1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/module.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/firmware.h> 22 #include <net/vxlan.h> 23 #include <linux/kthread.h> 24 #include "liquidio_common.h" 25 #include "octeon_droq.h" 26 #include "octeon_iq.h" 27 #include "response_manager.h" 28 #include "octeon_device.h" 29 #include "octeon_nic.h" 30 #include "octeon_main.h" 31 #include "octeon_network.h" 32 #include "cn66xx_regs.h" 33 #include "cn66xx_device.h" 34 #include "cn68xx_device.h" 35 #include "cn23xx_pf_device.h" 36 #include "liquidio_image.h" 37 38 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>"); 39 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver"); 40 MODULE_LICENSE("GPL"); 41 MODULE_VERSION(LIQUIDIO_VERSION); 42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME 43 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME 45 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME 47 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 48 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME 49 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 50 51 static int ddr_timeout = 10000; 52 module_param(ddr_timeout, int, 0644); 53 MODULE_PARM_DESC(ddr_timeout, 54 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check"); 55 56 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 57 58 static int debug = -1; 59 module_param(debug, int, 0644); 60 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits"); 61 62 static char fw_type[LIO_MAX_FW_TYPE_LEN] = LIO_FW_NAME_TYPE_NIC; 63 module_param_string(fw_type, fw_type, sizeof(fw_type), 0444); 64 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\". Use \"none\" to load firmware from flash."); 65 66 static u32 console_bitmask; 67 module_param(console_bitmask, int, 0644); 68 MODULE_PARM_DESC(console_bitmask, 69 "Bitmask indicating which consoles have debug output redirected to syslog."); 70 71 /** 72 * \brief determines if a given console has debug enabled. 73 * @param console console to check 74 * @returns 1 = enabled. 0 otherwise 75 */ 76 static int octeon_console_debug_enabled(u32 console) 77 { 78 return (console_bitmask >> (console)) & 0x1; 79 } 80 81 /* Polling interval for determining when NIC application is alive */ 82 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100 83 84 /* runtime link query interval */ 85 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000 86 87 struct liquidio_if_cfg_context { 88 int octeon_id; 89 90 wait_queue_head_t wc; 91 92 int cond; 93 }; 94 95 struct liquidio_if_cfg_resp { 96 u64 rh; 97 struct liquidio_if_cfg_info cfg_info; 98 u64 status; 99 }; 100 101 struct liquidio_rx_ctl_context { 102 int octeon_id; 103 104 wait_queue_head_t wc; 105 106 int cond; 107 }; 108 109 struct oct_link_status_resp { 110 u64 rh; 111 struct oct_link_info link_info; 112 u64 status; 113 }; 114 115 struct oct_timestamp_resp { 116 u64 rh; 117 u64 timestamp; 118 u64 status; 119 }; 120 121 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp)) 122 123 union tx_info { 124 u64 u64; 125 struct { 126 #ifdef __BIG_ENDIAN_BITFIELD 127 u16 gso_size; 128 u16 gso_segs; 129 u32 reserved; 130 #else 131 u32 reserved; 132 u16 gso_segs; 133 u16 gso_size; 134 #endif 135 } s; 136 }; 137 138 /** Octeon device properties to be used by the NIC module. 139 * Each octeon device in the system will be represented 140 * by this structure in the NIC module. 141 */ 142 143 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS) 144 145 #define OCTNIC_GSO_MAX_HEADER_SIZE 128 146 #define OCTNIC_GSO_MAX_SIZE \ 147 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE) 148 149 /** Structure of a node in list of gather components maintained by 150 * NIC driver for each network device. 151 */ 152 struct octnic_gather { 153 /** List manipulation. Next and prev pointers. */ 154 struct list_head list; 155 156 /** Size of the gather component at sg in bytes. */ 157 int sg_size; 158 159 /** Number of bytes that sg was adjusted to make it 8B-aligned. */ 160 int adjust; 161 162 /** Gather component that can accommodate max sized fragment list 163 * received from the IP layer. 164 */ 165 struct octeon_sg_entry *sg; 166 167 dma_addr_t sg_dma_ptr; 168 }; 169 170 struct handshake { 171 struct completion init; 172 struct completion started; 173 struct pci_dev *pci_dev; 174 int init_ok; 175 int started_ok; 176 }; 177 178 #ifdef CONFIG_PCI_IOV 179 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs); 180 #endif 181 182 static int octeon_dbg_console_print(struct octeon_device *oct, u32 console_num, 183 char *prefix, char *suffix); 184 185 static int octeon_device_init(struct octeon_device *); 186 static int liquidio_stop(struct net_device *netdev); 187 static void liquidio_remove(struct pci_dev *pdev); 188 static int liquidio_probe(struct pci_dev *pdev, 189 const struct pci_device_id *ent); 190 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 191 int linkstate); 192 193 static struct handshake handshake[MAX_OCTEON_DEVICES]; 194 static struct completion first_stage; 195 196 static void octeon_droq_bh(unsigned long pdev) 197 { 198 int q_no; 199 int reschedule = 0; 200 struct octeon_device *oct = (struct octeon_device *)pdev; 201 struct octeon_device_priv *oct_priv = 202 (struct octeon_device_priv *)oct->priv; 203 204 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) { 205 if (!(oct->io_qmask.oq & BIT_ULL(q_no))) 206 continue; 207 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no], 208 MAX_PACKET_BUDGET); 209 lio_enable_irq(oct->droq[q_no], NULL); 210 211 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 212 /* set time and cnt interrupt thresholds for this DROQ 213 * for NAPI 214 */ 215 int adjusted_q_no = q_no + oct->sriov_info.pf_srn; 216 217 octeon_write_csr64( 218 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no), 219 0x5700000040ULL); 220 octeon_write_csr64( 221 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0); 222 } 223 } 224 225 if (reschedule) 226 tasklet_schedule(&oct_priv->droq_tasklet); 227 } 228 229 static int lio_wait_for_oq_pkts(struct octeon_device *oct) 230 { 231 struct octeon_device_priv *oct_priv = 232 (struct octeon_device_priv *)oct->priv; 233 int retry = 100, pkt_cnt = 0, pending_pkts = 0; 234 int i; 235 236 do { 237 pending_pkts = 0; 238 239 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 240 if (!(oct->io_qmask.oq & BIT_ULL(i))) 241 continue; 242 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]); 243 } 244 if (pkt_cnt > 0) { 245 pending_pkts += pkt_cnt; 246 tasklet_schedule(&oct_priv->droq_tasklet); 247 } 248 pkt_cnt = 0; 249 schedule_timeout_uninterruptible(1); 250 251 } while (retry-- && pending_pkts); 252 253 return pkt_cnt; 254 } 255 256 /** 257 * \brief Forces all IO queues off on a given device 258 * @param oct Pointer to Octeon device 259 */ 260 static void force_io_queues_off(struct octeon_device *oct) 261 { 262 if ((oct->chip_id == OCTEON_CN66XX) || 263 (oct->chip_id == OCTEON_CN68XX)) { 264 /* Reset the Enable bits for Input Queues. */ 265 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0); 266 267 /* Reset the Enable bits for Output Queues. */ 268 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0); 269 } 270 } 271 272 /** 273 * \brief Cause device to go quiet so it can be safely removed/reset/etc 274 * @param oct Pointer to Octeon device 275 */ 276 static inline void pcierror_quiesce_device(struct octeon_device *oct) 277 { 278 int i; 279 280 /* Disable the input and output queues now. No more packets will 281 * arrive from Octeon, but we should wait for all packet processing 282 * to finish. 283 */ 284 force_io_queues_off(oct); 285 286 /* To allow for in-flight requests */ 287 schedule_timeout_uninterruptible(100); 288 289 if (wait_for_pending_requests(oct)) 290 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 291 292 /* Force all requests waiting to be fetched by OCTEON to complete. */ 293 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 294 struct octeon_instr_queue *iq; 295 296 if (!(oct->io_qmask.iq & BIT_ULL(i))) 297 continue; 298 iq = oct->instr_queue[i]; 299 300 if (atomic_read(&iq->instr_pending)) { 301 spin_lock_bh(&iq->lock); 302 iq->fill_cnt = 0; 303 iq->octeon_read_index = iq->host_write_index; 304 iq->stats.instr_processed += 305 atomic_read(&iq->instr_pending); 306 lio_process_iq_request_list(oct, iq, 0); 307 spin_unlock_bh(&iq->lock); 308 } 309 } 310 311 /* Force all pending ordered list requests to time out. */ 312 lio_process_ordered_list(oct, 1); 313 314 /* We do not need to wait for output queue packets to be processed. */ 315 } 316 317 /** 318 * \brief Cleanup PCI AER uncorrectable error status 319 * @param dev Pointer to PCI device 320 */ 321 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev) 322 { 323 int pos = 0x100; 324 u32 status, mask; 325 326 pr_info("%s :\n", __func__); 327 328 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status); 329 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask); 330 if (dev->error_state == pci_channel_io_normal) 331 status &= ~mask; /* Clear corresponding nonfatal bits */ 332 else 333 status &= mask; /* Clear corresponding fatal bits */ 334 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status); 335 } 336 337 /** 338 * \brief Stop all PCI IO to a given device 339 * @param dev Pointer to Octeon device 340 */ 341 static void stop_pci_io(struct octeon_device *oct) 342 { 343 /* No more instructions will be forwarded. */ 344 atomic_set(&oct->status, OCT_DEV_IN_RESET); 345 346 pci_disable_device(oct->pci_dev); 347 348 /* Disable interrupts */ 349 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 350 351 pcierror_quiesce_device(oct); 352 353 /* Release the interrupt line */ 354 free_irq(oct->pci_dev->irq, oct); 355 356 if (oct->flags & LIO_FLAG_MSI_ENABLED) 357 pci_disable_msi(oct->pci_dev); 358 359 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 360 lio_get_state_string(&oct->status)); 361 362 /* making it a common function for all OCTEON models */ 363 cleanup_aer_uncorrect_error_status(oct->pci_dev); 364 } 365 366 /** 367 * \brief called when PCI error is detected 368 * @param pdev Pointer to PCI device 369 * @param state The current pci connection state 370 * 371 * This function is called after a PCI bus error affecting 372 * this device has been detected. 373 */ 374 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev, 375 pci_channel_state_t state) 376 { 377 struct octeon_device *oct = pci_get_drvdata(pdev); 378 379 /* Non-correctable Non-fatal errors */ 380 if (state == pci_channel_io_normal) { 381 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n"); 382 cleanup_aer_uncorrect_error_status(oct->pci_dev); 383 return PCI_ERS_RESULT_CAN_RECOVER; 384 } 385 386 /* Non-correctable Fatal errors */ 387 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n"); 388 stop_pci_io(oct); 389 390 /* Always return a DISCONNECT. There is no support for recovery but only 391 * for a clean shutdown. 392 */ 393 return PCI_ERS_RESULT_DISCONNECT; 394 } 395 396 /** 397 * \brief mmio handler 398 * @param pdev Pointer to PCI device 399 */ 400 static pci_ers_result_t liquidio_pcie_mmio_enabled( 401 struct pci_dev *pdev __attribute__((unused))) 402 { 403 /* We should never hit this since we never ask for a reset for a Fatal 404 * Error. We always return DISCONNECT in io_error above. 405 * But play safe and return RECOVERED for now. 406 */ 407 return PCI_ERS_RESULT_RECOVERED; 408 } 409 410 /** 411 * \brief called after the pci bus has been reset. 412 * @param pdev Pointer to PCI device 413 * 414 * Restart the card from scratch, as if from a cold-boot. Implementation 415 * resembles the first-half of the octeon_resume routine. 416 */ 417 static pci_ers_result_t liquidio_pcie_slot_reset( 418 struct pci_dev *pdev __attribute__((unused))) 419 { 420 /* We should never hit this since we never ask for a reset for a Fatal 421 * Error. We always return DISCONNECT in io_error above. 422 * But play safe and return RECOVERED for now. 423 */ 424 return PCI_ERS_RESULT_RECOVERED; 425 } 426 427 /** 428 * \brief called when traffic can start flowing again. 429 * @param pdev Pointer to PCI device 430 * 431 * This callback is called when the error recovery driver tells us that 432 * its OK to resume normal operation. Implementation resembles the 433 * second-half of the octeon_resume routine. 434 */ 435 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused))) 436 { 437 /* Nothing to be done here. */ 438 } 439 440 #ifdef CONFIG_PM 441 /** 442 * \brief called when suspending 443 * @param pdev Pointer to PCI device 444 * @param state state to suspend to 445 */ 446 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)), 447 pm_message_t state __attribute__((unused))) 448 { 449 return 0; 450 } 451 452 /** 453 * \brief called when resuming 454 * @param pdev Pointer to PCI device 455 */ 456 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused))) 457 { 458 return 0; 459 } 460 #endif 461 462 /* For PCI-E Advanced Error Recovery (AER) Interface */ 463 static const struct pci_error_handlers liquidio_err_handler = { 464 .error_detected = liquidio_pcie_error_detected, 465 .mmio_enabled = liquidio_pcie_mmio_enabled, 466 .slot_reset = liquidio_pcie_slot_reset, 467 .resume = liquidio_pcie_resume, 468 }; 469 470 static const struct pci_device_id liquidio_pci_tbl[] = { 471 { /* 68xx */ 472 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 473 }, 474 { /* 66xx */ 475 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 476 }, 477 { /* 23xx pf */ 478 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 479 }, 480 { 481 0, 0, 0, 0, 0, 0, 0 482 } 483 }; 484 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl); 485 486 static struct pci_driver liquidio_pci_driver = { 487 .name = "LiquidIO", 488 .id_table = liquidio_pci_tbl, 489 .probe = liquidio_probe, 490 .remove = liquidio_remove, 491 .err_handler = &liquidio_err_handler, /* For AER */ 492 493 #ifdef CONFIG_PM 494 .suspend = liquidio_suspend, 495 .resume = liquidio_resume, 496 #endif 497 #ifdef CONFIG_PCI_IOV 498 .sriov_configure = liquidio_enable_sriov, 499 #endif 500 }; 501 502 /** 503 * \brief register PCI driver 504 */ 505 static int liquidio_init_pci(void) 506 { 507 return pci_register_driver(&liquidio_pci_driver); 508 } 509 510 /** 511 * \brief unregister PCI driver 512 */ 513 static void liquidio_deinit_pci(void) 514 { 515 pci_unregister_driver(&liquidio_pci_driver); 516 } 517 518 /** 519 * \brief Stop Tx queues 520 * @param netdev network device 521 */ 522 static inline void txqs_stop(struct net_device *netdev) 523 { 524 if (netif_is_multiqueue(netdev)) { 525 int i; 526 527 for (i = 0; i < netdev->num_tx_queues; i++) 528 netif_stop_subqueue(netdev, i); 529 } else { 530 netif_stop_queue(netdev); 531 } 532 } 533 534 /** 535 * \brief Start Tx queues 536 * @param netdev network device 537 */ 538 static inline void txqs_start(struct net_device *netdev) 539 { 540 if (netif_is_multiqueue(netdev)) { 541 int i; 542 543 for (i = 0; i < netdev->num_tx_queues; i++) 544 netif_start_subqueue(netdev, i); 545 } else { 546 netif_start_queue(netdev); 547 } 548 } 549 550 /** 551 * \brief Wake Tx queues 552 * @param netdev network device 553 */ 554 static inline void txqs_wake(struct net_device *netdev) 555 { 556 struct lio *lio = GET_LIO(netdev); 557 558 if (netif_is_multiqueue(netdev)) { 559 int i; 560 561 for (i = 0; i < netdev->num_tx_queues; i++) { 562 int qno = lio->linfo.txpciq[i % 563 lio->oct_dev->num_iqs].s.q_no; 564 565 if (__netif_subqueue_stopped(netdev, i)) { 566 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno, 567 tx_restart, 1); 568 netif_wake_subqueue(netdev, i); 569 } 570 } 571 } else { 572 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 573 tx_restart, 1); 574 netif_wake_queue(netdev); 575 } 576 } 577 578 /** 579 * \brief Stop Tx queue 580 * @param netdev network device 581 */ 582 static void stop_txq(struct net_device *netdev) 583 { 584 txqs_stop(netdev); 585 } 586 587 /** 588 * \brief Start Tx queue 589 * @param netdev network device 590 */ 591 static void start_txq(struct net_device *netdev) 592 { 593 struct lio *lio = GET_LIO(netdev); 594 595 if (lio->linfo.link.s.link_up) { 596 txqs_start(netdev); 597 return; 598 } 599 } 600 601 /** 602 * \brief Wake a queue 603 * @param netdev network device 604 * @param q which queue to wake 605 */ 606 static inline void wake_q(struct net_device *netdev, int q) 607 { 608 if (netif_is_multiqueue(netdev)) 609 netif_wake_subqueue(netdev, q); 610 else 611 netif_wake_queue(netdev); 612 } 613 614 /** 615 * \brief Stop a queue 616 * @param netdev network device 617 * @param q which queue to stop 618 */ 619 static inline void stop_q(struct net_device *netdev, int q) 620 { 621 if (netif_is_multiqueue(netdev)) 622 netif_stop_subqueue(netdev, q); 623 else 624 netif_stop_queue(netdev); 625 } 626 627 /** 628 * \brief Check Tx queue status, and take appropriate action 629 * @param lio per-network private data 630 * @returns 0 if full, number of queues woken up otherwise 631 */ 632 static inline int check_txq_status(struct lio *lio) 633 { 634 int ret_val = 0; 635 636 if (netif_is_multiqueue(lio->netdev)) { 637 int numqs = lio->netdev->num_tx_queues; 638 int q, iq = 0; 639 640 /* check each sub-queue state */ 641 for (q = 0; q < numqs; q++) { 642 iq = lio->linfo.txpciq[q % 643 lio->oct_dev->num_iqs].s.q_no; 644 if (octnet_iq_is_full(lio->oct_dev, iq)) 645 continue; 646 if (__netif_subqueue_stopped(lio->netdev, q)) { 647 wake_q(lio->netdev, q); 648 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, 649 tx_restart, 1); 650 ret_val++; 651 } 652 } 653 } else { 654 if (octnet_iq_is_full(lio->oct_dev, lio->txq)) 655 return 0; 656 wake_q(lio->netdev, lio->txq); 657 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 658 tx_restart, 1); 659 ret_val = 1; 660 } 661 return ret_val; 662 } 663 664 /** 665 * Remove the node at the head of the list. The list would be empty at 666 * the end of this call if there are no more nodes in the list. 667 */ 668 static inline struct list_head *list_delete_head(struct list_head *root) 669 { 670 struct list_head *node; 671 672 if ((root->prev == root) && (root->next == root)) 673 node = NULL; 674 else 675 node = root->next; 676 677 if (node) 678 list_del(node); 679 680 return node; 681 } 682 683 /** 684 * \brief Delete gather lists 685 * @param lio per-network private data 686 */ 687 static void delete_glists(struct lio *lio) 688 { 689 struct octnic_gather *g; 690 int i; 691 692 kfree(lio->glist_lock); 693 lio->glist_lock = NULL; 694 695 if (!lio->glist) 696 return; 697 698 for (i = 0; i < lio->linfo.num_txpciq; i++) { 699 do { 700 g = (struct octnic_gather *) 701 list_delete_head(&lio->glist[i]); 702 if (g) 703 kfree(g); 704 } while (g); 705 706 if (lio->glists_virt_base && lio->glists_virt_base[i] && 707 lio->glists_dma_base && lio->glists_dma_base[i]) { 708 lio_dma_free(lio->oct_dev, 709 lio->glist_entry_size * lio->tx_qsize, 710 lio->glists_virt_base[i], 711 lio->glists_dma_base[i]); 712 } 713 } 714 715 kfree(lio->glists_virt_base); 716 lio->glists_virt_base = NULL; 717 718 kfree(lio->glists_dma_base); 719 lio->glists_dma_base = NULL; 720 721 kfree(lio->glist); 722 lio->glist = NULL; 723 } 724 725 /** 726 * \brief Setup gather lists 727 * @param lio per-network private data 728 */ 729 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs) 730 { 731 int i, j; 732 struct octnic_gather *g; 733 734 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock), 735 GFP_KERNEL); 736 if (!lio->glist_lock) 737 return -ENOMEM; 738 739 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist), 740 GFP_KERNEL); 741 if (!lio->glist) { 742 kfree(lio->glist_lock); 743 lio->glist_lock = NULL; 744 return -ENOMEM; 745 } 746 747 lio->glist_entry_size = 748 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE); 749 750 /* allocate memory to store virtual and dma base address of 751 * per glist consistent memory 752 */ 753 lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base), 754 GFP_KERNEL); 755 lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base), 756 GFP_KERNEL); 757 758 if (!lio->glists_virt_base || !lio->glists_dma_base) { 759 delete_glists(lio); 760 return -ENOMEM; 761 } 762 763 for (i = 0; i < num_iqs; i++) { 764 int numa_node = dev_to_node(&oct->pci_dev->dev); 765 766 spin_lock_init(&lio->glist_lock[i]); 767 768 INIT_LIST_HEAD(&lio->glist[i]); 769 770 lio->glists_virt_base[i] = 771 lio_dma_alloc(oct, 772 lio->glist_entry_size * lio->tx_qsize, 773 &lio->glists_dma_base[i]); 774 775 if (!lio->glists_virt_base[i]) { 776 delete_glists(lio); 777 return -ENOMEM; 778 } 779 780 for (j = 0; j < lio->tx_qsize; j++) { 781 g = kzalloc_node(sizeof(*g), GFP_KERNEL, 782 numa_node); 783 if (!g) 784 g = kzalloc(sizeof(*g), GFP_KERNEL); 785 if (!g) 786 break; 787 788 g->sg = lio->glists_virt_base[i] + 789 (j * lio->glist_entry_size); 790 791 g->sg_dma_ptr = lio->glists_dma_base[i] + 792 (j * lio->glist_entry_size); 793 794 list_add_tail(&g->list, &lio->glist[i]); 795 } 796 797 if (j != lio->tx_qsize) { 798 delete_glists(lio); 799 return -ENOMEM; 800 } 801 } 802 803 return 0; 804 } 805 806 /** 807 * \brief Print link information 808 * @param netdev network device 809 */ 810 static void print_link_info(struct net_device *netdev) 811 { 812 struct lio *lio = GET_LIO(netdev); 813 814 if (!ifstate_check(lio, LIO_IFSTATE_RESETTING) && 815 ifstate_check(lio, LIO_IFSTATE_REGISTERED)) { 816 struct oct_link_info *linfo = &lio->linfo; 817 818 if (linfo->link.s.link_up) { 819 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n", 820 linfo->link.s.speed, 821 (linfo->link.s.duplex) ? "Full" : "Half"); 822 } else { 823 netif_info(lio, link, lio->netdev, "Link Down\n"); 824 } 825 } 826 } 827 828 /** 829 * \brief Routine to notify MTU change 830 * @param work work_struct data structure 831 */ 832 static void octnet_link_status_change(struct work_struct *work) 833 { 834 struct cavium_wk *wk = (struct cavium_wk *)work; 835 struct lio *lio = (struct lio *)wk->ctxptr; 836 837 rtnl_lock(); 838 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev); 839 rtnl_unlock(); 840 } 841 842 /** 843 * \brief Sets up the mtu status change work 844 * @param netdev network device 845 */ 846 static inline int setup_link_status_change_wq(struct net_device *netdev) 847 { 848 struct lio *lio = GET_LIO(netdev); 849 struct octeon_device *oct = lio->oct_dev; 850 851 lio->link_status_wq.wq = alloc_workqueue("link-status", 852 WQ_MEM_RECLAIM, 0); 853 if (!lio->link_status_wq.wq) { 854 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n"); 855 return -1; 856 } 857 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work, 858 octnet_link_status_change); 859 lio->link_status_wq.wk.ctxptr = lio; 860 861 return 0; 862 } 863 864 static inline void cleanup_link_status_change_wq(struct net_device *netdev) 865 { 866 struct lio *lio = GET_LIO(netdev); 867 868 if (lio->link_status_wq.wq) { 869 cancel_delayed_work_sync(&lio->link_status_wq.wk.work); 870 destroy_workqueue(lio->link_status_wq.wq); 871 } 872 } 873 874 /** 875 * \brief Update link status 876 * @param netdev network device 877 * @param ls link status structure 878 * 879 * Called on receipt of a link status response from the core application to 880 * update each interface's link status. 881 */ 882 static inline void update_link_status(struct net_device *netdev, 883 union oct_link_status *ls) 884 { 885 struct lio *lio = GET_LIO(netdev); 886 int changed = (lio->linfo.link.u64 != ls->u64); 887 888 lio->linfo.link.u64 = ls->u64; 889 890 if ((lio->intf_open) && (changed)) { 891 print_link_info(netdev); 892 lio->link_changes++; 893 894 if (lio->linfo.link.s.link_up) { 895 netif_carrier_on(netdev); 896 txqs_wake(netdev); 897 } else { 898 netif_carrier_off(netdev); 899 stop_txq(netdev); 900 } 901 } 902 } 903 904 static struct octeon_device *get_other_octeon_device(struct octeon_device *oct) 905 { 906 struct octeon_device *other_oct; 907 908 other_oct = lio_get_device(oct->octeon_id + 1); 909 910 if (other_oct && other_oct->pci_dev) { 911 int oct_busnum, other_oct_busnum; 912 913 oct_busnum = oct->pci_dev->bus->number; 914 other_oct_busnum = other_oct->pci_dev->bus->number; 915 916 if (oct_busnum == other_oct_busnum) { 917 int oct_slot, other_oct_slot; 918 919 oct_slot = PCI_SLOT(oct->pci_dev->devfn); 920 other_oct_slot = PCI_SLOT(other_oct->pci_dev->devfn); 921 922 if (oct_slot == other_oct_slot) 923 return other_oct; 924 } 925 } 926 927 return NULL; 928 } 929 930 static void disable_all_vf_links(struct octeon_device *oct) 931 { 932 struct net_device *netdev; 933 int max_vfs, vf, i; 934 935 if (!oct) 936 return; 937 938 max_vfs = oct->sriov_info.max_vfs; 939 940 for (i = 0; i < oct->ifcount; i++) { 941 netdev = oct->props[i].netdev; 942 if (!netdev) 943 continue; 944 945 for (vf = 0; vf < max_vfs; vf++) 946 liquidio_set_vf_link_state(netdev, vf, 947 IFLA_VF_LINK_STATE_DISABLE); 948 } 949 } 950 951 static int liquidio_watchdog(void *param) 952 { 953 bool err_msg_was_printed[LIO_MAX_CORES]; 954 u16 mask_of_crashed_or_stuck_cores = 0; 955 bool all_vf_links_are_disabled = false; 956 struct octeon_device *oct = param; 957 struct octeon_device *other_oct; 958 #ifdef CONFIG_MODULE_UNLOAD 959 long refcount, vfs_referencing_pf; 960 u64 vfs_mask1, vfs_mask2; 961 #endif 962 int core; 963 964 memset(err_msg_was_printed, 0, sizeof(err_msg_was_printed)); 965 966 while (!kthread_should_stop()) { 967 /* sleep for a couple of seconds so that we don't hog the CPU */ 968 set_current_state(TASK_INTERRUPTIBLE); 969 schedule_timeout(msecs_to_jiffies(2000)); 970 971 mask_of_crashed_or_stuck_cores = 972 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 973 974 if (!mask_of_crashed_or_stuck_cores) 975 continue; 976 977 WRITE_ONCE(oct->cores_crashed, true); 978 other_oct = get_other_octeon_device(oct); 979 if (other_oct) 980 WRITE_ONCE(other_oct->cores_crashed, true); 981 982 for (core = 0; core < LIO_MAX_CORES; core++) { 983 bool core_crashed_or_got_stuck; 984 985 core_crashed_or_got_stuck = 986 (mask_of_crashed_or_stuck_cores 987 >> core) & 1; 988 989 if (core_crashed_or_got_stuck && 990 !err_msg_was_printed[core]) { 991 dev_err(&oct->pci_dev->dev, 992 "ERROR: Octeon core %d crashed or got stuck! See oct-fwdump for details.\n", 993 core); 994 err_msg_was_printed[core] = true; 995 } 996 } 997 998 if (all_vf_links_are_disabled) 999 continue; 1000 1001 disable_all_vf_links(oct); 1002 disable_all_vf_links(other_oct); 1003 all_vf_links_are_disabled = true; 1004 1005 #ifdef CONFIG_MODULE_UNLOAD 1006 vfs_mask1 = READ_ONCE(oct->sriov_info.vf_drv_loaded_mask); 1007 vfs_mask2 = READ_ONCE(other_oct->sriov_info.vf_drv_loaded_mask); 1008 1009 vfs_referencing_pf = hweight64(vfs_mask1); 1010 vfs_referencing_pf += hweight64(vfs_mask2); 1011 1012 refcount = module_refcount(THIS_MODULE); 1013 if (refcount >= vfs_referencing_pf) { 1014 while (vfs_referencing_pf) { 1015 module_put(THIS_MODULE); 1016 vfs_referencing_pf--; 1017 } 1018 } 1019 #endif 1020 } 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * \brief PCI probe handler 1027 * @param pdev PCI device structure 1028 * @param ent unused 1029 */ 1030 static int 1031 liquidio_probe(struct pci_dev *pdev, 1032 const struct pci_device_id *ent __attribute__((unused))) 1033 { 1034 struct octeon_device *oct_dev = NULL; 1035 struct handshake *hs; 1036 1037 oct_dev = octeon_allocate_device(pdev->device, 1038 sizeof(struct octeon_device_priv)); 1039 if (!oct_dev) { 1040 dev_err(&pdev->dev, "Unable to allocate device\n"); 1041 return -ENOMEM; 1042 } 1043 1044 if (pdev->device == OCTEON_CN23XX_PF_VID) 1045 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED; 1046 1047 /* Enable PTP for 6XXX Device */ 1048 if (((pdev->device == OCTEON_CN66XX) || 1049 (pdev->device == OCTEON_CN68XX))) 1050 oct_dev->ptp_enable = true; 1051 else 1052 oct_dev->ptp_enable = false; 1053 1054 dev_info(&pdev->dev, "Initializing device %x:%x.\n", 1055 (u32)pdev->vendor, (u32)pdev->device); 1056 1057 /* Assign octeon_device for this device to the private data area. */ 1058 pci_set_drvdata(pdev, oct_dev); 1059 1060 /* set linux specific device pointer */ 1061 oct_dev->pci_dev = (void *)pdev; 1062 1063 hs = &handshake[oct_dev->octeon_id]; 1064 init_completion(&hs->init); 1065 init_completion(&hs->started); 1066 hs->pci_dev = pdev; 1067 1068 if (oct_dev->octeon_id == 0) 1069 /* first LiquidIO NIC is detected */ 1070 complete(&first_stage); 1071 1072 if (octeon_device_init(oct_dev)) { 1073 complete(&hs->init); 1074 liquidio_remove(pdev); 1075 return -ENOMEM; 1076 } 1077 1078 if (OCTEON_CN23XX_PF(oct_dev)) { 1079 u64 scratch1; 1080 u8 bus, device, function; 1081 1082 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1); 1083 if (!(scratch1 & 4ULL)) { 1084 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that 1085 * the lio watchdog kernel thread is running for this 1086 * NIC. Each NIC gets one watchdog kernel thread. 1087 */ 1088 scratch1 |= 4ULL; 1089 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1, 1090 scratch1); 1091 1092 bus = pdev->bus->number; 1093 device = PCI_SLOT(pdev->devfn); 1094 function = PCI_FUNC(pdev->devfn); 1095 oct_dev->watchdog_task = kthread_create( 1096 liquidio_watchdog, oct_dev, 1097 "liowd/%02hhx:%02hhx.%hhx", bus, device, function); 1098 if (!IS_ERR(oct_dev->watchdog_task)) { 1099 wake_up_process(oct_dev->watchdog_task); 1100 } else { 1101 oct_dev->watchdog_task = NULL; 1102 dev_err(&oct_dev->pci_dev->dev, 1103 "failed to create kernel_thread\n"); 1104 liquidio_remove(pdev); 1105 return -1; 1106 } 1107 } 1108 } 1109 1110 oct_dev->rx_pause = 1; 1111 oct_dev->tx_pause = 1; 1112 1113 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n"); 1114 1115 return 0; 1116 } 1117 1118 static bool fw_type_is_none(void) 1119 { 1120 return strncmp(fw_type, LIO_FW_NAME_TYPE_NONE, 1121 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0; 1122 } 1123 1124 /** 1125 * \brief PCI FLR for each Octeon device. 1126 * @param oct octeon device 1127 */ 1128 static void octeon_pci_flr(struct octeon_device *oct) 1129 { 1130 int rc; 1131 1132 pci_save_state(oct->pci_dev); 1133 1134 pci_cfg_access_lock(oct->pci_dev); 1135 1136 /* Quiesce the device completely */ 1137 pci_write_config_word(oct->pci_dev, PCI_COMMAND, 1138 PCI_COMMAND_INTX_DISABLE); 1139 1140 rc = __pci_reset_function_locked(oct->pci_dev); 1141 1142 if (rc != 0) 1143 dev_err(&oct->pci_dev->dev, "Error %d resetting PCI function %d\n", 1144 rc, oct->pf_num); 1145 1146 pci_cfg_access_unlock(oct->pci_dev); 1147 1148 pci_restore_state(oct->pci_dev); 1149 } 1150 1151 /** 1152 *\brief Destroy resources associated with octeon device 1153 * @param pdev PCI device structure 1154 * @param ent unused 1155 */ 1156 static void octeon_destroy_resources(struct octeon_device *oct) 1157 { 1158 int i, refcount; 1159 struct msix_entry *msix_entries; 1160 struct octeon_device_priv *oct_priv = 1161 (struct octeon_device_priv *)oct->priv; 1162 1163 struct handshake *hs; 1164 1165 switch (atomic_read(&oct->status)) { 1166 case OCT_DEV_RUNNING: 1167 case OCT_DEV_CORE_OK: 1168 1169 /* No more instructions will be forwarded. */ 1170 atomic_set(&oct->status, OCT_DEV_IN_RESET); 1171 1172 oct->app_mode = CVM_DRV_INVALID_APP; 1173 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 1174 lio_get_state_string(&oct->status)); 1175 1176 schedule_timeout_uninterruptible(HZ / 10); 1177 1178 /* fallthrough */ 1179 case OCT_DEV_HOST_OK: 1180 1181 /* fallthrough */ 1182 case OCT_DEV_CONSOLE_INIT_DONE: 1183 /* Remove any consoles */ 1184 octeon_remove_consoles(oct); 1185 1186 /* fallthrough */ 1187 case OCT_DEV_IO_QUEUES_DONE: 1188 if (wait_for_pending_requests(oct)) 1189 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 1190 1191 if (lio_wait_for_instr_fetch(oct)) 1192 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n"); 1193 1194 /* Disable the input and output queues now. No more packets will 1195 * arrive from Octeon, but we should wait for all packet 1196 * processing to finish. 1197 */ 1198 oct->fn_list.disable_io_queues(oct); 1199 1200 if (lio_wait_for_oq_pkts(oct)) 1201 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n"); 1202 1203 /* fallthrough */ 1204 case OCT_DEV_INTR_SET_DONE: 1205 /* Disable interrupts */ 1206 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1207 1208 if (oct->msix_on) { 1209 msix_entries = (struct msix_entry *)oct->msix_entries; 1210 for (i = 0; i < oct->num_msix_irqs - 1; i++) { 1211 if (oct->ioq_vector[i].vector) { 1212 /* clear the affinity_cpumask */ 1213 irq_set_affinity_hint( 1214 msix_entries[i].vector, 1215 NULL); 1216 free_irq(msix_entries[i].vector, 1217 &oct->ioq_vector[i]); 1218 oct->ioq_vector[i].vector = 0; 1219 } 1220 } 1221 /* non-iov vector's argument is oct struct */ 1222 free_irq(msix_entries[i].vector, oct); 1223 1224 pci_disable_msix(oct->pci_dev); 1225 kfree(oct->msix_entries); 1226 oct->msix_entries = NULL; 1227 } else { 1228 /* Release the interrupt line */ 1229 free_irq(oct->pci_dev->irq, oct); 1230 1231 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1232 pci_disable_msi(oct->pci_dev); 1233 } 1234 1235 kfree(oct->irq_name_storage); 1236 oct->irq_name_storage = NULL; 1237 1238 /* fallthrough */ 1239 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE: 1240 if (OCTEON_CN23XX_PF(oct)) 1241 octeon_free_ioq_vector(oct); 1242 1243 /* fallthrough */ 1244 case OCT_DEV_MBOX_SETUP_DONE: 1245 if (OCTEON_CN23XX_PF(oct)) 1246 oct->fn_list.free_mbox(oct); 1247 1248 /* fallthrough */ 1249 case OCT_DEV_IN_RESET: 1250 case OCT_DEV_DROQ_INIT_DONE: 1251 /* Wait for any pending operations */ 1252 mdelay(100); 1253 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 1254 if (!(oct->io_qmask.oq & BIT_ULL(i))) 1255 continue; 1256 octeon_delete_droq(oct, i); 1257 } 1258 1259 /* Force any pending handshakes to complete */ 1260 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 1261 hs = &handshake[i]; 1262 1263 if (hs->pci_dev) { 1264 handshake[oct->octeon_id].init_ok = 0; 1265 complete(&handshake[oct->octeon_id].init); 1266 handshake[oct->octeon_id].started_ok = 0; 1267 complete(&handshake[oct->octeon_id].started); 1268 } 1269 } 1270 1271 /* fallthrough */ 1272 case OCT_DEV_RESP_LIST_INIT_DONE: 1273 octeon_delete_response_list(oct); 1274 1275 /* fallthrough */ 1276 case OCT_DEV_INSTR_QUEUE_INIT_DONE: 1277 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 1278 if (!(oct->io_qmask.iq & BIT_ULL(i))) 1279 continue; 1280 octeon_delete_instr_queue(oct, i); 1281 } 1282 #ifdef CONFIG_PCI_IOV 1283 if (oct->sriov_info.sriov_enabled) 1284 pci_disable_sriov(oct->pci_dev); 1285 #endif 1286 /* fallthrough */ 1287 case OCT_DEV_SC_BUFF_POOL_INIT_DONE: 1288 octeon_free_sc_buffer_pool(oct); 1289 1290 /* fallthrough */ 1291 case OCT_DEV_DISPATCH_INIT_DONE: 1292 octeon_delete_dispatch_list(oct); 1293 cancel_delayed_work_sync(&oct->nic_poll_work.work); 1294 1295 /* fallthrough */ 1296 case OCT_DEV_PCI_MAP_DONE: 1297 refcount = octeon_deregister_device(oct); 1298 1299 /* Soft reset the octeon device before exiting. 1300 * However, if fw was loaded from card (i.e. autoboot), 1301 * perform an FLR instead. 1302 * Implementation note: only soft-reset the device 1303 * if it is a CN6XXX OR the LAST CN23XX device. 1304 */ 1305 if (fw_type_is_none()) 1306 octeon_pci_flr(oct); 1307 else if (OCTEON_CN6XXX(oct) || !refcount) 1308 oct->fn_list.soft_reset(oct); 1309 1310 octeon_unmap_pci_barx(oct, 0); 1311 octeon_unmap_pci_barx(oct, 1); 1312 1313 /* fallthrough */ 1314 case OCT_DEV_PCI_ENABLE_DONE: 1315 pci_clear_master(oct->pci_dev); 1316 /* Disable the device, releasing the PCI INT */ 1317 pci_disable_device(oct->pci_dev); 1318 1319 /* fallthrough */ 1320 case OCT_DEV_BEGIN_STATE: 1321 /* Nothing to be done here either */ 1322 break; 1323 } /* end switch (oct->status) */ 1324 1325 tasklet_kill(&oct_priv->droq_tasklet); 1326 } 1327 1328 /** 1329 * \brief Callback for rx ctrl 1330 * @param status status of request 1331 * @param buf pointer to resp structure 1332 */ 1333 static void rx_ctl_callback(struct octeon_device *oct, 1334 u32 status, 1335 void *buf) 1336 { 1337 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1338 struct liquidio_rx_ctl_context *ctx; 1339 1340 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1341 1342 oct = lio_get_device(ctx->octeon_id); 1343 if (status) 1344 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n", 1345 CVM_CAST64(status)); 1346 WRITE_ONCE(ctx->cond, 1); 1347 1348 /* This barrier is required to be sure that the response has been 1349 * written fully before waking up the handler 1350 */ 1351 wmb(); 1352 1353 wake_up_interruptible(&ctx->wc); 1354 } 1355 1356 /** 1357 * \brief Send Rx control command 1358 * @param lio per-network private data 1359 * @param start_stop whether to start or stop 1360 */ 1361 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop) 1362 { 1363 struct octeon_soft_command *sc; 1364 struct liquidio_rx_ctl_context *ctx; 1365 union octnet_cmd *ncmd; 1366 int ctx_size = sizeof(struct liquidio_rx_ctl_context); 1367 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1368 int retval; 1369 1370 if (oct->props[lio->ifidx].rx_on == start_stop) 1371 return; 1372 1373 sc = (struct octeon_soft_command *) 1374 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE, 1375 16, ctx_size); 1376 1377 ncmd = (union octnet_cmd *)sc->virtdptr; 1378 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1379 1380 WRITE_ONCE(ctx->cond, 0); 1381 ctx->octeon_id = lio_get_device_id(oct); 1382 init_waitqueue_head(&ctx->wc); 1383 1384 ncmd->u64 = 0; 1385 ncmd->s.cmd = OCTNET_CMD_RX_CTL; 1386 ncmd->s.param1 = start_stop; 1387 1388 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3)); 1389 1390 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 1391 1392 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 1393 OPCODE_NIC_CMD, 0, 0, 0); 1394 1395 sc->callback = rx_ctl_callback; 1396 sc->callback_arg = sc; 1397 sc->wait_time = 5000; 1398 1399 retval = octeon_send_soft_command(oct, sc); 1400 if (retval == IQ_SEND_FAILED) { 1401 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n"); 1402 } else { 1403 /* Sleep on a wait queue till the cond flag indicates that the 1404 * response arrived or timed-out. 1405 */ 1406 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) 1407 return; 1408 oct->props[lio->ifidx].rx_on = start_stop; 1409 } 1410 1411 octeon_free_soft_command(oct, sc); 1412 } 1413 1414 /** 1415 * \brief Destroy NIC device interface 1416 * @param oct octeon device 1417 * @param ifidx which interface to destroy 1418 * 1419 * Cleanup associated with each interface for an Octeon device when NIC 1420 * module is being unloaded or if initialization fails during load. 1421 */ 1422 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx) 1423 { 1424 struct net_device *netdev = oct->props[ifidx].netdev; 1425 struct lio *lio; 1426 struct napi_struct *napi, *n; 1427 1428 if (!netdev) { 1429 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n", 1430 __func__, ifidx); 1431 return; 1432 } 1433 1434 lio = GET_LIO(netdev); 1435 1436 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n"); 1437 1438 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) 1439 liquidio_stop(netdev); 1440 1441 if (oct->props[lio->ifidx].napi_enabled == 1) { 1442 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1443 napi_disable(napi); 1444 1445 oct->props[lio->ifidx].napi_enabled = 0; 1446 1447 if (OCTEON_CN23XX_PF(oct)) 1448 oct->droq[0]->ops.poll_mode = 0; 1449 } 1450 1451 /* Delete NAPI */ 1452 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1453 netif_napi_del(napi); 1454 1455 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) 1456 unregister_netdev(netdev); 1457 1458 cleanup_link_status_change_wq(netdev); 1459 1460 cleanup_rx_oom_poll_fn(netdev); 1461 1462 delete_glists(lio); 1463 1464 free_netdev(netdev); 1465 1466 oct->props[ifidx].gmxport = -1; 1467 1468 oct->props[ifidx].netdev = NULL; 1469 } 1470 1471 /** 1472 * \brief Stop complete NIC functionality 1473 * @param oct octeon device 1474 */ 1475 static int liquidio_stop_nic_module(struct octeon_device *oct) 1476 { 1477 int i, j; 1478 struct lio *lio; 1479 1480 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n"); 1481 if (!oct->ifcount) { 1482 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n"); 1483 return 1; 1484 } 1485 1486 spin_lock_bh(&oct->cmd_resp_wqlock); 1487 oct->cmd_resp_state = OCT_DRV_OFFLINE; 1488 spin_unlock_bh(&oct->cmd_resp_wqlock); 1489 1490 for (i = 0; i < oct->ifcount; i++) { 1491 lio = GET_LIO(oct->props[i].netdev); 1492 for (j = 0; j < oct->num_oqs; j++) 1493 octeon_unregister_droq_ops(oct, 1494 lio->linfo.rxpciq[j].s.q_no); 1495 } 1496 1497 for (i = 0; i < oct->ifcount; i++) 1498 liquidio_destroy_nic_device(oct, i); 1499 1500 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n"); 1501 return 0; 1502 } 1503 1504 /** 1505 * \brief Cleans up resources at unload time 1506 * @param pdev PCI device structure 1507 */ 1508 static void liquidio_remove(struct pci_dev *pdev) 1509 { 1510 struct octeon_device *oct_dev = pci_get_drvdata(pdev); 1511 1512 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n"); 1513 1514 if (oct_dev->watchdog_task) 1515 kthread_stop(oct_dev->watchdog_task); 1516 1517 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP)) 1518 liquidio_stop_nic_module(oct_dev); 1519 1520 /* Reset the octeon device and cleanup all memory allocated for 1521 * the octeon device by driver. 1522 */ 1523 octeon_destroy_resources(oct_dev); 1524 1525 dev_info(&oct_dev->pci_dev->dev, "Device removed\n"); 1526 1527 /* This octeon device has been removed. Update the global 1528 * data structure to reflect this. Free the device structure. 1529 */ 1530 octeon_free_device_mem(oct_dev); 1531 } 1532 1533 /** 1534 * \brief Identify the Octeon device and to map the BAR address space 1535 * @param oct octeon device 1536 */ 1537 static int octeon_chip_specific_setup(struct octeon_device *oct) 1538 { 1539 u32 dev_id, rev_id; 1540 int ret = 1; 1541 char *s; 1542 1543 pci_read_config_dword(oct->pci_dev, 0, &dev_id); 1544 pci_read_config_dword(oct->pci_dev, 8, &rev_id); 1545 oct->rev_id = rev_id & 0xff; 1546 1547 switch (dev_id) { 1548 case OCTEON_CN68XX_PCIID: 1549 oct->chip_id = OCTEON_CN68XX; 1550 ret = lio_setup_cn68xx_octeon_device(oct); 1551 s = "CN68XX"; 1552 break; 1553 1554 case OCTEON_CN66XX_PCIID: 1555 oct->chip_id = OCTEON_CN66XX; 1556 ret = lio_setup_cn66xx_octeon_device(oct); 1557 s = "CN66XX"; 1558 break; 1559 1560 case OCTEON_CN23XX_PCIID_PF: 1561 oct->chip_id = OCTEON_CN23XX_PF_VID; 1562 ret = setup_cn23xx_octeon_pf_device(oct); 1563 if (ret) 1564 break; 1565 #ifdef CONFIG_PCI_IOV 1566 if (!ret) 1567 pci_sriov_set_totalvfs(oct->pci_dev, 1568 oct->sriov_info.max_vfs); 1569 #endif 1570 s = "CN23XX"; 1571 break; 1572 1573 default: 1574 s = "?"; 1575 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n", 1576 dev_id); 1577 } 1578 1579 if (!ret) 1580 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s, 1581 OCTEON_MAJOR_REV(oct), 1582 OCTEON_MINOR_REV(oct), 1583 octeon_get_conf(oct)->card_name, 1584 LIQUIDIO_VERSION); 1585 1586 return ret; 1587 } 1588 1589 /** 1590 * \brief PCI initialization for each Octeon device. 1591 * @param oct octeon device 1592 */ 1593 static int octeon_pci_os_setup(struct octeon_device *oct) 1594 { 1595 /* setup PCI stuff first */ 1596 if (pci_enable_device(oct->pci_dev)) { 1597 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n"); 1598 return 1; 1599 } 1600 1601 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) { 1602 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n"); 1603 pci_disable_device(oct->pci_dev); 1604 return 1; 1605 } 1606 1607 /* Enable PCI DMA Master. */ 1608 pci_set_master(oct->pci_dev); 1609 1610 return 0; 1611 } 1612 1613 static inline int skb_iq(struct lio *lio, struct sk_buff *skb) 1614 { 1615 int q = 0; 1616 1617 if (netif_is_multiqueue(lio->netdev)) 1618 q = skb->queue_mapping % lio->linfo.num_txpciq; 1619 1620 return q; 1621 } 1622 1623 /** 1624 * \brief Check Tx queue state for a given network buffer 1625 * @param lio per-network private data 1626 * @param skb network buffer 1627 */ 1628 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb) 1629 { 1630 int q = 0, iq = 0; 1631 1632 if (netif_is_multiqueue(lio->netdev)) { 1633 q = skb->queue_mapping; 1634 iq = lio->linfo.txpciq[(q % lio->oct_dev->num_iqs)].s.q_no; 1635 } else { 1636 iq = lio->txq; 1637 q = iq; 1638 } 1639 1640 if (octnet_iq_is_full(lio->oct_dev, iq)) 1641 return 0; 1642 1643 if (__netif_subqueue_stopped(lio->netdev, q)) { 1644 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1); 1645 wake_q(lio->netdev, q); 1646 } 1647 return 1; 1648 } 1649 1650 /** 1651 * \brief Unmap and free network buffer 1652 * @param buf buffer 1653 */ 1654 static void free_netbuf(void *buf) 1655 { 1656 struct sk_buff *skb; 1657 struct octnet_buf_free_info *finfo; 1658 struct lio *lio; 1659 1660 finfo = (struct octnet_buf_free_info *)buf; 1661 skb = finfo->skb; 1662 lio = finfo->lio; 1663 1664 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len, 1665 DMA_TO_DEVICE); 1666 1667 check_txq_state(lio, skb); 1668 1669 tx_buffer_free(skb); 1670 } 1671 1672 /** 1673 * \brief Unmap and free gather buffer 1674 * @param buf buffer 1675 */ 1676 static void free_netsgbuf(void *buf) 1677 { 1678 struct octnet_buf_free_info *finfo; 1679 struct sk_buff *skb; 1680 struct lio *lio; 1681 struct octnic_gather *g; 1682 int i, frags, iq; 1683 1684 finfo = (struct octnet_buf_free_info *)buf; 1685 skb = finfo->skb; 1686 lio = finfo->lio; 1687 g = finfo->g; 1688 frags = skb_shinfo(skb)->nr_frags; 1689 1690 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1691 g->sg[0].ptr[0], (skb->len - skb->data_len), 1692 DMA_TO_DEVICE); 1693 1694 i = 1; 1695 while (frags--) { 1696 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1697 1698 pci_unmap_page((lio->oct_dev)->pci_dev, 1699 g->sg[(i >> 2)].ptr[(i & 3)], 1700 frag->size, DMA_TO_DEVICE); 1701 i++; 1702 } 1703 1704 iq = skb_iq(lio, skb); 1705 spin_lock(&lio->glist_lock[iq]); 1706 list_add_tail(&g->list, &lio->glist[iq]); 1707 spin_unlock(&lio->glist_lock[iq]); 1708 1709 check_txq_state(lio, skb); /* mq support: sub-queue state check */ 1710 1711 tx_buffer_free(skb); 1712 } 1713 1714 /** 1715 * \brief Unmap and free gather buffer with response 1716 * @param buf buffer 1717 */ 1718 static void free_netsgbuf_with_resp(void *buf) 1719 { 1720 struct octeon_soft_command *sc; 1721 struct octnet_buf_free_info *finfo; 1722 struct sk_buff *skb; 1723 struct lio *lio; 1724 struct octnic_gather *g; 1725 int i, frags, iq; 1726 1727 sc = (struct octeon_soft_command *)buf; 1728 skb = (struct sk_buff *)sc->callback_arg; 1729 finfo = (struct octnet_buf_free_info *)&skb->cb; 1730 1731 lio = finfo->lio; 1732 g = finfo->g; 1733 frags = skb_shinfo(skb)->nr_frags; 1734 1735 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1736 g->sg[0].ptr[0], (skb->len - skb->data_len), 1737 DMA_TO_DEVICE); 1738 1739 i = 1; 1740 while (frags--) { 1741 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1742 1743 pci_unmap_page((lio->oct_dev)->pci_dev, 1744 g->sg[(i >> 2)].ptr[(i & 3)], 1745 frag->size, DMA_TO_DEVICE); 1746 i++; 1747 } 1748 1749 iq = skb_iq(lio, skb); 1750 1751 spin_lock(&lio->glist_lock[iq]); 1752 list_add_tail(&g->list, &lio->glist[iq]); 1753 spin_unlock(&lio->glist_lock[iq]); 1754 1755 /* Don't free the skb yet */ 1756 1757 check_txq_state(lio, skb); 1758 } 1759 1760 /** 1761 * \brief Adjust ptp frequency 1762 * @param ptp PTP clock info 1763 * @param ppb how much to adjust by, in parts-per-billion 1764 */ 1765 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 1766 { 1767 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1768 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1769 u64 comp, delta; 1770 unsigned long flags; 1771 bool neg_adj = false; 1772 1773 if (ppb < 0) { 1774 neg_adj = true; 1775 ppb = -ppb; 1776 } 1777 1778 /* The hardware adds the clock compensation value to the 1779 * PTP clock on every coprocessor clock cycle, so we 1780 * compute the delta in terms of coprocessor clocks. 1781 */ 1782 delta = (u64)ppb << 32; 1783 do_div(delta, oct->coproc_clock_rate); 1784 1785 spin_lock_irqsave(&lio->ptp_lock, flags); 1786 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP); 1787 if (neg_adj) 1788 comp -= delta; 1789 else 1790 comp += delta; 1791 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP); 1792 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1793 1794 return 0; 1795 } 1796 1797 /** 1798 * \brief Adjust ptp time 1799 * @param ptp PTP clock info 1800 * @param delta how much to adjust by, in nanosecs 1801 */ 1802 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 1803 { 1804 unsigned long flags; 1805 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1806 1807 spin_lock_irqsave(&lio->ptp_lock, flags); 1808 lio->ptp_adjust += delta; 1809 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1810 1811 return 0; 1812 } 1813 1814 /** 1815 * \brief Get hardware clock time, including any adjustment 1816 * @param ptp PTP clock info 1817 * @param ts timespec 1818 */ 1819 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp, 1820 struct timespec64 *ts) 1821 { 1822 u64 ns; 1823 unsigned long flags; 1824 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1825 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1826 1827 spin_lock_irqsave(&lio->ptp_lock, flags); 1828 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI); 1829 ns += lio->ptp_adjust; 1830 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1831 1832 *ts = ns_to_timespec64(ns); 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * \brief Set hardware clock time. Reset adjustment 1839 * @param ptp PTP clock info 1840 * @param ts timespec 1841 */ 1842 static int liquidio_ptp_settime(struct ptp_clock_info *ptp, 1843 const struct timespec64 *ts) 1844 { 1845 u64 ns; 1846 unsigned long flags; 1847 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1848 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1849 1850 ns = timespec64_to_ns(ts); 1851 1852 spin_lock_irqsave(&lio->ptp_lock, flags); 1853 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI); 1854 lio->ptp_adjust = 0; 1855 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * \brief Check if PTP is enabled 1862 * @param ptp PTP clock info 1863 * @param rq request 1864 * @param on is it on 1865 */ 1866 static int 1867 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)), 1868 struct ptp_clock_request *rq __attribute__((unused)), 1869 int on __attribute__((unused))) 1870 { 1871 return -EOPNOTSUPP; 1872 } 1873 1874 /** 1875 * \brief Open PTP clock source 1876 * @param netdev network device 1877 */ 1878 static void oct_ptp_open(struct net_device *netdev) 1879 { 1880 struct lio *lio = GET_LIO(netdev); 1881 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1882 1883 spin_lock_init(&lio->ptp_lock); 1884 1885 snprintf(lio->ptp_info.name, 16, "%s", netdev->name); 1886 lio->ptp_info.owner = THIS_MODULE; 1887 lio->ptp_info.max_adj = 250000000; 1888 lio->ptp_info.n_alarm = 0; 1889 lio->ptp_info.n_ext_ts = 0; 1890 lio->ptp_info.n_per_out = 0; 1891 lio->ptp_info.pps = 0; 1892 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq; 1893 lio->ptp_info.adjtime = liquidio_ptp_adjtime; 1894 lio->ptp_info.gettime64 = liquidio_ptp_gettime; 1895 lio->ptp_info.settime64 = liquidio_ptp_settime; 1896 lio->ptp_info.enable = liquidio_ptp_enable; 1897 1898 lio->ptp_adjust = 0; 1899 1900 lio->ptp_clock = ptp_clock_register(&lio->ptp_info, 1901 &oct->pci_dev->dev); 1902 1903 if (IS_ERR(lio->ptp_clock)) 1904 lio->ptp_clock = NULL; 1905 } 1906 1907 /** 1908 * \brief Init PTP clock 1909 * @param oct octeon device 1910 */ 1911 static void liquidio_ptp_init(struct octeon_device *oct) 1912 { 1913 u64 clock_comp, cfg; 1914 1915 clock_comp = (u64)NSEC_PER_SEC << 32; 1916 do_div(clock_comp, oct->coproc_clock_rate); 1917 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP); 1918 1919 /* Enable */ 1920 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG); 1921 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG); 1922 } 1923 1924 /** 1925 * \brief Load firmware to device 1926 * @param oct octeon device 1927 * 1928 * Maps device to firmware filename, requests firmware, and downloads it 1929 */ 1930 static int load_firmware(struct octeon_device *oct) 1931 { 1932 int ret = 0; 1933 const struct firmware *fw; 1934 char fw_name[LIO_MAX_FW_FILENAME_LEN]; 1935 char *tmp_fw_type; 1936 1937 if (fw_type[0] == '\0') 1938 tmp_fw_type = LIO_FW_NAME_TYPE_NIC; 1939 else 1940 tmp_fw_type = fw_type; 1941 1942 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME, 1943 octeon_get_conf(oct)->card_name, tmp_fw_type, 1944 LIO_FW_NAME_SUFFIX); 1945 1946 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev); 1947 if (ret) { 1948 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.", 1949 fw_name); 1950 release_firmware(fw); 1951 return ret; 1952 } 1953 1954 ret = octeon_download_firmware(oct, fw->data, fw->size); 1955 1956 release_firmware(fw); 1957 1958 return ret; 1959 } 1960 1961 /** 1962 * \brief Callback for getting interface configuration 1963 * @param status status of request 1964 * @param buf pointer to resp structure 1965 */ 1966 static void if_cfg_callback(struct octeon_device *oct, 1967 u32 status __attribute__((unused)), 1968 void *buf) 1969 { 1970 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1971 struct liquidio_if_cfg_resp *resp; 1972 struct liquidio_if_cfg_context *ctx; 1973 1974 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 1975 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 1976 1977 oct = lio_get_device(ctx->octeon_id); 1978 if (resp->status) 1979 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: 0x%llx (0x%08x)\n", 1980 CVM_CAST64(resp->status), status); 1981 WRITE_ONCE(ctx->cond, 1); 1982 1983 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s", 1984 resp->cfg_info.liquidio_firmware_version); 1985 1986 /* This barrier is required to be sure that the response has been 1987 * written fully before waking up the handler 1988 */ 1989 wmb(); 1990 1991 wake_up_interruptible(&ctx->wc); 1992 } 1993 1994 /** 1995 * \brief Poll routine for checking transmit queue status 1996 * @param work work_struct data structure 1997 */ 1998 static void octnet_poll_check_txq_status(struct work_struct *work) 1999 { 2000 struct cavium_wk *wk = (struct cavium_wk *)work; 2001 struct lio *lio = (struct lio *)wk->ctxptr; 2002 2003 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) 2004 return; 2005 2006 check_txq_status(lio); 2007 queue_delayed_work(lio->txq_status_wq.wq, 2008 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2009 } 2010 2011 /** 2012 * \brief Sets up the txq poll check 2013 * @param netdev network device 2014 */ 2015 static inline int setup_tx_poll_fn(struct net_device *netdev) 2016 { 2017 struct lio *lio = GET_LIO(netdev); 2018 struct octeon_device *oct = lio->oct_dev; 2019 2020 lio->txq_status_wq.wq = alloc_workqueue("txq-status", 2021 WQ_MEM_RECLAIM, 0); 2022 if (!lio->txq_status_wq.wq) { 2023 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n"); 2024 return -1; 2025 } 2026 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work, 2027 octnet_poll_check_txq_status); 2028 lio->txq_status_wq.wk.ctxptr = lio; 2029 queue_delayed_work(lio->txq_status_wq.wq, 2030 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2031 return 0; 2032 } 2033 2034 static inline void cleanup_tx_poll_fn(struct net_device *netdev) 2035 { 2036 struct lio *lio = GET_LIO(netdev); 2037 2038 if (lio->txq_status_wq.wq) { 2039 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work); 2040 destroy_workqueue(lio->txq_status_wq.wq); 2041 } 2042 } 2043 2044 /** 2045 * \brief Net device open for LiquidIO 2046 * @param netdev network device 2047 */ 2048 static int liquidio_open(struct net_device *netdev) 2049 { 2050 struct lio *lio = GET_LIO(netdev); 2051 struct octeon_device *oct = lio->oct_dev; 2052 struct napi_struct *napi, *n; 2053 2054 if (oct->props[lio->ifidx].napi_enabled == 0) { 2055 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2056 napi_enable(napi); 2057 2058 oct->props[lio->ifidx].napi_enabled = 1; 2059 2060 if (OCTEON_CN23XX_PF(oct)) 2061 oct->droq[0]->ops.poll_mode = 1; 2062 } 2063 2064 if (oct->ptp_enable) 2065 oct_ptp_open(netdev); 2066 2067 ifstate_set(lio, LIO_IFSTATE_RUNNING); 2068 2069 /* Ready for link status updates */ 2070 lio->intf_open = 1; 2071 2072 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n"); 2073 2074 if (OCTEON_CN23XX_PF(oct)) { 2075 if (!oct->msix_on) 2076 if (setup_tx_poll_fn(netdev)) 2077 return -1; 2078 } else { 2079 if (setup_tx_poll_fn(netdev)) 2080 return -1; 2081 } 2082 2083 start_txq(netdev); 2084 2085 /* tell Octeon to start forwarding packets to host */ 2086 send_rx_ctrl_cmd(lio, 1); 2087 2088 dev_info(&oct->pci_dev->dev, "%s interface is opened\n", 2089 netdev->name); 2090 2091 return 0; 2092 } 2093 2094 /** 2095 * \brief Net device stop for LiquidIO 2096 * @param netdev network device 2097 */ 2098 static int liquidio_stop(struct net_device *netdev) 2099 { 2100 struct lio *lio = GET_LIO(netdev); 2101 struct octeon_device *oct = lio->oct_dev; 2102 struct napi_struct *napi, *n; 2103 2104 if (oct->props[lio->ifidx].napi_enabled) { 2105 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2106 napi_disable(napi); 2107 2108 oct->props[lio->ifidx].napi_enabled = 0; 2109 2110 if (OCTEON_CN23XX_PF(oct)) 2111 oct->droq[0]->ops.poll_mode = 0; 2112 } 2113 2114 ifstate_reset(lio, LIO_IFSTATE_RUNNING); 2115 2116 netif_tx_disable(netdev); 2117 2118 /* Inform that netif carrier is down */ 2119 netif_carrier_off(netdev); 2120 lio->intf_open = 0; 2121 lio->linfo.link.s.link_up = 0; 2122 lio->link_changes++; 2123 2124 /* Tell Octeon that nic interface is down. */ 2125 send_rx_ctrl_cmd(lio, 0); 2126 2127 if (OCTEON_CN23XX_PF(oct)) { 2128 if (!oct->msix_on) 2129 cleanup_tx_poll_fn(netdev); 2130 } else { 2131 cleanup_tx_poll_fn(netdev); 2132 } 2133 2134 if (lio->ptp_clock) { 2135 ptp_clock_unregister(lio->ptp_clock); 2136 lio->ptp_clock = NULL; 2137 } 2138 2139 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name); 2140 2141 return 0; 2142 } 2143 2144 /** 2145 * \brief Converts a mask based on net device flags 2146 * @param netdev network device 2147 * 2148 * This routine generates a octnet_ifflags mask from the net device flags 2149 * received from the OS. 2150 */ 2151 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev) 2152 { 2153 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST; 2154 2155 if (netdev->flags & IFF_PROMISC) 2156 f |= OCTNET_IFFLAG_PROMISC; 2157 2158 if (netdev->flags & IFF_ALLMULTI) 2159 f |= OCTNET_IFFLAG_ALLMULTI; 2160 2161 if (netdev->flags & IFF_MULTICAST) { 2162 f |= OCTNET_IFFLAG_MULTICAST; 2163 2164 /* Accept all multicast addresses if there are more than we 2165 * can handle 2166 */ 2167 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR) 2168 f |= OCTNET_IFFLAG_ALLMULTI; 2169 } 2170 2171 if (netdev->flags & IFF_BROADCAST) 2172 f |= OCTNET_IFFLAG_BROADCAST; 2173 2174 return f; 2175 } 2176 2177 /** 2178 * \brief Net device set_multicast_list 2179 * @param netdev network device 2180 */ 2181 static void liquidio_set_mcast_list(struct net_device *netdev) 2182 { 2183 struct lio *lio = GET_LIO(netdev); 2184 struct octeon_device *oct = lio->oct_dev; 2185 struct octnic_ctrl_pkt nctrl; 2186 struct netdev_hw_addr *ha; 2187 u64 *mc; 2188 int ret; 2189 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR); 2190 2191 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2192 2193 /* Create a ctrl pkt command to be sent to core app. */ 2194 nctrl.ncmd.u64 = 0; 2195 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST; 2196 nctrl.ncmd.s.param1 = get_new_flags(netdev); 2197 nctrl.ncmd.s.param2 = mc_count; 2198 nctrl.ncmd.s.more = mc_count; 2199 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2200 nctrl.netpndev = (u64)netdev; 2201 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2202 2203 /* copy all the addresses into the udd */ 2204 mc = &nctrl.udd[0]; 2205 netdev_for_each_mc_addr(ha, netdev) { 2206 *mc = 0; 2207 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN); 2208 /* no need to swap bytes */ 2209 2210 if (++mc > &nctrl.udd[mc_count]) 2211 break; 2212 } 2213 2214 /* Apparently, any activity in this call from the kernel has to 2215 * be atomic. So we won't wait for response. 2216 */ 2217 nctrl.wait_time = 0; 2218 2219 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2220 if (ret < 0) { 2221 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n", 2222 ret); 2223 } 2224 } 2225 2226 /** 2227 * \brief Net device set_mac_address 2228 * @param netdev network device 2229 */ 2230 static int liquidio_set_mac(struct net_device *netdev, void *p) 2231 { 2232 int ret = 0; 2233 struct lio *lio = GET_LIO(netdev); 2234 struct octeon_device *oct = lio->oct_dev; 2235 struct sockaddr *addr = (struct sockaddr *)p; 2236 struct octnic_ctrl_pkt nctrl; 2237 2238 if (!is_valid_ether_addr(addr->sa_data)) 2239 return -EADDRNOTAVAIL; 2240 2241 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2242 2243 nctrl.ncmd.u64 = 0; 2244 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 2245 nctrl.ncmd.s.param1 = 0; 2246 nctrl.ncmd.s.more = 1; 2247 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2248 nctrl.netpndev = (u64)netdev; 2249 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2250 nctrl.wait_time = 100; 2251 2252 nctrl.udd[0] = 0; 2253 /* The MAC Address is presented in network byte order. */ 2254 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN); 2255 2256 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2257 if (ret < 0) { 2258 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n"); 2259 return -ENOMEM; 2260 } 2261 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2262 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN); 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * \brief Net device get_stats 2269 * @param netdev network device 2270 */ 2271 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev) 2272 { 2273 struct lio *lio = GET_LIO(netdev); 2274 struct net_device_stats *stats = &netdev->stats; 2275 struct octeon_device *oct; 2276 u64 pkts = 0, drop = 0, bytes = 0; 2277 struct oct_droq_stats *oq_stats; 2278 struct oct_iq_stats *iq_stats; 2279 int i, iq_no, oq_no; 2280 2281 oct = lio->oct_dev; 2282 2283 if (ifstate_check(lio, LIO_IFSTATE_RESETTING)) 2284 return stats; 2285 2286 for (i = 0; i < oct->num_iqs; i++) { 2287 iq_no = lio->linfo.txpciq[i].s.q_no; 2288 iq_stats = &oct->instr_queue[iq_no]->stats; 2289 pkts += iq_stats->tx_done; 2290 drop += iq_stats->tx_dropped; 2291 bytes += iq_stats->tx_tot_bytes; 2292 } 2293 2294 stats->tx_packets = pkts; 2295 stats->tx_bytes = bytes; 2296 stats->tx_dropped = drop; 2297 2298 pkts = 0; 2299 drop = 0; 2300 bytes = 0; 2301 2302 for (i = 0; i < oct->num_oqs; i++) { 2303 oq_no = lio->linfo.rxpciq[i].s.q_no; 2304 oq_stats = &oct->droq[oq_no]->stats; 2305 pkts += oq_stats->rx_pkts_received; 2306 drop += (oq_stats->rx_dropped + 2307 oq_stats->dropped_nodispatch + 2308 oq_stats->dropped_toomany + 2309 oq_stats->dropped_nomem); 2310 bytes += oq_stats->rx_bytes_received; 2311 } 2312 2313 stats->rx_bytes = bytes; 2314 stats->rx_packets = pkts; 2315 stats->rx_dropped = drop; 2316 2317 return stats; 2318 } 2319 2320 /** 2321 * \brief Net device change_mtu 2322 * @param netdev network device 2323 */ 2324 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu) 2325 { 2326 struct lio *lio = GET_LIO(netdev); 2327 struct octeon_device *oct = lio->oct_dev; 2328 struct octnic_ctrl_pkt nctrl; 2329 int ret = 0; 2330 2331 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2332 2333 nctrl.ncmd.u64 = 0; 2334 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU; 2335 nctrl.ncmd.s.param1 = new_mtu; 2336 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2337 nctrl.wait_time = 100; 2338 nctrl.netpndev = (u64)netdev; 2339 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2340 2341 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2342 if (ret < 0) { 2343 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n"); 2344 return -1; 2345 } 2346 2347 lio->mtu = new_mtu; 2348 2349 return 0; 2350 } 2351 2352 /** 2353 * \brief Handler for SIOCSHWTSTAMP ioctl 2354 * @param netdev network device 2355 * @param ifr interface request 2356 * @param cmd command 2357 */ 2358 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr) 2359 { 2360 struct hwtstamp_config conf; 2361 struct lio *lio = GET_LIO(netdev); 2362 2363 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf))) 2364 return -EFAULT; 2365 2366 if (conf.flags) 2367 return -EINVAL; 2368 2369 switch (conf.tx_type) { 2370 case HWTSTAMP_TX_ON: 2371 case HWTSTAMP_TX_OFF: 2372 break; 2373 default: 2374 return -ERANGE; 2375 } 2376 2377 switch (conf.rx_filter) { 2378 case HWTSTAMP_FILTER_NONE: 2379 break; 2380 case HWTSTAMP_FILTER_ALL: 2381 case HWTSTAMP_FILTER_SOME: 2382 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2383 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2384 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2385 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2386 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2387 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2388 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2389 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2390 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2391 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2392 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2393 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2394 case HWTSTAMP_FILTER_NTP_ALL: 2395 conf.rx_filter = HWTSTAMP_FILTER_ALL; 2396 break; 2397 default: 2398 return -ERANGE; 2399 } 2400 2401 if (conf.rx_filter == HWTSTAMP_FILTER_ALL) 2402 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 2403 2404 else 2405 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 2406 2407 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0; 2408 } 2409 2410 /** 2411 * \brief ioctl handler 2412 * @param netdev network device 2413 * @param ifr interface request 2414 * @param cmd command 2415 */ 2416 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2417 { 2418 struct lio *lio = GET_LIO(netdev); 2419 2420 switch (cmd) { 2421 case SIOCSHWTSTAMP: 2422 if (lio->oct_dev->ptp_enable) 2423 return hwtstamp_ioctl(netdev, ifr); 2424 default: 2425 return -EOPNOTSUPP; 2426 } 2427 } 2428 2429 /** 2430 * \brief handle a Tx timestamp response 2431 * @param status response status 2432 * @param buf pointer to skb 2433 */ 2434 static void handle_timestamp(struct octeon_device *oct, 2435 u32 status, 2436 void *buf) 2437 { 2438 struct octnet_buf_free_info *finfo; 2439 struct octeon_soft_command *sc; 2440 struct oct_timestamp_resp *resp; 2441 struct lio *lio; 2442 struct sk_buff *skb = (struct sk_buff *)buf; 2443 2444 finfo = (struct octnet_buf_free_info *)skb->cb; 2445 lio = finfo->lio; 2446 sc = finfo->sc; 2447 oct = lio->oct_dev; 2448 resp = (struct oct_timestamp_resp *)sc->virtrptr; 2449 2450 if (status != OCTEON_REQUEST_DONE) { 2451 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n", 2452 CVM_CAST64(status)); 2453 resp->timestamp = 0; 2454 } 2455 2456 octeon_swap_8B_data(&resp->timestamp, 1); 2457 2458 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) { 2459 struct skb_shared_hwtstamps ts; 2460 u64 ns = resp->timestamp; 2461 2462 netif_info(lio, tx_done, lio->netdev, 2463 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n", 2464 skb, (unsigned long long)ns); 2465 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust); 2466 skb_tstamp_tx(skb, &ts); 2467 } 2468 2469 octeon_free_soft_command(oct, sc); 2470 tx_buffer_free(skb); 2471 } 2472 2473 /* \brief Send a data packet that will be timestamped 2474 * @param oct octeon device 2475 * @param ndata pointer to network data 2476 * @param finfo pointer to private network data 2477 */ 2478 static inline int send_nic_timestamp_pkt(struct octeon_device *oct, 2479 struct octnic_data_pkt *ndata, 2480 struct octnet_buf_free_info *finfo) 2481 { 2482 int retval; 2483 struct octeon_soft_command *sc; 2484 struct lio *lio; 2485 int ring_doorbell; 2486 u32 len; 2487 2488 lio = finfo->lio; 2489 2490 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd, 2491 sizeof(struct oct_timestamp_resp)); 2492 finfo->sc = sc; 2493 2494 if (!sc) { 2495 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n"); 2496 return IQ_SEND_FAILED; 2497 } 2498 2499 if (ndata->reqtype == REQTYPE_NORESP_NET) 2500 ndata->reqtype = REQTYPE_RESP_NET; 2501 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG) 2502 ndata->reqtype = REQTYPE_RESP_NET_SG; 2503 2504 sc->callback = handle_timestamp; 2505 sc->callback_arg = finfo->skb; 2506 sc->iq_no = ndata->q_no; 2507 2508 if (OCTEON_CN23XX_PF(oct)) 2509 len = (u32)((struct octeon_instr_ih3 *) 2510 (&sc->cmd.cmd3.ih3))->dlengsz; 2511 else 2512 len = (u32)((struct octeon_instr_ih2 *) 2513 (&sc->cmd.cmd2.ih2))->dlengsz; 2514 2515 ring_doorbell = 1; 2516 2517 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd, 2518 sc, len, ndata->reqtype); 2519 2520 if (retval == IQ_SEND_FAILED) { 2521 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n", 2522 retval); 2523 octeon_free_soft_command(oct, sc); 2524 } else { 2525 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n"); 2526 } 2527 2528 return retval; 2529 } 2530 2531 /** \brief Transmit networks packets to the Octeon interface 2532 * @param skbuff skbuff struct to be passed to network layer. 2533 * @param netdev pointer to network device 2534 * @returns whether the packet was transmitted to the device okay or not 2535 * (NETDEV_TX_OK or NETDEV_TX_BUSY) 2536 */ 2537 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev) 2538 { 2539 struct lio *lio; 2540 struct octnet_buf_free_info *finfo; 2541 union octnic_cmd_setup cmdsetup; 2542 struct octnic_data_pkt ndata; 2543 struct octeon_device *oct; 2544 struct oct_iq_stats *stats; 2545 struct octeon_instr_irh *irh; 2546 union tx_info *tx_info; 2547 int status = 0; 2548 int q_idx = 0, iq_no = 0; 2549 int j; 2550 u64 dptr = 0; 2551 u32 tag = 0; 2552 2553 lio = GET_LIO(netdev); 2554 oct = lio->oct_dev; 2555 2556 if (netif_is_multiqueue(netdev)) { 2557 q_idx = skb->queue_mapping; 2558 q_idx = (q_idx % (lio->linfo.num_txpciq)); 2559 tag = q_idx; 2560 iq_no = lio->linfo.txpciq[q_idx].s.q_no; 2561 } else { 2562 iq_no = lio->txq; 2563 } 2564 2565 stats = &oct->instr_queue[iq_no]->stats; 2566 2567 /* Check for all conditions in which the current packet cannot be 2568 * transmitted. 2569 */ 2570 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) || 2571 (!lio->linfo.link.s.link_up) || 2572 (skb->len <= 0)) { 2573 netif_info(lio, tx_err, lio->netdev, 2574 "Transmit failed link_status : %d\n", 2575 lio->linfo.link.s.link_up); 2576 goto lio_xmit_failed; 2577 } 2578 2579 /* Use space in skb->cb to store info used to unmap and 2580 * free the buffers. 2581 */ 2582 finfo = (struct octnet_buf_free_info *)skb->cb; 2583 finfo->lio = lio; 2584 finfo->skb = skb; 2585 finfo->sc = NULL; 2586 2587 /* Prepare the attributes for the data to be passed to OSI. */ 2588 memset(&ndata, 0, sizeof(struct octnic_data_pkt)); 2589 2590 ndata.buf = (void *)finfo; 2591 2592 ndata.q_no = iq_no; 2593 2594 if (netif_is_multiqueue(netdev)) { 2595 if (octnet_iq_is_full(oct, ndata.q_no)) { 2596 /* defer sending if queue is full */ 2597 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 2598 ndata.q_no); 2599 stats->tx_iq_busy++; 2600 return NETDEV_TX_BUSY; 2601 } 2602 } else { 2603 if (octnet_iq_is_full(oct, lio->txq)) { 2604 /* defer sending if queue is full */ 2605 stats->tx_iq_busy++; 2606 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 2607 lio->txq); 2608 return NETDEV_TX_BUSY; 2609 } 2610 } 2611 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n", 2612 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no); 2613 */ 2614 2615 ndata.datasize = skb->len; 2616 2617 cmdsetup.u64 = 0; 2618 cmdsetup.s.iq_no = iq_no; 2619 2620 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2621 if (skb->encapsulation) { 2622 cmdsetup.s.tnl_csum = 1; 2623 stats->tx_vxlan++; 2624 } else { 2625 cmdsetup.s.transport_csum = 1; 2626 } 2627 } 2628 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 2629 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2630 cmdsetup.s.timestamp = 1; 2631 } 2632 2633 if (skb_shinfo(skb)->nr_frags == 0) { 2634 cmdsetup.s.u.datasize = skb->len; 2635 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 2636 2637 /* Offload checksum calculation for TCP/UDP packets */ 2638 dptr = dma_map_single(&oct->pci_dev->dev, 2639 skb->data, 2640 skb->len, 2641 DMA_TO_DEVICE); 2642 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) { 2643 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n", 2644 __func__); 2645 return NETDEV_TX_BUSY; 2646 } 2647 2648 if (OCTEON_CN23XX_PF(oct)) 2649 ndata.cmd.cmd3.dptr = dptr; 2650 else 2651 ndata.cmd.cmd2.dptr = dptr; 2652 finfo->dptr = dptr; 2653 ndata.reqtype = REQTYPE_NORESP_NET; 2654 2655 } else { 2656 int i, frags; 2657 struct skb_frag_struct *frag; 2658 struct octnic_gather *g; 2659 2660 spin_lock(&lio->glist_lock[q_idx]); 2661 g = (struct octnic_gather *) 2662 list_delete_head(&lio->glist[q_idx]); 2663 spin_unlock(&lio->glist_lock[q_idx]); 2664 2665 if (!g) { 2666 netif_info(lio, tx_err, lio->netdev, 2667 "Transmit scatter gather: glist null!\n"); 2668 goto lio_xmit_failed; 2669 } 2670 2671 cmdsetup.s.gather = 1; 2672 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1); 2673 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 2674 2675 memset(g->sg, 0, g->sg_size); 2676 2677 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev, 2678 skb->data, 2679 (skb->len - skb->data_len), 2680 DMA_TO_DEVICE); 2681 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) { 2682 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n", 2683 __func__); 2684 return NETDEV_TX_BUSY; 2685 } 2686 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0); 2687 2688 frags = skb_shinfo(skb)->nr_frags; 2689 i = 1; 2690 while (frags--) { 2691 frag = &skb_shinfo(skb)->frags[i - 1]; 2692 2693 g->sg[(i >> 2)].ptr[(i & 3)] = 2694 dma_map_page(&oct->pci_dev->dev, 2695 frag->page.p, 2696 frag->page_offset, 2697 frag->size, 2698 DMA_TO_DEVICE); 2699 2700 if (dma_mapping_error(&oct->pci_dev->dev, 2701 g->sg[i >> 2].ptr[i & 3])) { 2702 dma_unmap_single(&oct->pci_dev->dev, 2703 g->sg[0].ptr[0], 2704 skb->len - skb->data_len, 2705 DMA_TO_DEVICE); 2706 for (j = 1; j < i; j++) { 2707 frag = &skb_shinfo(skb)->frags[j - 1]; 2708 dma_unmap_page(&oct->pci_dev->dev, 2709 g->sg[j >> 2].ptr[j & 3], 2710 frag->size, 2711 DMA_TO_DEVICE); 2712 } 2713 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n", 2714 __func__); 2715 return NETDEV_TX_BUSY; 2716 } 2717 2718 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3)); 2719 i++; 2720 } 2721 2722 dptr = g->sg_dma_ptr; 2723 2724 if (OCTEON_CN23XX_PF(oct)) 2725 ndata.cmd.cmd3.dptr = dptr; 2726 else 2727 ndata.cmd.cmd2.dptr = dptr; 2728 finfo->dptr = dptr; 2729 finfo->g = g; 2730 2731 ndata.reqtype = REQTYPE_NORESP_NET_SG; 2732 } 2733 2734 if (OCTEON_CN23XX_PF(oct)) { 2735 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh; 2736 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0]; 2737 } else { 2738 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh; 2739 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0]; 2740 } 2741 2742 if (skb_shinfo(skb)->gso_size) { 2743 tx_info->s.gso_size = skb_shinfo(skb)->gso_size; 2744 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs; 2745 stats->tx_gso++; 2746 } 2747 2748 /* HW insert VLAN tag */ 2749 if (skb_vlan_tag_present(skb)) { 2750 irh->priority = skb_vlan_tag_get(skb) >> 13; 2751 irh->vlan = skb_vlan_tag_get(skb) & 0xfff; 2752 } 2753 2754 if (unlikely(cmdsetup.s.timestamp)) 2755 status = send_nic_timestamp_pkt(oct, &ndata, finfo); 2756 else 2757 status = octnet_send_nic_data_pkt(oct, &ndata); 2758 if (status == IQ_SEND_FAILED) 2759 goto lio_xmit_failed; 2760 2761 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n"); 2762 2763 if (status == IQ_SEND_STOP) 2764 stop_q(lio->netdev, q_idx); 2765 2766 netif_trans_update(netdev); 2767 2768 if (tx_info->s.gso_segs) 2769 stats->tx_done += tx_info->s.gso_segs; 2770 else 2771 stats->tx_done++; 2772 stats->tx_tot_bytes += ndata.datasize; 2773 2774 return NETDEV_TX_OK; 2775 2776 lio_xmit_failed: 2777 stats->tx_dropped++; 2778 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n", 2779 iq_no, stats->tx_dropped); 2780 if (dptr) 2781 dma_unmap_single(&oct->pci_dev->dev, dptr, 2782 ndata.datasize, DMA_TO_DEVICE); 2783 tx_buffer_free(skb); 2784 return NETDEV_TX_OK; 2785 } 2786 2787 /** \brief Network device Tx timeout 2788 * @param netdev pointer to network device 2789 */ 2790 static void liquidio_tx_timeout(struct net_device *netdev) 2791 { 2792 struct lio *lio; 2793 2794 lio = GET_LIO(netdev); 2795 2796 netif_info(lio, tx_err, lio->netdev, 2797 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n", 2798 netdev->stats.tx_dropped); 2799 netif_trans_update(netdev); 2800 txqs_wake(netdev); 2801 } 2802 2803 static int liquidio_vlan_rx_add_vid(struct net_device *netdev, 2804 __be16 proto __attribute__((unused)), 2805 u16 vid) 2806 { 2807 struct lio *lio = GET_LIO(netdev); 2808 struct octeon_device *oct = lio->oct_dev; 2809 struct octnic_ctrl_pkt nctrl; 2810 int ret = 0; 2811 2812 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2813 2814 nctrl.ncmd.u64 = 0; 2815 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 2816 nctrl.ncmd.s.param1 = vid; 2817 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2818 nctrl.wait_time = 100; 2819 nctrl.netpndev = (u64)netdev; 2820 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2821 2822 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2823 if (ret < 0) { 2824 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 2825 ret); 2826 } 2827 2828 return ret; 2829 } 2830 2831 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev, 2832 __be16 proto __attribute__((unused)), 2833 u16 vid) 2834 { 2835 struct lio *lio = GET_LIO(netdev); 2836 struct octeon_device *oct = lio->oct_dev; 2837 struct octnic_ctrl_pkt nctrl; 2838 int ret = 0; 2839 2840 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2841 2842 nctrl.ncmd.u64 = 0; 2843 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 2844 nctrl.ncmd.s.param1 = vid; 2845 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2846 nctrl.wait_time = 100; 2847 nctrl.netpndev = (u64)netdev; 2848 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2849 2850 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2851 if (ret < 0) { 2852 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 2853 ret); 2854 } 2855 return ret; 2856 } 2857 2858 /** Sending command to enable/disable RX checksum offload 2859 * @param netdev pointer to network device 2860 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL 2861 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/ 2862 * OCTNET_CMD_RXCSUM_DISABLE 2863 * @returns SUCCESS or FAILURE 2864 */ 2865 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command, 2866 u8 rx_cmd) 2867 { 2868 struct lio *lio = GET_LIO(netdev); 2869 struct octeon_device *oct = lio->oct_dev; 2870 struct octnic_ctrl_pkt nctrl; 2871 int ret = 0; 2872 2873 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2874 2875 nctrl.ncmd.u64 = 0; 2876 nctrl.ncmd.s.cmd = command; 2877 nctrl.ncmd.s.param1 = rx_cmd; 2878 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2879 nctrl.wait_time = 100; 2880 nctrl.netpndev = (u64)netdev; 2881 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2882 2883 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2884 if (ret < 0) { 2885 dev_err(&oct->pci_dev->dev, 2886 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n", 2887 ret); 2888 } 2889 return ret; 2890 } 2891 2892 /** Sending command to add/delete VxLAN UDP port to firmware 2893 * @param netdev pointer to network device 2894 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG 2895 * @param vxlan_port VxLAN port to be added or deleted 2896 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD, 2897 * OCTNET_CMD_VXLAN_PORT_DEL 2898 * @returns SUCCESS or FAILURE 2899 */ 2900 static int liquidio_vxlan_port_command(struct net_device *netdev, int command, 2901 u16 vxlan_port, u8 vxlan_cmd_bit) 2902 { 2903 struct lio *lio = GET_LIO(netdev); 2904 struct octeon_device *oct = lio->oct_dev; 2905 struct octnic_ctrl_pkt nctrl; 2906 int ret = 0; 2907 2908 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2909 2910 nctrl.ncmd.u64 = 0; 2911 nctrl.ncmd.s.cmd = command; 2912 nctrl.ncmd.s.more = vxlan_cmd_bit; 2913 nctrl.ncmd.s.param1 = vxlan_port; 2914 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2915 nctrl.wait_time = 100; 2916 nctrl.netpndev = (u64)netdev; 2917 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2918 2919 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2920 if (ret < 0) { 2921 dev_err(&oct->pci_dev->dev, 2922 "VxLAN port add/delete failed in core (ret:0x%x)\n", 2923 ret); 2924 } 2925 return ret; 2926 } 2927 2928 /** \brief Net device fix features 2929 * @param netdev pointer to network device 2930 * @param request features requested 2931 * @returns updated features list 2932 */ 2933 static netdev_features_t liquidio_fix_features(struct net_device *netdev, 2934 netdev_features_t request) 2935 { 2936 struct lio *lio = netdev_priv(netdev); 2937 2938 if ((request & NETIF_F_RXCSUM) && 2939 !(lio->dev_capability & NETIF_F_RXCSUM)) 2940 request &= ~NETIF_F_RXCSUM; 2941 2942 if ((request & NETIF_F_HW_CSUM) && 2943 !(lio->dev_capability & NETIF_F_HW_CSUM)) 2944 request &= ~NETIF_F_HW_CSUM; 2945 2946 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO)) 2947 request &= ~NETIF_F_TSO; 2948 2949 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6)) 2950 request &= ~NETIF_F_TSO6; 2951 2952 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO)) 2953 request &= ~NETIF_F_LRO; 2954 2955 /*Disable LRO if RXCSUM is off */ 2956 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) && 2957 (lio->dev_capability & NETIF_F_LRO)) 2958 request &= ~NETIF_F_LRO; 2959 2960 if ((request & NETIF_F_HW_VLAN_CTAG_FILTER) && 2961 !(lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER)) 2962 request &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2963 2964 return request; 2965 } 2966 2967 /** \brief Net device set features 2968 * @param netdev pointer to network device 2969 * @param features features to enable/disable 2970 */ 2971 static int liquidio_set_features(struct net_device *netdev, 2972 netdev_features_t features) 2973 { 2974 struct lio *lio = netdev_priv(netdev); 2975 2976 if ((features & NETIF_F_LRO) && 2977 (lio->dev_capability & NETIF_F_LRO) && 2978 !(netdev->features & NETIF_F_LRO)) 2979 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 2980 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 2981 else if (!(features & NETIF_F_LRO) && 2982 (lio->dev_capability & NETIF_F_LRO) && 2983 (netdev->features & NETIF_F_LRO)) 2984 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE, 2985 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 2986 2987 /* Sending command to firmware to enable/disable RX checksum 2988 * offload settings using ethtool 2989 */ 2990 if (!(netdev->features & NETIF_F_RXCSUM) && 2991 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 2992 (features & NETIF_F_RXCSUM)) 2993 liquidio_set_rxcsum_command(netdev, 2994 OCTNET_CMD_TNL_RX_CSUM_CTL, 2995 OCTNET_CMD_RXCSUM_ENABLE); 2996 else if ((netdev->features & NETIF_F_RXCSUM) && 2997 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 2998 !(features & NETIF_F_RXCSUM)) 2999 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 3000 OCTNET_CMD_RXCSUM_DISABLE); 3001 3002 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3003 (lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER) && 3004 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3005 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 3006 OCTNET_CMD_VLAN_FILTER_ENABLE); 3007 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3008 (lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER) && 3009 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3010 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 3011 OCTNET_CMD_VLAN_FILTER_DISABLE); 3012 3013 return 0; 3014 } 3015 3016 static void liquidio_add_vxlan_port(struct net_device *netdev, 3017 struct udp_tunnel_info *ti) 3018 { 3019 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3020 return; 3021 3022 liquidio_vxlan_port_command(netdev, 3023 OCTNET_CMD_VXLAN_PORT_CONFIG, 3024 htons(ti->port), 3025 OCTNET_CMD_VXLAN_PORT_ADD); 3026 } 3027 3028 static void liquidio_del_vxlan_port(struct net_device *netdev, 3029 struct udp_tunnel_info *ti) 3030 { 3031 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3032 return; 3033 3034 liquidio_vxlan_port_command(netdev, 3035 OCTNET_CMD_VXLAN_PORT_CONFIG, 3036 htons(ti->port), 3037 OCTNET_CMD_VXLAN_PORT_DEL); 3038 } 3039 3040 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx, 3041 u8 *mac, bool is_admin_assigned) 3042 { 3043 struct lio *lio = GET_LIO(netdev); 3044 struct octeon_device *oct = lio->oct_dev; 3045 struct octnic_ctrl_pkt nctrl; 3046 3047 if (!is_valid_ether_addr(mac)) 3048 return -EINVAL; 3049 3050 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs) 3051 return -EINVAL; 3052 3053 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3054 3055 nctrl.ncmd.u64 = 0; 3056 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 3057 /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3058 nctrl.ncmd.s.param1 = vfidx + 1; 3059 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0); 3060 nctrl.ncmd.s.more = 1; 3061 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3062 nctrl.netpndev = (u64)netdev; 3063 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3064 nctrl.wait_time = LIO_CMD_WAIT_TM; 3065 3066 nctrl.udd[0] = 0; 3067 /* The MAC Address is presented in network byte order. */ 3068 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac); 3069 3070 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0]; 3071 3072 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3073 3074 return 0; 3075 } 3076 3077 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac) 3078 { 3079 struct lio *lio = GET_LIO(netdev); 3080 struct octeon_device *oct = lio->oct_dev; 3081 int retval; 3082 3083 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3084 return -EINVAL; 3085 3086 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true); 3087 if (!retval) 3088 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac); 3089 3090 return retval; 3091 } 3092 3093 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx, 3094 u16 vlan, u8 qos, __be16 vlan_proto) 3095 { 3096 struct lio *lio = GET_LIO(netdev); 3097 struct octeon_device *oct = lio->oct_dev; 3098 struct octnic_ctrl_pkt nctrl; 3099 u16 vlantci; 3100 3101 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3102 return -EINVAL; 3103 3104 if (vlan_proto != htons(ETH_P_8021Q)) 3105 return -EPROTONOSUPPORT; 3106 3107 if (vlan >= VLAN_N_VID || qos > 7) 3108 return -EINVAL; 3109 3110 if (vlan) 3111 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT; 3112 else 3113 vlantci = 0; 3114 3115 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci) 3116 return 0; 3117 3118 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3119 3120 if (vlan) 3121 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3122 else 3123 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3124 3125 nctrl.ncmd.s.param1 = vlantci; 3126 nctrl.ncmd.s.param2 = 3127 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */ 3128 nctrl.ncmd.s.more = 0; 3129 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3130 nctrl.cb_fn = 0; 3131 nctrl.wait_time = LIO_CMD_WAIT_TM; 3132 3133 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3134 3135 oct->sriov_info.vf_vlantci[vfidx] = vlantci; 3136 3137 return 0; 3138 } 3139 3140 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx, 3141 struct ifla_vf_info *ivi) 3142 { 3143 struct lio *lio = GET_LIO(netdev); 3144 struct octeon_device *oct = lio->oct_dev; 3145 u8 *macaddr; 3146 3147 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3148 return -EINVAL; 3149 3150 ivi->vf = vfidx; 3151 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx]; 3152 ether_addr_copy(&ivi->mac[0], macaddr); 3153 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK; 3154 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT; 3155 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx]; 3156 return 0; 3157 } 3158 3159 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 3160 int linkstate) 3161 { 3162 struct lio *lio = GET_LIO(netdev); 3163 struct octeon_device *oct = lio->oct_dev; 3164 struct octnic_ctrl_pkt nctrl; 3165 3166 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3167 return -EINVAL; 3168 3169 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate) 3170 return 0; 3171 3172 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3173 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE; 3174 nctrl.ncmd.s.param1 = 3175 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3176 nctrl.ncmd.s.param2 = linkstate; 3177 nctrl.ncmd.s.more = 0; 3178 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3179 nctrl.cb_fn = 0; 3180 nctrl.wait_time = LIO_CMD_WAIT_TM; 3181 3182 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3183 3184 oct->sriov_info.vf_linkstate[vfidx] = linkstate; 3185 3186 return 0; 3187 } 3188 3189 static const struct net_device_ops lionetdevops = { 3190 .ndo_open = liquidio_open, 3191 .ndo_stop = liquidio_stop, 3192 .ndo_start_xmit = liquidio_xmit, 3193 .ndo_get_stats = liquidio_get_stats, 3194 .ndo_set_mac_address = liquidio_set_mac, 3195 .ndo_set_rx_mode = liquidio_set_mcast_list, 3196 .ndo_tx_timeout = liquidio_tx_timeout, 3197 3198 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid, 3199 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid, 3200 .ndo_change_mtu = liquidio_change_mtu, 3201 .ndo_do_ioctl = liquidio_ioctl, 3202 .ndo_fix_features = liquidio_fix_features, 3203 .ndo_set_features = liquidio_set_features, 3204 .ndo_udp_tunnel_add = liquidio_add_vxlan_port, 3205 .ndo_udp_tunnel_del = liquidio_del_vxlan_port, 3206 .ndo_set_vf_mac = liquidio_set_vf_mac, 3207 .ndo_set_vf_vlan = liquidio_set_vf_vlan, 3208 .ndo_get_vf_config = liquidio_get_vf_config, 3209 .ndo_set_vf_link_state = liquidio_set_vf_link_state, 3210 }; 3211 3212 /** \brief Entry point for the liquidio module 3213 */ 3214 static int __init liquidio_init(void) 3215 { 3216 int i; 3217 struct handshake *hs; 3218 3219 init_completion(&first_stage); 3220 3221 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT); 3222 3223 if (liquidio_init_pci()) 3224 return -EINVAL; 3225 3226 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000)); 3227 3228 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3229 hs = &handshake[i]; 3230 if (hs->pci_dev) { 3231 wait_for_completion(&hs->init); 3232 if (!hs->init_ok) { 3233 /* init handshake failed */ 3234 dev_err(&hs->pci_dev->dev, 3235 "Failed to init device\n"); 3236 liquidio_deinit_pci(); 3237 return -EIO; 3238 } 3239 } 3240 } 3241 3242 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3243 hs = &handshake[i]; 3244 if (hs->pci_dev) { 3245 wait_for_completion_timeout(&hs->started, 3246 msecs_to_jiffies(30000)); 3247 if (!hs->started_ok) { 3248 /* starter handshake failed */ 3249 dev_err(&hs->pci_dev->dev, 3250 "Firmware failed to start\n"); 3251 liquidio_deinit_pci(); 3252 return -EIO; 3253 } 3254 } 3255 } 3256 3257 return 0; 3258 } 3259 3260 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf) 3261 { 3262 struct octeon_device *oct = (struct octeon_device *)buf; 3263 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 3264 int gmxport = 0; 3265 union oct_link_status *ls; 3266 int i; 3267 3268 if (recv_pkt->buffer_size[0] != (sizeof(*ls) + OCT_DROQ_INFO_SIZE)) { 3269 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n", 3270 recv_pkt->buffer_size[0], 3271 recv_pkt->rh.r_nic_info.gmxport); 3272 goto nic_info_err; 3273 } 3274 3275 gmxport = recv_pkt->rh.r_nic_info.gmxport; 3276 ls = (union oct_link_status *)(get_rbd(recv_pkt->buffer_ptr[0]) + 3277 OCT_DROQ_INFO_SIZE); 3278 3279 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3); 3280 for (i = 0; i < oct->ifcount; i++) { 3281 if (oct->props[i].gmxport == gmxport) { 3282 update_link_status(oct->props[i].netdev, ls); 3283 break; 3284 } 3285 } 3286 3287 nic_info_err: 3288 for (i = 0; i < recv_pkt->buffer_count; i++) 3289 recv_buffer_free(recv_pkt->buffer_ptr[i]); 3290 octeon_free_recv_info(recv_info); 3291 return 0; 3292 } 3293 3294 /** 3295 * \brief Setup network interfaces 3296 * @param octeon_dev octeon device 3297 * 3298 * Called during init time for each device. It assumes the NIC 3299 * is already up and running. The link information for each 3300 * interface is passed in link_info. 3301 */ 3302 static int setup_nic_devices(struct octeon_device *octeon_dev) 3303 { 3304 struct lio *lio = NULL; 3305 struct net_device *netdev; 3306 u8 mac[6], i, j; 3307 struct octeon_soft_command *sc; 3308 struct liquidio_if_cfg_context *ctx; 3309 struct liquidio_if_cfg_resp *resp; 3310 struct octdev_props *props; 3311 int retval, num_iqueues, num_oqueues; 3312 union oct_nic_if_cfg if_cfg; 3313 unsigned int base_queue; 3314 unsigned int gmx_port_id; 3315 u32 resp_size, ctx_size, data_size; 3316 u32 ifidx_or_pfnum; 3317 struct lio_version *vdata; 3318 3319 /* This is to handle link status changes */ 3320 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3321 OPCODE_NIC_INFO, 3322 lio_nic_info, octeon_dev); 3323 3324 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions. 3325 * They are handled directly. 3326 */ 3327 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET, 3328 free_netbuf); 3329 3330 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG, 3331 free_netsgbuf); 3332 3333 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG, 3334 free_netsgbuf_with_resp); 3335 3336 for (i = 0; i < octeon_dev->ifcount; i++) { 3337 resp_size = sizeof(struct liquidio_if_cfg_resp); 3338 ctx_size = sizeof(struct liquidio_if_cfg_context); 3339 data_size = sizeof(struct lio_version); 3340 sc = (struct octeon_soft_command *) 3341 octeon_alloc_soft_command(octeon_dev, data_size, 3342 resp_size, ctx_size); 3343 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 3344 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 3345 vdata = (struct lio_version *)sc->virtdptr; 3346 3347 *((u64 *)vdata) = 0; 3348 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION); 3349 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION); 3350 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION); 3351 3352 if (OCTEON_CN23XX_PF(octeon_dev)) { 3353 num_iqueues = octeon_dev->sriov_info.num_pf_rings; 3354 num_oqueues = octeon_dev->sriov_info.num_pf_rings; 3355 base_queue = octeon_dev->sriov_info.pf_srn; 3356 3357 gmx_port_id = octeon_dev->pf_num; 3358 ifidx_or_pfnum = octeon_dev->pf_num; 3359 } else { 3360 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF( 3361 octeon_get_conf(octeon_dev), i); 3362 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF( 3363 octeon_get_conf(octeon_dev), i); 3364 base_queue = CFG_GET_BASE_QUE_NIC_IF( 3365 octeon_get_conf(octeon_dev), i); 3366 gmx_port_id = CFG_GET_GMXID_NIC_IF( 3367 octeon_get_conf(octeon_dev), i); 3368 ifidx_or_pfnum = i; 3369 } 3370 3371 dev_dbg(&octeon_dev->pci_dev->dev, 3372 "requesting config for interface %d, iqs %d, oqs %d\n", 3373 ifidx_or_pfnum, num_iqueues, num_oqueues); 3374 WRITE_ONCE(ctx->cond, 0); 3375 ctx->octeon_id = lio_get_device_id(octeon_dev); 3376 init_waitqueue_head(&ctx->wc); 3377 3378 if_cfg.u64 = 0; 3379 if_cfg.s.num_iqueues = num_iqueues; 3380 if_cfg.s.num_oqueues = num_oqueues; 3381 if_cfg.s.base_queue = base_queue; 3382 if_cfg.s.gmx_port_id = gmx_port_id; 3383 3384 sc->iq_no = 0; 3385 3386 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC, 3387 OPCODE_NIC_IF_CFG, 0, 3388 if_cfg.u64, 0); 3389 3390 sc->callback = if_cfg_callback; 3391 sc->callback_arg = sc; 3392 sc->wait_time = 3000; 3393 3394 retval = octeon_send_soft_command(octeon_dev, sc); 3395 if (retval == IQ_SEND_FAILED) { 3396 dev_err(&octeon_dev->pci_dev->dev, 3397 "iq/oq config failed status: %x\n", 3398 retval); 3399 /* Soft instr is freed by driver in case of failure. */ 3400 goto setup_nic_dev_fail; 3401 } 3402 3403 /* Sleep on a wait queue till the cond flag indicates that the 3404 * response arrived or timed-out. 3405 */ 3406 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) { 3407 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n"); 3408 goto setup_nic_wait_intr; 3409 } 3410 3411 retval = resp->status; 3412 if (retval) { 3413 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n"); 3414 goto setup_nic_dev_fail; 3415 } 3416 3417 octeon_swap_8B_data((u64 *)(&resp->cfg_info), 3418 (sizeof(struct liquidio_if_cfg_info)) >> 3); 3419 3420 num_iqueues = hweight64(resp->cfg_info.iqmask); 3421 num_oqueues = hweight64(resp->cfg_info.oqmask); 3422 3423 if (!(num_iqueues) || !(num_oqueues)) { 3424 dev_err(&octeon_dev->pci_dev->dev, 3425 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n", 3426 resp->cfg_info.iqmask, 3427 resp->cfg_info.oqmask); 3428 goto setup_nic_dev_fail; 3429 } 3430 dev_dbg(&octeon_dev->pci_dev->dev, 3431 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n", 3432 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask, 3433 num_iqueues, num_oqueues); 3434 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues); 3435 3436 if (!netdev) { 3437 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n"); 3438 goto setup_nic_dev_fail; 3439 } 3440 3441 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev); 3442 3443 /* Associate the routines that will handle different 3444 * netdev tasks. 3445 */ 3446 netdev->netdev_ops = &lionetdevops; 3447 3448 lio = GET_LIO(netdev); 3449 3450 memset(lio, 0, sizeof(struct lio)); 3451 3452 lio->ifidx = ifidx_or_pfnum; 3453 3454 props = &octeon_dev->props[i]; 3455 props->gmxport = resp->cfg_info.linfo.gmxport; 3456 props->netdev = netdev; 3457 3458 lio->linfo.num_rxpciq = num_oqueues; 3459 lio->linfo.num_txpciq = num_iqueues; 3460 for (j = 0; j < num_oqueues; j++) { 3461 lio->linfo.rxpciq[j].u64 = 3462 resp->cfg_info.linfo.rxpciq[j].u64; 3463 } 3464 for (j = 0; j < num_iqueues; j++) { 3465 lio->linfo.txpciq[j].u64 = 3466 resp->cfg_info.linfo.txpciq[j].u64; 3467 } 3468 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr; 3469 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport; 3470 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64; 3471 3472 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3473 3474 if (OCTEON_CN23XX_PF(octeon_dev) || 3475 OCTEON_CN6XXX(octeon_dev)) { 3476 lio->dev_capability = NETIF_F_HIGHDMA 3477 | NETIF_F_IP_CSUM 3478 | NETIF_F_IPV6_CSUM 3479 | NETIF_F_SG | NETIF_F_RXCSUM 3480 | NETIF_F_GRO 3481 | NETIF_F_TSO | NETIF_F_TSO6 3482 | NETIF_F_LRO; 3483 } 3484 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE); 3485 3486 /* Copy of transmit encapsulation capabilities: 3487 * TSO, TSO6, Checksums for this device 3488 */ 3489 lio->enc_dev_capability = NETIF_F_IP_CSUM 3490 | NETIF_F_IPV6_CSUM 3491 | NETIF_F_GSO_UDP_TUNNEL 3492 | NETIF_F_HW_CSUM | NETIF_F_SG 3493 | NETIF_F_RXCSUM 3494 | NETIF_F_TSO | NETIF_F_TSO6 3495 | NETIF_F_LRO; 3496 3497 netdev->hw_enc_features = (lio->enc_dev_capability & 3498 ~NETIF_F_LRO); 3499 3500 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL; 3501 3502 netdev->vlan_features = lio->dev_capability; 3503 /* Add any unchangeable hw features */ 3504 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER | 3505 NETIF_F_HW_VLAN_CTAG_RX | 3506 NETIF_F_HW_VLAN_CTAG_TX; 3507 3508 netdev->features = (lio->dev_capability & ~NETIF_F_LRO); 3509 3510 netdev->hw_features = lio->dev_capability; 3511 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/ 3512 netdev->hw_features = netdev->hw_features & 3513 ~NETIF_F_HW_VLAN_CTAG_RX; 3514 3515 /* MTU range: 68 - 16000 */ 3516 netdev->min_mtu = LIO_MIN_MTU_SIZE; 3517 netdev->max_mtu = LIO_MAX_MTU_SIZE; 3518 3519 /* Point to the properties for octeon device to which this 3520 * interface belongs. 3521 */ 3522 lio->oct_dev = octeon_dev; 3523 lio->octprops = props; 3524 lio->netdev = netdev; 3525 3526 dev_dbg(&octeon_dev->pci_dev->dev, 3527 "if%d gmx: %d hw_addr: 0x%llx\n", i, 3528 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr)); 3529 3530 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) { 3531 u8 vfmac[ETH_ALEN]; 3532 3533 random_ether_addr(&vfmac[0]); 3534 if (__liquidio_set_vf_mac(netdev, j, 3535 &vfmac[0], false)) { 3536 dev_err(&octeon_dev->pci_dev->dev, 3537 "Error setting VF%d MAC address\n", 3538 j); 3539 goto setup_nic_dev_fail; 3540 } 3541 } 3542 3543 /* 64-bit swap required on LE machines */ 3544 octeon_swap_8B_data(&lio->linfo.hw_addr, 1); 3545 for (j = 0; j < 6; j++) 3546 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j)); 3547 3548 /* Copy MAC Address to OS network device structure */ 3549 3550 ether_addr_copy(netdev->dev_addr, mac); 3551 3552 /* By default all interfaces on a single Octeon uses the same 3553 * tx and rx queues 3554 */ 3555 lio->txq = lio->linfo.txpciq[0].s.q_no; 3556 lio->rxq = lio->linfo.rxpciq[0].s.q_no; 3557 if (liquidio_setup_io_queues(octeon_dev, i, 3558 lio->linfo.num_txpciq, 3559 lio->linfo.num_rxpciq)) { 3560 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n"); 3561 goto setup_nic_dev_fail; 3562 } 3563 3564 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS); 3565 3566 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq); 3567 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq); 3568 3569 if (setup_glists(octeon_dev, lio, num_iqueues)) { 3570 dev_err(&octeon_dev->pci_dev->dev, 3571 "Gather list allocation failed\n"); 3572 goto setup_nic_dev_fail; 3573 } 3574 3575 /* Register ethtool support */ 3576 liquidio_set_ethtool_ops(netdev); 3577 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID) 3578 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT; 3579 else 3580 octeon_dev->priv_flags = 0x0; 3581 3582 if (netdev->features & NETIF_F_LRO) 3583 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 3584 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3585 3586 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 3587 OCTNET_CMD_VLAN_FILTER_ENABLE); 3588 3589 if ((debug != -1) && (debug & NETIF_MSG_HW)) 3590 liquidio_set_feature(netdev, 3591 OCTNET_CMD_VERBOSE_ENABLE, 0); 3592 3593 if (setup_link_status_change_wq(netdev)) 3594 goto setup_nic_dev_fail; 3595 3596 if (setup_rx_oom_poll_fn(netdev)) 3597 goto setup_nic_dev_fail; 3598 3599 /* Register the network device with the OS */ 3600 if (register_netdev(netdev)) { 3601 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n"); 3602 goto setup_nic_dev_fail; 3603 } 3604 3605 dev_dbg(&octeon_dev->pci_dev->dev, 3606 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n", 3607 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 3608 netif_carrier_off(netdev); 3609 lio->link_changes++; 3610 3611 ifstate_set(lio, LIO_IFSTATE_REGISTERED); 3612 3613 /* Sending command to firmware to enable Rx checksum offload 3614 * by default at the time of setup of Liquidio driver for 3615 * this device 3616 */ 3617 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 3618 OCTNET_CMD_RXCSUM_ENABLE); 3619 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL, 3620 OCTNET_CMD_TXCSUM_ENABLE); 3621 3622 dev_dbg(&octeon_dev->pci_dev->dev, 3623 "NIC ifidx:%d Setup successful\n", i); 3624 3625 octeon_free_soft_command(octeon_dev, sc); 3626 } 3627 3628 return 0; 3629 3630 setup_nic_dev_fail: 3631 3632 octeon_free_soft_command(octeon_dev, sc); 3633 3634 setup_nic_wait_intr: 3635 3636 while (i--) { 3637 dev_err(&octeon_dev->pci_dev->dev, 3638 "NIC ifidx:%d Setup failed\n", i); 3639 liquidio_destroy_nic_device(octeon_dev, i); 3640 } 3641 return -ENODEV; 3642 } 3643 3644 #ifdef CONFIG_PCI_IOV 3645 static int octeon_enable_sriov(struct octeon_device *oct) 3646 { 3647 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced; 3648 struct pci_dev *vfdev; 3649 int err; 3650 u32 u; 3651 3652 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) { 3653 err = pci_enable_sriov(oct->pci_dev, 3654 oct->sriov_info.num_vfs_alloced); 3655 if (err) { 3656 dev_err(&oct->pci_dev->dev, 3657 "OCTEON: Failed to enable PCI sriov: %d\n", 3658 err); 3659 oct->sriov_info.num_vfs_alloced = 0; 3660 return err; 3661 } 3662 oct->sriov_info.sriov_enabled = 1; 3663 3664 /* init lookup table that maps DPI ring number to VF pci_dev 3665 * struct pointer 3666 */ 3667 u = 0; 3668 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 3669 OCTEON_CN23XX_VF_VID, NULL); 3670 while (vfdev) { 3671 if (vfdev->is_virtfn && 3672 (vfdev->physfn == oct->pci_dev)) { 3673 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = 3674 vfdev; 3675 u += oct->sriov_info.rings_per_vf; 3676 } 3677 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 3678 OCTEON_CN23XX_VF_VID, vfdev); 3679 } 3680 } 3681 3682 return num_vfs_alloced; 3683 } 3684 3685 static int lio_pci_sriov_disable(struct octeon_device *oct) 3686 { 3687 int u; 3688 3689 if (pci_vfs_assigned(oct->pci_dev)) { 3690 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n"); 3691 return -EPERM; 3692 } 3693 3694 pci_disable_sriov(oct->pci_dev); 3695 3696 u = 0; 3697 while (u < MAX_POSSIBLE_VFS) { 3698 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL; 3699 u += oct->sriov_info.rings_per_vf; 3700 } 3701 3702 oct->sriov_info.num_vfs_alloced = 0; 3703 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n", 3704 oct->pf_num); 3705 3706 return 0; 3707 } 3708 3709 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs) 3710 { 3711 struct octeon_device *oct = pci_get_drvdata(dev); 3712 int ret = 0; 3713 3714 if ((num_vfs == oct->sriov_info.num_vfs_alloced) && 3715 (oct->sriov_info.sriov_enabled)) { 3716 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n", 3717 oct->pf_num, num_vfs); 3718 return 0; 3719 } 3720 3721 if (!num_vfs) { 3722 ret = lio_pci_sriov_disable(oct); 3723 } else if (num_vfs > oct->sriov_info.max_vfs) { 3724 dev_err(&oct->pci_dev->dev, 3725 "OCTEON: Max allowed VFs:%d user requested:%d", 3726 oct->sriov_info.max_vfs, num_vfs); 3727 ret = -EPERM; 3728 } else { 3729 oct->sriov_info.num_vfs_alloced = num_vfs; 3730 ret = octeon_enable_sriov(oct); 3731 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n", 3732 oct->pf_num, num_vfs); 3733 } 3734 3735 return ret; 3736 } 3737 #endif 3738 3739 /** 3740 * \brief initialize the NIC 3741 * @param oct octeon device 3742 * 3743 * This initialization routine is called once the Octeon device application is 3744 * up and running 3745 */ 3746 static int liquidio_init_nic_module(struct octeon_device *oct) 3747 { 3748 int i, retval = 0; 3749 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct)); 3750 3751 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n"); 3752 3753 /* only default iq and oq were initialized 3754 * initialize the rest as well 3755 */ 3756 /* run port_config command for each port */ 3757 oct->ifcount = num_nic_ports; 3758 3759 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports); 3760 3761 for (i = 0; i < MAX_OCTEON_LINKS; i++) 3762 oct->props[i].gmxport = -1; 3763 3764 retval = setup_nic_devices(oct); 3765 if (retval) { 3766 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n"); 3767 goto octnet_init_failure; 3768 } 3769 3770 liquidio_ptp_init(oct); 3771 3772 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n"); 3773 3774 return retval; 3775 3776 octnet_init_failure: 3777 3778 oct->ifcount = 0; 3779 3780 return retval; 3781 } 3782 3783 /** 3784 * \brief starter callback that invokes the remaining initialization work after 3785 * the NIC is up and running. 3786 * @param octptr work struct work_struct 3787 */ 3788 static void nic_starter(struct work_struct *work) 3789 { 3790 struct octeon_device *oct; 3791 struct cavium_wk *wk = (struct cavium_wk *)work; 3792 3793 oct = (struct octeon_device *)wk->ctxptr; 3794 3795 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) 3796 return; 3797 3798 /* If the status of the device is CORE_OK, the core 3799 * application has reported its application type. Call 3800 * any registered handlers now and move to the RUNNING 3801 * state. 3802 */ 3803 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) { 3804 schedule_delayed_work(&oct->nic_poll_work.work, 3805 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 3806 return; 3807 } 3808 3809 atomic_set(&oct->status, OCT_DEV_RUNNING); 3810 3811 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) { 3812 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n"); 3813 3814 if (liquidio_init_nic_module(oct)) 3815 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n"); 3816 else 3817 handshake[oct->octeon_id].started_ok = 1; 3818 } else { 3819 dev_err(&oct->pci_dev->dev, 3820 "Unexpected application running on NIC (%d). Check firmware.\n", 3821 oct->app_mode); 3822 } 3823 3824 complete(&handshake[oct->octeon_id].started); 3825 } 3826 3827 static int 3828 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf) 3829 { 3830 struct octeon_device *oct = (struct octeon_device *)buf; 3831 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 3832 int i, notice, vf_idx; 3833 bool cores_crashed; 3834 u64 *data, vf_num; 3835 3836 notice = recv_pkt->rh.r.ossp; 3837 data = (u64 *)(get_rbd(recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE); 3838 3839 /* the first 64-bit word of data is the vf_num */ 3840 vf_num = data[0]; 3841 octeon_swap_8B_data(&vf_num, 1); 3842 vf_idx = (int)vf_num - 1; 3843 3844 cores_crashed = READ_ONCE(oct->cores_crashed); 3845 3846 if (notice == VF_DRV_LOADED) { 3847 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) { 3848 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx); 3849 dev_info(&oct->pci_dev->dev, 3850 "driver for VF%d was loaded\n", vf_idx); 3851 if (!cores_crashed) 3852 try_module_get(THIS_MODULE); 3853 } 3854 } else if (notice == VF_DRV_REMOVED) { 3855 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) { 3856 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx); 3857 dev_info(&oct->pci_dev->dev, 3858 "driver for VF%d was removed\n", vf_idx); 3859 if (!cores_crashed) 3860 module_put(THIS_MODULE); 3861 } 3862 } else if (notice == VF_DRV_MACADDR_CHANGED) { 3863 u8 *b = (u8 *)&data[1]; 3864 3865 oct->sriov_info.vf_macaddr[vf_idx] = data[1]; 3866 dev_info(&oct->pci_dev->dev, 3867 "VF driver changed VF%d's MAC address to %pM\n", 3868 vf_idx, b + 2); 3869 } 3870 3871 for (i = 0; i < recv_pkt->buffer_count; i++) 3872 recv_buffer_free(recv_pkt->buffer_ptr[i]); 3873 octeon_free_recv_info(recv_info); 3874 3875 return 0; 3876 } 3877 3878 /** 3879 * \brief Device initialization for each Octeon device that is probed 3880 * @param octeon_dev octeon device 3881 */ 3882 static int octeon_device_init(struct octeon_device *octeon_dev) 3883 { 3884 int j, ret; 3885 int fw_loaded = 0; 3886 char bootcmd[] = "\n"; 3887 char *dbg_enb = NULL; 3888 struct octeon_device_priv *oct_priv = 3889 (struct octeon_device_priv *)octeon_dev->priv; 3890 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE); 3891 3892 /* Enable access to the octeon device and make its DMA capability 3893 * known to the OS. 3894 */ 3895 if (octeon_pci_os_setup(octeon_dev)) 3896 return 1; 3897 3898 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE); 3899 3900 /* Identify the Octeon type and map the BAR address space. */ 3901 if (octeon_chip_specific_setup(octeon_dev)) { 3902 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n"); 3903 return 1; 3904 } 3905 3906 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE); 3907 3908 /* Only add a reference after setting status 'OCT_DEV_PCI_MAP_DONE', 3909 * since that is what is required for the reference to be removed 3910 * during de-initialization (see 'octeon_destroy_resources'). 3911 */ 3912 octeon_register_device(octeon_dev, octeon_dev->pci_dev->bus->number, 3913 PCI_SLOT(octeon_dev->pci_dev->devfn), 3914 PCI_FUNC(octeon_dev->pci_dev->devfn), 3915 true); 3916 3917 octeon_dev->app_mode = CVM_DRV_INVALID_APP; 3918 3919 if (OCTEON_CN23XX_PF(octeon_dev)) { 3920 if (!cn23xx_fw_loaded(octeon_dev) && !fw_type_is_none()) { 3921 fw_loaded = 0; 3922 /* Do a soft reset of the Octeon device. */ 3923 if (octeon_dev->fn_list.soft_reset(octeon_dev)) 3924 return 1; 3925 /* things might have changed */ 3926 if (!cn23xx_fw_loaded(octeon_dev)) 3927 fw_loaded = 0; 3928 else 3929 fw_loaded = 1; 3930 } else { 3931 fw_loaded = 1; 3932 } 3933 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) { 3934 return 1; 3935 } 3936 3937 /* Initialize the dispatch mechanism used to push packets arriving on 3938 * Octeon Output queues. 3939 */ 3940 if (octeon_init_dispatch_list(octeon_dev)) 3941 return 1; 3942 3943 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3944 OPCODE_NIC_CORE_DRV_ACTIVE, 3945 octeon_core_drv_init, 3946 octeon_dev); 3947 3948 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3949 OPCODE_NIC_VF_DRV_NOTICE, 3950 octeon_recv_vf_drv_notice, octeon_dev); 3951 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter); 3952 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev; 3953 schedule_delayed_work(&octeon_dev->nic_poll_work.work, 3954 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 3955 3956 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE); 3957 3958 if (octeon_set_io_queues_off(octeon_dev)) { 3959 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n"); 3960 return 1; 3961 } 3962 3963 if (OCTEON_CN23XX_PF(octeon_dev)) { 3964 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 3965 if (ret) { 3966 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n"); 3967 return ret; 3968 } 3969 } 3970 3971 /* Initialize soft command buffer pool 3972 */ 3973 if (octeon_setup_sc_buffer_pool(octeon_dev)) { 3974 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n"); 3975 return 1; 3976 } 3977 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE); 3978 3979 /* Setup the data structures that manage this Octeon's Input queues. */ 3980 if (octeon_setup_instr_queues(octeon_dev)) { 3981 dev_err(&octeon_dev->pci_dev->dev, 3982 "instruction queue initialization failed\n"); 3983 return 1; 3984 } 3985 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE); 3986 3987 /* Initialize lists to manage the requests of different types that 3988 * arrive from user & kernel applications for this octeon device. 3989 */ 3990 if (octeon_setup_response_list(octeon_dev)) { 3991 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n"); 3992 return 1; 3993 } 3994 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE); 3995 3996 if (octeon_setup_output_queues(octeon_dev)) { 3997 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n"); 3998 return 1; 3999 } 4000 4001 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE); 4002 4003 if (OCTEON_CN23XX_PF(octeon_dev)) { 4004 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) { 4005 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n"); 4006 return 1; 4007 } 4008 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE); 4009 4010 if (octeon_allocate_ioq_vector(octeon_dev)) { 4011 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n"); 4012 return 1; 4013 } 4014 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE); 4015 4016 } else { 4017 /* The input and output queue registers were setup earlier (the 4018 * queues were not enabled). Any additional registers 4019 * that need to be programmed should be done now. 4020 */ 4021 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4022 if (ret) { 4023 dev_err(&octeon_dev->pci_dev->dev, 4024 "Failed to configure device registers\n"); 4025 return ret; 4026 } 4027 } 4028 4029 /* Initialize the tasklet that handles output queue packet processing.*/ 4030 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n"); 4031 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh, 4032 (unsigned long)octeon_dev); 4033 4034 /* Setup the interrupt handler and record the INT SUM register address 4035 */ 4036 if (octeon_setup_interrupt(octeon_dev, 4037 octeon_dev->sriov_info.num_pf_rings)) 4038 return 1; 4039 4040 /* Enable Octeon device interrupts */ 4041 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR); 4042 4043 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE); 4044 4045 /* Send Credit for Octeon Output queues. Credits are always sent BEFORE 4046 * the output queue is enabled. 4047 * This ensures that we'll receive the f/w CORE DRV_ACTIVE message in 4048 * case we've configured CN23XX_SLI_GBL_CONTROL[NOPTR_D] = 0. 4049 * Otherwise, it is possible that the DRV_ACTIVE message will be sent 4050 * before any credits have been issued, causing the ring to be reset 4051 * (and the f/w appear to never have started). 4052 */ 4053 for (j = 0; j < octeon_dev->num_oqs; j++) 4054 writel(octeon_dev->droq[j]->max_count, 4055 octeon_dev->droq[j]->pkts_credit_reg); 4056 4057 /* Enable the input and output queues for this Octeon device */ 4058 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev); 4059 if (ret) { 4060 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues"); 4061 return ret; 4062 } 4063 4064 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE); 4065 4066 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) { 4067 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n"); 4068 if (!ddr_timeout) { 4069 dev_info(&octeon_dev->pci_dev->dev, 4070 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n"); 4071 } 4072 4073 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS); 4074 4075 /* Wait for the octeon to initialize DDR after the soft-reset.*/ 4076 while (!ddr_timeout) { 4077 set_current_state(TASK_INTERRUPTIBLE); 4078 if (schedule_timeout(HZ / 10)) { 4079 /* user probably pressed Control-C */ 4080 return 1; 4081 } 4082 } 4083 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout); 4084 if (ret) { 4085 dev_err(&octeon_dev->pci_dev->dev, 4086 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n", 4087 ret); 4088 return 1; 4089 } 4090 4091 if (octeon_wait_for_bootloader(octeon_dev, 1000)) { 4092 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n"); 4093 return 1; 4094 } 4095 4096 /* Divert uboot to take commands from host instead. */ 4097 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50); 4098 4099 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n"); 4100 ret = octeon_init_consoles(octeon_dev); 4101 if (ret) { 4102 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n"); 4103 return 1; 4104 } 4105 /* If console debug enabled, specify empty string to use default 4106 * enablement ELSE specify NULL string for 'disabled'. 4107 */ 4108 dbg_enb = octeon_console_debug_enabled(0) ? "" : NULL; 4109 ret = octeon_add_console(octeon_dev, 0, dbg_enb); 4110 if (ret) { 4111 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n"); 4112 return 1; 4113 } else if (octeon_console_debug_enabled(0)) { 4114 /* If console was added AND we're logging console output 4115 * then set our console print function. 4116 */ 4117 octeon_dev->console[0].print = octeon_dbg_console_print; 4118 } 4119 4120 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE); 4121 4122 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n"); 4123 ret = load_firmware(octeon_dev); 4124 if (ret) { 4125 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n"); 4126 return 1; 4127 } 4128 } 4129 4130 handshake[octeon_dev->octeon_id].init_ok = 1; 4131 complete(&handshake[octeon_dev->octeon_id].init); 4132 4133 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK); 4134 4135 return 0; 4136 } 4137 4138 /** 4139 * \brief Debug console print function 4140 * @param octeon_dev octeon device 4141 * @param console_num console number 4142 * @param prefix first portion of line to display 4143 * @param suffix second portion of line to display 4144 * 4145 * The OCTEON debug console outputs entire lines (excluding '\n'). 4146 * Normally, the line will be passed in the 'prefix' parameter. 4147 * However, due to buffering, it is possible for a line to be split into two 4148 * parts, in which case they will be passed as the 'prefix' parameter and 4149 * 'suffix' parameter. 4150 */ 4151 static int octeon_dbg_console_print(struct octeon_device *oct, u32 console_num, 4152 char *prefix, char *suffix) 4153 { 4154 if (prefix && suffix) 4155 dev_info(&oct->pci_dev->dev, "%u: %s%s\n", console_num, prefix, 4156 suffix); 4157 else if (prefix) 4158 dev_info(&oct->pci_dev->dev, "%u: %s\n", console_num, prefix); 4159 else if (suffix) 4160 dev_info(&oct->pci_dev->dev, "%u: %s\n", console_num, suffix); 4161 4162 return 0; 4163 } 4164 4165 /** 4166 * \brief Exits the module 4167 */ 4168 static void __exit liquidio_exit(void) 4169 { 4170 liquidio_deinit_pci(); 4171 4172 pr_info("LiquidIO network module is now unloaded\n"); 4173 } 4174 4175 module_init(liquidio_init); 4176 module_exit(liquidio_exit); 4177