handshake[i]; 3864 if (hs->pci_dev) { 3865 wait_for_completion(&hs->init); 3866 if (!hs->init_ok) { 3867 /* init handshake failed */ 3868 dev_err(&hs->pci_dev->dev, 3869 "Failed to init device\n"); 3870 liquidio_deinit_pci(); 3871 return -EIO; 3872 } 3873 } 3874 } 3875 3876 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3877 hs = &handshake[i]; 3878 if (hs->pci_dev) { 3879 wait_for_completion_timeout(&hs->started, 3880 msecs_to_jiffies(30000)); 3881 if (!hs->started_ok) { 3882 /* starter handshake failed */ 3883 dev_err(&hs->pci_dev->dev, 3884 "Firmware failed to start\n"); 3885 liquidio_deinit_pci(); 3886 return -EIO; 3887 } 3888 } 3889 } 3890 3891 return 0; 3892 } 3893 3894 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf) 3895 { 3896 struct octeon_device *oct = (struct octeon_device *)buf; 3897 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 3898 int gmxport = 0; 3899 union oct_link_status *ls; 3900 int i; 3901 3902 if (recv_pkt->buffer_size[0] != (sizeof(*ls) + OCT_DROQ_INFO_SIZE)) { 3903 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n", 3904 recv_pkt->buffer_size[0], 3905 recv_pkt->rh.r_nic_info.gmxport); 3906 goto nic_info_err; 3907 } 3908 3909 gmxport = recv_pkt->rh.r_nic_info.gmxport; 3910 ls = (union oct_link_status *)(get_rbd(recv_pkt->buffer_ptr[0]) + 3911 OCT_DROQ_INFO_SIZE); 3912 3913 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3); 3914 for (i = 0; i < oct->ifcount; i++) { 3915 if (oct->props[i].gmxport == gmxport) { 3916 update_link_status(oct->props[i].netdev, ls); 3917 break; 3918 } 3919 } 3920 3921 nic_info_err: 3922 for (i = 0; i < recv_pkt->buffer_count; i++) 3923 recv_buffer_free(recv_pkt->buffer_ptr[i]); 3924 octeon_free_recv_info(recv_info); 3925 return 0; 3926 } 3927 3928 /** 3929 * \brief Setup network interfaces 3930 * @param octeon_dev octeon device 3931 * 3932 * Called during init time for each device. It assumes the NIC 3933 * is already up and running. The link information for each 3934 * interface is passed in link_info. 3935 */ 3936 static int setup_nic_devices(struct octeon_device *octeon_dev) 3937 { 3938 struct lio *lio = NULL; 3939 struct net_device *netdev; 3940 u8 mac[6], i, j; 3941 struct octeon_soft_command *sc; 3942 struct liquidio_if_cfg_context *ctx; 3943 struct liquidio_if_cfg_resp *resp; 3944 struct octdev_props *props; 3945 int retval, num_iqueues, num_oqueues; 3946 union oct_nic_if_cfg if_cfg; 3947 unsigned int base_queue; 3948 unsigned int gmx_port_id; 3949 u32 resp_size, ctx_size, data_size; 3950 u32 ifidx_or_pfnum; 3951 struct lio_version *vdata; 3952 3953 /* This is to handle link status changes */ 3954 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3955 OPCODE_NIC_INFO, 3956 lio_nic_info, octeon_dev); 3957 3958 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions. 3959 * They are handled directly. 3960 */ 3961 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET, 3962 free_netbuf); 3963 3964 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG, 3965 free_netsgbuf); 3966 3967 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG, 3968 free_netsgbuf_with_resp); 3969 3970 for (i = 0; i < octeon_dev->ifcount; i++) { 3971 resp_size = sizeof(struct liquidio_if_cfg_resp); 3972 ctx_size = sizeof(struct liquidio_if_cfg_context); 3973 data_size = sizeof(struct lio_version); 3974 sc = (struct octeon_soft_command *) 3975 octeon_alloc_soft_command(octeon_dev, data_size, 3976 resp_size, ctx_size); 3977 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 3978 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 3979 vdata = (struct lio_version *)sc->virtdptr; 3980 3981 *((u64 *)vdata) = 0; 3982 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION); 3983 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION); 3984 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION); 3985 3986 if (OCTEON_CN23XX_PF(octeon_dev)) { 3987 num_iqueues = octeon_dev->sriov_info.num_pf_rings; 3988 num_oqueues = octeon_dev->sriov_info.num_pf_rings; 3989 base_queue = octeon_dev->sriov_info.pf_srn; 3990 3991 gmx_port_id = octeon_dev->pf_num; 3992 ifidx_or_pfnum = octeon_dev->pf_num; 3993 } else { 3994 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF( 3995 octeon_get_conf(octeon_dev), i); 3996 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF( 3997 octeon_get_conf(octeon_dev), i); 3998 base_queue = CFG_GET_BASE_QUE_NIC_IF( 3999 octeon_get_conf(octeon_dev), i); 4000 gmx_port_id = CFG_GET_GMXID_NIC_IF( 4001 octeon_get_conf(octeon_dev), i); 4002 ifidx_or_pfnum = i; 4003 } 4004 4005 dev_dbg(&octeon_dev->pci_dev->dev, 4006 "requesting config for interface %d, iqs %d, oqs %d\n", 4007 ifidx_or_pfnum, num_iqueues, num_oqueues); 4008 WRITE_ONCE(ctx->cond, 0); 4009 ctx->octeon_id = lio_get_device_id(octeon_dev); 4010 init_waitqueue_head(&ctx->wc); 4011 4012 if_cfg.u64 = 0; 4013 if_cfg.s.num_iqueues = num_iqueues; 4014 if_cfg.s.num_oqueues = num_oqueues; 4015 if_cfg.s.base_queue = base_queue; 4016 if_cfg.s.gmx_port_id = gmx_port_id; 4017 4018 sc->iq_no = 0; 4019 4020 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC, 4021 OPCODE_NIC_IF_CFG, 0, 4022 if_cfg.u64, 0); 4023 4024 sc->callback = if_cfg_callback; 4025 sc->callback_arg = sc; 4026 sc->wait_time = 3000; 4027 4028 retval = octeon_send_soft_command(octeon_dev, sc); 4029 if (retval == IQ_SEND_FAILED) { 4030 dev_err(&octeon_dev->pci_dev->dev, 4031 "iq/oq config failed status: %x\n", 4032 retval); 4033 /* Soft instr is freed by driver in case of failure. */ 4034 goto setup_nic_dev_fail; 4035 } 4036 4037 /* Sleep on a wait queue till the cond flag indicates that the 4038 * response arrived or timed-out. 4039 */ 4040 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) { 4041 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n"); 4042 goto setup_nic_wait_intr; 4043 } 4044 4045 retval = resp->status; 4046 if (retval) { 4047 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n"); 4048 goto setup_nic_dev_fail; 4049 } 4050 4051 octeon_swap_8B_data((u64 *)(&resp->cfg_info), 4052 (sizeof(struct liquidio_if_cfg_info)) >> 3); 4053 4054 num_iqueues = hweight64(resp->cfg_info.iqmask); 4055 num_oqueues = hweight64(resp->cfg_info.oqmask); 4056 4057 if (!(num_iqueues) || !(num_oqueues)) { 4058 dev_err(&octeon_dev->pci_dev->dev, 4059 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n", 4060 resp->cfg_info.iqmask, 4061 resp->cfg_info.oqmask); 4062 goto setup_nic_dev_fail; 4063 } 4064 dev_dbg(&octeon_dev->pci_dev->dev, 4065 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n", 4066 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask, 4067 num_iqueues, num_oqueues); 4068 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues); 4069 4070 if (!netdev) { 4071 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n"); 4072 goto setup_nic_dev_fail; 4073 } 4074 4075 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev); 4076 4077 /* Associate the routines that will handle different 4078 * netdev tasks. 4079 */ 4080 netdev->netdev_ops = &lionetdevops; 4081 4082 lio = GET_LIO(netdev); 4083 4084 memset(lio, 0, sizeof(struct lio)); 4085 4086 lio->ifidx = ifidx_or_pfnum; 4087 4088 props = &octeon_dev->props[i]; 4089 props->gmxport = resp->cfg_info.linfo.gmxport; 4090 props->netdev = netdev; 4091 4092 lio->linfo.num_rxpciq = num_oqueues; 4093 lio->linfo.num_txpciq = num_iqueues; 4094 for (j = 0; j < num_oqueues; j++) { 4095 lio->linfo.rxpciq[j].u64 = 4096 resp->cfg_info.linfo.rxpciq[j].u64; 4097 } 4098 for (j = 0; j < num_iqueues; j++) { 4099 lio->linfo.txpciq[j].u64 = 4100 resp->cfg_info.linfo.txpciq[j].u64; 4101 } 4102 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr; 4103 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport; 4104 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64; 4105 4106 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4107 4108 if (OCTEON_CN23XX_PF(octeon_dev) || 4109 OCTEON_CN6XXX(octeon_dev)) { 4110 lio->dev_capability = NETIF_F_HIGHDMA 4111 | NETIF_F_IP_CSUM 4112 | NETIF_F_IPV6_CSUM 4113 | NETIF_F_SG | NETIF_F_RXCSUM 4114 | NETIF_F_GRO 4115 | NETIF_F_TSO | NETIF_F_TSO6 4116 | NETIF_F_LRO; 4117 } 4118 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE); 4119 4120 /* Copy of transmit encapsulation capabilities: 4121 * TSO, TSO6, Checksums for this device 4122 */ 4123 lio->enc_dev_capability = NETIF_F_IP_CSUM 4124 | NETIF_F_IPV6_CSUM 4125 | NETIF_F_GSO_UDP_TUNNEL 4126 | NETIF_F_HW_CSUM | NETIF_F_SG 4127 | NETIF_F_RXCSUM 4128 | NETIF_F_TSO | NETIF_F_TSO6 4129 | NETIF_F_LRO; 4130 4131 netdev->hw_enc_features = (lio->enc_dev_capability & 4132 ~NETIF_F_LRO); 4133 4134 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL; 4135 4136 netdev->vlan_features = lio->dev_capability; 4137 /* Add any unchangeable hw features */ 4138 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER | 4139 NETIF_F_HW_VLAN_CTAG_RX | 4140 NETIF_F_HW_VLAN_CTAG_TX; 4141 4142 netdev->features = (lio->dev_capability & ~NETIF_F_LRO); 4143 4144 netdev->hw_features = lio->dev_capability; 4145 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/ 4146 netdev->hw_features = netdev->hw_features & 4147 ~NETIF_F_HW_VLAN_CTAG_RX; 4148 4149 /* MTU range: 68 - 16000 */ 4150 netdev->min_mtu = LIO_MIN_MTU_SIZE; 4151 netdev->max_mtu = LIO_MAX_MTU_SIZE; 4152 4153 /* Point to the properties for octeon device to which this 4154 * interface belongs. 4155 */ 4156 lio->oct_dev = octeon_dev; 4157 lio->octprops = props; 4158 lio->netdev = netdev; 4159 4160 dev_dbg(&octeon_dev->pci_dev->dev, 4161 "if%d gmx: %d hw_addr: 0x%llx\n", i, 4162 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr)); 4163 4164 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) { 4165 u8 vfmac[ETH_ALEN]; 4166 4167 random_ether_addr(&vfmac[0]); 4168 if (__liquidio_set_vf_mac(netdev, j, 4169 &vfmac[0], false)) { 4170 dev_err(&octeon_dev->pci_dev->dev, 4171 "Error setting VF%d MAC address\n", 4172 j); 4173 goto setup_nic_dev_fail; 4174 } 4175 } 4176 4177 /* 64-bit swap required on LE machines */ 4178 octeon_swap_8B_data(&lio->linfo.hw_addr, 1); 4179 for (j = 0; j < 6; j++) 4180 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j)); 4181 4182 /* Copy MAC Address to OS network device structure */ 4183 4184 ether_addr_copy(netdev->dev_addr, mac); 4185 4186 /* By default all interfaces on a single Octeon uses the same 4187 * tx and rx queues 4188 */ 4189 lio->txq = lio->linfo.txpciq[0].s.q_no; 4190 lio->rxq = lio->linfo.rxpciq[0].s.q_no; 4191 if (setup_io_queues(octeon_dev, i)) { 4192 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n"); 4193 goto setup_nic_dev_fail; 4194 } 4195 4196 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS); 4197 4198 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq); 4199 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq); 4200 4201 if (setup_glists(octeon_dev, lio, num_iqueues)) { 4202 dev_err(&octeon_dev->pci_dev->dev, 4203 "Gather list allocation failed\n"); 4204 goto setup_nic_dev_fail; 4205 } 4206 4207 /* Register ethtool support */ 4208 liquidio_set_ethtool_ops(netdev); 4209 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID) 4210 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT; 4211 else 4212 octeon_dev->priv_flags = 0x0; 4213 4214 if (netdev->features & NETIF_F_LRO) 4215 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 4216 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 4217 4218 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 4219 OCTNET_CMD_VLAN_FILTER_ENABLE); 4220 4221 if ((debug != -1) && (debug & NETIF_MSG_HW)) 4222 liquidio_set_feature(netdev, 4223 OCTNET_CMD_VERBOSE_ENABLE, 0); 4224 4225 if (setup_link_status_change_wq(netdev)) 4226 goto setup_nic_dev_fail; 4227 4228 if (setup_rx_oom_poll_fn(netdev)) 4229 goto setup_nic_dev_fail; 4230 4231 /* Register the network device with the OS */ 4232 if (register_netdev(netdev)) { 4233 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n"); 4234 goto setup_nic_dev_fail; 4235 } 4236 4237 dev_dbg(&octeon_dev->pci_dev->dev, 4238 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n", 4239 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 4240 netif_carrier_off(netdev); 4241 lio->link_changes++; 4242 4243 ifstate_set(lio, LIO_IFSTATE_REGISTERED); 4244 4245 /* Sending command to firmware to enable Rx checksum offload 4246 * by default at the time of setup of Liquidio driver for 4247 * this device 4248 */ 4249 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 4250 OCTNET_CMD_RXCSUM_ENABLE); 4251 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL, 4252 OCTNET_CMD_TXCSUM_ENABLE); 4253 4254 dev_dbg(&octeon_dev->pci_dev->dev, 4255 "NIC ifidx:%d Setup successful\n", i); 4256 4257 octeon_free_soft_command(octeon_dev, sc); 4258 } 4259 4260 return 0; 4261 4262 setup_nic_dev_fail: 4263 4264 octeon_free_soft_command(octeon_dev, sc); 4265 4266 setup_nic_wait_intr: 4267 4268 while (i--) { 4269 dev_err(&octeon_dev->pci_dev->dev, 4270 "NIC ifidx:%d Setup failed\n", i); 4271 liquidio_destroy_nic_device(octeon_dev, i); 4272 } 4273 return -ENODEV; 4274 } 4275 4276 #ifdef CONFIG_PCI_IOV 4277 static int octeon_enable_sriov(struct octeon_device *oct) 4278 { 4279 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced; 4280 struct pci_dev *vfdev; 4281 int err; 4282 u32 u; 4283 4284 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) { 4285 err = pci_enable_sriov(oct->pci_dev, 4286 oct->sriov_info.num_vfs_alloced); 4287 if (err) { 4288 dev_err(&oct->pci_dev->dev, 4289 "OCTEON: Failed to enable PCI sriov: %d\n", 4290 err); 4291 oct->sriov_info.num_vfs_alloced = 0; 4292 return err; 4293 } 4294 oct->sriov_info.sriov_enabled = 1; 4295 4296 /* init lookup table that maps DPI ring number to VF pci_dev 4297 * struct pointer 4298 */ 4299 u = 0; 4300 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 4301 OCTEON_CN23XX_VF_VID, NULL); 4302 while (vfdev) { 4303 if (vfdev->is_virtfn && 4304 (vfdev->physfn == oct->pci_dev)) { 4305 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = 4306 vfdev; 4307 u += oct->sriov_info.rings_per_vf; 4308 } 4309 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 4310 OCTEON_CN23XX_VF_VID, vfdev); 4311 } 4312 } 4313 4314 return num_vfs_alloced; 4315 } 4316 4317 static int lio_pci_sriov_disable(struct octeon_device *oct) 4318 { 4319 int u; 4320 4321 if (pci_vfs_assigned(oct->pci_dev)) { 4322 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n"); 4323 return -EPERM; 4324 } 4325 4326 pci_disable_sriov(oct->pci_dev); 4327 4328 u = 0; 4329 while (u < MAX_POSSIBLE_VFS) { 4330 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL; 4331 u += oct->sriov_info.rings_per_vf; 4332 } 4333 4334 oct->sriov_info.num_vfs_alloced = 0; 4335 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n", 4336 oct->pf_num); 4337 4338 return 0; 4339 } 4340 4341 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs) 4342 { 4343 struct octeon_device *oct = pci_get_drvdata(dev); 4344 int ret = 0; 4345 4346 if ((num_vfs == oct->sriov_info.num_vfs_alloced) && 4347 (oct->sriov_info.sriov_enabled)) { 4348 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n", 4349 oct->pf_num, num_vfs); 4350 return 0; 4351 } 4352 4353 if (!num_vfs) { 4354 ret = lio_pci_sriov_disable(oct); 4355 } else if (num_vfs > oct->sriov_info.max_vfs) { 4356 dev_err(&oct->pci_dev->dev, 4357 "OCTEON: Max allowed VFs:%d user requested:%d", 4358 oct->sriov_info.max_vfs, num_vfs); 4359 ret = -EPERM; 4360 } else { 4361 oct->sriov_info.num_vfs_alloced = num_vfs; 4362 ret = octeon_enable_sriov(oct); 4363 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n", 4364 oct->pf_num, num_vfs); 4365 } 4366 4367 return ret; 4368 } 4369 #endif 4370 4371 /** 4372 * \brief initialize the NIC 4373 * @param oct octeon device 4374 * 4375 * This initialization routine is called once the Octeon device application is 4376 * up and running 4377 */ 4378 static int liquidio_init_nic_module(struct octeon_device *oct) 4379 { 4380 int i, retval = 0; 4381 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct)); 4382 4383 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n"); 4384 4385 /* only default iq and oq were initialized 4386 * initialize the rest as well 4387 */ 4388 /* run port_config command for each port */ 4389 oct->ifcount = num_nic_ports; 4390 4391 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports); 4392 4393 for (i = 0; i < MAX_OCTEON_LINKS; i++) 4394 oct->props[i].gmxport = -1; 4395 4396 retval = setup_nic_devices(oct); 4397 if (retval) { 4398 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n"); 4399 goto octnet_init_failure; 4400 } 4401 4402 liquidio_ptp_init(oct); 4403 4404 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n"); 4405 4406 return retval; 4407 4408 octnet_init_failure: 4409 4410 oct->ifcount = 0; 4411 4412 return retval; 4413 } 4414 4415 /** 4416 * \brief starter callback that invokes the remaining initialization work after 4417 * the NIC is up and running. 4418 * @param octptr work struct work_struct 4419 */ 4420 static void nic_starter(struct work_struct *work) 4421 { 4422 struct octeon_device *oct; 4423 struct cavium_wk *wk = (struct cavium_wk *)work; 4424 4425 oct = (struct octeon_device *)wk->ctxptr; 4426 4427 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) 4428 return; 4429 4430 /* If the status of the device is CORE_OK, the core 4431 * application has reported its application type. Call 4432 * any registered handlers now and move to the RUNNING 4433 * state. 4434 */ 4435 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) { 4436 schedule_delayed_work(&oct->nic_poll_work.work, 4437 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4438 return; 4439 } 4440 4441 atomic_set(&oct->status, OCT_DEV_RUNNING); 4442 4443 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) { 4444 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n"); 4445 4446 if (liquidio_init_nic_module(oct)) 4447 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n"); 4448 else 4449 handshake[oct->octeon_id].started_ok = 1; 4450 } else { 4451 dev_err(&oct->pci_dev->dev, 4452 "Unexpected application running on NIC (%d). Check firmware.\n", 4453 oct->app_mode); 4454 } 4455 4456 complete(&handshake[oct->octeon_id].started); 4457 } 4458 4459 static int 4460 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf) 4461 { 4462 struct octeon_device *oct = (struct octeon_device *)buf; 4463 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 4464 int i, notice, vf_idx; 4465 bool cores_crashed; 4466 u64 *data, vf_num; 4467 4468 notice = recv_pkt->rh.r.ossp; 4469 data = (u64 *)(get_rbd(recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE); 4470 4471 /* the first 64-bit word of data is the vf_num */ 4472 vf_num = data[0]; 4473 octeon_swap_8B_data(&vf_num, 1); 4474 vf_idx = (int)vf_num - 1; 4475 4476 cores_crashed = READ_ONCE(oct->cores_crashed); 4477 4478 if (notice == VF_DRV_LOADED) { 4479 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) { 4480 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx); 4481 dev_info(&oct->pci_dev->dev, 4482 "driver for VF%d was loaded\n", vf_idx); 4483 if (!cores_crashed) 4484 try_module_get(THIS_MODULE); 4485 } 4486 } else if (notice == VF_DRV_REMOVED) { 4487 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) { 4488 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx); 4489 dev_info(&oct->pci_dev->dev, 4490 "driver for VF%d was removed\n", vf_idx); 4491 if (!cores_crashed) 4492 module_put(THIS_MODULE); 4493 } 4494 } else if (notice == VF_DRV_MACADDR_CHANGED) { 4495 u8 *b = (u8 *)&data[1]; 4496 4497 oct->sriov_info.vf_macaddr[vf_idx] = data[1]; 4498 dev_info(&oct->pci_dev->dev, 4499 "VF driver changed VF%d's MAC address to %pM\n", 4500 vf_idx, b + 2); 4501 } 4502 4503 for (i = 0; i < recv_pkt->buffer_count; i++) 4504 recv_buffer_free(recv_pkt->buffer_ptr[i]); 4505 octeon_free_recv_info(recv_info); 4506 4507 return 0; 4508 } 4509 4510 /** 4511 * \brief Device initialization for each Octeon device that is probed 4512 * @param octeon_dev octeon device 4513 */ 4514 static int octeon_device_init(struct octeon_device *octeon_dev) 4515 { 4516 int j, ret; 4517 int fw_loaded = 0; 4518 char bootcmd[] = "\n"; 4519 struct octeon_device_priv *oct_priv = 4520 (struct octeon_device_priv *)octeon_dev->priv; 4521 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE); 4522 4523 /* Enable access to the octeon device and make its DMA capability 4524 * known to the OS. 4525 */ 4526 if (octeon_pci_os_setup(octeon_dev)) 4527 return 1; 4528 4529 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE); 4530 4531 /* Identify the Octeon type and map the BAR address space. */ 4532 if (octeon_chip_specific_setup(octeon_dev)) { 4533 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n"); 4534 return 1; 4535 } 4536 4537 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE); 4538 4539 /* Only add a reference after setting status 'OCT_DEV_PCI_MAP_DONE', 4540 * since that is what is required for the reference to be removed 4541 * during de-initialization (see 'octeon_destroy_resources'). 4542 */ 4543 octeon_register_device(octeon_dev, octeon_dev->pci_dev->bus->number, 4544 PCI_SLOT(octeon_dev->pci_dev->devfn), 4545 PCI_FUNC(octeon_dev->pci_dev->devfn), 4546 true); 4547 4548 octeon_dev->app_mode = CVM_DRV_INVALID_APP; 4549 4550 if (OCTEON_CN23XX_PF(octeon_dev)) { 4551 if (!cn23xx_fw_loaded(octeon_dev)) { 4552 fw_loaded = 0; 4553 if (!fw_type_is_none()) { 4554 /* Do a soft reset of the Octeon device. */ 4555 if (octeon_dev->fn_list.soft_reset(octeon_dev)) 4556 return 1; 4557 /* things might have changed */ 4558 if (!cn23xx_fw_loaded(octeon_dev)) 4559 fw_loaded = 0; 4560 else 4561 fw_loaded = 1; 4562 } 4563 } else { 4564 fw_loaded = 1; 4565 } 4566 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) { 4567 return 1; 4568 } 4569 4570 /* Initialize the dispatch mechanism used to push packets arriving on 4571 * Octeon Output queues. 4572 */ 4573 if (octeon_init_dispatch_list(octeon_dev)) 4574 return 1; 4575 4576 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4577 OPCODE_NIC_CORE_DRV_ACTIVE, 4578 octeon_core_drv_init, 4579 octeon_dev); 4580 4581 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4582 OPCODE_NIC_VF_DRV_NOTICE, 4583 octeon_recv_vf_drv_notice, octeon_dev); 4584 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter); 4585 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev; 4586 schedule_delayed_work(&octeon_dev->nic_poll_work.work, 4587 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4588 4589 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE); 4590 4591 if (octeon_set_io_queues_off(octeon_dev)) { 4592 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n"); 4593 return 1; 4594 } 4595 4596 if (OCTEON_CN23XX_PF(octeon_dev)) { 4597 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4598 if (ret) { 4599 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n"); 4600 return ret; 4601 } 4602 } 4603 4604 /* Initialize soft command buffer pool 4605 */ 4606 if (octeon_setup_sc_buffer_pool(octeon_dev)) { 4607 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n"); 4608 return 1; 4609 } 4610 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE); 4611 4612 /* Setup the data structures that manage this Octeon's Input queues. */ 4613 if (octeon_setup_instr_queues(octeon_dev)) { 4614 dev_err(&octeon_dev->pci_dev->dev, 4615 "instruction queue initialization failed\n"); 4616 return 1; 4617 } 4618 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE); 4619 4620 /* Initialize lists to manage the requests of different types that 4621 * arrive from user & kernel applications for this octeon device. 4622 */ 4623 if (octeon_setup_response_list(octeon_dev)) { 4624 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n"); 4625 return 1; 4626 } 4627 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE); 4628 4629 if (octeon_setup_output_queues(octeon_dev)) { 4630 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n"); 4631 return 1; 4632 } 4633 4634 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE); 4635 4636 if (OCTEON_CN23XX_PF(octeon_dev)) { 4637 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) { 4638 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n"); 4639 return 1; 4640 } 4641 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE); 4642 4643 if (octeon_allocate_ioq_vector(octeon_dev)) { 4644 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n"); 4645 return 1; 4646 } 4647 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE); 4648 4649 } else { 4650 /* The input and output queue registers were setup earlier (the 4651 * queues were not enabled). Any additional registers 4652 * that need to be programmed should be done now. 4653 */ 4654 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4655 if (ret) { 4656 dev_err(&octeon_dev->pci_dev->dev, 4657 "Failed to configure device registers\n"); 4658 return ret; 4659 } 4660 } 4661 4662 /* Initialize the tasklet that handles output queue packet processing.*/ 4663 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n"); 4664 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh, 4665 (unsigned long)octeon_dev); 4666 4667 /* Setup the interrupt handler and record the INT SUM register address 4668 */ 4669 if (octeon_setup_interrupt(octeon_dev)) 4670 return 1; 4671 4672 /* Enable Octeon device interrupts */ 4673 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR); 4674 4675 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE); 4676 4677 /* Enable the input and output queues for this Octeon device */ 4678 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev); 4679 if (ret) { 4680 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues"); 4681 return ret; 4682 } 4683 4684 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE); 4685 4686 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) { 4687 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n"); 4688 if (!ddr_timeout) { 4689 dev_info(&octeon_dev->pci_dev->dev, 4690 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n"); 4691 } 4692 4693 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS); 4694 4695 /* Wait for the octeon to initialize DDR after the soft-reset.*/ 4696 while (!ddr_timeout) { 4697 set_current_state(TASK_INTERRUPTIBLE); 4698 if (schedule_timeout(HZ / 10)) { 4699 /* user probably pressed Control-C */ 4700 return 1; 4701 } 4702 } 4703 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout); 4704 if (ret) { 4705 dev_err(&octeon_dev->pci_dev->dev, 4706 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n", 4707 ret); 4708 return 1; 4709 } 4710 4711 if (octeon_wait_for_bootloader(octeon_dev, 1000)) { 4712 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n"); 4713 return 1; 4714 } 4715 4716 /* Divert uboot to take commands from host instead. */ 4717 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50); 4718 4719 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n"); 4720 ret = octeon_init_consoles(octeon_dev); 4721 if (ret) { 4722 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n"); 4723 return 1; 4724 } 4725 ret = octeon_add_console(octeon_dev, 0); 4726 if (ret) { 4727 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n"); 4728 return 1; 4729 } 4730 4731 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE); 4732 4733 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n"); 4734 ret = load_firmware(octeon_dev); 4735 if (ret) { 4736 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n"); 4737 return 1; 4738 } 4739 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is 4740 * loaded 4741 */ 4742 if (OCTEON_CN23XX_PF(octeon_dev)) 4743 octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1, 4744 2ULL); 4745 } 4746 4747 handshake[octeon_dev->octeon_id].init_ok = 1; 4748 complete(&handshake[octeon_dev->octeon_id].init); 4749 4750 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK); 4751 4752 /* Send Credit for Octeon Output queues. Credits are always sent after 4753 * the output queue is enabled. 4754 */ 4755 for (j = 0; j < octeon_dev->num_oqs; j++) 4756 writel(octeon_dev->droq[j]->max_count, 4757 octeon_dev->droq[j]->pkts_credit_reg); 4758 4759 /* Packets can start arriving on the output queues from this point. */ 4760 return 0; 4761 } 4762 4763 /** 4764 * \brief Exits the module 4765 */ 4766 static void __exit liquidio_exit(void) 4767 { 4768 liquidio_deinit_pci(); 4769 4770 pr_info("LiquidIO network module is now unloaded\n"); 4771 } 4772 4773 module_init(liquidio_init); 4774 module_exit(liquidio_exit); 4775