1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/module.h> 19 #include <linux/pci.h> 20 #include <linux/firmware.h> 21 #include <net/vxlan.h> 22 #include <linux/kthread.h> 23 #include "liquidio_common.h" 24 #include "octeon_droq.h" 25 #include "octeon_iq.h" 26 #include "response_manager.h" 27 #include "octeon_device.h" 28 #include "octeon_nic.h" 29 #include "octeon_main.h" 30 #include "octeon_network.h" 31 #include "cn66xx_regs.h" 32 #include "cn66xx_device.h" 33 #include "cn68xx_device.h" 34 #include "cn23xx_pf_device.h" 35 #include "liquidio_image.h" 36 37 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>"); 38 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver"); 39 MODULE_LICENSE("GPL"); 40 MODULE_VERSION(LIQUIDIO_VERSION); 41 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX); 42 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX); 43 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX); 44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME LIO_FW_NAME_SUFFIX); 45 46 static int ddr_timeout = 10000; 47 module_param(ddr_timeout, int, 0644); 48 MODULE_PARM_DESC(ddr_timeout, 49 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check"); 50 51 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 52 53 static int debug = -1; 54 module_param(debug, int, 0644); 55 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits"); 56 57 static char fw_type[LIO_MAX_FW_TYPE_LEN]; 58 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000); 59 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\""); 60 61 static int ptp_enable = 1; 62 63 /* Bit mask values for lio->ifstate */ 64 #define LIO_IFSTATE_DROQ_OPS 0x01 65 #define LIO_IFSTATE_REGISTERED 0x02 66 #define LIO_IFSTATE_RUNNING 0x04 67 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08 68 69 /* Polling interval for determining when NIC application is alive */ 70 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100 71 72 /* runtime link query interval */ 73 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000 74 75 struct liquidio_if_cfg_context { 76 int octeon_id; 77 78 wait_queue_head_t wc; 79 80 int cond; 81 }; 82 83 struct liquidio_if_cfg_resp { 84 u64 rh; 85 struct liquidio_if_cfg_info cfg_info; 86 u64 status; 87 }; 88 89 struct liquidio_rx_ctl_context { 90 int octeon_id; 91 92 wait_queue_head_t wc; 93 94 int cond; 95 }; 96 97 struct oct_link_status_resp { 98 u64 rh; 99 struct oct_link_info link_info; 100 u64 status; 101 }; 102 103 struct oct_timestamp_resp { 104 u64 rh; 105 u64 timestamp; 106 u64 status; 107 }; 108 109 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp)) 110 111 union tx_info { 112 u64 u64; 113 struct { 114 #ifdef __BIG_ENDIAN_BITFIELD 115 u16 gso_size; 116 u16 gso_segs; 117 u32 reserved; 118 #else 119 u32 reserved; 120 u16 gso_segs; 121 u16 gso_size; 122 #endif 123 } s; 124 }; 125 126 /** Octeon device properties to be used by the NIC module. 127 * Each octeon device in the system will be represented 128 * by this structure in the NIC module. 129 */ 130 131 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS) 132 133 #define OCTNIC_GSO_MAX_HEADER_SIZE 128 134 #define OCTNIC_GSO_MAX_SIZE \ 135 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE) 136 137 /** Structure of a node in list of gather components maintained by 138 * NIC driver for each network device. 139 */ 140 struct octnic_gather { 141 /** List manipulation. Next and prev pointers. */ 142 struct list_head list; 143 144 /** Size of the gather component at sg in bytes. */ 145 int sg_size; 146 147 /** Number of bytes that sg was adjusted to make it 8B-aligned. */ 148 int adjust; 149 150 /** Gather component that can accommodate max sized fragment list 151 * received from the IP layer. 152 */ 153 struct octeon_sg_entry *sg; 154 155 dma_addr_t sg_dma_ptr; 156 }; 157 158 struct handshake { 159 struct completion init; 160 struct completion started; 161 struct pci_dev *pci_dev; 162 int init_ok; 163 int started_ok; 164 }; 165 166 struct octeon_device_priv { 167 /** Tasklet structures for this device. */ 168 struct tasklet_struct droq_tasklet; 169 unsigned long napi_mask; 170 }; 171 172 #ifdef CONFIG_PCI_IOV 173 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs); 174 #endif 175 176 static int octeon_device_init(struct octeon_device *); 177 static int liquidio_stop(struct net_device *netdev); 178 static void liquidio_remove(struct pci_dev *pdev); 179 static int liquidio_probe(struct pci_dev *pdev, 180 const struct pci_device_id *ent); 181 182 static struct handshake handshake[MAX_OCTEON_DEVICES]; 183 static struct completion first_stage; 184 185 static void octeon_droq_bh(unsigned long pdev) 186 { 187 int q_no; 188 int reschedule = 0; 189 struct octeon_device *oct = (struct octeon_device *)pdev; 190 struct octeon_device_priv *oct_priv = 191 (struct octeon_device_priv *)oct->priv; 192 193 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) { 194 if (!(oct->io_qmask.oq & BIT_ULL(q_no))) 195 continue; 196 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no], 197 MAX_PACKET_BUDGET); 198 lio_enable_irq(oct->droq[q_no], NULL); 199 200 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 201 /* set time and cnt interrupt thresholds for this DROQ 202 * for NAPI 203 */ 204 int adjusted_q_no = q_no + oct->sriov_info.pf_srn; 205 206 octeon_write_csr64( 207 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no), 208 0x5700000040ULL); 209 octeon_write_csr64( 210 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0); 211 } 212 } 213 214 if (reschedule) 215 tasklet_schedule(&oct_priv->droq_tasklet); 216 } 217 218 static int lio_wait_for_oq_pkts(struct octeon_device *oct) 219 { 220 struct octeon_device_priv *oct_priv = 221 (struct octeon_device_priv *)oct->priv; 222 int retry = 100, pkt_cnt = 0, pending_pkts = 0; 223 int i; 224 225 do { 226 pending_pkts = 0; 227 228 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 229 if (!(oct->io_qmask.oq & BIT_ULL(i))) 230 continue; 231 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]); 232 } 233 if (pkt_cnt > 0) { 234 pending_pkts += pkt_cnt; 235 tasklet_schedule(&oct_priv->droq_tasklet); 236 } 237 pkt_cnt = 0; 238 schedule_timeout_uninterruptible(1); 239 240 } while (retry-- && pending_pkts); 241 242 return pkt_cnt; 243 } 244 245 /** 246 * \brief Forces all IO queues off on a given device 247 * @param oct Pointer to Octeon device 248 */ 249 static void force_io_queues_off(struct octeon_device *oct) 250 { 251 if ((oct->chip_id == OCTEON_CN66XX) || 252 (oct->chip_id == OCTEON_CN68XX)) { 253 /* Reset the Enable bits for Input Queues. */ 254 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0); 255 256 /* Reset the Enable bits for Output Queues. */ 257 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0); 258 } 259 } 260 261 /** 262 * \brief wait for all pending requests to complete 263 * @param oct Pointer to Octeon device 264 * 265 * Called during shutdown sequence 266 */ 267 static int wait_for_pending_requests(struct octeon_device *oct) 268 { 269 int i, pcount = 0; 270 271 for (i = 0; i < 100; i++) { 272 pcount = 273 atomic_read(&oct->response_list 274 [OCTEON_ORDERED_SC_LIST].pending_req_count); 275 if (pcount) 276 schedule_timeout_uninterruptible(HZ / 10); 277 else 278 break; 279 } 280 281 if (pcount) 282 return 1; 283 284 return 0; 285 } 286 287 /** 288 * \brief Cause device to go quiet so it can be safely removed/reset/etc 289 * @param oct Pointer to Octeon device 290 */ 291 static inline void pcierror_quiesce_device(struct octeon_device *oct) 292 { 293 int i; 294 295 /* Disable the input and output queues now. No more packets will 296 * arrive from Octeon, but we should wait for all packet processing 297 * to finish. 298 */ 299 force_io_queues_off(oct); 300 301 /* To allow for in-flight requests */ 302 schedule_timeout_uninterruptible(100); 303 304 if (wait_for_pending_requests(oct)) 305 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 306 307 /* Force all requests waiting to be fetched by OCTEON to complete. */ 308 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 309 struct octeon_instr_queue *iq; 310 311 if (!(oct->io_qmask.iq & BIT_ULL(i))) 312 continue; 313 iq = oct->instr_queue[i]; 314 315 if (atomic_read(&iq->instr_pending)) { 316 spin_lock_bh(&iq->lock); 317 iq->fill_cnt = 0; 318 iq->octeon_read_index = iq->host_write_index; 319 iq->stats.instr_processed += 320 atomic_read(&iq->instr_pending); 321 lio_process_iq_request_list(oct, iq, 0); 322 spin_unlock_bh(&iq->lock); 323 } 324 } 325 326 /* Force all pending ordered list requests to time out. */ 327 lio_process_ordered_list(oct, 1); 328 329 /* We do not need to wait for output queue packets to be processed. */ 330 } 331 332 /** 333 * \brief Cleanup PCI AER uncorrectable error status 334 * @param dev Pointer to PCI device 335 */ 336 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev) 337 { 338 int pos = 0x100; 339 u32 status, mask; 340 341 pr_info("%s :\n", __func__); 342 343 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status); 344 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask); 345 if (dev->error_state == pci_channel_io_normal) 346 status &= ~mask; /* Clear corresponding nonfatal bits */ 347 else 348 status &= mask; /* Clear corresponding fatal bits */ 349 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status); 350 } 351 352 /** 353 * \brief Stop all PCI IO to a given device 354 * @param dev Pointer to Octeon device 355 */ 356 static void stop_pci_io(struct octeon_device *oct) 357 { 358 /* No more instructions will be forwarded. */ 359 atomic_set(&oct->status, OCT_DEV_IN_RESET); 360 361 pci_disable_device(oct->pci_dev); 362 363 /* Disable interrupts */ 364 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 365 366 pcierror_quiesce_device(oct); 367 368 /* Release the interrupt line */ 369 free_irq(oct->pci_dev->irq, oct); 370 371 if (oct->flags & LIO_FLAG_MSI_ENABLED) 372 pci_disable_msi(oct->pci_dev); 373 374 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 375 lio_get_state_string(&oct->status)); 376 377 /* making it a common function for all OCTEON models */ 378 cleanup_aer_uncorrect_error_status(oct->pci_dev); 379 } 380 381 /** 382 * \brief called when PCI error is detected 383 * @param pdev Pointer to PCI device 384 * @param state The current pci connection state 385 * 386 * This function is called after a PCI bus error affecting 387 * this device has been detected. 388 */ 389 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev, 390 pci_channel_state_t state) 391 { 392 struct octeon_device *oct = pci_get_drvdata(pdev); 393 394 /* Non-correctable Non-fatal errors */ 395 if (state == pci_channel_io_normal) { 396 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n"); 397 cleanup_aer_uncorrect_error_status(oct->pci_dev); 398 return PCI_ERS_RESULT_CAN_RECOVER; 399 } 400 401 /* Non-correctable Fatal errors */ 402 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n"); 403 stop_pci_io(oct); 404 405 /* Always return a DISCONNECT. There is no support for recovery but only 406 * for a clean shutdown. 407 */ 408 return PCI_ERS_RESULT_DISCONNECT; 409 } 410 411 /** 412 * \brief mmio handler 413 * @param pdev Pointer to PCI device 414 */ 415 static pci_ers_result_t liquidio_pcie_mmio_enabled( 416 struct pci_dev *pdev __attribute__((unused))) 417 { 418 /* We should never hit this since we never ask for a reset for a Fatal 419 * Error. We always return DISCONNECT in io_error above. 420 * But play safe and return RECOVERED for now. 421 */ 422 return PCI_ERS_RESULT_RECOVERED; 423 } 424 425 /** 426 * \brief called after the pci bus has been reset. 427 * @param pdev Pointer to PCI device 428 * 429 * Restart the card from scratch, as if from a cold-boot. Implementation 430 * resembles the first-half of the octeon_resume routine. 431 */ 432 static pci_ers_result_t liquidio_pcie_slot_reset( 433 struct pci_dev *pdev __attribute__((unused))) 434 { 435 /* We should never hit this since we never ask for a reset for a Fatal 436 * Error. We always return DISCONNECT in io_error above. 437 * But play safe and return RECOVERED for now. 438 */ 439 return PCI_ERS_RESULT_RECOVERED; 440 } 441 442 /** 443 * \brief called when traffic can start flowing again. 444 * @param pdev Pointer to PCI device 445 * 446 * This callback is called when the error recovery driver tells us that 447 * its OK to resume normal operation. Implementation resembles the 448 * second-half of the octeon_resume routine. 449 */ 450 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused))) 451 { 452 /* Nothing to be done here. */ 453 } 454 455 #ifdef CONFIG_PM 456 /** 457 * \brief called when suspending 458 * @param pdev Pointer to PCI device 459 * @param state state to suspend to 460 */ 461 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)), 462 pm_message_t state __attribute__((unused))) 463 { 464 return 0; 465 } 466 467 /** 468 * \brief called when resuming 469 * @param pdev Pointer to PCI device 470 */ 471 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused))) 472 { 473 return 0; 474 } 475 #endif 476 477 /* For PCI-E Advanced Error Recovery (AER) Interface */ 478 static const struct pci_error_handlers liquidio_err_handler = { 479 .error_detected = liquidio_pcie_error_detected, 480 .mmio_enabled = liquidio_pcie_mmio_enabled, 481 .slot_reset = liquidio_pcie_slot_reset, 482 .resume = liquidio_pcie_resume, 483 }; 484 485 static const struct pci_device_id liquidio_pci_tbl[] = { 486 { /* 68xx */ 487 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 488 }, 489 { /* 66xx */ 490 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 491 }, 492 { /* 23xx pf */ 493 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 494 }, 495 { 496 0, 0, 0, 0, 0, 0, 0 497 } 498 }; 499 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl); 500 501 static struct pci_driver liquidio_pci_driver = { 502 .name = "LiquidIO", 503 .id_table = liquidio_pci_tbl, 504 .probe = liquidio_probe, 505 .remove = liquidio_remove, 506 .err_handler = &liquidio_err_handler, /* For AER */ 507 508 #ifdef CONFIG_PM 509 .suspend = liquidio_suspend, 510 .resume = liquidio_resume, 511 #endif 512 #ifdef CONFIG_PCI_IOV 513 .sriov_configure = liquidio_enable_sriov, 514 #endif 515 }; 516 517 /** 518 * \brief register PCI driver 519 */ 520 static int liquidio_init_pci(void) 521 { 522 return pci_register_driver(&liquidio_pci_driver); 523 } 524 525 /** 526 * \brief unregister PCI driver 527 */ 528 static void liquidio_deinit_pci(void) 529 { 530 pci_unregister_driver(&liquidio_pci_driver); 531 } 532 533 /** 534 * \brief check interface state 535 * @param lio per-network private data 536 * @param state_flag flag state to check 537 */ 538 static inline int ifstate_check(struct lio *lio, int state_flag) 539 { 540 return atomic_read(&lio->ifstate) & state_flag; 541 } 542 543 /** 544 * \brief set interface state 545 * @param lio per-network private data 546 * @param state_flag flag state to set 547 */ 548 static inline void ifstate_set(struct lio *lio, int state_flag) 549 { 550 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag)); 551 } 552 553 /** 554 * \brief clear interface state 555 * @param lio per-network private data 556 * @param state_flag flag state to clear 557 */ 558 static inline void ifstate_reset(struct lio *lio, int state_flag) 559 { 560 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag))); 561 } 562 563 /** 564 * \brief Stop Tx queues 565 * @param netdev network device 566 */ 567 static inline void txqs_stop(struct net_device *netdev) 568 { 569 if (netif_is_multiqueue(netdev)) { 570 int i; 571 572 for (i = 0; i < netdev->num_tx_queues; i++) 573 netif_stop_subqueue(netdev, i); 574 } else { 575 netif_stop_queue(netdev); 576 } 577 } 578 579 /** 580 * \brief Start Tx queues 581 * @param netdev network device 582 */ 583 static inline void txqs_start(struct net_device *netdev) 584 { 585 if (netif_is_multiqueue(netdev)) { 586 int i; 587 588 for (i = 0; i < netdev->num_tx_queues; i++) 589 netif_start_subqueue(netdev, i); 590 } else { 591 netif_start_queue(netdev); 592 } 593 } 594 595 /** 596 * \brief Wake Tx queues 597 * @param netdev network device 598 */ 599 static inline void txqs_wake(struct net_device *netdev) 600 { 601 struct lio *lio = GET_LIO(netdev); 602 603 if (netif_is_multiqueue(netdev)) { 604 int i; 605 606 for (i = 0; i < netdev->num_tx_queues; i++) { 607 int qno = lio->linfo.txpciq[i % 608 (lio->linfo.num_txpciq)].s.q_no; 609 610 if (__netif_subqueue_stopped(netdev, i)) { 611 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno, 612 tx_restart, 1); 613 netif_wake_subqueue(netdev, i); 614 } 615 } 616 } else { 617 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 618 tx_restart, 1); 619 netif_wake_queue(netdev); 620 } 621 } 622 623 /** 624 * \brief Stop Tx queue 625 * @param netdev network device 626 */ 627 static void stop_txq(struct net_device *netdev) 628 { 629 txqs_stop(netdev); 630 } 631 632 /** 633 * \brief Start Tx queue 634 * @param netdev network device 635 */ 636 static void start_txq(struct net_device *netdev) 637 { 638 struct lio *lio = GET_LIO(netdev); 639 640 if (lio->linfo.link.s.link_up) { 641 txqs_start(netdev); 642 return; 643 } 644 } 645 646 /** 647 * \brief Wake a queue 648 * @param netdev network device 649 * @param q which queue to wake 650 */ 651 static inline void wake_q(struct net_device *netdev, int q) 652 { 653 if (netif_is_multiqueue(netdev)) 654 netif_wake_subqueue(netdev, q); 655 else 656 netif_wake_queue(netdev); 657 } 658 659 /** 660 * \brief Stop a queue 661 * @param netdev network device 662 * @param q which queue to stop 663 */ 664 static inline void stop_q(struct net_device *netdev, int q) 665 { 666 if (netif_is_multiqueue(netdev)) 667 netif_stop_subqueue(netdev, q); 668 else 669 netif_stop_queue(netdev); 670 } 671 672 /** 673 * \brief Check Tx queue status, and take appropriate action 674 * @param lio per-network private data 675 * @returns 0 if full, number of queues woken up otherwise 676 */ 677 static inline int check_txq_status(struct lio *lio) 678 { 679 int ret_val = 0; 680 681 if (netif_is_multiqueue(lio->netdev)) { 682 int numqs = lio->netdev->num_tx_queues; 683 int q, iq = 0; 684 685 /* check each sub-queue state */ 686 for (q = 0; q < numqs; q++) { 687 iq = lio->linfo.txpciq[q % 688 (lio->linfo.num_txpciq)].s.q_no; 689 if (octnet_iq_is_full(lio->oct_dev, iq)) 690 continue; 691 if (__netif_subqueue_stopped(lio->netdev, q)) { 692 wake_q(lio->netdev, q); 693 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, 694 tx_restart, 1); 695 ret_val++; 696 } 697 } 698 } else { 699 if (octnet_iq_is_full(lio->oct_dev, lio->txq)) 700 return 0; 701 wake_q(lio->netdev, lio->txq); 702 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, lio->txq, 703 tx_restart, 1); 704 ret_val = 1; 705 } 706 return ret_val; 707 } 708 709 /** 710 * Remove the node at the head of the list. The list would be empty at 711 * the end of this call if there are no more nodes in the list. 712 */ 713 static inline struct list_head *list_delete_head(struct list_head *root) 714 { 715 struct list_head *node; 716 717 if ((root->prev == root) && (root->next == root)) 718 node = NULL; 719 else 720 node = root->next; 721 722 if (node) 723 list_del(node); 724 725 return node; 726 } 727 728 /** 729 * \brief Delete gather lists 730 * @param lio per-network private data 731 */ 732 static void delete_glists(struct lio *lio) 733 { 734 struct octnic_gather *g; 735 int i; 736 737 kfree(lio->glist_lock); 738 lio->glist_lock = NULL; 739 740 if (!lio->glist) 741 return; 742 743 for (i = 0; i < lio->linfo.num_txpciq; i++) { 744 do { 745 g = (struct octnic_gather *) 746 list_delete_head(&lio->glist[i]); 747 if (g) 748 kfree(g); 749 } while (g); 750 751 if (lio->glists_virt_base && lio->glists_virt_base[i]) { 752 lio_dma_free(lio->oct_dev, 753 lio->glist_entry_size * lio->tx_qsize, 754 lio->glists_virt_base[i], 755 lio->glists_dma_base[i]); 756 } 757 } 758 759 kfree(lio->glists_virt_base); 760 lio->glists_virt_base = NULL; 761 762 kfree(lio->glists_dma_base); 763 lio->glists_dma_base = NULL; 764 765 kfree(lio->glist); 766 lio->glist = NULL; 767 } 768 769 /** 770 * \brief Setup gather lists 771 * @param lio per-network private data 772 */ 773 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs) 774 { 775 int i, j; 776 struct octnic_gather *g; 777 778 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock), 779 GFP_KERNEL); 780 if (!lio->glist_lock) 781 return -ENOMEM; 782 783 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist), 784 GFP_KERNEL); 785 if (!lio->glist) { 786 kfree(lio->glist_lock); 787 lio->glist_lock = NULL; 788 return -ENOMEM; 789 } 790 791 lio->glist_entry_size = 792 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE); 793 794 /* allocate memory to store virtual and dma base address of 795 * per glist consistent memory 796 */ 797 lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base), 798 GFP_KERNEL); 799 lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base), 800 GFP_KERNEL); 801 802 if (!lio->glists_virt_base || !lio->glists_dma_base) { 803 delete_glists(lio); 804 return -ENOMEM; 805 } 806 807 for (i = 0; i < num_iqs; i++) { 808 int numa_node = cpu_to_node(i % num_online_cpus()); 809 810 spin_lock_init(&lio->glist_lock[i]); 811 812 INIT_LIST_HEAD(&lio->glist[i]); 813 814 lio->glists_virt_base[i] = 815 lio_dma_alloc(oct, 816 lio->glist_entry_size * lio->tx_qsize, 817 &lio->glists_dma_base[i]); 818 819 if (!lio->glists_virt_base[i]) { 820 delete_glists(lio); 821 return -ENOMEM; 822 } 823 824 for (j = 0; j < lio->tx_qsize; j++) { 825 g = kzalloc_node(sizeof(*g), GFP_KERNEL, 826 numa_node); 827 if (!g) 828 g = kzalloc(sizeof(*g), GFP_KERNEL); 829 if (!g) 830 break; 831 832 g->sg = lio->glists_virt_base[i] + 833 (j * lio->glist_entry_size); 834 835 g->sg_dma_ptr = lio->glists_dma_base[i] + 836 (j * lio->glist_entry_size); 837 838 list_add_tail(&g->list, &lio->glist[i]); 839 } 840 841 if (j != lio->tx_qsize) { 842 delete_glists(lio); 843 return -ENOMEM; 844 } 845 } 846 847 return 0; 848 } 849 850 /** 851 * \brief Print link information 852 * @param netdev network device 853 */ 854 static void print_link_info(struct net_device *netdev) 855 { 856 struct lio *lio = GET_LIO(netdev); 857 858 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) { 859 struct oct_link_info *linfo = &lio->linfo; 860 861 if (linfo->link.s.link_up) { 862 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n", 863 linfo->link.s.speed, 864 (linfo->link.s.duplex) ? "Full" : "Half"); 865 } else { 866 netif_info(lio, link, lio->netdev, "Link Down\n"); 867 } 868 } 869 } 870 871 /** 872 * \brief Routine to notify MTU change 873 * @param work work_struct data structure 874 */ 875 static void octnet_link_status_change(struct work_struct *work) 876 { 877 struct cavium_wk *wk = (struct cavium_wk *)work; 878 struct lio *lio = (struct lio *)wk->ctxptr; 879 880 rtnl_lock(); 881 call_netdevice_notifiers(NETDEV_CHANGEMTU, lio->netdev); 882 rtnl_unlock(); 883 } 884 885 /** 886 * \brief Sets up the mtu status change work 887 * @param netdev network device 888 */ 889 static inline int setup_link_status_change_wq(struct net_device *netdev) 890 { 891 struct lio *lio = GET_LIO(netdev); 892 struct octeon_device *oct = lio->oct_dev; 893 894 lio->link_status_wq.wq = alloc_workqueue("link-status", 895 WQ_MEM_RECLAIM, 0); 896 if (!lio->link_status_wq.wq) { 897 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n"); 898 return -1; 899 } 900 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work, 901 octnet_link_status_change); 902 lio->link_status_wq.wk.ctxptr = lio; 903 904 return 0; 905 } 906 907 static inline void cleanup_link_status_change_wq(struct net_device *netdev) 908 { 909 struct lio *lio = GET_LIO(netdev); 910 911 if (lio->link_status_wq.wq) { 912 cancel_delayed_work_sync(&lio->link_status_wq.wk.work); 913 destroy_workqueue(lio->link_status_wq.wq); 914 } 915 } 916 917 /** 918 * \brief Update link status 919 * @param netdev network device 920 * @param ls link status structure 921 * 922 * Called on receipt of a link status response from the core application to 923 * update each interface's link status. 924 */ 925 static inline void update_link_status(struct net_device *netdev, 926 union oct_link_status *ls) 927 { 928 struct lio *lio = GET_LIO(netdev); 929 int changed = (lio->linfo.link.u64 != ls->u64); 930 931 lio->linfo.link.u64 = ls->u64; 932 933 if ((lio->intf_open) && (changed)) { 934 print_link_info(netdev); 935 lio->link_changes++; 936 937 if (lio->linfo.link.s.link_up) { 938 netif_carrier_on(netdev); 939 txqs_wake(netdev); 940 } else { 941 netif_carrier_off(netdev); 942 stop_txq(netdev); 943 } 944 } 945 } 946 947 /* Runs in interrupt context. */ 948 static void update_txq_status(struct octeon_device *oct, int iq_num) 949 { 950 struct net_device *netdev; 951 struct lio *lio; 952 struct octeon_instr_queue *iq = oct->instr_queue[iq_num]; 953 954 netdev = oct->props[iq->ifidx].netdev; 955 956 /* This is needed because the first IQ does not have 957 * a netdev associated with it. 958 */ 959 if (!netdev) 960 return; 961 962 lio = GET_LIO(netdev); 963 if (netif_is_multiqueue(netdev)) { 964 if (__netif_subqueue_stopped(netdev, iq->q_index) && 965 lio->linfo.link.s.link_up && 966 (!octnet_iq_is_full(oct, iq_num))) { 967 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq_num, 968 tx_restart, 1); 969 netif_wake_subqueue(netdev, iq->q_index); 970 } else { 971 if (!octnet_iq_is_full(oct, lio->txq)) { 972 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, 973 lio->txq, 974 tx_restart, 1); 975 wake_q(netdev, lio->txq); 976 } 977 } 978 } 979 } 980 981 static 982 int liquidio_schedule_msix_droq_pkt_handler(struct octeon_droq *droq, u64 ret) 983 { 984 struct octeon_device *oct = droq->oct_dev; 985 struct octeon_device_priv *oct_priv = 986 (struct octeon_device_priv *)oct->priv; 987 988 if (droq->ops.poll_mode) { 989 droq->ops.napi_fn(droq); 990 } else { 991 if (ret & MSIX_PO_INT) { 992 tasklet_schedule(&oct_priv->droq_tasklet); 993 return 1; 994 } 995 /* this will be flushed periodically by check iq db */ 996 if (ret & MSIX_PI_INT) 997 return 0; 998 } 999 return 0; 1000 } 1001 1002 /** 1003 * \brief Droq packet processor sceduler 1004 * @param oct octeon device 1005 */ 1006 static void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct) 1007 { 1008 struct octeon_device_priv *oct_priv = 1009 (struct octeon_device_priv *)oct->priv; 1010 u64 oq_no; 1011 struct octeon_droq *droq; 1012 1013 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) { 1014 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); 1015 oq_no++) { 1016 if (!(oct->droq_intr & BIT_ULL(oq_no))) 1017 continue; 1018 1019 droq = oct->droq[oq_no]; 1020 1021 if (droq->ops.poll_mode) { 1022 droq->ops.napi_fn(droq); 1023 oct_priv->napi_mask |= (1 << oq_no); 1024 } else { 1025 tasklet_schedule(&oct_priv->droq_tasklet); 1026 } 1027 } 1028 } 1029 } 1030 1031 static irqreturn_t 1032 liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev) 1033 { 1034 u64 ret; 1035 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; 1036 struct octeon_device *oct = ioq_vector->oct_dev; 1037 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; 1038 1039 ret = oct->fn_list.msix_interrupt_handler(ioq_vector); 1040 1041 if ((ret & MSIX_PO_INT) || (ret & MSIX_PI_INT)) 1042 liquidio_schedule_msix_droq_pkt_handler(droq, ret); 1043 1044 return IRQ_HANDLED; 1045 } 1046 1047 /** 1048 * \brief Interrupt handler for octeon 1049 * @param irq unused 1050 * @param dev octeon device 1051 */ 1052 static 1053 irqreturn_t liquidio_legacy_intr_handler(int irq __attribute__((unused)), 1054 void *dev) 1055 { 1056 struct octeon_device *oct = (struct octeon_device *)dev; 1057 irqreturn_t ret; 1058 1059 /* Disable our interrupts for the duration of ISR */ 1060 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1061 1062 ret = oct->fn_list.process_interrupt_regs(oct); 1063 1064 if (ret == IRQ_HANDLED) 1065 liquidio_schedule_droq_pkt_handlers(oct); 1066 1067 /* Re-enable our interrupts */ 1068 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET)) 1069 oct->fn_list.enable_interrupt(oct, OCTEON_ALL_INTR); 1070 1071 return ret; 1072 } 1073 1074 /** 1075 * \brief Setup interrupt for octeon device 1076 * @param oct octeon device 1077 * 1078 * Enable interrupt in Octeon device as given in the PCI interrupt mask. 1079 */ 1080 static int octeon_setup_interrupt(struct octeon_device *oct) 1081 { 1082 int irqret, err; 1083 struct msix_entry *msix_entries; 1084 int i; 1085 int num_ioq_vectors; 1086 int num_alloc_ioq_vectors; 1087 1088 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 1089 oct->num_msix_irqs = oct->sriov_info.num_pf_rings; 1090 /* one non ioq interrupt for handling sli_mac_pf_int_sum */ 1091 oct->num_msix_irqs += 1; 1092 1093 oct->msix_entries = kcalloc( 1094 oct->num_msix_irqs, sizeof(struct msix_entry), GFP_KERNEL); 1095 if (!oct->msix_entries) 1096 return 1; 1097 1098 msix_entries = (struct msix_entry *)oct->msix_entries; 1099 /*Assumption is that pf msix vectors start from pf srn to pf to 1100 * trs and not from 0. if not change this code 1101 */ 1102 for (i = 0; i < oct->num_msix_irqs - 1; i++) 1103 msix_entries[i].entry = oct->sriov_info.pf_srn + i; 1104 msix_entries[oct->num_msix_irqs - 1].entry = 1105 oct->sriov_info.trs; 1106 num_alloc_ioq_vectors = pci_enable_msix_range( 1107 oct->pci_dev, msix_entries, 1108 oct->num_msix_irqs, 1109 oct->num_msix_irqs); 1110 if (num_alloc_ioq_vectors < 0) { 1111 dev_err(&oct->pci_dev->dev, "unable to Allocate MSI-X interrupts\n"); 1112 kfree(oct->msix_entries); 1113 oct->msix_entries = NULL; 1114 return 1; 1115 } 1116 dev_dbg(&oct->pci_dev->dev, "OCTEON: Enough MSI-X interrupts are allocated...\n"); 1117 1118 num_ioq_vectors = oct->num_msix_irqs; 1119 1120 /** For PF, there is one non-ioq interrupt handler */ 1121 num_ioq_vectors -= 1; 1122 irqret = request_irq(msix_entries[num_ioq_vectors].vector, 1123 liquidio_legacy_intr_handler, 0, "octeon", 1124 oct); 1125 if (irqret) { 1126 dev_err(&oct->pci_dev->dev, 1127 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n", 1128 irqret); 1129 pci_disable_msix(oct->pci_dev); 1130 kfree(oct->msix_entries); 1131 oct->msix_entries = NULL; 1132 return 1; 1133 } 1134 1135 for (i = 0; i < num_ioq_vectors; i++) { 1136 irqret = request_irq(msix_entries[i].vector, 1137 liquidio_msix_intr_handler, 0, 1138 "octeon", &oct->ioq_vector[i]); 1139 if (irqret) { 1140 dev_err(&oct->pci_dev->dev, 1141 "OCTEON: Request_irq failed for MSIX interrupt Error: %d\n", 1142 irqret); 1143 /** Freeing the non-ioq irq vector here . */ 1144 free_irq(msix_entries[num_ioq_vectors].vector, 1145 oct); 1146 1147 while (i) { 1148 i--; 1149 /** clearing affinity mask. */ 1150 irq_set_affinity_hint( 1151 msix_entries[i].vector, NULL); 1152 free_irq(msix_entries[i].vector, 1153 &oct->ioq_vector[i]); 1154 } 1155 pci_disable_msix(oct->pci_dev); 1156 kfree(oct->msix_entries); 1157 oct->msix_entries = NULL; 1158 return 1; 1159 } 1160 oct->ioq_vector[i].vector = msix_entries[i].vector; 1161 /* assign the cpu mask for this msix interrupt vector */ 1162 irq_set_affinity_hint( 1163 msix_entries[i].vector, 1164 (&oct->ioq_vector[i].affinity_mask)); 1165 } 1166 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: MSI-X enabled\n", 1167 oct->octeon_id); 1168 } else { 1169 err = pci_enable_msi(oct->pci_dev); 1170 if (err) 1171 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n", 1172 err); 1173 else 1174 oct->flags |= LIO_FLAG_MSI_ENABLED; 1175 1176 irqret = request_irq(oct->pci_dev->irq, 1177 liquidio_legacy_intr_handler, IRQF_SHARED, 1178 "octeon", oct); 1179 if (irqret) { 1180 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1181 pci_disable_msi(oct->pci_dev); 1182 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n", 1183 irqret); 1184 return 1; 1185 } 1186 } 1187 return 0; 1188 } 1189 1190 static int liquidio_watchdog(void *param) 1191 { 1192 u64 wdog; 1193 u16 mask_of_stuck_cores = 0; 1194 u16 mask_of_crashed_cores = 0; 1195 int core_num; 1196 u8 core_is_stuck[LIO_MAX_CORES]; 1197 u8 core_crashed[LIO_MAX_CORES]; 1198 struct octeon_device *oct = param; 1199 1200 memset(core_is_stuck, 0, sizeof(core_is_stuck)); 1201 memset(core_crashed, 0, sizeof(core_crashed)); 1202 1203 while (!kthread_should_stop()) { 1204 mask_of_crashed_cores = 1205 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 1206 1207 for (core_num = 0; core_num < LIO_MAX_CORES; core_num++) { 1208 if (!core_is_stuck[core_num]) { 1209 wdog = lio_pci_readq(oct, CIU3_WDOG(core_num)); 1210 1211 /* look at watchdog state field */ 1212 wdog &= CIU3_WDOG_MASK; 1213 if (wdog) { 1214 /* this watchdog timer has expired */ 1215 core_is_stuck[core_num] = 1216 LIO_MONITOR_WDOG_EXPIRE; 1217 mask_of_stuck_cores |= (1 << core_num); 1218 } 1219 } 1220 1221 if (!core_crashed[core_num]) 1222 core_crashed[core_num] = 1223 (mask_of_crashed_cores >> core_num) & 1; 1224 } 1225 1226 if (mask_of_stuck_cores) { 1227 for (core_num = 0; core_num < LIO_MAX_CORES; 1228 core_num++) { 1229 if (core_is_stuck[core_num] == 1) { 1230 dev_err(&oct->pci_dev->dev, 1231 "ERROR: Octeon core %d is stuck!\n", 1232 core_num); 1233 /* 2 means we have printk'd an error 1234 * so no need to repeat the same printk 1235 */ 1236 core_is_stuck[core_num] = 1237 LIO_MONITOR_CORE_STUCK_MSGD; 1238 } 1239 } 1240 } 1241 1242 if (mask_of_crashed_cores) { 1243 for (core_num = 0; core_num < LIO_MAX_CORES; 1244 core_num++) { 1245 if (core_crashed[core_num] == 1) { 1246 dev_err(&oct->pci_dev->dev, 1247 "ERROR: Octeon core %d crashed! See oct-fwdump for details.\n", 1248 core_num); 1249 /* 2 means we have printk'd an error 1250 * so no need to repeat the same printk 1251 */ 1252 core_crashed[core_num] = 1253 LIO_MONITOR_CORE_STUCK_MSGD; 1254 } 1255 } 1256 } 1257 #ifdef CONFIG_MODULE_UNLOAD 1258 if (mask_of_stuck_cores || mask_of_crashed_cores) { 1259 /* make module refcount=0 so that rmmod will work */ 1260 long refcount; 1261 1262 refcount = module_refcount(THIS_MODULE); 1263 1264 while (refcount > 0) { 1265 module_put(THIS_MODULE); 1266 refcount = module_refcount(THIS_MODULE); 1267 } 1268 1269 /* compensate for and withstand an unlikely (but still 1270 * possible) race condition 1271 */ 1272 while (refcount < 0) { 1273 try_module_get(THIS_MODULE); 1274 refcount = module_refcount(THIS_MODULE); 1275 } 1276 } 1277 #endif 1278 /* sleep for two seconds */ 1279 set_current_state(TASK_INTERRUPTIBLE); 1280 schedule_timeout(2 * HZ); 1281 } 1282 1283 return 0; 1284 } 1285 1286 /** 1287 * \brief PCI probe handler 1288 * @param pdev PCI device structure 1289 * @param ent unused 1290 */ 1291 static int 1292 liquidio_probe(struct pci_dev *pdev, 1293 const struct pci_device_id *ent __attribute__((unused))) 1294 { 1295 struct octeon_device *oct_dev = NULL; 1296 struct handshake *hs; 1297 1298 oct_dev = octeon_allocate_device(pdev->device, 1299 sizeof(struct octeon_device_priv)); 1300 if (!oct_dev) { 1301 dev_err(&pdev->dev, "Unable to allocate device\n"); 1302 return -ENOMEM; 1303 } 1304 1305 if (pdev->device == OCTEON_CN23XX_PF_VID) 1306 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED; 1307 1308 dev_info(&pdev->dev, "Initializing device %x:%x.\n", 1309 (u32)pdev->vendor, (u32)pdev->device); 1310 1311 /* Assign octeon_device for this device to the private data area. */ 1312 pci_set_drvdata(pdev, oct_dev); 1313 1314 /* set linux specific device pointer */ 1315 oct_dev->pci_dev = (void *)pdev; 1316 1317 hs = &handshake[oct_dev->octeon_id]; 1318 init_completion(&hs->init); 1319 init_completion(&hs->started); 1320 hs->pci_dev = pdev; 1321 1322 if (oct_dev->octeon_id == 0) 1323 /* first LiquidIO NIC is detected */ 1324 complete(&first_stage); 1325 1326 if (octeon_device_init(oct_dev)) { 1327 complete(&hs->init); 1328 liquidio_remove(pdev); 1329 return -ENOMEM; 1330 } 1331 1332 if (OCTEON_CN23XX_PF(oct_dev)) { 1333 u64 scratch1; 1334 u8 bus, device, function; 1335 1336 scratch1 = octeon_read_csr64(oct_dev, CN23XX_SLI_SCRATCH1); 1337 if (!(scratch1 & 4ULL)) { 1338 /* Bit 2 of SLI_SCRATCH_1 is a flag that indicates that 1339 * the lio watchdog kernel thread is running for this 1340 * NIC. Each NIC gets one watchdog kernel thread. 1341 */ 1342 scratch1 |= 4ULL; 1343 octeon_write_csr64(oct_dev, CN23XX_SLI_SCRATCH1, 1344 scratch1); 1345 1346 bus = pdev->bus->number; 1347 device = PCI_SLOT(pdev->devfn); 1348 function = PCI_FUNC(pdev->devfn); 1349 oct_dev->watchdog_task = kthread_create( 1350 liquidio_watchdog, oct_dev, 1351 "liowd/%02hhx:%02hhx.%hhx", bus, device, function); 1352 if (!IS_ERR(oct_dev->watchdog_task)) { 1353 wake_up_process(oct_dev->watchdog_task); 1354 } else { 1355 oct_dev->watchdog_task = NULL; 1356 dev_err(&oct_dev->pci_dev->dev, 1357 "failed to create kernel_thread\n"); 1358 liquidio_remove(pdev); 1359 return -1; 1360 } 1361 } 1362 } 1363 1364 oct_dev->rx_pause = 1; 1365 oct_dev->tx_pause = 1; 1366 1367 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n"); 1368 1369 return 0; 1370 } 1371 1372 /** 1373 *\brief Destroy resources associated with octeon device 1374 * @param pdev PCI device structure 1375 * @param ent unused 1376 */ 1377 static void octeon_destroy_resources(struct octeon_device *oct) 1378 { 1379 int i; 1380 struct msix_entry *msix_entries; 1381 struct octeon_device_priv *oct_priv = 1382 (struct octeon_device_priv *)oct->priv; 1383 1384 struct handshake *hs; 1385 1386 switch (atomic_read(&oct->status)) { 1387 case OCT_DEV_RUNNING: 1388 case OCT_DEV_CORE_OK: 1389 1390 /* No more instructions will be forwarded. */ 1391 atomic_set(&oct->status, OCT_DEV_IN_RESET); 1392 1393 oct->app_mode = CVM_DRV_INVALID_APP; 1394 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 1395 lio_get_state_string(&oct->status)); 1396 1397 schedule_timeout_uninterruptible(HZ / 10); 1398 1399 /* fallthrough */ 1400 case OCT_DEV_HOST_OK: 1401 1402 /* fallthrough */ 1403 case OCT_DEV_CONSOLE_INIT_DONE: 1404 /* Remove any consoles */ 1405 octeon_remove_consoles(oct); 1406 1407 /* fallthrough */ 1408 case OCT_DEV_IO_QUEUES_DONE: 1409 if (wait_for_pending_requests(oct)) 1410 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 1411 1412 if (lio_wait_for_instr_fetch(oct)) 1413 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n"); 1414 1415 /* Disable the input and output queues now. No more packets will 1416 * arrive from Octeon, but we should wait for all packet 1417 * processing to finish. 1418 */ 1419 oct->fn_list.disable_io_queues(oct); 1420 1421 if (lio_wait_for_oq_pkts(oct)) 1422 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n"); 1423 1424 /* fallthrough */ 1425 case OCT_DEV_INTR_SET_DONE: 1426 /* Disable interrupts */ 1427 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1428 1429 if (oct->msix_on) { 1430 msix_entries = (struct msix_entry *)oct->msix_entries; 1431 for (i = 0; i < oct->num_msix_irqs - 1; i++) { 1432 /* clear the affinity_cpumask */ 1433 irq_set_affinity_hint(msix_entries[i].vector, 1434 NULL); 1435 free_irq(msix_entries[i].vector, 1436 &oct->ioq_vector[i]); 1437 } 1438 /* non-iov vector's argument is oct struct */ 1439 free_irq(msix_entries[i].vector, oct); 1440 1441 pci_disable_msix(oct->pci_dev); 1442 kfree(oct->msix_entries); 1443 oct->msix_entries = NULL; 1444 } else { 1445 /* Release the interrupt line */ 1446 free_irq(oct->pci_dev->irq, oct); 1447 1448 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1449 pci_disable_msi(oct->pci_dev); 1450 } 1451 1452 /* fallthrough */ 1453 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE: 1454 if (OCTEON_CN23XX_PF(oct)) 1455 octeon_free_ioq_vector(oct); 1456 1457 /* fallthrough */ 1458 case OCT_DEV_MBOX_SETUP_DONE: 1459 if (OCTEON_CN23XX_PF(oct)) 1460 oct->fn_list.free_mbox(oct); 1461 1462 /* fallthrough */ 1463 case OCT_DEV_IN_RESET: 1464 case OCT_DEV_DROQ_INIT_DONE: 1465 /* Wait for any pending operations */ 1466 mdelay(100); 1467 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 1468 if (!(oct->io_qmask.oq & BIT_ULL(i))) 1469 continue; 1470 octeon_delete_droq(oct, i); 1471 } 1472 1473 /* Force any pending handshakes to complete */ 1474 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 1475 hs = &handshake[i]; 1476 1477 if (hs->pci_dev) { 1478 handshake[oct->octeon_id].init_ok = 0; 1479 complete(&handshake[oct->octeon_id].init); 1480 handshake[oct->octeon_id].started_ok = 0; 1481 complete(&handshake[oct->octeon_id].started); 1482 } 1483 } 1484 1485 /* fallthrough */ 1486 case OCT_DEV_RESP_LIST_INIT_DONE: 1487 octeon_delete_response_list(oct); 1488 1489 /* fallthrough */ 1490 case OCT_DEV_INSTR_QUEUE_INIT_DONE: 1491 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 1492 if (!(oct->io_qmask.iq & BIT_ULL(i))) 1493 continue; 1494 octeon_delete_instr_queue(oct, i); 1495 } 1496 #ifdef CONFIG_PCI_IOV 1497 if (oct->sriov_info.sriov_enabled) 1498 pci_disable_sriov(oct->pci_dev); 1499 #endif 1500 /* fallthrough */ 1501 case OCT_DEV_SC_BUFF_POOL_INIT_DONE: 1502 octeon_free_sc_buffer_pool(oct); 1503 1504 /* fallthrough */ 1505 case OCT_DEV_DISPATCH_INIT_DONE: 1506 octeon_delete_dispatch_list(oct); 1507 cancel_delayed_work_sync(&oct->nic_poll_work.work); 1508 1509 /* fallthrough */ 1510 case OCT_DEV_PCI_MAP_DONE: 1511 /* Soft reset the octeon device before exiting */ 1512 if ((!OCTEON_CN23XX_PF(oct)) || !oct->octeon_id) 1513 oct->fn_list.soft_reset(oct); 1514 1515 octeon_unmap_pci_barx(oct, 0); 1516 octeon_unmap_pci_barx(oct, 1); 1517 1518 /* fallthrough */ 1519 case OCT_DEV_PCI_ENABLE_DONE: 1520 pci_clear_master(oct->pci_dev); 1521 /* Disable the device, releasing the PCI INT */ 1522 pci_disable_device(oct->pci_dev); 1523 1524 /* fallthrough */ 1525 case OCT_DEV_BEGIN_STATE: 1526 /* Nothing to be done here either */ 1527 break; 1528 } /* end switch (oct->status) */ 1529 1530 tasklet_kill(&oct_priv->droq_tasklet); 1531 } 1532 1533 /** 1534 * \brief Callback for rx ctrl 1535 * @param status status of request 1536 * @param buf pointer to resp structure 1537 */ 1538 static void rx_ctl_callback(struct octeon_device *oct, 1539 u32 status, 1540 void *buf) 1541 { 1542 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1543 struct liquidio_rx_ctl_context *ctx; 1544 1545 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1546 1547 oct = lio_get_device(ctx->octeon_id); 1548 if (status) 1549 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n", 1550 CVM_CAST64(status)); 1551 WRITE_ONCE(ctx->cond, 1); 1552 1553 /* This barrier is required to be sure that the response has been 1554 * written fully before waking up the handler 1555 */ 1556 wmb(); 1557 1558 wake_up_interruptible(&ctx->wc); 1559 } 1560 1561 /** 1562 * \brief Send Rx control command 1563 * @param lio per-network private data 1564 * @param start_stop whether to start or stop 1565 */ 1566 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop) 1567 { 1568 struct octeon_soft_command *sc; 1569 struct liquidio_rx_ctl_context *ctx; 1570 union octnet_cmd *ncmd; 1571 int ctx_size = sizeof(struct liquidio_rx_ctl_context); 1572 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1573 int retval; 1574 1575 if (oct->props[lio->ifidx].rx_on == start_stop) 1576 return; 1577 1578 sc = (struct octeon_soft_command *) 1579 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE, 1580 16, ctx_size); 1581 1582 ncmd = (union octnet_cmd *)sc->virtdptr; 1583 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1584 1585 WRITE_ONCE(ctx->cond, 0); 1586 ctx->octeon_id = lio_get_device_id(oct); 1587 init_waitqueue_head(&ctx->wc); 1588 1589 ncmd->u64 = 0; 1590 ncmd->s.cmd = OCTNET_CMD_RX_CTL; 1591 ncmd->s.param1 = start_stop; 1592 1593 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3)); 1594 1595 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 1596 1597 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 1598 OPCODE_NIC_CMD, 0, 0, 0); 1599 1600 sc->callback = rx_ctl_callback; 1601 sc->callback_arg = sc; 1602 sc->wait_time = 5000; 1603 1604 retval = octeon_send_soft_command(oct, sc); 1605 if (retval == IQ_SEND_FAILED) { 1606 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n"); 1607 } else { 1608 /* Sleep on a wait queue till the cond flag indicates that the 1609 * response arrived or timed-out. 1610 */ 1611 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) 1612 return; 1613 oct->props[lio->ifidx].rx_on = start_stop; 1614 } 1615 1616 octeon_free_soft_command(oct, sc); 1617 } 1618 1619 /** 1620 * \brief Destroy NIC device interface 1621 * @param oct octeon device 1622 * @param ifidx which interface to destroy 1623 * 1624 * Cleanup associated with each interface for an Octeon device when NIC 1625 * module is being unloaded or if initialization fails during load. 1626 */ 1627 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx) 1628 { 1629 struct net_device *netdev = oct->props[ifidx].netdev; 1630 struct lio *lio; 1631 struct napi_struct *napi, *n; 1632 1633 if (!netdev) { 1634 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n", 1635 __func__, ifidx); 1636 return; 1637 } 1638 1639 lio = GET_LIO(netdev); 1640 1641 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n"); 1642 1643 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) 1644 liquidio_stop(netdev); 1645 1646 if (oct->props[lio->ifidx].napi_enabled == 1) { 1647 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1648 napi_disable(napi); 1649 1650 oct->props[lio->ifidx].napi_enabled = 0; 1651 1652 if (OCTEON_CN23XX_PF(oct)) 1653 oct->droq[0]->ops.poll_mode = 0; 1654 } 1655 1656 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) 1657 unregister_netdev(netdev); 1658 1659 cleanup_link_status_change_wq(netdev); 1660 1661 delete_glists(lio); 1662 1663 free_netdev(netdev); 1664 1665 oct->props[ifidx].gmxport = -1; 1666 1667 oct->props[ifidx].netdev = NULL; 1668 } 1669 1670 /** 1671 * \brief Stop complete NIC functionality 1672 * @param oct octeon device 1673 */ 1674 static int liquidio_stop_nic_module(struct octeon_device *oct) 1675 { 1676 int i, j; 1677 struct lio *lio; 1678 1679 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n"); 1680 if (!oct->ifcount) { 1681 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n"); 1682 return 1; 1683 } 1684 1685 spin_lock_bh(&oct->cmd_resp_wqlock); 1686 oct->cmd_resp_state = OCT_DRV_OFFLINE; 1687 spin_unlock_bh(&oct->cmd_resp_wqlock); 1688 1689 for (i = 0; i < oct->ifcount; i++) { 1690 lio = GET_LIO(oct->props[i].netdev); 1691 for (j = 0; j < lio->linfo.num_rxpciq; j++) 1692 octeon_unregister_droq_ops(oct, 1693 lio->linfo.rxpciq[j].s.q_no); 1694 } 1695 1696 for (i = 0; i < oct->ifcount; i++) 1697 liquidio_destroy_nic_device(oct, i); 1698 1699 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n"); 1700 return 0; 1701 } 1702 1703 /** 1704 * \brief Cleans up resources at unload time 1705 * @param pdev PCI device structure 1706 */ 1707 static void liquidio_remove(struct pci_dev *pdev) 1708 { 1709 struct octeon_device *oct_dev = pci_get_drvdata(pdev); 1710 1711 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n"); 1712 1713 if (oct_dev->watchdog_task) 1714 kthread_stop(oct_dev->watchdog_task); 1715 1716 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP)) 1717 liquidio_stop_nic_module(oct_dev); 1718 1719 /* Reset the octeon device and cleanup all memory allocated for 1720 * the octeon device by driver. 1721 */ 1722 octeon_destroy_resources(oct_dev); 1723 1724 dev_info(&oct_dev->pci_dev->dev, "Device removed\n"); 1725 1726 /* This octeon device has been removed. Update the global 1727 * data structure to reflect this. Free the device structure. 1728 */ 1729 octeon_free_device_mem(oct_dev); 1730 } 1731 1732 /** 1733 * \brief Identify the Octeon device and to map the BAR address space 1734 * @param oct octeon device 1735 */ 1736 static int octeon_chip_specific_setup(struct octeon_device *oct) 1737 { 1738 u32 dev_id, rev_id; 1739 int ret = 1; 1740 char *s; 1741 1742 pci_read_config_dword(oct->pci_dev, 0, &dev_id); 1743 pci_read_config_dword(oct->pci_dev, 8, &rev_id); 1744 oct->rev_id = rev_id & 0xff; 1745 1746 switch (dev_id) { 1747 case OCTEON_CN68XX_PCIID: 1748 oct->chip_id = OCTEON_CN68XX; 1749 ret = lio_setup_cn68xx_octeon_device(oct); 1750 s = "CN68XX"; 1751 break; 1752 1753 case OCTEON_CN66XX_PCIID: 1754 oct->chip_id = OCTEON_CN66XX; 1755 ret = lio_setup_cn66xx_octeon_device(oct); 1756 s = "CN66XX"; 1757 break; 1758 1759 case OCTEON_CN23XX_PCIID_PF: 1760 oct->chip_id = OCTEON_CN23XX_PF_VID; 1761 ret = setup_cn23xx_octeon_pf_device(oct); 1762 s = "CN23XX"; 1763 break; 1764 1765 default: 1766 s = "?"; 1767 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n", 1768 dev_id); 1769 } 1770 1771 if (!ret) 1772 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s, 1773 OCTEON_MAJOR_REV(oct), 1774 OCTEON_MINOR_REV(oct), 1775 octeon_get_conf(oct)->card_name, 1776 LIQUIDIO_VERSION); 1777 1778 return ret; 1779 } 1780 1781 /** 1782 * \brief PCI initialization for each Octeon device. 1783 * @param oct octeon device 1784 */ 1785 static int octeon_pci_os_setup(struct octeon_device *oct) 1786 { 1787 /* setup PCI stuff first */ 1788 if (pci_enable_device(oct->pci_dev)) { 1789 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n"); 1790 return 1; 1791 } 1792 1793 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) { 1794 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n"); 1795 pci_disable_device(oct->pci_dev); 1796 return 1; 1797 } 1798 1799 /* Enable PCI DMA Master. */ 1800 pci_set_master(oct->pci_dev); 1801 1802 return 0; 1803 } 1804 1805 static inline int skb_iq(struct lio *lio, struct sk_buff *skb) 1806 { 1807 int q = 0; 1808 1809 if (netif_is_multiqueue(lio->netdev)) 1810 q = skb->queue_mapping % lio->linfo.num_txpciq; 1811 1812 return q; 1813 } 1814 1815 /** 1816 * \brief Check Tx queue state for a given network buffer 1817 * @param lio per-network private data 1818 * @param skb network buffer 1819 */ 1820 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb) 1821 { 1822 int q = 0, iq = 0; 1823 1824 if (netif_is_multiqueue(lio->netdev)) { 1825 q = skb->queue_mapping; 1826 iq = lio->linfo.txpciq[(q % (lio->linfo.num_txpciq))].s.q_no; 1827 } else { 1828 iq = lio->txq; 1829 q = iq; 1830 } 1831 1832 if (octnet_iq_is_full(lio->oct_dev, iq)) 1833 return 0; 1834 1835 if (__netif_subqueue_stopped(lio->netdev, q)) { 1836 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, tx_restart, 1); 1837 wake_q(lio->netdev, q); 1838 } 1839 return 1; 1840 } 1841 1842 /** 1843 * \brief Unmap and free network buffer 1844 * @param buf buffer 1845 */ 1846 static void free_netbuf(void *buf) 1847 { 1848 struct sk_buff *skb; 1849 struct octnet_buf_free_info *finfo; 1850 struct lio *lio; 1851 1852 finfo = (struct octnet_buf_free_info *)buf; 1853 skb = finfo->skb; 1854 lio = finfo->lio; 1855 1856 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len, 1857 DMA_TO_DEVICE); 1858 1859 check_txq_state(lio, skb); 1860 1861 tx_buffer_free(skb); 1862 } 1863 1864 /** 1865 * \brief Unmap and free gather buffer 1866 * @param buf buffer 1867 */ 1868 static void free_netsgbuf(void *buf) 1869 { 1870 struct octnet_buf_free_info *finfo; 1871 struct sk_buff *skb; 1872 struct lio *lio; 1873 struct octnic_gather *g; 1874 int i, frags, iq; 1875 1876 finfo = (struct octnet_buf_free_info *)buf; 1877 skb = finfo->skb; 1878 lio = finfo->lio; 1879 g = finfo->g; 1880 frags = skb_shinfo(skb)->nr_frags; 1881 1882 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1883 g->sg[0].ptr[0], (skb->len - skb->data_len), 1884 DMA_TO_DEVICE); 1885 1886 i = 1; 1887 while (frags--) { 1888 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1889 1890 pci_unmap_page((lio->oct_dev)->pci_dev, 1891 g->sg[(i >> 2)].ptr[(i & 3)], 1892 frag->size, DMA_TO_DEVICE); 1893 i++; 1894 } 1895 1896 iq = skb_iq(lio, skb); 1897 spin_lock(&lio->glist_lock[iq]); 1898 list_add_tail(&g->list, &lio->glist[iq]); 1899 spin_unlock(&lio->glist_lock[iq]); 1900 1901 check_txq_state(lio, skb); /* mq support: sub-queue state check */ 1902 1903 tx_buffer_free(skb); 1904 } 1905 1906 /** 1907 * \brief Unmap and free gather buffer with response 1908 * @param buf buffer 1909 */ 1910 static void free_netsgbuf_with_resp(void *buf) 1911 { 1912 struct octeon_soft_command *sc; 1913 struct octnet_buf_free_info *finfo; 1914 struct sk_buff *skb; 1915 struct lio *lio; 1916 struct octnic_gather *g; 1917 int i, frags, iq; 1918 1919 sc = (struct octeon_soft_command *)buf; 1920 skb = (struct sk_buff *)sc->callback_arg; 1921 finfo = (struct octnet_buf_free_info *)&skb->cb; 1922 1923 lio = finfo->lio; 1924 g = finfo->g; 1925 frags = skb_shinfo(skb)->nr_frags; 1926 1927 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1928 g->sg[0].ptr[0], (skb->len - skb->data_len), 1929 DMA_TO_DEVICE); 1930 1931 i = 1; 1932 while (frags--) { 1933 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1934 1935 pci_unmap_page((lio->oct_dev)->pci_dev, 1936 g->sg[(i >> 2)].ptr[(i & 3)], 1937 frag->size, DMA_TO_DEVICE); 1938 i++; 1939 } 1940 1941 iq = skb_iq(lio, skb); 1942 1943 spin_lock(&lio->glist_lock[iq]); 1944 list_add_tail(&g->list, &lio->glist[iq]); 1945 spin_unlock(&lio->glist_lock[iq]); 1946 1947 /* Don't free the skb yet */ 1948 1949 check_txq_state(lio, skb); 1950 } 1951 1952 /** 1953 * \brief Adjust ptp frequency 1954 * @param ptp PTP clock info 1955 * @param ppb how much to adjust by, in parts-per-billion 1956 */ 1957 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 1958 { 1959 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1960 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1961 u64 comp, delta; 1962 unsigned long flags; 1963 bool neg_adj = false; 1964 1965 if (ppb < 0) { 1966 neg_adj = true; 1967 ppb = -ppb; 1968 } 1969 1970 /* The hardware adds the clock compensation value to the 1971 * PTP clock on every coprocessor clock cycle, so we 1972 * compute the delta in terms of coprocessor clocks. 1973 */ 1974 delta = (u64)ppb << 32; 1975 do_div(delta, oct->coproc_clock_rate); 1976 1977 spin_lock_irqsave(&lio->ptp_lock, flags); 1978 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP); 1979 if (neg_adj) 1980 comp -= delta; 1981 else 1982 comp += delta; 1983 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP); 1984 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1985 1986 return 0; 1987 } 1988 1989 /** 1990 * \brief Adjust ptp time 1991 * @param ptp PTP clock info 1992 * @param delta how much to adjust by, in nanosecs 1993 */ 1994 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 1995 { 1996 unsigned long flags; 1997 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1998 1999 spin_lock_irqsave(&lio->ptp_lock, flags); 2000 lio->ptp_adjust += delta; 2001 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2002 2003 return 0; 2004 } 2005 2006 /** 2007 * \brief Get hardware clock time, including any adjustment 2008 * @param ptp PTP clock info 2009 * @param ts timespec 2010 */ 2011 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp, 2012 struct timespec64 *ts) 2013 { 2014 u64 ns; 2015 unsigned long flags; 2016 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2017 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2018 2019 spin_lock_irqsave(&lio->ptp_lock, flags); 2020 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI); 2021 ns += lio->ptp_adjust; 2022 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2023 2024 *ts = ns_to_timespec64(ns); 2025 2026 return 0; 2027 } 2028 2029 /** 2030 * \brief Set hardware clock time. Reset adjustment 2031 * @param ptp PTP clock info 2032 * @param ts timespec 2033 */ 2034 static int liquidio_ptp_settime(struct ptp_clock_info *ptp, 2035 const struct timespec64 *ts) 2036 { 2037 u64 ns; 2038 unsigned long flags; 2039 struct lio *lio = container_of(ptp, struct lio, ptp_info); 2040 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2041 2042 ns = timespec_to_ns(ts); 2043 2044 spin_lock_irqsave(&lio->ptp_lock, flags); 2045 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI); 2046 lio->ptp_adjust = 0; 2047 spin_unlock_irqrestore(&lio->ptp_lock, flags); 2048 2049 return 0; 2050 } 2051 2052 /** 2053 * \brief Check if PTP is enabled 2054 * @param ptp PTP clock info 2055 * @param rq request 2056 * @param on is it on 2057 */ 2058 static int 2059 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)), 2060 struct ptp_clock_request *rq __attribute__((unused)), 2061 int on __attribute__((unused))) 2062 { 2063 return -EOPNOTSUPP; 2064 } 2065 2066 /** 2067 * \brief Open PTP clock source 2068 * @param netdev network device 2069 */ 2070 static void oct_ptp_open(struct net_device *netdev) 2071 { 2072 struct lio *lio = GET_LIO(netdev); 2073 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 2074 2075 spin_lock_init(&lio->ptp_lock); 2076 2077 snprintf(lio->ptp_info.name, 16, "%s", netdev->name); 2078 lio->ptp_info.owner = THIS_MODULE; 2079 lio->ptp_info.max_adj = 250000000; 2080 lio->ptp_info.n_alarm = 0; 2081 lio->ptp_info.n_ext_ts = 0; 2082 lio->ptp_info.n_per_out = 0; 2083 lio->ptp_info.pps = 0; 2084 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq; 2085 lio->ptp_info.adjtime = liquidio_ptp_adjtime; 2086 lio->ptp_info.gettime64 = liquidio_ptp_gettime; 2087 lio->ptp_info.settime64 = liquidio_ptp_settime; 2088 lio->ptp_info.enable = liquidio_ptp_enable; 2089 2090 lio->ptp_adjust = 0; 2091 2092 lio->ptp_clock = ptp_clock_register(&lio->ptp_info, 2093 &oct->pci_dev->dev); 2094 2095 if (IS_ERR(lio->ptp_clock)) 2096 lio->ptp_clock = NULL; 2097 } 2098 2099 /** 2100 * \brief Init PTP clock 2101 * @param oct octeon device 2102 */ 2103 static void liquidio_ptp_init(struct octeon_device *oct) 2104 { 2105 u64 clock_comp, cfg; 2106 2107 clock_comp = (u64)NSEC_PER_SEC << 32; 2108 do_div(clock_comp, oct->coproc_clock_rate); 2109 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP); 2110 2111 /* Enable */ 2112 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG); 2113 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG); 2114 } 2115 2116 /** 2117 * \brief Load firmware to device 2118 * @param oct octeon device 2119 * 2120 * Maps device to firmware filename, requests firmware, and downloads it 2121 */ 2122 static int load_firmware(struct octeon_device *oct) 2123 { 2124 int ret = 0; 2125 const struct firmware *fw; 2126 char fw_name[LIO_MAX_FW_FILENAME_LEN]; 2127 char *tmp_fw_type; 2128 2129 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE, 2130 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) { 2131 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n"); 2132 return ret; 2133 } 2134 2135 if (fw_type[0] == '\0') 2136 tmp_fw_type = LIO_FW_NAME_TYPE_NIC; 2137 else 2138 tmp_fw_type = fw_type; 2139 2140 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME, 2141 octeon_get_conf(oct)->card_name, tmp_fw_type, 2142 LIO_FW_NAME_SUFFIX); 2143 2144 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev); 2145 if (ret) { 2146 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.", 2147 fw_name); 2148 release_firmware(fw); 2149 return ret; 2150 } 2151 2152 ret = octeon_download_firmware(oct, fw->data, fw->size); 2153 2154 release_firmware(fw); 2155 2156 return ret; 2157 } 2158 2159 /** 2160 * \brief Setup output queue 2161 * @param oct octeon device 2162 * @param q_no which queue 2163 * @param num_descs how many descriptors 2164 * @param desc_size size of each descriptor 2165 * @param app_ctx application context 2166 */ 2167 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs, 2168 int desc_size, void *app_ctx) 2169 { 2170 int ret_val = 0; 2171 2172 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no); 2173 /* droq creation and local register settings. */ 2174 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx); 2175 if (ret_val < 0) 2176 return ret_val; 2177 2178 if (ret_val == 1) { 2179 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no); 2180 return 0; 2181 } 2182 /* tasklet creation for the droq */ 2183 2184 /* Enable the droq queues */ 2185 octeon_set_droq_pkt_op(oct, q_no, 1); 2186 2187 /* Send Credit for Octeon Output queues. Credits are always 2188 * sent after the output queue is enabled. 2189 */ 2190 writel(oct->droq[q_no]->max_count, 2191 oct->droq[q_no]->pkts_credit_reg); 2192 2193 return ret_val; 2194 } 2195 2196 /** 2197 * \brief Callback for getting interface configuration 2198 * @param status status of request 2199 * @param buf pointer to resp structure 2200 */ 2201 static void if_cfg_callback(struct octeon_device *oct, 2202 u32 status __attribute__((unused)), 2203 void *buf) 2204 { 2205 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 2206 struct liquidio_if_cfg_resp *resp; 2207 struct liquidio_if_cfg_context *ctx; 2208 2209 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 2210 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 2211 2212 oct = lio_get_device(ctx->octeon_id); 2213 if (resp->status) 2214 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n", 2215 CVM_CAST64(resp->status)); 2216 WRITE_ONCE(ctx->cond, 1); 2217 2218 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s", 2219 resp->cfg_info.liquidio_firmware_version); 2220 2221 /* This barrier is required to be sure that the response has been 2222 * written fully before waking up the handler 2223 */ 2224 wmb(); 2225 2226 wake_up_interruptible(&ctx->wc); 2227 } 2228 2229 /** Routine to push packets arriving on Octeon interface upto network layer. 2230 * @param oct_id - octeon device id. 2231 * @param skbuff - skbuff struct to be passed to network layer. 2232 * @param len - size of total data received. 2233 * @param rh - Control header associated with the packet 2234 * @param param - additional control data with the packet 2235 * @param arg - farg registered in droq_ops 2236 */ 2237 static void 2238 liquidio_push_packet(u32 octeon_id __attribute__((unused)), 2239 void *skbuff, 2240 u32 len, 2241 union octeon_rh *rh, 2242 void *param, 2243 void *arg) 2244 { 2245 struct napi_struct *napi = param; 2246 struct sk_buff *skb = (struct sk_buff *)skbuff; 2247 struct skb_shared_hwtstamps *shhwtstamps; 2248 u64 ns; 2249 u16 vtag = 0; 2250 u32 r_dh_off; 2251 struct net_device *netdev = (struct net_device *)arg; 2252 struct octeon_droq *droq = container_of(param, struct octeon_droq, 2253 napi); 2254 if (netdev) { 2255 int packet_was_received; 2256 struct lio *lio = GET_LIO(netdev); 2257 struct octeon_device *oct = lio->oct_dev; 2258 2259 /* Do not proceed if the interface is not in RUNNING state. */ 2260 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) { 2261 recv_buffer_free(skb); 2262 droq->stats.rx_dropped++; 2263 return; 2264 } 2265 2266 skb->dev = netdev; 2267 2268 skb_record_rx_queue(skb, droq->q_no); 2269 if (likely(len > MIN_SKB_SIZE)) { 2270 struct octeon_skb_page_info *pg_info; 2271 unsigned char *va; 2272 2273 pg_info = ((struct octeon_skb_page_info *)(skb->cb)); 2274 if (pg_info->page) { 2275 /* For Paged allocation use the frags */ 2276 va = page_address(pg_info->page) + 2277 pg_info->page_offset; 2278 memcpy(skb->data, va, MIN_SKB_SIZE); 2279 skb_put(skb, MIN_SKB_SIZE); 2280 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2281 pg_info->page, 2282 pg_info->page_offset + 2283 MIN_SKB_SIZE, 2284 len - MIN_SKB_SIZE, 2285 LIO_RXBUFFER_SZ); 2286 } 2287 } else { 2288 struct octeon_skb_page_info *pg_info = 2289 ((struct octeon_skb_page_info *)(skb->cb)); 2290 skb_copy_to_linear_data(skb, page_address(pg_info->page) 2291 + pg_info->page_offset, len); 2292 skb_put(skb, len); 2293 put_page(pg_info->page); 2294 } 2295 2296 r_dh_off = (rh->r_dh.len - 1) * BYTES_PER_DHLEN_UNIT; 2297 2298 if (((oct->chip_id == OCTEON_CN66XX) || 2299 (oct->chip_id == OCTEON_CN68XX)) && 2300 ptp_enable) { 2301 if (rh->r_dh.has_hwtstamp) { 2302 /* timestamp is included from the hardware at 2303 * the beginning of the packet. 2304 */ 2305 if (ifstate_check 2306 (lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) { 2307 /* Nanoseconds are in the first 64-bits 2308 * of the packet. 2309 */ 2310 memcpy(&ns, (skb->data + r_dh_off), 2311 sizeof(ns)); 2312 r_dh_off -= BYTES_PER_DHLEN_UNIT; 2313 shhwtstamps = skb_hwtstamps(skb); 2314 shhwtstamps->hwtstamp = 2315 ns_to_ktime(ns + 2316 lio->ptp_adjust); 2317 } 2318 } 2319 } 2320 2321 if (rh->r_dh.has_hash) { 2322 __be32 *hash_be = (__be32 *)(skb->data + r_dh_off); 2323 u32 hash = be32_to_cpu(*hash_be); 2324 2325 skb_set_hash(skb, hash, PKT_HASH_TYPE_L4); 2326 r_dh_off -= BYTES_PER_DHLEN_UNIT; 2327 } 2328 2329 skb_pull(skb, rh->r_dh.len * BYTES_PER_DHLEN_UNIT); 2330 2331 skb->protocol = eth_type_trans(skb, skb->dev); 2332 if ((netdev->features & NETIF_F_RXCSUM) && 2333 (((rh->r_dh.encap_on) && 2334 (rh->r_dh.csum_verified & CNNIC_TUN_CSUM_VERIFIED)) || 2335 (!(rh->r_dh.encap_on) && 2336 (rh->r_dh.csum_verified & CNNIC_CSUM_VERIFIED)))) 2337 /* checksum has already been verified */ 2338 skb->ip_summed = CHECKSUM_UNNECESSARY; 2339 else 2340 skb->ip_summed = CHECKSUM_NONE; 2341 2342 /* Setting Encapsulation field on basis of status received 2343 * from the firmware 2344 */ 2345 if (rh->r_dh.encap_on) { 2346 skb->encapsulation = 1; 2347 skb->csum_level = 1; 2348 droq->stats.rx_vxlan++; 2349 } 2350 2351 /* inbound VLAN tag */ 2352 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 2353 (rh->r_dh.vlan != 0)) { 2354 u16 vid = rh->r_dh.vlan; 2355 u16 priority = rh->r_dh.priority; 2356 2357 vtag = priority << 13 | vid; 2358 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); 2359 } 2360 2361 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP; 2362 2363 if (packet_was_received) { 2364 droq->stats.rx_bytes_received += len; 2365 droq->stats.rx_pkts_received++; 2366 } else { 2367 droq->stats.rx_dropped++; 2368 netif_info(lio, rx_err, lio->netdev, 2369 "droq:%d error rx_dropped:%llu\n", 2370 droq->q_no, droq->stats.rx_dropped); 2371 } 2372 2373 } else { 2374 recv_buffer_free(skb); 2375 } 2376 } 2377 2378 /** 2379 * \brief wrapper for calling napi_schedule 2380 * @param param parameters to pass to napi_schedule 2381 * 2382 * Used when scheduling on different CPUs 2383 */ 2384 static void napi_schedule_wrapper(void *param) 2385 { 2386 struct napi_struct *napi = param; 2387 2388 napi_schedule(napi); 2389 } 2390 2391 /** 2392 * \brief callback when receive interrupt occurs and we are in NAPI mode 2393 * @param arg pointer to octeon output queue 2394 */ 2395 static void liquidio_napi_drv_callback(void *arg) 2396 { 2397 struct octeon_device *oct; 2398 struct octeon_droq *droq = arg; 2399 int this_cpu = smp_processor_id(); 2400 2401 oct = droq->oct_dev; 2402 2403 if (OCTEON_CN23XX_PF(oct) || droq->cpu_id == this_cpu) { 2404 napi_schedule_irqoff(&droq->napi); 2405 } else { 2406 struct call_single_data *csd = &droq->csd; 2407 2408 csd->func = napi_schedule_wrapper; 2409 csd->info = &droq->napi; 2410 csd->flags = 0; 2411 2412 smp_call_function_single_async(droq->cpu_id, csd); 2413 } 2414 } 2415 2416 /** 2417 * \brief Entry point for NAPI polling 2418 * @param napi NAPI structure 2419 * @param budget maximum number of items to process 2420 */ 2421 static int liquidio_napi_poll(struct napi_struct *napi, int budget) 2422 { 2423 struct octeon_droq *droq; 2424 int work_done; 2425 int tx_done = 0, iq_no; 2426 struct octeon_instr_queue *iq; 2427 struct octeon_device *oct; 2428 2429 droq = container_of(napi, struct octeon_droq, napi); 2430 oct = droq->oct_dev; 2431 iq_no = droq->q_no; 2432 /* Handle Droq descriptors */ 2433 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no, 2434 POLL_EVENT_PROCESS_PKTS, 2435 budget); 2436 2437 /* Flush the instruction queue */ 2438 iq = oct->instr_queue[iq_no]; 2439 if (iq) { 2440 /* Process iq buffers with in the budget limits */ 2441 tx_done = octeon_flush_iq(oct, iq, budget); 2442 /* Update iq read-index rather than waiting for next interrupt. 2443 * Return back if tx_done is false. 2444 */ 2445 update_txq_status(oct, iq_no); 2446 } else { 2447 dev_err(&oct->pci_dev->dev, "%s: iq (%d) num invalid\n", 2448 __func__, iq_no); 2449 } 2450 2451 /* force enable interrupt if reg cnts are high to avoid wraparound */ 2452 if ((work_done < budget && tx_done) || 2453 (iq && iq->pkt_in_done >= MAX_REG_CNT) || 2454 (droq->pkt_count >= MAX_REG_CNT)) { 2455 tx_done = 1; 2456 napi_complete_done(napi, work_done); 2457 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no, 2458 POLL_EVENT_ENABLE_INTR, 0); 2459 return 0; 2460 } 2461 2462 return (!tx_done) ? (budget) : (work_done); 2463 } 2464 2465 /** 2466 * \brief Setup input and output queues 2467 * @param octeon_dev octeon device 2468 * @param ifidx Interface Index 2469 * 2470 * Note: Queues are with respect to the octeon device. Thus 2471 * an input queue is for egress packets, and output queues 2472 * are for ingress packets. 2473 */ 2474 static inline int setup_io_queues(struct octeon_device *octeon_dev, 2475 int ifidx) 2476 { 2477 struct octeon_droq_ops droq_ops; 2478 struct net_device *netdev; 2479 static int cpu_id; 2480 static int cpu_id_modulus; 2481 struct octeon_droq *droq; 2482 struct napi_struct *napi; 2483 int q, q_no, retval = 0; 2484 struct lio *lio; 2485 int num_tx_descs; 2486 2487 netdev = octeon_dev->props[ifidx].netdev; 2488 2489 lio = GET_LIO(netdev); 2490 2491 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops)); 2492 2493 droq_ops.fptr = liquidio_push_packet; 2494 droq_ops.farg = (void *)netdev; 2495 2496 droq_ops.poll_mode = 1; 2497 droq_ops.napi_fn = liquidio_napi_drv_callback; 2498 cpu_id = 0; 2499 cpu_id_modulus = num_present_cpus(); 2500 2501 /* set up DROQs. */ 2502 for (q = 0; q < lio->linfo.num_rxpciq; q++) { 2503 q_no = lio->linfo.rxpciq[q].s.q_no; 2504 dev_dbg(&octeon_dev->pci_dev->dev, 2505 "setup_io_queues index:%d linfo.rxpciq.s.q_no:%d\n", 2506 q, q_no); 2507 retval = octeon_setup_droq(octeon_dev, q_no, 2508 CFG_GET_NUM_RX_DESCS_NIC_IF 2509 (octeon_get_conf(octeon_dev), 2510 lio->ifidx), 2511 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF 2512 (octeon_get_conf(octeon_dev), 2513 lio->ifidx), NULL); 2514 if (retval) { 2515 dev_err(&octeon_dev->pci_dev->dev, 2516 "%s : Runtime DROQ(RxQ) creation failed.\n", 2517 __func__); 2518 return 1; 2519 } 2520 2521 droq = octeon_dev->droq[q_no]; 2522 napi = &droq->napi; 2523 dev_dbg(&octeon_dev->pci_dev->dev, "netif_napi_add netdev:%llx oct:%llx pf_num:%d\n", 2524 (u64)netdev, (u64)octeon_dev, octeon_dev->pf_num); 2525 netif_napi_add(netdev, napi, liquidio_napi_poll, 64); 2526 2527 /* designate a CPU for this droq */ 2528 droq->cpu_id = cpu_id; 2529 cpu_id++; 2530 if (cpu_id >= cpu_id_modulus) 2531 cpu_id = 0; 2532 2533 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops); 2534 } 2535 2536 if (OCTEON_CN23XX_PF(octeon_dev)) { 2537 /* 23XX PF can receive control messages (via the first PF-owned 2538 * droq) from the firmware even if the ethX interface is down, 2539 * so that's why poll_mode must be off for the first droq. 2540 */ 2541 octeon_dev->droq[0]->ops.poll_mode = 0; 2542 } 2543 2544 /* set up IQs. */ 2545 for (q = 0; q < lio->linfo.num_txpciq; q++) { 2546 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf 2547 (octeon_dev), 2548 lio->ifidx); 2549 retval = octeon_setup_iq(octeon_dev, ifidx, q, 2550 lio->linfo.txpciq[q], num_tx_descs, 2551 netdev_get_tx_queue(netdev, q)); 2552 if (retval) { 2553 dev_err(&octeon_dev->pci_dev->dev, 2554 " %s : Runtime IQ(TxQ) creation failed.\n", 2555 __func__); 2556 return 1; 2557 } 2558 } 2559 2560 return 0; 2561 } 2562 2563 /** 2564 * \brief Poll routine for checking transmit queue status 2565 * @param work work_struct data structure 2566 */ 2567 static void octnet_poll_check_txq_status(struct work_struct *work) 2568 { 2569 struct cavium_wk *wk = (struct cavium_wk *)work; 2570 struct lio *lio = (struct lio *)wk->ctxptr; 2571 2572 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) 2573 return; 2574 2575 check_txq_status(lio); 2576 queue_delayed_work(lio->txq_status_wq.wq, 2577 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2578 } 2579 2580 /** 2581 * \brief Sets up the txq poll check 2582 * @param netdev network device 2583 */ 2584 static inline int setup_tx_poll_fn(struct net_device *netdev) 2585 { 2586 struct lio *lio = GET_LIO(netdev); 2587 struct octeon_device *oct = lio->oct_dev; 2588 2589 lio->txq_status_wq.wq = alloc_workqueue("txq-status", 2590 WQ_MEM_RECLAIM, 0); 2591 if (!lio->txq_status_wq.wq) { 2592 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n"); 2593 return -1; 2594 } 2595 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work, 2596 octnet_poll_check_txq_status); 2597 lio->txq_status_wq.wk.ctxptr = lio; 2598 queue_delayed_work(lio->txq_status_wq.wq, 2599 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2600 return 0; 2601 } 2602 2603 static inline void cleanup_tx_poll_fn(struct net_device *netdev) 2604 { 2605 struct lio *lio = GET_LIO(netdev); 2606 2607 if (lio->txq_status_wq.wq) { 2608 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work); 2609 destroy_workqueue(lio->txq_status_wq.wq); 2610 } 2611 } 2612 2613 /** 2614 * \brief Net device open for LiquidIO 2615 * @param netdev network device 2616 */ 2617 static int liquidio_open(struct net_device *netdev) 2618 { 2619 struct lio *lio = GET_LIO(netdev); 2620 struct octeon_device *oct = lio->oct_dev; 2621 struct napi_struct *napi, *n; 2622 2623 if (oct->props[lio->ifidx].napi_enabled == 0) { 2624 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2625 napi_enable(napi); 2626 2627 oct->props[lio->ifidx].napi_enabled = 1; 2628 2629 if (OCTEON_CN23XX_PF(oct)) 2630 oct->droq[0]->ops.poll_mode = 1; 2631 } 2632 2633 if ((oct->chip_id == OCTEON_CN66XX || oct->chip_id == OCTEON_CN68XX) && 2634 ptp_enable) 2635 oct_ptp_open(netdev); 2636 2637 ifstate_set(lio, LIO_IFSTATE_RUNNING); 2638 2639 /* Ready for link status updates */ 2640 lio->intf_open = 1; 2641 2642 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n"); 2643 2644 if (OCTEON_CN23XX_PF(oct)) { 2645 if (!oct->msix_on) 2646 if (setup_tx_poll_fn(netdev)) 2647 return -1; 2648 } else { 2649 if (setup_tx_poll_fn(netdev)) 2650 return -1; 2651 } 2652 2653 start_txq(netdev); 2654 2655 /* tell Octeon to start forwarding packets to host */ 2656 send_rx_ctrl_cmd(lio, 1); 2657 2658 dev_info(&oct->pci_dev->dev, "%s interface is opened\n", 2659 netdev->name); 2660 2661 return 0; 2662 } 2663 2664 /** 2665 * \brief Net device stop for LiquidIO 2666 * @param netdev network device 2667 */ 2668 static int liquidio_stop(struct net_device *netdev) 2669 { 2670 struct lio *lio = GET_LIO(netdev); 2671 struct octeon_device *oct = lio->oct_dev; 2672 2673 ifstate_reset(lio, LIO_IFSTATE_RUNNING); 2674 2675 netif_tx_disable(netdev); 2676 2677 /* Inform that netif carrier is down */ 2678 netif_carrier_off(netdev); 2679 lio->intf_open = 0; 2680 lio->linfo.link.s.link_up = 0; 2681 lio->link_changes++; 2682 2683 /* Tell Octeon that nic interface is down. */ 2684 send_rx_ctrl_cmd(lio, 0); 2685 2686 if (OCTEON_CN23XX_PF(oct)) { 2687 if (!oct->msix_on) 2688 cleanup_tx_poll_fn(netdev); 2689 } else { 2690 cleanup_tx_poll_fn(netdev); 2691 } 2692 2693 if (lio->ptp_clock) { 2694 ptp_clock_unregister(lio->ptp_clock); 2695 lio->ptp_clock = NULL; 2696 } 2697 2698 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name); 2699 2700 return 0; 2701 } 2702 2703 /** 2704 * \brief Converts a mask based on net device flags 2705 * @param netdev network device 2706 * 2707 * This routine generates a octnet_ifflags mask from the net device flags 2708 * received from the OS. 2709 */ 2710 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev) 2711 { 2712 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST; 2713 2714 if (netdev->flags & IFF_PROMISC) 2715 f |= OCTNET_IFFLAG_PROMISC; 2716 2717 if (netdev->flags & IFF_ALLMULTI) 2718 f |= OCTNET_IFFLAG_ALLMULTI; 2719 2720 if (netdev->flags & IFF_MULTICAST) { 2721 f |= OCTNET_IFFLAG_MULTICAST; 2722 2723 /* Accept all multicast addresses if there are more than we 2724 * can handle 2725 */ 2726 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR) 2727 f |= OCTNET_IFFLAG_ALLMULTI; 2728 } 2729 2730 if (netdev->flags & IFF_BROADCAST) 2731 f |= OCTNET_IFFLAG_BROADCAST; 2732 2733 return f; 2734 } 2735 2736 /** 2737 * \brief Net device set_multicast_list 2738 * @param netdev network device 2739 */ 2740 static void liquidio_set_mcast_list(struct net_device *netdev) 2741 { 2742 struct lio *lio = GET_LIO(netdev); 2743 struct octeon_device *oct = lio->oct_dev; 2744 struct octnic_ctrl_pkt nctrl; 2745 struct netdev_hw_addr *ha; 2746 u64 *mc; 2747 int ret; 2748 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR); 2749 2750 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2751 2752 /* Create a ctrl pkt command to be sent to core app. */ 2753 nctrl.ncmd.u64 = 0; 2754 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST; 2755 nctrl.ncmd.s.param1 = get_new_flags(netdev); 2756 nctrl.ncmd.s.param2 = mc_count; 2757 nctrl.ncmd.s.more = mc_count; 2758 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2759 nctrl.netpndev = (u64)netdev; 2760 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2761 2762 /* copy all the addresses into the udd */ 2763 mc = &nctrl.udd[0]; 2764 netdev_for_each_mc_addr(ha, netdev) { 2765 *mc = 0; 2766 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN); 2767 /* no need to swap bytes */ 2768 2769 if (++mc > &nctrl.udd[mc_count]) 2770 break; 2771 } 2772 2773 /* Apparently, any activity in this call from the kernel has to 2774 * be atomic. So we won't wait for response. 2775 */ 2776 nctrl.wait_time = 0; 2777 2778 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2779 if (ret < 0) { 2780 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n", 2781 ret); 2782 } 2783 } 2784 2785 /** 2786 * \brief Net device set_mac_address 2787 * @param netdev network device 2788 */ 2789 static int liquidio_set_mac(struct net_device *netdev, void *p) 2790 { 2791 int ret = 0; 2792 struct lio *lio = GET_LIO(netdev); 2793 struct octeon_device *oct = lio->oct_dev; 2794 struct sockaddr *addr = (struct sockaddr *)p; 2795 struct octnic_ctrl_pkt nctrl; 2796 2797 if (!is_valid_ether_addr(addr->sa_data)) 2798 return -EADDRNOTAVAIL; 2799 2800 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2801 2802 nctrl.ncmd.u64 = 0; 2803 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 2804 nctrl.ncmd.s.param1 = 0; 2805 nctrl.ncmd.s.more = 1; 2806 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2807 nctrl.netpndev = (u64)netdev; 2808 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2809 nctrl.wait_time = 100; 2810 2811 nctrl.udd[0] = 0; 2812 /* The MAC Address is presented in network byte order. */ 2813 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN); 2814 2815 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2816 if (ret < 0) { 2817 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n"); 2818 return -ENOMEM; 2819 } 2820 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2821 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN); 2822 2823 return 0; 2824 } 2825 2826 /** 2827 * \brief Net device get_stats 2828 * @param netdev network device 2829 */ 2830 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev) 2831 { 2832 struct lio *lio = GET_LIO(netdev); 2833 struct net_device_stats *stats = &netdev->stats; 2834 struct octeon_device *oct; 2835 u64 pkts = 0, drop = 0, bytes = 0; 2836 struct oct_droq_stats *oq_stats; 2837 struct oct_iq_stats *iq_stats; 2838 int i, iq_no, oq_no; 2839 2840 oct = lio->oct_dev; 2841 2842 for (i = 0; i < lio->linfo.num_txpciq; i++) { 2843 iq_no = lio->linfo.txpciq[i].s.q_no; 2844 iq_stats = &oct->instr_queue[iq_no]->stats; 2845 pkts += iq_stats->tx_done; 2846 drop += iq_stats->tx_dropped; 2847 bytes += iq_stats->tx_tot_bytes; 2848 } 2849 2850 stats->tx_packets = pkts; 2851 stats->tx_bytes = bytes; 2852 stats->tx_dropped = drop; 2853 2854 pkts = 0; 2855 drop = 0; 2856 bytes = 0; 2857 2858 for (i = 0; i < lio->linfo.num_rxpciq; i++) { 2859 oq_no = lio->linfo.rxpciq[i].s.q_no; 2860 oq_stats = &oct->droq[oq_no]->stats; 2861 pkts += oq_stats->rx_pkts_received; 2862 drop += (oq_stats->rx_dropped + 2863 oq_stats->dropped_nodispatch + 2864 oq_stats->dropped_toomany + 2865 oq_stats->dropped_nomem); 2866 bytes += oq_stats->rx_bytes_received; 2867 } 2868 2869 stats->rx_bytes = bytes; 2870 stats->rx_packets = pkts; 2871 stats->rx_dropped = drop; 2872 2873 return stats; 2874 } 2875 2876 /** 2877 * \brief Net device change_mtu 2878 * @param netdev network device 2879 */ 2880 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu) 2881 { 2882 struct lio *lio = GET_LIO(netdev); 2883 struct octeon_device *oct = lio->oct_dev; 2884 struct octnic_ctrl_pkt nctrl; 2885 int ret = 0; 2886 2887 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2888 2889 nctrl.ncmd.u64 = 0; 2890 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU; 2891 nctrl.ncmd.s.param1 = new_mtu; 2892 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2893 nctrl.wait_time = 100; 2894 nctrl.netpndev = (u64)netdev; 2895 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2896 2897 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2898 if (ret < 0) { 2899 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n"); 2900 return -1; 2901 } 2902 2903 lio->mtu = new_mtu; 2904 2905 return 0; 2906 } 2907 2908 /** 2909 * \brief Handler for SIOCSHWTSTAMP ioctl 2910 * @param netdev network device 2911 * @param ifr interface request 2912 * @param cmd command 2913 */ 2914 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr) 2915 { 2916 struct hwtstamp_config conf; 2917 struct lio *lio = GET_LIO(netdev); 2918 2919 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf))) 2920 return -EFAULT; 2921 2922 if (conf.flags) 2923 return -EINVAL; 2924 2925 switch (conf.tx_type) { 2926 case HWTSTAMP_TX_ON: 2927 case HWTSTAMP_TX_OFF: 2928 break; 2929 default: 2930 return -ERANGE; 2931 } 2932 2933 switch (conf.rx_filter) { 2934 case HWTSTAMP_FILTER_NONE: 2935 break; 2936 case HWTSTAMP_FILTER_ALL: 2937 case HWTSTAMP_FILTER_SOME: 2938 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2939 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2940 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2941 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2942 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2943 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2944 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2945 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2946 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2947 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2948 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2949 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2950 conf.rx_filter = HWTSTAMP_FILTER_ALL; 2951 break; 2952 default: 2953 return -ERANGE; 2954 } 2955 2956 if (conf.rx_filter == HWTSTAMP_FILTER_ALL) 2957 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 2958 2959 else 2960 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 2961 2962 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0; 2963 } 2964 2965 /** 2966 * \brief ioctl handler 2967 * @param netdev network device 2968 * @param ifr interface request 2969 * @param cmd command 2970 */ 2971 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2972 { 2973 struct lio *lio = GET_LIO(netdev); 2974 2975 switch (cmd) { 2976 case SIOCSHWTSTAMP: 2977 if ((lio->oct_dev->chip_id == OCTEON_CN66XX || 2978 lio->oct_dev->chip_id == OCTEON_CN68XX) && ptp_enable) 2979 return hwtstamp_ioctl(netdev, ifr); 2980 default: 2981 return -EOPNOTSUPP; 2982 } 2983 } 2984 2985 /** 2986 * \brief handle a Tx timestamp response 2987 * @param status response status 2988 * @param buf pointer to skb 2989 */ 2990 static void handle_timestamp(struct octeon_device *oct, 2991 u32 status, 2992 void *buf) 2993 { 2994 struct octnet_buf_free_info *finfo; 2995 struct octeon_soft_command *sc; 2996 struct oct_timestamp_resp *resp; 2997 struct lio *lio; 2998 struct sk_buff *skb = (struct sk_buff *)buf; 2999 3000 finfo = (struct octnet_buf_free_info *)skb->cb; 3001 lio = finfo->lio; 3002 sc = finfo->sc; 3003 oct = lio->oct_dev; 3004 resp = (struct oct_timestamp_resp *)sc->virtrptr; 3005 3006 if (status != OCTEON_REQUEST_DONE) { 3007 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n", 3008 CVM_CAST64(status)); 3009 resp->timestamp = 0; 3010 } 3011 3012 octeon_swap_8B_data(&resp->timestamp, 1); 3013 3014 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) { 3015 struct skb_shared_hwtstamps ts; 3016 u64 ns = resp->timestamp; 3017 3018 netif_info(lio, tx_done, lio->netdev, 3019 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n", 3020 skb, (unsigned long long)ns); 3021 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust); 3022 skb_tstamp_tx(skb, &ts); 3023 } 3024 3025 octeon_free_soft_command(oct, sc); 3026 tx_buffer_free(skb); 3027 } 3028 3029 /* \brief Send a data packet that will be timestamped 3030 * @param oct octeon device 3031 * @param ndata pointer to network data 3032 * @param finfo pointer to private network data 3033 */ 3034 static inline int send_nic_timestamp_pkt(struct octeon_device *oct, 3035 struct octnic_data_pkt *ndata, 3036 struct octnet_buf_free_info *finfo) 3037 { 3038 int retval; 3039 struct octeon_soft_command *sc; 3040 struct lio *lio; 3041 int ring_doorbell; 3042 u32 len; 3043 3044 lio = finfo->lio; 3045 3046 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd, 3047 sizeof(struct oct_timestamp_resp)); 3048 finfo->sc = sc; 3049 3050 if (!sc) { 3051 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n"); 3052 return IQ_SEND_FAILED; 3053 } 3054 3055 if (ndata->reqtype == REQTYPE_NORESP_NET) 3056 ndata->reqtype = REQTYPE_RESP_NET; 3057 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG) 3058 ndata->reqtype = REQTYPE_RESP_NET_SG; 3059 3060 sc->callback = handle_timestamp; 3061 sc->callback_arg = finfo->skb; 3062 sc->iq_no = ndata->q_no; 3063 3064 if (OCTEON_CN23XX_PF(oct)) 3065 len = (u32)((struct octeon_instr_ih3 *) 3066 (&sc->cmd.cmd3.ih3))->dlengsz; 3067 else 3068 len = (u32)((struct octeon_instr_ih2 *) 3069 (&sc->cmd.cmd2.ih2))->dlengsz; 3070 3071 ring_doorbell = 1; 3072 3073 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd, 3074 sc, len, ndata->reqtype); 3075 3076 if (retval == IQ_SEND_FAILED) { 3077 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n", 3078 retval); 3079 octeon_free_soft_command(oct, sc); 3080 } else { 3081 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n"); 3082 } 3083 3084 return retval; 3085 } 3086 3087 /** \brief Transmit networks packets to the Octeon interface 3088 * @param skbuff skbuff struct to be passed to network layer. 3089 * @param netdev pointer to network device 3090 * @returns whether the packet was transmitted to the device okay or not 3091 * (NETDEV_TX_OK or NETDEV_TX_BUSY) 3092 */ 3093 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev) 3094 { 3095 struct lio *lio; 3096 struct octnet_buf_free_info *finfo; 3097 union octnic_cmd_setup cmdsetup; 3098 struct octnic_data_pkt ndata; 3099 struct octeon_device *oct; 3100 struct oct_iq_stats *stats; 3101 struct octeon_instr_irh *irh; 3102 union tx_info *tx_info; 3103 int status = 0; 3104 int q_idx = 0, iq_no = 0; 3105 int j; 3106 u64 dptr = 0; 3107 u32 tag = 0; 3108 3109 lio = GET_LIO(netdev); 3110 oct = lio->oct_dev; 3111 3112 if (netif_is_multiqueue(netdev)) { 3113 q_idx = skb->queue_mapping; 3114 q_idx = (q_idx % (lio->linfo.num_txpciq)); 3115 tag = q_idx; 3116 iq_no = lio->linfo.txpciq[q_idx].s.q_no; 3117 } else { 3118 iq_no = lio->txq; 3119 } 3120 3121 stats = &oct->instr_queue[iq_no]->stats; 3122 3123 /* Check for all conditions in which the current packet cannot be 3124 * transmitted. 3125 */ 3126 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) || 3127 (!lio->linfo.link.s.link_up) || 3128 (skb->len <= 0)) { 3129 netif_info(lio, tx_err, lio->netdev, 3130 "Transmit failed link_status : %d\n", 3131 lio->linfo.link.s.link_up); 3132 goto lio_xmit_failed; 3133 } 3134 3135 /* Use space in skb->cb to store info used to unmap and 3136 * free the buffers. 3137 */ 3138 finfo = (struct octnet_buf_free_info *)skb->cb; 3139 finfo->lio = lio; 3140 finfo->skb = skb; 3141 finfo->sc = NULL; 3142 3143 /* Prepare the attributes for the data to be passed to OSI. */ 3144 memset(&ndata, 0, sizeof(struct octnic_data_pkt)); 3145 3146 ndata.buf = (void *)finfo; 3147 3148 ndata.q_no = iq_no; 3149 3150 if (netif_is_multiqueue(netdev)) { 3151 if (octnet_iq_is_full(oct, ndata.q_no)) { 3152 /* defer sending if queue is full */ 3153 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 3154 ndata.q_no); 3155 stats->tx_iq_busy++; 3156 return NETDEV_TX_BUSY; 3157 } 3158 } else { 3159 if (octnet_iq_is_full(oct, lio->txq)) { 3160 /* defer sending if queue is full */ 3161 stats->tx_iq_busy++; 3162 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 3163 lio->txq); 3164 return NETDEV_TX_BUSY; 3165 } 3166 } 3167 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n", 3168 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no); 3169 */ 3170 3171 ndata.datasize = skb->len; 3172 3173 cmdsetup.u64 = 0; 3174 cmdsetup.s.iq_no = iq_no; 3175 3176 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3177 if (skb->encapsulation) { 3178 cmdsetup.s.tnl_csum = 1; 3179 stats->tx_vxlan++; 3180 } else { 3181 cmdsetup.s.transport_csum = 1; 3182 } 3183 } 3184 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 3185 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3186 cmdsetup.s.timestamp = 1; 3187 } 3188 3189 if (skb_shinfo(skb)->nr_frags == 0) { 3190 cmdsetup.s.u.datasize = skb->len; 3191 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 3192 3193 /* Offload checksum calculation for TCP/UDP packets */ 3194 dptr = dma_map_single(&oct->pci_dev->dev, 3195 skb->data, 3196 skb->len, 3197 DMA_TO_DEVICE); 3198 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) { 3199 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n", 3200 __func__); 3201 return NETDEV_TX_BUSY; 3202 } 3203 3204 if (OCTEON_CN23XX_PF(oct)) 3205 ndata.cmd.cmd3.dptr = dptr; 3206 else 3207 ndata.cmd.cmd2.dptr = dptr; 3208 finfo->dptr = dptr; 3209 ndata.reqtype = REQTYPE_NORESP_NET; 3210 3211 } else { 3212 int i, frags; 3213 struct skb_frag_struct *frag; 3214 struct octnic_gather *g; 3215 3216 spin_lock(&lio->glist_lock[q_idx]); 3217 g = (struct octnic_gather *) 3218 list_delete_head(&lio->glist[q_idx]); 3219 spin_unlock(&lio->glist_lock[q_idx]); 3220 3221 if (!g) { 3222 netif_info(lio, tx_err, lio->netdev, 3223 "Transmit scatter gather: glist null!\n"); 3224 goto lio_xmit_failed; 3225 } 3226 3227 cmdsetup.s.gather = 1; 3228 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1); 3229 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 3230 3231 memset(g->sg, 0, g->sg_size); 3232 3233 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev, 3234 skb->data, 3235 (skb->len - skb->data_len), 3236 DMA_TO_DEVICE); 3237 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) { 3238 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n", 3239 __func__); 3240 return NETDEV_TX_BUSY; 3241 } 3242 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0); 3243 3244 frags = skb_shinfo(skb)->nr_frags; 3245 i = 1; 3246 while (frags--) { 3247 frag = &skb_shinfo(skb)->frags[i - 1]; 3248 3249 g->sg[(i >> 2)].ptr[(i & 3)] = 3250 dma_map_page(&oct->pci_dev->dev, 3251 frag->page.p, 3252 frag->page_offset, 3253 frag->size, 3254 DMA_TO_DEVICE); 3255 3256 if (dma_mapping_error(&oct->pci_dev->dev, 3257 g->sg[i >> 2].ptr[i & 3])) { 3258 dma_unmap_single(&oct->pci_dev->dev, 3259 g->sg[0].ptr[0], 3260 skb->len - skb->data_len, 3261 DMA_TO_DEVICE); 3262 for (j = 1; j < i; j++) { 3263 frag = &skb_shinfo(skb)->frags[j - 1]; 3264 dma_unmap_page(&oct->pci_dev->dev, 3265 g->sg[j >> 2].ptr[j & 3], 3266 frag->size, 3267 DMA_TO_DEVICE); 3268 } 3269 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n", 3270 __func__); 3271 return NETDEV_TX_BUSY; 3272 } 3273 3274 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3)); 3275 i++; 3276 } 3277 3278 dptr = g->sg_dma_ptr; 3279 3280 if (OCTEON_CN23XX_PF(oct)) 3281 ndata.cmd.cmd3.dptr = dptr; 3282 else 3283 ndata.cmd.cmd2.dptr = dptr; 3284 finfo->dptr = dptr; 3285 finfo->g = g; 3286 3287 ndata.reqtype = REQTYPE_NORESP_NET_SG; 3288 } 3289 3290 if (OCTEON_CN23XX_PF(oct)) { 3291 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh; 3292 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0]; 3293 } else { 3294 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh; 3295 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0]; 3296 } 3297 3298 if (skb_shinfo(skb)->gso_size) { 3299 tx_info->s.gso_size = skb_shinfo(skb)->gso_size; 3300 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs; 3301 stats->tx_gso++; 3302 } 3303 3304 /* HW insert VLAN tag */ 3305 if (skb_vlan_tag_present(skb)) { 3306 irh->priority = skb_vlan_tag_get(skb) >> 13; 3307 irh->vlan = skb_vlan_tag_get(skb) & 0xfff; 3308 } 3309 3310 if (unlikely(cmdsetup.s.timestamp)) 3311 status = send_nic_timestamp_pkt(oct, &ndata, finfo); 3312 else 3313 status = octnet_send_nic_data_pkt(oct, &ndata); 3314 if (status == IQ_SEND_FAILED) 3315 goto lio_xmit_failed; 3316 3317 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n"); 3318 3319 if (status == IQ_SEND_STOP) 3320 stop_q(lio->netdev, q_idx); 3321 3322 netif_trans_update(netdev); 3323 3324 if (tx_info->s.gso_segs) 3325 stats->tx_done += tx_info->s.gso_segs; 3326 else 3327 stats->tx_done++; 3328 stats->tx_tot_bytes += ndata.datasize; 3329 3330 return NETDEV_TX_OK; 3331 3332 lio_xmit_failed: 3333 stats->tx_dropped++; 3334 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n", 3335 iq_no, stats->tx_dropped); 3336 if (dptr) 3337 dma_unmap_single(&oct->pci_dev->dev, dptr, 3338 ndata.datasize, DMA_TO_DEVICE); 3339 tx_buffer_free(skb); 3340 return NETDEV_TX_OK; 3341 } 3342 3343 /** \brief Network device Tx timeout 3344 * @param netdev pointer to network device 3345 */ 3346 static void liquidio_tx_timeout(struct net_device *netdev) 3347 { 3348 struct lio *lio; 3349 3350 lio = GET_LIO(netdev); 3351 3352 netif_info(lio, tx_err, lio->netdev, 3353 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n", 3354 netdev->stats.tx_dropped); 3355 netif_trans_update(netdev); 3356 txqs_wake(netdev); 3357 } 3358 3359 static int liquidio_vlan_rx_add_vid(struct net_device *netdev, 3360 __be16 proto __attribute__((unused)), 3361 u16 vid) 3362 { 3363 struct lio *lio = GET_LIO(netdev); 3364 struct octeon_device *oct = lio->oct_dev; 3365 struct octnic_ctrl_pkt nctrl; 3366 int ret = 0; 3367 3368 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3369 3370 nctrl.ncmd.u64 = 0; 3371 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3372 nctrl.ncmd.s.param1 = vid; 3373 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3374 nctrl.wait_time = 100; 3375 nctrl.netpndev = (u64)netdev; 3376 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3377 3378 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3379 if (ret < 0) { 3380 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 3381 ret); 3382 } 3383 3384 return ret; 3385 } 3386 3387 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev, 3388 __be16 proto __attribute__((unused)), 3389 u16 vid) 3390 { 3391 struct lio *lio = GET_LIO(netdev); 3392 struct octeon_device *oct = lio->oct_dev; 3393 struct octnic_ctrl_pkt nctrl; 3394 int ret = 0; 3395 3396 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3397 3398 nctrl.ncmd.u64 = 0; 3399 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3400 nctrl.ncmd.s.param1 = vid; 3401 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3402 nctrl.wait_time = 100; 3403 nctrl.netpndev = (u64)netdev; 3404 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3405 3406 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3407 if (ret < 0) { 3408 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 3409 ret); 3410 } 3411 return ret; 3412 } 3413 3414 /** Sending command to enable/disable RX checksum offload 3415 * @param netdev pointer to network device 3416 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL 3417 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/ 3418 * OCTNET_CMD_RXCSUM_DISABLE 3419 * @returns SUCCESS or FAILURE 3420 */ 3421 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command, 3422 u8 rx_cmd) 3423 { 3424 struct lio *lio = GET_LIO(netdev); 3425 struct octeon_device *oct = lio->oct_dev; 3426 struct octnic_ctrl_pkt nctrl; 3427 int ret = 0; 3428 3429 nctrl.ncmd.u64 = 0; 3430 nctrl.ncmd.s.cmd = command; 3431 nctrl.ncmd.s.param1 = rx_cmd; 3432 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3433 nctrl.wait_time = 100; 3434 nctrl.netpndev = (u64)netdev; 3435 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3436 3437 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3438 if (ret < 0) { 3439 dev_err(&oct->pci_dev->dev, 3440 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n", 3441 ret); 3442 } 3443 return ret; 3444 } 3445 3446 /** Sending command to add/delete VxLAN UDP port to firmware 3447 * @param netdev pointer to network device 3448 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG 3449 * @param vxlan_port VxLAN port to be added or deleted 3450 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD, 3451 * OCTNET_CMD_VXLAN_PORT_DEL 3452 * @returns SUCCESS or FAILURE 3453 */ 3454 static int liquidio_vxlan_port_command(struct net_device *netdev, int command, 3455 u16 vxlan_port, u8 vxlan_cmd_bit) 3456 { 3457 struct lio *lio = GET_LIO(netdev); 3458 struct octeon_device *oct = lio->oct_dev; 3459 struct octnic_ctrl_pkt nctrl; 3460 int ret = 0; 3461 3462 nctrl.ncmd.u64 = 0; 3463 nctrl.ncmd.s.cmd = command; 3464 nctrl.ncmd.s.more = vxlan_cmd_bit; 3465 nctrl.ncmd.s.param1 = vxlan_port; 3466 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3467 nctrl.wait_time = 100; 3468 nctrl.netpndev = (u64)netdev; 3469 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3470 3471 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 3472 if (ret < 0) { 3473 dev_err(&oct->pci_dev->dev, 3474 "VxLAN port add/delete failed in core (ret:0x%x)\n", 3475 ret); 3476 } 3477 return ret; 3478 } 3479 3480 /** \brief Net device fix features 3481 * @param netdev pointer to network device 3482 * @param request features requested 3483 * @returns updated features list 3484 */ 3485 static netdev_features_t liquidio_fix_features(struct net_device *netdev, 3486 netdev_features_t request) 3487 { 3488 struct lio *lio = netdev_priv(netdev); 3489 3490 if ((request & NETIF_F_RXCSUM) && 3491 !(lio->dev_capability & NETIF_F_RXCSUM)) 3492 request &= ~NETIF_F_RXCSUM; 3493 3494 if ((request & NETIF_F_HW_CSUM) && 3495 !(lio->dev_capability & NETIF_F_HW_CSUM)) 3496 request &= ~NETIF_F_HW_CSUM; 3497 3498 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO)) 3499 request &= ~NETIF_F_TSO; 3500 3501 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6)) 3502 request &= ~NETIF_F_TSO6; 3503 3504 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO)) 3505 request &= ~NETIF_F_LRO; 3506 3507 /*Disable LRO if RXCSUM is off */ 3508 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) && 3509 (lio->dev_capability & NETIF_F_LRO)) 3510 request &= ~NETIF_F_LRO; 3511 3512 return request; 3513 } 3514 3515 /** \brief Net device set features 3516 * @param netdev pointer to network device 3517 * @param features features to enable/disable 3518 */ 3519 static int liquidio_set_features(struct net_device *netdev, 3520 netdev_features_t features) 3521 { 3522 struct lio *lio = netdev_priv(netdev); 3523 3524 if (!((netdev->features ^ features) & NETIF_F_LRO)) 3525 return 0; 3526 3527 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO)) 3528 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 3529 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3530 else if (!(features & NETIF_F_LRO) && 3531 (lio->dev_capability & NETIF_F_LRO)) 3532 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE, 3533 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3534 3535 /* Sending command to firmware to enable/disable RX checksum 3536 * offload settings using ethtool 3537 */ 3538 if (!(netdev->features & NETIF_F_RXCSUM) && 3539 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 3540 (features & NETIF_F_RXCSUM)) 3541 liquidio_set_rxcsum_command(netdev, 3542 OCTNET_CMD_TNL_RX_CSUM_CTL, 3543 OCTNET_CMD_RXCSUM_ENABLE); 3544 else if ((netdev->features & NETIF_F_RXCSUM) && 3545 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 3546 !(features & NETIF_F_RXCSUM)) 3547 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 3548 OCTNET_CMD_RXCSUM_DISABLE); 3549 3550 return 0; 3551 } 3552 3553 static void liquidio_add_vxlan_port(struct net_device *netdev, 3554 struct udp_tunnel_info *ti) 3555 { 3556 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3557 return; 3558 3559 liquidio_vxlan_port_command(netdev, 3560 OCTNET_CMD_VXLAN_PORT_CONFIG, 3561 htons(ti->port), 3562 OCTNET_CMD_VXLAN_PORT_ADD); 3563 } 3564 3565 static void liquidio_del_vxlan_port(struct net_device *netdev, 3566 struct udp_tunnel_info *ti) 3567 { 3568 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 3569 return; 3570 3571 liquidio_vxlan_port_command(netdev, 3572 OCTNET_CMD_VXLAN_PORT_CONFIG, 3573 htons(ti->port), 3574 OCTNET_CMD_VXLAN_PORT_DEL); 3575 } 3576 3577 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx, 3578 u8 *mac, bool is_admin_assigned) 3579 { 3580 struct lio *lio = GET_LIO(netdev); 3581 struct octeon_device *oct = lio->oct_dev; 3582 struct octnic_ctrl_pkt nctrl; 3583 3584 if (!is_valid_ether_addr(mac)) 3585 return -EINVAL; 3586 3587 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs) 3588 return -EINVAL; 3589 3590 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3591 3592 nctrl.ncmd.u64 = 0; 3593 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 3594 /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3595 nctrl.ncmd.s.param1 = vfidx + 1; 3596 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0); 3597 nctrl.ncmd.s.more = 1; 3598 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3599 nctrl.cb_fn = 0; 3600 nctrl.wait_time = LIO_CMD_WAIT_TM; 3601 3602 nctrl.udd[0] = 0; 3603 /* The MAC Address is presented in network byte order. */ 3604 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac); 3605 3606 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0]; 3607 3608 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3609 3610 return 0; 3611 } 3612 3613 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac) 3614 { 3615 struct lio *lio = GET_LIO(netdev); 3616 struct octeon_device *oct = lio->oct_dev; 3617 int retval; 3618 3619 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true); 3620 if (!retval) 3621 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac); 3622 3623 return retval; 3624 } 3625 3626 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx, 3627 u16 vlan, u8 qos, __be16 vlan_proto) 3628 { 3629 struct lio *lio = GET_LIO(netdev); 3630 struct octeon_device *oct = lio->oct_dev; 3631 struct octnic_ctrl_pkt nctrl; 3632 u16 vlantci; 3633 3634 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3635 return -EINVAL; 3636 3637 if (vlan_proto != htons(ETH_P_8021Q)) 3638 return -EPROTONOSUPPORT; 3639 3640 if (vlan >= VLAN_N_VID || qos > 7) 3641 return -EINVAL; 3642 3643 if (vlan) 3644 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT; 3645 else 3646 vlantci = 0; 3647 3648 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci) 3649 return 0; 3650 3651 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3652 3653 if (vlan) 3654 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3655 else 3656 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3657 3658 nctrl.ncmd.s.param1 = vlantci; 3659 nctrl.ncmd.s.param2 = 3660 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */ 3661 nctrl.ncmd.s.more = 0; 3662 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3663 nctrl.cb_fn = 0; 3664 nctrl.wait_time = LIO_CMD_WAIT_TM; 3665 3666 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3667 3668 oct->sriov_info.vf_vlantci[vfidx] = vlantci; 3669 3670 return 0; 3671 } 3672 3673 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx, 3674 struct ifla_vf_info *ivi) 3675 { 3676 struct lio *lio = GET_LIO(netdev); 3677 struct octeon_device *oct = lio->oct_dev; 3678 u8 *macaddr; 3679 3680 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3681 return -EINVAL; 3682 3683 ivi->vf = vfidx; 3684 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx]; 3685 ether_addr_copy(&ivi->mac[0], macaddr); 3686 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK; 3687 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT; 3688 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx]; 3689 return 0; 3690 } 3691 3692 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 3693 int linkstate) 3694 { 3695 struct lio *lio = GET_LIO(netdev); 3696 struct octeon_device *oct = lio->oct_dev; 3697 struct octnic_ctrl_pkt nctrl; 3698 3699 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3700 return -EINVAL; 3701 3702 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate) 3703 return 0; 3704 3705 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3706 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE; 3707 nctrl.ncmd.s.param1 = 3708 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3709 nctrl.ncmd.s.param2 = linkstate; 3710 nctrl.ncmd.s.more = 0; 3711 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3712 nctrl.cb_fn = 0; 3713 nctrl.wait_time = LIO_CMD_WAIT_TM; 3714 3715 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3716 3717 oct->sriov_info.vf_linkstate[vfidx] = linkstate; 3718 3719 return 0; 3720 } 3721 3722 static const struct net_device_ops lionetdevops = { 3723 .ndo_open = liquidio_open, 3724 .ndo_stop = liquidio_stop, 3725 .ndo_start_xmit = liquidio_xmit, 3726 .ndo_get_stats = liquidio_get_stats, 3727 .ndo_set_mac_address = liquidio_set_mac, 3728 .ndo_set_rx_mode = liquidio_set_mcast_list, 3729 .ndo_tx_timeout = liquidio_tx_timeout, 3730 3731 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid, 3732 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid, 3733 .ndo_change_mtu = liquidio_change_mtu, 3734 .ndo_do_ioctl = liquidio_ioctl, 3735 .ndo_fix_features = liquidio_fix_features, 3736 .ndo_set_features = liquidio_set_features, 3737 .ndo_udp_tunnel_add = liquidio_add_vxlan_port, 3738 .ndo_udp_tunnel_del = liquidio_del_vxlan_port, 3739 .ndo_set_vf_mac = liquidio_set_vf_mac, 3740 .ndo_set_vf_vlan = liquidio_set_vf_vlan, 3741 .ndo_get_vf_config = liquidio_get_vf_config, 3742 .ndo_set_vf_link_state = liquidio_set_vf_link_state, 3743 }; 3744 3745 /** \brief Entry point for the liquidio module 3746 */ 3747 static int __init liquidio_init(void) 3748 { 3749 int i; 3750 struct handshake *hs; 3751 3752 init_completion(&first_stage); 3753 3754 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT); 3755 3756 if (liquidio_init_pci()) 3757 return -EINVAL; 3758 3759 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000)); 3760 3761 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3762 hs = &handshake[i]; 3763 if (hs->pci_dev) { 3764 wait_for_completion(&hs->init); 3765 if (!hs->init_ok) { 3766 /* init handshake failed */ 3767 dev_err(&hs->pci_dev->dev, 3768 "Failed to init device\n"); 3769 liquidio_deinit_pci(); 3770 return -EIO; 3771 } 3772 } 3773 } 3774 3775 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3776 hs = &handshake[i]; 3777 if (hs->pci_dev) { 3778 wait_for_completion_timeout(&hs->started, 3779 msecs_to_jiffies(30000)); 3780 if (!hs->started_ok) { 3781 /* starter handshake failed */ 3782 dev_err(&hs->pci_dev->dev, 3783 "Firmware failed to start\n"); 3784 liquidio_deinit_pci(); 3785 return -EIO; 3786 } 3787 } 3788 } 3789 3790 return 0; 3791 } 3792 3793 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf) 3794 { 3795 struct octeon_device *oct = (struct octeon_device *)buf; 3796 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 3797 int gmxport = 0; 3798 union oct_link_status *ls; 3799 int i; 3800 3801 if (recv_pkt->buffer_size[0] != sizeof(*ls)) { 3802 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n", 3803 recv_pkt->buffer_size[0], 3804 recv_pkt->rh.r_nic_info.gmxport); 3805 goto nic_info_err; 3806 } 3807 3808 gmxport = recv_pkt->rh.r_nic_info.gmxport; 3809 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]); 3810 3811 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3); 3812 for (i = 0; i < oct->ifcount; i++) { 3813 if (oct->props[i].gmxport == gmxport) { 3814 update_link_status(oct->props[i].netdev, ls); 3815 break; 3816 } 3817 } 3818 3819 nic_info_err: 3820 for (i = 0; i < recv_pkt->buffer_count; i++) 3821 recv_buffer_free(recv_pkt->buffer_ptr[i]); 3822 octeon_free_recv_info(recv_info); 3823 return 0; 3824 } 3825 3826 /** 3827 * \brief Setup network interfaces 3828 * @param octeon_dev octeon device 3829 * 3830 * Called during init time for each device. It assumes the NIC 3831 * is already up and running. The link information for each 3832 * interface is passed in link_info. 3833 */ 3834 static int setup_nic_devices(struct octeon_device *octeon_dev) 3835 { 3836 struct lio *lio = NULL; 3837 struct net_device *netdev; 3838 u8 mac[6], i, j; 3839 struct octeon_soft_command *sc; 3840 struct liquidio_if_cfg_context *ctx; 3841 struct liquidio_if_cfg_resp *resp; 3842 struct octdev_props *props; 3843 int retval, num_iqueues, num_oqueues; 3844 union oct_nic_if_cfg if_cfg; 3845 unsigned int base_queue; 3846 unsigned int gmx_port_id; 3847 u32 resp_size, ctx_size, data_size; 3848 u32 ifidx_or_pfnum; 3849 struct lio_version *vdata; 3850 3851 /* This is to handle link status changes */ 3852 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3853 OPCODE_NIC_INFO, 3854 lio_nic_info, octeon_dev); 3855 3856 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions. 3857 * They are handled directly. 3858 */ 3859 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET, 3860 free_netbuf); 3861 3862 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG, 3863 free_netsgbuf); 3864 3865 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG, 3866 free_netsgbuf_with_resp); 3867 3868 for (i = 0; i < octeon_dev->ifcount; i++) { 3869 resp_size = sizeof(struct liquidio_if_cfg_resp); 3870 ctx_size = sizeof(struct liquidio_if_cfg_context); 3871 data_size = sizeof(struct lio_version); 3872 sc = (struct octeon_soft_command *) 3873 octeon_alloc_soft_command(octeon_dev, data_size, 3874 resp_size, ctx_size); 3875 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 3876 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 3877 vdata = (struct lio_version *)sc->virtdptr; 3878 3879 *((u64 *)vdata) = 0; 3880 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION); 3881 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION); 3882 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION); 3883 3884 if (OCTEON_CN23XX_PF(octeon_dev)) { 3885 num_iqueues = octeon_dev->sriov_info.num_pf_rings; 3886 num_oqueues = octeon_dev->sriov_info.num_pf_rings; 3887 base_queue = octeon_dev->sriov_info.pf_srn; 3888 3889 gmx_port_id = octeon_dev->pf_num; 3890 ifidx_or_pfnum = octeon_dev->pf_num; 3891 } else { 3892 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF( 3893 octeon_get_conf(octeon_dev), i); 3894 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF( 3895 octeon_get_conf(octeon_dev), i); 3896 base_queue = CFG_GET_BASE_QUE_NIC_IF( 3897 octeon_get_conf(octeon_dev), i); 3898 gmx_port_id = CFG_GET_GMXID_NIC_IF( 3899 octeon_get_conf(octeon_dev), i); 3900 ifidx_or_pfnum = i; 3901 } 3902 3903 dev_dbg(&octeon_dev->pci_dev->dev, 3904 "requesting config for interface %d, iqs %d, oqs %d\n", 3905 ifidx_or_pfnum, num_iqueues, num_oqueues); 3906 WRITE_ONCE(ctx->cond, 0); 3907 ctx->octeon_id = lio_get_device_id(octeon_dev); 3908 init_waitqueue_head(&ctx->wc); 3909 3910 if_cfg.u64 = 0; 3911 if_cfg.s.num_iqueues = num_iqueues; 3912 if_cfg.s.num_oqueues = num_oqueues; 3913 if_cfg.s.base_queue = base_queue; 3914 if_cfg.s.gmx_port_id = gmx_port_id; 3915 3916 sc->iq_no = 0; 3917 3918 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC, 3919 OPCODE_NIC_IF_CFG, 0, 3920 if_cfg.u64, 0); 3921 3922 sc->callback = if_cfg_callback; 3923 sc->callback_arg = sc; 3924 sc->wait_time = 3000; 3925 3926 retval = octeon_send_soft_command(octeon_dev, sc); 3927 if (retval == IQ_SEND_FAILED) { 3928 dev_err(&octeon_dev->pci_dev->dev, 3929 "iq/oq config failed status: %x\n", 3930 retval); 3931 /* Soft instr is freed by driver in case of failure. */ 3932 goto setup_nic_dev_fail; 3933 } 3934 3935 /* Sleep on a wait queue till the cond flag indicates that the 3936 * response arrived or timed-out. 3937 */ 3938 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) { 3939 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n"); 3940 goto setup_nic_wait_intr; 3941 } 3942 3943 retval = resp->status; 3944 if (retval) { 3945 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n"); 3946 goto setup_nic_dev_fail; 3947 } 3948 3949 octeon_swap_8B_data((u64 *)(&resp->cfg_info), 3950 (sizeof(struct liquidio_if_cfg_info)) >> 3); 3951 3952 num_iqueues = hweight64(resp->cfg_info.iqmask); 3953 num_oqueues = hweight64(resp->cfg_info.oqmask); 3954 3955 if (!(num_iqueues) || !(num_oqueues)) { 3956 dev_err(&octeon_dev->pci_dev->dev, 3957 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n", 3958 resp->cfg_info.iqmask, 3959 resp->cfg_info.oqmask); 3960 goto setup_nic_dev_fail; 3961 } 3962 dev_dbg(&octeon_dev->pci_dev->dev, 3963 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n", 3964 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask, 3965 num_iqueues, num_oqueues); 3966 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues); 3967 3968 if (!netdev) { 3969 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n"); 3970 goto setup_nic_dev_fail; 3971 } 3972 3973 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev); 3974 3975 /* Associate the routines that will handle different 3976 * netdev tasks. 3977 */ 3978 netdev->netdev_ops = &lionetdevops; 3979 3980 lio = GET_LIO(netdev); 3981 3982 memset(lio, 0, sizeof(struct lio)); 3983 3984 lio->ifidx = ifidx_or_pfnum; 3985 3986 props = &octeon_dev->props[i]; 3987 props->gmxport = resp->cfg_info.linfo.gmxport; 3988 props->netdev = netdev; 3989 3990 lio->linfo.num_rxpciq = num_oqueues; 3991 lio->linfo.num_txpciq = num_iqueues; 3992 for (j = 0; j < num_oqueues; j++) { 3993 lio->linfo.rxpciq[j].u64 = 3994 resp->cfg_info.linfo.rxpciq[j].u64; 3995 } 3996 for (j = 0; j < num_iqueues; j++) { 3997 lio->linfo.txpciq[j].u64 = 3998 resp->cfg_info.linfo.txpciq[j].u64; 3999 } 4000 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr; 4001 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport; 4002 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64; 4003 4004 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4005 4006 if (OCTEON_CN23XX_PF(octeon_dev) || 4007 OCTEON_CN6XXX(octeon_dev)) { 4008 lio->dev_capability = NETIF_F_HIGHDMA 4009 | NETIF_F_IP_CSUM 4010 | NETIF_F_IPV6_CSUM 4011 | NETIF_F_SG | NETIF_F_RXCSUM 4012 | NETIF_F_GRO 4013 | NETIF_F_TSO | NETIF_F_TSO6 4014 | NETIF_F_LRO; 4015 } 4016 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE); 4017 4018 /* Copy of transmit encapsulation capabilities: 4019 * TSO, TSO6, Checksums for this device 4020 */ 4021 lio->enc_dev_capability = NETIF_F_IP_CSUM 4022 | NETIF_F_IPV6_CSUM 4023 | NETIF_F_GSO_UDP_TUNNEL 4024 | NETIF_F_HW_CSUM | NETIF_F_SG 4025 | NETIF_F_RXCSUM 4026 | NETIF_F_TSO | NETIF_F_TSO6 4027 | NETIF_F_LRO; 4028 4029 netdev->hw_enc_features = (lio->enc_dev_capability & 4030 ~NETIF_F_LRO); 4031 4032 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL; 4033 4034 netdev->vlan_features = lio->dev_capability; 4035 /* Add any unchangeable hw features */ 4036 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER | 4037 NETIF_F_HW_VLAN_CTAG_RX | 4038 NETIF_F_HW_VLAN_CTAG_TX; 4039 4040 netdev->features = (lio->dev_capability & ~NETIF_F_LRO); 4041 4042 netdev->hw_features = lio->dev_capability; 4043 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/ 4044 netdev->hw_features = netdev->hw_features & 4045 ~NETIF_F_HW_VLAN_CTAG_RX; 4046 4047 /* MTU range: 68 - 16000 */ 4048 netdev->min_mtu = LIO_MIN_MTU_SIZE; 4049 netdev->max_mtu = LIO_MAX_MTU_SIZE; 4050 4051 /* Point to the properties for octeon device to which this 4052 * interface belongs. 4053 */ 4054 lio->oct_dev = octeon_dev; 4055 lio->octprops = props; 4056 lio->netdev = netdev; 4057 4058 dev_dbg(&octeon_dev->pci_dev->dev, 4059 "if%d gmx: %d hw_addr: 0x%llx\n", i, 4060 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr)); 4061 4062 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) { 4063 u8 vfmac[ETH_ALEN]; 4064 4065 random_ether_addr(&vfmac[0]); 4066 if (__liquidio_set_vf_mac(netdev, j, 4067 &vfmac[0], false)) { 4068 dev_err(&octeon_dev->pci_dev->dev, 4069 "Error setting VF%d MAC address\n", 4070 j); 4071 goto setup_nic_dev_fail; 4072 } 4073 } 4074 4075 /* 64-bit swap required on LE machines */ 4076 octeon_swap_8B_data(&lio->linfo.hw_addr, 1); 4077 for (j = 0; j < 6; j++) 4078 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j)); 4079 4080 /* Copy MAC Address to OS network device structure */ 4081 4082 ether_addr_copy(netdev->dev_addr, mac); 4083 4084 /* By default all interfaces on a single Octeon uses the same 4085 * tx and rx queues 4086 */ 4087 lio->txq = lio->linfo.txpciq[0].s.q_no; 4088 lio->rxq = lio->linfo.rxpciq[0].s.q_no; 4089 if (setup_io_queues(octeon_dev, i)) { 4090 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n"); 4091 goto setup_nic_dev_fail; 4092 } 4093 4094 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS); 4095 4096 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq); 4097 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq); 4098 4099 if (setup_glists(octeon_dev, lio, num_iqueues)) { 4100 dev_err(&octeon_dev->pci_dev->dev, 4101 "Gather list allocation failed\n"); 4102 goto setup_nic_dev_fail; 4103 } 4104 4105 /* Register ethtool support */ 4106 liquidio_set_ethtool_ops(netdev); 4107 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID) 4108 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT; 4109 else 4110 octeon_dev->priv_flags = 0x0; 4111 4112 if (netdev->features & NETIF_F_LRO) 4113 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 4114 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 4115 4116 liquidio_set_feature(netdev, OCTNET_CMD_ENABLE_VLAN_FILTER, 0); 4117 4118 if ((debug != -1) && (debug & NETIF_MSG_HW)) 4119 liquidio_set_feature(netdev, 4120 OCTNET_CMD_VERBOSE_ENABLE, 0); 4121 4122 if (setup_link_status_change_wq(netdev)) 4123 goto setup_nic_dev_fail; 4124 4125 /* Register the network device with the OS */ 4126 if (register_netdev(netdev)) { 4127 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n"); 4128 goto setup_nic_dev_fail; 4129 } 4130 4131 dev_dbg(&octeon_dev->pci_dev->dev, 4132 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n", 4133 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 4134 netif_carrier_off(netdev); 4135 lio->link_changes++; 4136 4137 ifstate_set(lio, LIO_IFSTATE_REGISTERED); 4138 4139 /* Sending command to firmware to enable Rx checksum offload 4140 * by default at the time of setup of Liquidio driver for 4141 * this device 4142 */ 4143 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 4144 OCTNET_CMD_RXCSUM_ENABLE); 4145 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL, 4146 OCTNET_CMD_TXCSUM_ENABLE); 4147 4148 dev_dbg(&octeon_dev->pci_dev->dev, 4149 "NIC ifidx:%d Setup successful\n", i); 4150 4151 octeon_free_soft_command(octeon_dev, sc); 4152 } 4153 4154 return 0; 4155 4156 setup_nic_dev_fail: 4157 4158 octeon_free_soft_command(octeon_dev, sc); 4159 4160 setup_nic_wait_intr: 4161 4162 while (i--) { 4163 dev_err(&octeon_dev->pci_dev->dev, 4164 "NIC ifidx:%d Setup failed\n", i); 4165 liquidio_destroy_nic_device(octeon_dev, i); 4166 } 4167 return -ENODEV; 4168 } 4169 4170 #ifdef CONFIG_PCI_IOV 4171 static int octeon_enable_sriov(struct octeon_device *oct) 4172 { 4173 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced; 4174 struct pci_dev *vfdev; 4175 int err; 4176 u32 u; 4177 4178 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) { 4179 err = pci_enable_sriov(oct->pci_dev, 4180 oct->sriov_info.num_vfs_alloced); 4181 if (err) { 4182 dev_err(&oct->pci_dev->dev, 4183 "OCTEON: Failed to enable PCI sriov: %d\n", 4184 err); 4185 oct->sriov_info.num_vfs_alloced = 0; 4186 return err; 4187 } 4188 oct->sriov_info.sriov_enabled = 1; 4189 4190 /* init lookup table that maps DPI ring number to VF pci_dev 4191 * struct pointer 4192 */ 4193 u = 0; 4194 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 4195 OCTEON_CN23XX_VF_VID, NULL); 4196 while (vfdev) { 4197 if (vfdev->is_virtfn && 4198 (vfdev->physfn == oct->pci_dev)) { 4199 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = 4200 vfdev; 4201 u += oct->sriov_info.rings_per_vf; 4202 } 4203 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 4204 OCTEON_CN23XX_VF_VID, vfdev); 4205 } 4206 } 4207 4208 return num_vfs_alloced; 4209 } 4210 4211 static int lio_pci_sriov_disable(struct octeon_device *oct) 4212 { 4213 int u; 4214 4215 if (pci_vfs_assigned(oct->pci_dev)) { 4216 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n"); 4217 return -EPERM; 4218 } 4219 4220 pci_disable_sriov(oct->pci_dev); 4221 4222 u = 0; 4223 while (u < MAX_POSSIBLE_VFS) { 4224 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL; 4225 u += oct->sriov_info.rings_per_vf; 4226 } 4227 4228 oct->sriov_info.num_vfs_alloced = 0; 4229 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n", 4230 oct->pf_num); 4231 4232 return 0; 4233 } 4234 4235 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs) 4236 { 4237 struct octeon_device *oct = pci_get_drvdata(dev); 4238 int ret = 0; 4239 4240 if ((num_vfs == oct->sriov_info.num_vfs_alloced) && 4241 (oct->sriov_info.sriov_enabled)) { 4242 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n", 4243 oct->pf_num, num_vfs); 4244 return 0; 4245 } 4246 4247 if (!num_vfs) { 4248 ret = lio_pci_sriov_disable(oct); 4249 } else if (num_vfs > oct->sriov_info.max_vfs) { 4250 dev_err(&oct->pci_dev->dev, 4251 "OCTEON: Max allowed VFs:%d user requested:%d", 4252 oct->sriov_info.max_vfs, num_vfs); 4253 ret = -EPERM; 4254 } else { 4255 oct->sriov_info.num_vfs_alloced = num_vfs; 4256 ret = octeon_enable_sriov(oct); 4257 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n", 4258 oct->pf_num, num_vfs); 4259 } 4260 4261 return ret; 4262 } 4263 #endif 4264 4265 /** 4266 * \brief initialize the NIC 4267 * @param oct octeon device 4268 * 4269 * This initialization routine is called once the Octeon device application is 4270 * up and running 4271 */ 4272 static int liquidio_init_nic_module(struct octeon_device *oct) 4273 { 4274 struct oct_intrmod_cfg *intrmod_cfg; 4275 int i, retval = 0; 4276 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct)); 4277 4278 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n"); 4279 4280 /* only default iq and oq were initialized 4281 * initialize the rest as well 4282 */ 4283 /* run port_config command for each port */ 4284 oct->ifcount = num_nic_ports; 4285 4286 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports); 4287 4288 for (i = 0; i < MAX_OCTEON_LINKS; i++) 4289 oct->props[i].gmxport = -1; 4290 4291 retval = setup_nic_devices(oct); 4292 if (retval) { 4293 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n"); 4294 goto octnet_init_failure; 4295 } 4296 4297 liquidio_ptp_init(oct); 4298 4299 /* Initialize interrupt moderation params */ 4300 intrmod_cfg = &((struct octeon_device *)oct)->intrmod; 4301 intrmod_cfg->rx_enable = 1; 4302 intrmod_cfg->check_intrvl = LIO_INTRMOD_CHECK_INTERVAL; 4303 intrmod_cfg->maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR; 4304 intrmod_cfg->minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR; 4305 intrmod_cfg->rx_maxcnt_trigger = LIO_INTRMOD_RXMAXCNT_TRIGGER; 4306 intrmod_cfg->rx_maxtmr_trigger = LIO_INTRMOD_RXMAXTMR_TRIGGER; 4307 intrmod_cfg->rx_mintmr_trigger = LIO_INTRMOD_RXMINTMR_TRIGGER; 4308 intrmod_cfg->rx_mincnt_trigger = LIO_INTRMOD_RXMINCNT_TRIGGER; 4309 intrmod_cfg->tx_enable = 1; 4310 intrmod_cfg->tx_maxcnt_trigger = LIO_INTRMOD_TXMAXCNT_TRIGGER; 4311 intrmod_cfg->tx_mincnt_trigger = LIO_INTRMOD_TXMINCNT_TRIGGER; 4312 intrmod_cfg->rx_frames = CFG_GET_OQ_INTR_PKT(octeon_get_conf(oct)); 4313 intrmod_cfg->rx_usecs = CFG_GET_OQ_INTR_TIME(octeon_get_conf(oct)); 4314 intrmod_cfg->tx_frames = CFG_GET_IQ_INTR_PKT(octeon_get_conf(oct)); 4315 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n"); 4316 4317 return retval; 4318 4319 octnet_init_failure: 4320 4321 oct->ifcount = 0; 4322 4323 return retval; 4324 } 4325 4326 /** 4327 * \brief starter callback that invokes the remaining initialization work after 4328 * the NIC is up and running. 4329 * @param octptr work struct work_struct 4330 */ 4331 static void nic_starter(struct work_struct *work) 4332 { 4333 struct octeon_device *oct; 4334 struct cavium_wk *wk = (struct cavium_wk *)work; 4335 4336 oct = (struct octeon_device *)wk->ctxptr; 4337 4338 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) 4339 return; 4340 4341 /* If the status of the device is CORE_OK, the core 4342 * application has reported its application type. Call 4343 * any registered handlers now and move to the RUNNING 4344 * state. 4345 */ 4346 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) { 4347 schedule_delayed_work(&oct->nic_poll_work.work, 4348 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4349 return; 4350 } 4351 4352 atomic_set(&oct->status, OCT_DEV_RUNNING); 4353 4354 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) { 4355 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n"); 4356 4357 if (liquidio_init_nic_module(oct)) 4358 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n"); 4359 else 4360 handshake[oct->octeon_id].started_ok = 1; 4361 } else { 4362 dev_err(&oct->pci_dev->dev, 4363 "Unexpected application running on NIC (%d). Check firmware.\n", 4364 oct->app_mode); 4365 } 4366 4367 complete(&handshake[oct->octeon_id].started); 4368 } 4369 4370 static int 4371 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf) 4372 { 4373 struct octeon_device *oct = (struct octeon_device *)buf; 4374 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 4375 int i, notice, vf_idx; 4376 u64 *data, vf_num; 4377 4378 notice = recv_pkt->rh.r.ossp; 4379 data = (u64 *)get_rbd(recv_pkt->buffer_ptr[0]); 4380 4381 /* the first 64-bit word of data is the vf_num */ 4382 vf_num = data[0]; 4383 octeon_swap_8B_data(&vf_num, 1); 4384 vf_idx = (int)vf_num - 1; 4385 4386 if (notice == VF_DRV_LOADED) { 4387 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) { 4388 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx); 4389 dev_info(&oct->pci_dev->dev, 4390 "driver for VF%d was loaded\n", vf_idx); 4391 try_module_get(THIS_MODULE); 4392 } 4393 } else if (notice == VF_DRV_REMOVED) { 4394 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) { 4395 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx); 4396 dev_info(&oct->pci_dev->dev, 4397 "driver for VF%d was removed\n", vf_idx); 4398 module_put(THIS_MODULE); 4399 } 4400 } else if (notice == VF_DRV_MACADDR_CHANGED) { 4401 u8 *b = (u8 *)&data[1]; 4402 4403 oct->sriov_info.vf_macaddr[vf_idx] = data[1]; 4404 dev_info(&oct->pci_dev->dev, 4405 "VF driver changed VF%d's MAC address to %pM\n", 4406 vf_idx, b + 2); 4407 } 4408 4409 for (i = 0; i < recv_pkt->buffer_count; i++) 4410 recv_buffer_free(recv_pkt->buffer_ptr[i]); 4411 octeon_free_recv_info(recv_info); 4412 4413 return 0; 4414 } 4415 4416 /** 4417 * \brief Device initialization for each Octeon device that is probed 4418 * @param octeon_dev octeon device 4419 */ 4420 static int octeon_device_init(struct octeon_device *octeon_dev) 4421 { 4422 int j, ret; 4423 int fw_loaded = 0; 4424 char bootcmd[] = "\n"; 4425 struct octeon_device_priv *oct_priv = 4426 (struct octeon_device_priv *)octeon_dev->priv; 4427 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE); 4428 4429 /* Enable access to the octeon device and make its DMA capability 4430 * known to the OS. 4431 */ 4432 if (octeon_pci_os_setup(octeon_dev)) 4433 return 1; 4434 4435 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE); 4436 4437 /* Identify the Octeon type and map the BAR address space. */ 4438 if (octeon_chip_specific_setup(octeon_dev)) { 4439 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n"); 4440 return 1; 4441 } 4442 4443 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE); 4444 4445 octeon_dev->app_mode = CVM_DRV_INVALID_APP; 4446 4447 if (OCTEON_CN23XX_PF(octeon_dev)) { 4448 if (!cn23xx_fw_loaded(octeon_dev)) { 4449 fw_loaded = 0; 4450 /* Do a soft reset of the Octeon device. */ 4451 if (octeon_dev->fn_list.soft_reset(octeon_dev)) 4452 return 1; 4453 /* things might have changed */ 4454 if (!cn23xx_fw_loaded(octeon_dev)) 4455 fw_loaded = 0; 4456 else 4457 fw_loaded = 1; 4458 } else { 4459 fw_loaded = 1; 4460 } 4461 } else if (octeon_dev->fn_list.soft_reset(octeon_dev)) { 4462 return 1; 4463 } 4464 4465 /* Initialize the dispatch mechanism used to push packets arriving on 4466 * Octeon Output queues. 4467 */ 4468 if (octeon_init_dispatch_list(octeon_dev)) 4469 return 1; 4470 4471 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4472 OPCODE_NIC_CORE_DRV_ACTIVE, 4473 octeon_core_drv_init, 4474 octeon_dev); 4475 4476 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4477 OPCODE_NIC_VF_DRV_NOTICE, 4478 octeon_recv_vf_drv_notice, octeon_dev); 4479 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter); 4480 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev; 4481 schedule_delayed_work(&octeon_dev->nic_poll_work.work, 4482 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4483 4484 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE); 4485 4486 if (octeon_set_io_queues_off(octeon_dev)) { 4487 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n"); 4488 return 1; 4489 } 4490 4491 if (OCTEON_CN23XX_PF(octeon_dev)) { 4492 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4493 if (ret) { 4494 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n"); 4495 return ret; 4496 } 4497 } 4498 4499 /* Initialize soft command buffer pool 4500 */ 4501 if (octeon_setup_sc_buffer_pool(octeon_dev)) { 4502 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n"); 4503 return 1; 4504 } 4505 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE); 4506 4507 /* Setup the data structures that manage this Octeon's Input queues. */ 4508 if (octeon_setup_instr_queues(octeon_dev)) { 4509 dev_err(&octeon_dev->pci_dev->dev, 4510 "instruction queue initialization failed\n"); 4511 return 1; 4512 } 4513 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE); 4514 4515 /* Initialize lists to manage the requests of different types that 4516 * arrive from user & kernel applications for this octeon device. 4517 */ 4518 if (octeon_setup_response_list(octeon_dev)) { 4519 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n"); 4520 return 1; 4521 } 4522 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE); 4523 4524 if (octeon_setup_output_queues(octeon_dev)) { 4525 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n"); 4526 return 1; 4527 } 4528 4529 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE); 4530 4531 if (OCTEON_CN23XX_PF(octeon_dev)) { 4532 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) { 4533 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n"); 4534 return 1; 4535 } 4536 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE); 4537 4538 if (octeon_allocate_ioq_vector(octeon_dev)) { 4539 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n"); 4540 return 1; 4541 } 4542 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE); 4543 4544 } else { 4545 /* The input and output queue registers were setup earlier (the 4546 * queues were not enabled). Any additional registers 4547 * that need to be programmed should be done now. 4548 */ 4549 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4550 if (ret) { 4551 dev_err(&octeon_dev->pci_dev->dev, 4552 "Failed to configure device registers\n"); 4553 return ret; 4554 } 4555 } 4556 4557 /* Initialize the tasklet that handles output queue packet processing.*/ 4558 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n"); 4559 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh, 4560 (unsigned long)octeon_dev); 4561 4562 /* Setup the interrupt handler and record the INT SUM register address 4563 */ 4564 if (octeon_setup_interrupt(octeon_dev)) 4565 return 1; 4566 4567 /* Enable Octeon device interrupts */ 4568 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR); 4569 4570 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE); 4571 4572 /* Enable the input and output queues for this Octeon device */ 4573 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev); 4574 if (ret) { 4575 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues"); 4576 return ret; 4577 } 4578 4579 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE); 4580 4581 if ((!OCTEON_CN23XX_PF(octeon_dev)) || !fw_loaded) { 4582 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n"); 4583 if (!ddr_timeout) { 4584 dev_info(&octeon_dev->pci_dev->dev, 4585 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n"); 4586 } 4587 4588 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS); 4589 4590 /* Wait for the octeon to initialize DDR after the soft-reset.*/ 4591 while (!ddr_timeout) { 4592 set_current_state(TASK_INTERRUPTIBLE); 4593 if (schedule_timeout(HZ / 10)) { 4594 /* user probably pressed Control-C */ 4595 return 1; 4596 } 4597 } 4598 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout); 4599 if (ret) { 4600 dev_err(&octeon_dev->pci_dev->dev, 4601 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n", 4602 ret); 4603 return 1; 4604 } 4605 4606 if (octeon_wait_for_bootloader(octeon_dev, 1000)) { 4607 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n"); 4608 return 1; 4609 } 4610 4611 /* Divert uboot to take commands from host instead. */ 4612 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50); 4613 4614 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n"); 4615 ret = octeon_init_consoles(octeon_dev); 4616 if (ret) { 4617 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n"); 4618 return 1; 4619 } 4620 ret = octeon_add_console(octeon_dev, 0); 4621 if (ret) { 4622 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n"); 4623 return 1; 4624 } 4625 4626 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE); 4627 4628 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n"); 4629 ret = load_firmware(octeon_dev); 4630 if (ret) { 4631 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n"); 4632 return 1; 4633 } 4634 /* set bit 1 of SLI_SCRATCH_1 to indicate that firmware is 4635 * loaded 4636 */ 4637 if (OCTEON_CN23XX_PF(octeon_dev)) 4638 octeon_write_csr64(octeon_dev, CN23XX_SLI_SCRATCH1, 4639 2ULL); 4640 } 4641 4642 handshake[octeon_dev->octeon_id].init_ok = 1; 4643 complete(&handshake[octeon_dev->octeon_id].init); 4644 4645 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK); 4646 4647 /* Send Credit for Octeon Output queues. Credits are always sent after 4648 * the output queue is enabled. 4649 */ 4650 for (j = 0; j < octeon_dev->num_oqs; j++) 4651 writel(octeon_dev->droq[j]->max_count, 4652 octeon_dev->droq[j]->pkts_credit_reg); 4653 4654 /* Packets can start arriving on the output queues from this point. */ 4655 return 0; 4656 } 4657 4658 /** 4659 * \brief Exits the module 4660 */ 4661 static void __exit liquidio_exit(void) 4662 { 4663 liquidio_deinit_pci(); 4664 4665 pr_info("LiquidIO network module is now unloaded\n"); 4666 } 4667 4668 module_init(liquidio_init); 4669 module_exit(liquidio_exit); 4670