1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 *          Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/module.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pci.h>
27 #include <linux/pci_ids.h>
28 #include <linux/ip.h>
29 #include <net/ip.h>
30 #include <linux/ipv6.h>
31 #include <linux/net_tstamp.h>
32 #include <linux/if_vlan.h>
33 #include <linux/firmware.h>
34 #include <linux/ethtool.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/types.h>
37 #include <linux/list.h>
38 #include <linux/workqueue.h>
39 #include <linux/interrupt.h>
40 #include "octeon_config.h"
41 #include "liquidio_common.h"
42 #include "octeon_droq.h"
43 #include "octeon_iq.h"
44 #include "response_manager.h"
45 #include "octeon_device.h"
46 #include "octeon_nic.h"
47 #include "octeon_main.h"
48 #include "octeon_network.h"
49 #include "cn66xx_regs.h"
50 #include "cn66xx_device.h"
51 #include "cn68xx_regs.h"
52 #include "cn68xx_device.h"
53 #include "liquidio_image.h"
54 
55 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
56 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(LIQUIDIO_VERSION);
59 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
60 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
61 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
62 
63 static int ddr_timeout = 10000;
64 module_param(ddr_timeout, int, 0644);
65 MODULE_PARM_DESC(ddr_timeout,
66 		 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
67 
68 static u32 console_bitmask;
69 module_param(console_bitmask, int, 0644);
70 MODULE_PARM_DESC(console_bitmask,
71 		 "Bitmask indicating which consoles have debug output redirected to syslog.");
72 
73 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
74 
75 static int debug = -1;
76 module_param(debug, int, 0644);
77 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
78 
79 static char fw_type[LIO_MAX_FW_TYPE_LEN];
80 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
81 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
82 
83 static int conf_type;
84 module_param(conf_type, int, 0);
85 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
86 
87 /* Bit mask values for lio->ifstate */
88 #define   LIO_IFSTATE_DROQ_OPS             0x01
89 #define   LIO_IFSTATE_REGISTERED           0x02
90 #define   LIO_IFSTATE_RUNNING              0x04
91 #define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
92 
93 /* Polling interval for determining when NIC application is alive */
94 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
95 
96 /* runtime link query interval */
97 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
98 
99 struct liquidio_if_cfg_context {
100 	int octeon_id;
101 
102 	wait_queue_head_t wc;
103 
104 	int cond;
105 };
106 
107 struct liquidio_if_cfg_resp {
108 	u64 rh;
109 	struct liquidio_if_cfg_info cfg_info;
110 	u64 status;
111 };
112 
113 struct oct_link_status_resp {
114 	u64 rh;
115 	struct oct_link_info link_info;
116 	u64 status;
117 };
118 
119 struct oct_timestamp_resp {
120 	u64 rh;
121 	u64 timestamp;
122 	u64 status;
123 };
124 
125 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
126 
127 union tx_info {
128 	u64 u64;
129 	struct {
130 #ifdef __BIG_ENDIAN_BITFIELD
131 		u16 gso_size;
132 		u16 gso_segs;
133 		u32 reserved;
134 #else
135 		u32 reserved;
136 		u16 gso_segs;
137 		u16 gso_size;
138 #endif
139 	} s;
140 };
141 
142 /** Octeon device properties to be used by the NIC module.
143  * Each octeon device in the system will be represented
144  * by this structure in the NIC module.
145  */
146 
147 #define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
148 
149 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
150 #define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
151 
152 /** Structure of a node in list of gather components maintained by
153  * NIC driver for each network device.
154  */
155 struct octnic_gather {
156 	/** List manipulation. Next and prev pointers. */
157 	struct list_head list;
158 
159 	/** Size of the gather component at sg in bytes. */
160 	int sg_size;
161 
162 	/** Number of bytes that sg was adjusted to make it 8B-aligned. */
163 	int adjust;
164 
165 	/** Gather component that can accommodate max sized fragment list
166 	 *  received from the IP layer.
167 	 */
168 	struct octeon_sg_entry *sg;
169 };
170 
171 /** This structure is used by NIC driver to store information required
172  * to free the sk_buff when the packet has been fetched by Octeon.
173  * Bytes offset below assume worst-case of a 64-bit system.
174  */
175 struct octnet_buf_free_info {
176 	/** Bytes 1-8.  Pointer to network device private structure. */
177 	struct lio *lio;
178 
179 	/** Bytes 9-16.  Pointer to sk_buff. */
180 	struct sk_buff *skb;
181 
182 	/** Bytes 17-24.  Pointer to gather list. */
183 	struct octnic_gather *g;
184 
185 	/** Bytes 25-32. Physical address of skb->data or gather list. */
186 	u64 dptr;
187 
188 	/** Bytes 33-47. Piggybacked soft command, if any */
189 	struct octeon_soft_command *sc;
190 };
191 
192 struct handshake {
193 	struct completion init;
194 	struct completion started;
195 	struct pci_dev *pci_dev;
196 	int init_ok;
197 	int started_ok;
198 };
199 
200 struct octeon_device_priv {
201 	/** Tasklet structures for this device. */
202 	struct tasklet_struct droq_tasklet;
203 	unsigned long napi_mask;
204 };
205 
206 static int octeon_device_init(struct octeon_device *);
207 static void liquidio_remove(struct pci_dev *pdev);
208 static int liquidio_probe(struct pci_dev *pdev,
209 			  const struct pci_device_id *ent);
210 
211 static struct handshake handshake[MAX_OCTEON_DEVICES];
212 static struct completion first_stage;
213 
214 static void octeon_droq_bh(unsigned long pdev)
215 {
216 	int q_no;
217 	int reschedule = 0;
218 	struct octeon_device *oct = (struct octeon_device *)pdev;
219 	struct octeon_device_priv *oct_priv =
220 		(struct octeon_device_priv *)oct->priv;
221 
222 	/* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
223 	for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES; q_no++) {
224 		if (!(oct->io_qmask.oq & (1UL << q_no)))
225 			continue;
226 		reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
227 							  MAX_PACKET_BUDGET);
228 	}
229 
230 	if (reschedule)
231 		tasklet_schedule(&oct_priv->droq_tasklet);
232 }
233 
234 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
235 {
236 	struct octeon_device_priv *oct_priv =
237 		(struct octeon_device_priv *)oct->priv;
238 	int retry = 100, pkt_cnt = 0, pending_pkts = 0;
239 	int i;
240 
241 	do {
242 		pending_pkts = 0;
243 
244 		for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
245 			if (!(oct->io_qmask.oq & (1UL << i)))
246 				continue;
247 			pkt_cnt += octeon_droq_check_hw_for_pkts(oct,
248 								 oct->droq[i]);
249 		}
250 		if (pkt_cnt > 0) {
251 			pending_pkts += pkt_cnt;
252 			tasklet_schedule(&oct_priv->droq_tasklet);
253 		}
254 		pkt_cnt = 0;
255 		schedule_timeout_uninterruptible(1);
256 
257 	} while (retry-- && pending_pkts);
258 
259 	return pkt_cnt;
260 }
261 
262 void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
263 					unsigned int bytes_compl)
264 {
265 	struct netdev_queue *netdev_queue = txq;
266 
267 	netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
268 }
269 
270 void octeon_update_tx_completion_counters(void *buf, int reqtype,
271 					  unsigned int *pkts_compl,
272 					  unsigned int *bytes_compl)
273 {
274 	struct octnet_buf_free_info *finfo;
275 	struct sk_buff *skb = NULL;
276 	struct octeon_soft_command *sc;
277 
278 	switch (reqtype) {
279 	case REQTYPE_NORESP_NET:
280 	case REQTYPE_NORESP_NET_SG:
281 		finfo = buf;
282 		skb = finfo->skb;
283 		break;
284 
285 	case REQTYPE_RESP_NET_SG:
286 	case REQTYPE_RESP_NET:
287 		sc = buf;
288 		skb = sc->callback_arg;
289 		break;
290 
291 	default:
292 		return;
293 	}
294 
295 	(*pkts_compl)++;
296 	*bytes_compl += skb->len;
297 }
298 
299 void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
300 {
301 	struct octnet_buf_free_info *finfo;
302 	struct sk_buff *skb;
303 	struct octeon_soft_command *sc;
304 	struct netdev_queue *txq;
305 
306 	switch (reqtype) {
307 	case REQTYPE_NORESP_NET:
308 	case REQTYPE_NORESP_NET_SG:
309 		finfo = buf;
310 		skb = finfo->skb;
311 		break;
312 
313 	case REQTYPE_RESP_NET_SG:
314 	case REQTYPE_RESP_NET:
315 		sc = buf;
316 		skb = sc->callback_arg;
317 		break;
318 
319 	default:
320 		return;
321 	}
322 
323 	txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
324 	netdev_tx_sent_queue(txq, skb->len);
325 }
326 
327 int octeon_console_debug_enabled(u32 console)
328 {
329 	return (console_bitmask >> (console)) & 0x1;
330 }
331 
332 /**
333  * \brief Forces all IO queues off on a given device
334  * @param oct Pointer to Octeon device
335  */
336 static void force_io_queues_off(struct octeon_device *oct)
337 {
338 	if ((oct->chip_id == OCTEON_CN66XX) ||
339 	    (oct->chip_id == OCTEON_CN68XX)) {
340 		/* Reset the Enable bits for Input Queues. */
341 		octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
342 
343 		/* Reset the Enable bits for Output Queues. */
344 		octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
345 	}
346 }
347 
348 /**
349  * \brief wait for all pending requests to complete
350  * @param oct Pointer to Octeon device
351  *
352  * Called during shutdown sequence
353  */
354 static int wait_for_pending_requests(struct octeon_device *oct)
355 {
356 	int i, pcount = 0;
357 
358 	for (i = 0; i < 100; i++) {
359 		pcount =
360 			atomic_read(&oct->response_list
361 				[OCTEON_ORDERED_SC_LIST].pending_req_count);
362 		if (pcount)
363 			schedule_timeout_uninterruptible(HZ / 10);
364 		 else
365 			break;
366 	}
367 
368 	if (pcount)
369 		return 1;
370 
371 	return 0;
372 }
373 
374 /**
375  * \brief Cause device to go quiet so it can be safely removed/reset/etc
376  * @param oct Pointer to Octeon device
377  */
378 static inline void pcierror_quiesce_device(struct octeon_device *oct)
379 {
380 	int i;
381 
382 	/* Disable the input and output queues now. No more packets will
383 	 * arrive from Octeon, but we should wait for all packet processing
384 	 * to finish.
385 	 */
386 	force_io_queues_off(oct);
387 
388 	/* To allow for in-flight requests */
389 	schedule_timeout_uninterruptible(100);
390 
391 	if (wait_for_pending_requests(oct))
392 		dev_err(&oct->pci_dev->dev, "There were pending requests\n");
393 
394 	/* Force all requests waiting to be fetched by OCTEON to complete. */
395 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
396 		struct octeon_instr_queue *iq;
397 
398 		if (!(oct->io_qmask.iq & (1UL << i)))
399 			continue;
400 		iq = oct->instr_queue[i];
401 
402 		if (atomic_read(&iq->instr_pending)) {
403 			spin_lock_bh(&iq->lock);
404 			iq->fill_cnt = 0;
405 			iq->octeon_read_index = iq->host_write_index;
406 			iq->stats.instr_processed +=
407 				atomic_read(&iq->instr_pending);
408 			lio_process_iq_request_list(oct, iq);
409 			spin_unlock_bh(&iq->lock);
410 		}
411 	}
412 
413 	/* Force all pending ordered list requests to time out. */
414 	lio_process_ordered_list(oct, 1);
415 
416 	/* We do not need to wait for output queue packets to be processed. */
417 }
418 
419 /**
420  * \brief Cleanup PCI AER uncorrectable error status
421  * @param dev Pointer to PCI device
422  */
423 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
424 {
425 	int pos = 0x100;
426 	u32 status, mask;
427 
428 	pr_info("%s :\n", __func__);
429 
430 	pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
431 	pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
432 	if (dev->error_state == pci_channel_io_normal)
433 		status &= ~mask;        /* Clear corresponding nonfatal bits */
434 	else
435 		status &= mask;         /* Clear corresponding fatal bits */
436 	pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
437 }
438 
439 /**
440  * \brief Stop all PCI IO to a given device
441  * @param dev Pointer to Octeon device
442  */
443 static void stop_pci_io(struct octeon_device *oct)
444 {
445 	/* No more instructions will be forwarded. */
446 	atomic_set(&oct->status, OCT_DEV_IN_RESET);
447 
448 	pci_disable_device(oct->pci_dev);
449 
450 	/* Disable interrupts  */
451 	oct->fn_list.disable_interrupt(oct->chip);
452 
453 	pcierror_quiesce_device(oct);
454 
455 	/* Release the interrupt line */
456 	free_irq(oct->pci_dev->irq, oct);
457 
458 	if (oct->flags & LIO_FLAG_MSI_ENABLED)
459 		pci_disable_msi(oct->pci_dev);
460 
461 	dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
462 		lio_get_state_string(&oct->status));
463 
464 	/* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
465 	/* making it a common function for all OCTEON models */
466 	cleanup_aer_uncorrect_error_status(oct->pci_dev);
467 }
468 
469 /**
470  * \brief called when PCI error is detected
471  * @param pdev Pointer to PCI device
472  * @param state The current pci connection state
473  *
474  * This function is called after a PCI bus error affecting
475  * this device has been detected.
476  */
477 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
478 						     pci_channel_state_t state)
479 {
480 	struct octeon_device *oct = pci_get_drvdata(pdev);
481 
482 	/* Non-correctable Non-fatal errors */
483 	if (state == pci_channel_io_normal) {
484 		dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
485 		cleanup_aer_uncorrect_error_status(oct->pci_dev);
486 		return PCI_ERS_RESULT_CAN_RECOVER;
487 	}
488 
489 	/* Non-correctable Fatal errors */
490 	dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
491 	stop_pci_io(oct);
492 
493 	/* Always return a DISCONNECT. There is no support for recovery but only
494 	 * for a clean shutdown.
495 	 */
496 	return PCI_ERS_RESULT_DISCONNECT;
497 }
498 
499 /**
500  * \brief mmio handler
501  * @param pdev Pointer to PCI device
502  */
503 static pci_ers_result_t liquidio_pcie_mmio_enabled(struct pci_dev *pdev)
504 {
505 	/* We should never hit this since we never ask for a reset for a Fatal
506 	 * Error. We always return DISCONNECT in io_error above.
507 	 * But play safe and return RECOVERED for now.
508 	 */
509 	return PCI_ERS_RESULT_RECOVERED;
510 }
511 
512 /**
513  * \brief called after the pci bus has been reset.
514  * @param pdev Pointer to PCI device
515  *
516  * Restart the card from scratch, as if from a cold-boot. Implementation
517  * resembles the first-half of the octeon_resume routine.
518  */
519 static pci_ers_result_t liquidio_pcie_slot_reset(struct pci_dev *pdev)
520 {
521 	/* We should never hit this since we never ask for a reset for a Fatal
522 	 * Error. We always return DISCONNECT in io_error above.
523 	 * But play safe and return RECOVERED for now.
524 	 */
525 	return PCI_ERS_RESULT_RECOVERED;
526 }
527 
528 /**
529  * \brief called when traffic can start flowing again.
530  * @param pdev Pointer to PCI device
531  *
532  * This callback is called when the error recovery driver tells us that
533  * its OK to resume normal operation. Implementation resembles the
534  * second-half of the octeon_resume routine.
535  */
536 static void liquidio_pcie_resume(struct pci_dev *pdev)
537 {
538 	/* Nothing to be done here. */
539 }
540 
541 #ifdef CONFIG_PM
542 /**
543  * \brief called when suspending
544  * @param pdev Pointer to PCI device
545  * @param state state to suspend to
546  */
547 static int liquidio_suspend(struct pci_dev *pdev, pm_message_t state)
548 {
549 	return 0;
550 }
551 
552 /**
553  * \brief called when resuming
554  * @param pdev Pointer to PCI device
555  */
556 static int liquidio_resume(struct pci_dev *pdev)
557 {
558 	return 0;
559 }
560 #endif
561 
562 /* For PCI-E Advanced Error Recovery (AER) Interface */
563 static const struct pci_error_handlers liquidio_err_handler = {
564 	.error_detected = liquidio_pcie_error_detected,
565 	.mmio_enabled	= liquidio_pcie_mmio_enabled,
566 	.slot_reset	= liquidio_pcie_slot_reset,
567 	.resume		= liquidio_pcie_resume,
568 };
569 
570 static const struct pci_device_id liquidio_pci_tbl[] = {
571 	{       /* 68xx */
572 		PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
573 	},
574 	{       /* 66xx */
575 		PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
576 	},
577 	{
578 		0, 0, 0, 0, 0, 0, 0
579 	}
580 };
581 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
582 
583 static struct pci_driver liquidio_pci_driver = {
584 	.name		= "LiquidIO",
585 	.id_table	= liquidio_pci_tbl,
586 	.probe		= liquidio_probe,
587 	.remove		= liquidio_remove,
588 	.err_handler	= &liquidio_err_handler,    /* For AER */
589 
590 #ifdef CONFIG_PM
591 	.suspend	= liquidio_suspend,
592 	.resume		= liquidio_resume,
593 #endif
594 
595 };
596 
597 /**
598  * \brief register PCI driver
599  */
600 static int liquidio_init_pci(void)
601 {
602 	return pci_register_driver(&liquidio_pci_driver);
603 }
604 
605 /**
606  * \brief unregister PCI driver
607  */
608 static void liquidio_deinit_pci(void)
609 {
610 	pci_unregister_driver(&liquidio_pci_driver);
611 }
612 
613 /**
614  * \brief check interface state
615  * @param lio per-network private data
616  * @param state_flag flag state to check
617  */
618 static inline int ifstate_check(struct lio *lio, int state_flag)
619 {
620 	return atomic_read(&lio->ifstate) & state_flag;
621 }
622 
623 /**
624  * \brief set interface state
625  * @param lio per-network private data
626  * @param state_flag flag state to set
627  */
628 static inline void ifstate_set(struct lio *lio, int state_flag)
629 {
630 	atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
631 }
632 
633 /**
634  * \brief clear interface state
635  * @param lio per-network private data
636  * @param state_flag flag state to clear
637  */
638 static inline void ifstate_reset(struct lio *lio, int state_flag)
639 {
640 	atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
641 }
642 
643 /**
644  * \brief Stop Tx queues
645  * @param netdev network device
646  */
647 static inline void txqs_stop(struct net_device *netdev)
648 {
649 	if (netif_is_multiqueue(netdev)) {
650 		int i;
651 
652 		for (i = 0; i < netdev->num_tx_queues; i++)
653 			netif_stop_subqueue(netdev, i);
654 	} else {
655 		netif_stop_queue(netdev);
656 	}
657 }
658 
659 /**
660  * \brief Start Tx queues
661  * @param netdev network device
662  */
663 static inline void txqs_start(struct net_device *netdev)
664 {
665 	if (netif_is_multiqueue(netdev)) {
666 		int i;
667 
668 		for (i = 0; i < netdev->num_tx_queues; i++)
669 			netif_start_subqueue(netdev, i);
670 	} else {
671 		netif_start_queue(netdev);
672 	}
673 }
674 
675 /**
676  * \brief Wake Tx queues
677  * @param netdev network device
678  */
679 static inline void txqs_wake(struct net_device *netdev)
680 {
681 	if (netif_is_multiqueue(netdev)) {
682 		int i;
683 
684 		for (i = 0; i < netdev->num_tx_queues; i++)
685 			netif_wake_subqueue(netdev, i);
686 	} else {
687 		netif_wake_queue(netdev);
688 	}
689 }
690 
691 /**
692  * \brief Stop Tx queue
693  * @param netdev network device
694  */
695 static void stop_txq(struct net_device *netdev)
696 {
697 	txqs_stop(netdev);
698 }
699 
700 /**
701  * \brief Start Tx queue
702  * @param netdev network device
703  */
704 static void start_txq(struct net_device *netdev)
705 {
706 	struct lio *lio = GET_LIO(netdev);
707 
708 	if (lio->linfo.link.s.status) {
709 		txqs_start(netdev);
710 		return;
711 	}
712 }
713 
714 /**
715  * \brief Wake a queue
716  * @param netdev network device
717  * @param q which queue to wake
718  */
719 static inline void wake_q(struct net_device *netdev, int q)
720 {
721 	if (netif_is_multiqueue(netdev))
722 		netif_wake_subqueue(netdev, q);
723 	else
724 		netif_wake_queue(netdev);
725 }
726 
727 /**
728  * \brief Stop a queue
729  * @param netdev network device
730  * @param q which queue to stop
731  */
732 static inline void stop_q(struct net_device *netdev, int q)
733 {
734 	if (netif_is_multiqueue(netdev))
735 		netif_stop_subqueue(netdev, q);
736 	else
737 		netif_stop_queue(netdev);
738 }
739 
740 /**
741  * \brief Check Tx queue status, and take appropriate action
742  * @param lio per-network private data
743  * @returns 0 if full, number of queues woken up otherwise
744  */
745 static inline int check_txq_status(struct lio *lio)
746 {
747 	int ret_val = 0;
748 
749 	if (netif_is_multiqueue(lio->netdev)) {
750 		int numqs = lio->netdev->num_tx_queues;
751 		int q, iq = 0;
752 
753 		/* check each sub-queue state */
754 		for (q = 0; q < numqs; q++) {
755 			iq = lio->linfo.txpciq[q & (lio->linfo.num_txpciq - 1)];
756 			if (octnet_iq_is_full(lio->oct_dev, iq))
757 				continue;
758 			wake_q(lio->netdev, q);
759 			ret_val++;
760 		}
761 	} else {
762 		if (octnet_iq_is_full(lio->oct_dev, lio->txq))
763 			return 0;
764 		wake_q(lio->netdev, lio->txq);
765 		ret_val = 1;
766 	}
767 	return ret_val;
768 }
769 
770 /**
771  * Remove the node at the head of the list. The list would be empty at
772  * the end of this call if there are no more nodes in the list.
773  */
774 static inline struct list_head *list_delete_head(struct list_head *root)
775 {
776 	struct list_head *node;
777 
778 	if ((root->prev == root) && (root->next == root))
779 		node = NULL;
780 	else
781 		node = root->next;
782 
783 	if (node)
784 		list_del(node);
785 
786 	return node;
787 }
788 
789 /**
790  * \brief Delete gather list
791  * @param lio per-network private data
792  */
793 static void delete_glist(struct lio *lio)
794 {
795 	struct octnic_gather *g;
796 
797 	do {
798 		g = (struct octnic_gather *)
799 		    list_delete_head(&lio->glist);
800 		if (g) {
801 			if (g->sg)
802 				kfree((void *)((unsigned long)g->sg -
803 						g->adjust));
804 			kfree(g);
805 		}
806 	} while (g);
807 }
808 
809 /**
810  * \brief Setup gather list
811  * @param lio per-network private data
812  */
813 static int setup_glist(struct lio *lio)
814 {
815 	int i;
816 	struct octnic_gather *g;
817 
818 	INIT_LIST_HEAD(&lio->glist);
819 
820 	for (i = 0; i < lio->tx_qsize; i++) {
821 		g = kzalloc(sizeof(*g), GFP_KERNEL);
822 		if (!g)
823 			break;
824 
825 		g->sg_size =
826 			((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
827 
828 		g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
829 		if (!g->sg) {
830 			kfree(g);
831 			break;
832 		}
833 
834 		/* The gather component should be aligned on 64-bit boundary */
835 		if (((unsigned long)g->sg) & 7) {
836 			g->adjust = 8 - (((unsigned long)g->sg) & 7);
837 			g->sg = (struct octeon_sg_entry *)
838 				((unsigned long)g->sg + g->adjust);
839 		}
840 		list_add_tail(&g->list, &lio->glist);
841 	}
842 
843 	if (i == lio->tx_qsize)
844 		return 0;
845 
846 	delete_glist(lio);
847 	return 1;
848 }
849 
850 /**
851  * \brief Print link information
852  * @param netdev network device
853  */
854 static void print_link_info(struct net_device *netdev)
855 {
856 	struct lio *lio = GET_LIO(netdev);
857 
858 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
859 		struct oct_link_info *linfo = &lio->linfo;
860 
861 		if (linfo->link.s.status) {
862 			netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
863 				   linfo->link.s.speed,
864 				   (linfo->link.s.duplex) ? "Full" : "Half");
865 		} else {
866 			netif_info(lio, link, lio->netdev, "Link Down\n");
867 		}
868 	}
869 }
870 
871 /**
872  * \brief Update link status
873  * @param netdev network device
874  * @param ls link status structure
875  *
876  * Called on receipt of a link status response from the core application to
877  * update each interface's link status.
878  */
879 static inline void update_link_status(struct net_device *netdev,
880 				      union oct_link_status *ls)
881 {
882 	struct lio *lio = GET_LIO(netdev);
883 
884 	if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
885 		lio->linfo.link.u64 = ls->u64;
886 
887 		print_link_info(netdev);
888 
889 		if (lio->linfo.link.s.status) {
890 			netif_carrier_on(netdev);
891 			/* start_txq(netdev); */
892 			txqs_wake(netdev);
893 		} else {
894 			netif_carrier_off(netdev);
895 			stop_txq(netdev);
896 		}
897 	}
898 }
899 
900 /**
901  * \brief Droq packet processor sceduler
902  * @param oct octeon device
903  */
904 static
905 void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
906 {
907 	struct octeon_device_priv *oct_priv =
908 		(struct octeon_device_priv *)oct->priv;
909 	u64 oq_no;
910 	struct octeon_droq *droq;
911 
912 	if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
913 		for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
914 			if (!(oct->droq_intr & (1 << oq_no)))
915 				continue;
916 
917 			droq = oct->droq[oq_no];
918 
919 			if (droq->ops.poll_mode) {
920 				droq->ops.napi_fn(droq);
921 				oct_priv->napi_mask |= (1 << oq_no);
922 			} else {
923 				tasklet_schedule(&oct_priv->droq_tasklet);
924 			}
925 		}
926 	}
927 }
928 
929 /**
930  * \brief Interrupt handler for octeon
931  * @param irq unused
932  * @param dev octeon device
933  */
934 static
935 irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
936 {
937 	struct octeon_device *oct = (struct octeon_device *)dev;
938 	irqreturn_t ret;
939 
940 	/* Disable our interrupts for the duration of ISR */
941 	oct->fn_list.disable_interrupt(oct->chip);
942 
943 	ret = oct->fn_list.process_interrupt_regs(oct);
944 
945 	if (ret == IRQ_HANDLED)
946 		liquidio_schedule_droq_pkt_handlers(oct);
947 
948 	/* Re-enable our interrupts  */
949 	if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
950 		oct->fn_list.enable_interrupt(oct->chip);
951 
952 	return ret;
953 }
954 
955 /**
956  * \brief Setup interrupt for octeon device
957  * @param oct octeon device
958  *
959  *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
960  */
961 static int octeon_setup_interrupt(struct octeon_device *oct)
962 {
963 	int irqret, err;
964 
965 	err = pci_enable_msi(oct->pci_dev);
966 	if (err)
967 		dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
968 			 err);
969 	else
970 		oct->flags |= LIO_FLAG_MSI_ENABLED;
971 
972 	irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
973 			     IRQF_SHARED, "octeon", oct);
974 	if (irqret) {
975 		if (oct->flags & LIO_FLAG_MSI_ENABLED)
976 			pci_disable_msi(oct->pci_dev);
977 		dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
978 			irqret);
979 		return 1;
980 	}
981 
982 	return 0;
983 }
984 
985 /**
986  * \brief PCI probe handler
987  * @param pdev PCI device structure
988  * @param ent unused
989  */
990 static int liquidio_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
991 {
992 	struct octeon_device *oct_dev = NULL;
993 	struct handshake *hs;
994 
995 	oct_dev = octeon_allocate_device(pdev->device,
996 					 sizeof(struct octeon_device_priv));
997 	if (!oct_dev) {
998 		dev_err(&pdev->dev, "Unable to allocate device\n");
999 		return -ENOMEM;
1000 	}
1001 
1002 	dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1003 		 (u32)pdev->vendor, (u32)pdev->device);
1004 
1005 	/* Assign octeon_device for this device to the private data area. */
1006 	pci_set_drvdata(pdev, oct_dev);
1007 
1008 	/* set linux specific device pointer */
1009 	oct_dev->pci_dev = (void *)pdev;
1010 
1011 	hs = &handshake[oct_dev->octeon_id];
1012 	init_completion(&hs->init);
1013 	init_completion(&hs->started);
1014 	hs->pci_dev = pdev;
1015 
1016 	if (oct_dev->octeon_id == 0)
1017 		/* first LiquidIO NIC is detected */
1018 		complete(&first_stage);
1019 
1020 	if (octeon_device_init(oct_dev)) {
1021 		liquidio_remove(pdev);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1026 
1027 	return 0;
1028 }
1029 
1030 /**
1031  *\brief Destroy resources associated with octeon device
1032  * @param pdev PCI device structure
1033  * @param ent unused
1034  */
1035 static void octeon_destroy_resources(struct octeon_device *oct)
1036 {
1037 	int i;
1038 	struct octeon_device_priv *oct_priv =
1039 		(struct octeon_device_priv *)oct->priv;
1040 
1041 	struct handshake *hs;
1042 
1043 	switch (atomic_read(&oct->status)) {
1044 	case OCT_DEV_RUNNING:
1045 	case OCT_DEV_CORE_OK:
1046 
1047 		/* No more instructions will be forwarded. */
1048 		atomic_set(&oct->status, OCT_DEV_IN_RESET);
1049 
1050 		oct->app_mode = CVM_DRV_INVALID_APP;
1051 		dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1052 			lio_get_state_string(&oct->status));
1053 
1054 		schedule_timeout_uninterruptible(HZ / 10);
1055 
1056 		/* fallthrough */
1057 	case OCT_DEV_HOST_OK:
1058 
1059 		/* fallthrough */
1060 	case OCT_DEV_CONSOLE_INIT_DONE:
1061 		/* Remove any consoles */
1062 		octeon_remove_consoles(oct);
1063 
1064 		/* fallthrough */
1065 	case OCT_DEV_IO_QUEUES_DONE:
1066 		if (wait_for_pending_requests(oct))
1067 			dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1068 
1069 		if (lio_wait_for_instr_fetch(oct))
1070 			dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1071 
1072 		/* Disable the input and output queues now. No more packets will
1073 		 * arrive from Octeon, but we should wait for all packet
1074 		 * processing to finish.
1075 		 */
1076 		oct->fn_list.disable_io_queues(oct);
1077 
1078 		if (lio_wait_for_oq_pkts(oct))
1079 			dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1080 
1081 		/* Disable interrupts  */
1082 		oct->fn_list.disable_interrupt(oct->chip);
1083 
1084 		/* Release the interrupt line */
1085 		free_irq(oct->pci_dev->irq, oct);
1086 
1087 		if (oct->flags & LIO_FLAG_MSI_ENABLED)
1088 			pci_disable_msi(oct->pci_dev);
1089 
1090 		/* Soft reset the octeon device before exiting */
1091 		oct->fn_list.soft_reset(oct);
1092 
1093 		/* Disable the device, releasing the PCI INT */
1094 		pci_disable_device(oct->pci_dev);
1095 
1096 		/* fallthrough */
1097 	case OCT_DEV_IN_RESET:
1098 	case OCT_DEV_DROQ_INIT_DONE:
1099 		/*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1100 		mdelay(100);
1101 		for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
1102 			if (!(oct->io_qmask.oq & (1UL << i)))
1103 				continue;
1104 			octeon_delete_droq(oct, i);
1105 		}
1106 
1107 		/* Force any pending handshakes to complete */
1108 		for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1109 			hs = &handshake[i];
1110 
1111 			if (hs->pci_dev) {
1112 				handshake[oct->octeon_id].init_ok = 0;
1113 				complete(&handshake[oct->octeon_id].init);
1114 				handshake[oct->octeon_id].started_ok = 0;
1115 				complete(&handshake[oct->octeon_id].started);
1116 			}
1117 		}
1118 
1119 		/* fallthrough */
1120 	case OCT_DEV_RESP_LIST_INIT_DONE:
1121 		octeon_delete_response_list(oct);
1122 
1123 		/* fallthrough */
1124 	case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1125 		octeon_free_sc_buffer_pool(oct);
1126 
1127 		/* fallthrough */
1128 	case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1129 		for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
1130 			if (!(oct->io_qmask.iq & (1UL << i)))
1131 				continue;
1132 			octeon_delete_instr_queue(oct, i);
1133 		}
1134 
1135 		/* fallthrough */
1136 	case OCT_DEV_DISPATCH_INIT_DONE:
1137 		octeon_delete_dispatch_list(oct);
1138 		cancel_delayed_work_sync(&oct->nic_poll_work.work);
1139 
1140 		/* fallthrough */
1141 	case OCT_DEV_PCI_MAP_DONE:
1142 		octeon_unmap_pci_barx(oct, 0);
1143 		octeon_unmap_pci_barx(oct, 1);
1144 
1145 		/* fallthrough */
1146 	case OCT_DEV_BEGIN_STATE:
1147 		/* Nothing to be done here either */
1148 		break;
1149 	}                       /* end switch(oct->status) */
1150 
1151 	tasklet_kill(&oct_priv->droq_tasklet);
1152 }
1153 
1154 /**
1155  * \brief Send Rx control command
1156  * @param lio per-network private data
1157  * @param start_stop whether to start or stop
1158  */
1159 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1160 {
1161 	struct octnic_ctrl_pkt nctrl;
1162 	struct octnic_ctrl_params nparams;
1163 
1164 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1165 
1166 	nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1167 	nctrl.ncmd.s.param1 = lio->linfo.ifidx;
1168 	nctrl.ncmd.s.param2 = start_stop;
1169 	nctrl.netpndev = (u64)lio->netdev;
1170 
1171 	nparams.resp_order = OCTEON_RESP_NORESPONSE;
1172 
1173 	if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams) < 0)
1174 		netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1175 }
1176 
1177 /**
1178  * \brief Destroy NIC device interface
1179  * @param oct octeon device
1180  * @param ifidx which interface to destroy
1181  *
1182  * Cleanup associated with each interface for an Octeon device  when NIC
1183  * module is being unloaded or if initialization fails during load.
1184  */
1185 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1186 {
1187 	struct net_device *netdev = oct->props[ifidx].netdev;
1188 	struct lio *lio;
1189 
1190 	if (!netdev) {
1191 		dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1192 			__func__, ifidx);
1193 		return;
1194 	}
1195 
1196 	lio = GET_LIO(netdev);
1197 
1198 	dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1199 
1200 	send_rx_ctrl_cmd(lio, 0);
1201 
1202 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1203 		txqs_stop(netdev);
1204 
1205 	if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1206 		unregister_netdev(netdev);
1207 
1208 	delete_glist(lio);
1209 
1210 	free_netdev(netdev);
1211 
1212 	oct->props[ifidx].netdev = NULL;
1213 }
1214 
1215 /**
1216  * \brief Stop complete NIC functionality
1217  * @param oct octeon device
1218  */
1219 static int liquidio_stop_nic_module(struct octeon_device *oct)
1220 {
1221 	int i, j;
1222 	struct lio *lio;
1223 
1224 	dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1225 	if (!oct->ifcount) {
1226 		dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1227 		return 1;
1228 	}
1229 
1230 	for (i = 0; i < oct->ifcount; i++) {
1231 		lio = GET_LIO(oct->props[i].netdev);
1232 		for (j = 0; j < lio->linfo.num_rxpciq; j++)
1233 			octeon_unregister_droq_ops(oct, lio->linfo.rxpciq[j]);
1234 	}
1235 
1236 	for (i = 0; i < oct->ifcount; i++)
1237 		liquidio_destroy_nic_device(oct, i);
1238 
1239 	dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1240 	return 0;
1241 }
1242 
1243 /**
1244  * \brief Cleans up resources at unload time
1245  * @param pdev PCI device structure
1246  */
1247 static void liquidio_remove(struct pci_dev *pdev)
1248 {
1249 	struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1250 
1251 	dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1252 
1253 	if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1254 		liquidio_stop_nic_module(oct_dev);
1255 
1256 	/* Reset the octeon device and cleanup all memory allocated for
1257 	 * the octeon device by driver.
1258 	 */
1259 	octeon_destroy_resources(oct_dev);
1260 
1261 	dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1262 
1263 	/* This octeon device has been removed. Update the global
1264 	 * data structure to reflect this. Free the device structure.
1265 	 */
1266 	octeon_free_device_mem(oct_dev);
1267 }
1268 
1269 /**
1270  * \brief Identify the Octeon device and to map the BAR address space
1271  * @param oct octeon device
1272  */
1273 static int octeon_chip_specific_setup(struct octeon_device *oct)
1274 {
1275 	u32 dev_id, rev_id;
1276 	int ret = 1;
1277 
1278 	pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1279 	pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1280 	oct->rev_id = rev_id & 0xff;
1281 
1282 	switch (dev_id) {
1283 	case OCTEON_CN68XX_PCIID:
1284 		oct->chip_id = OCTEON_CN68XX;
1285 		ret = lio_setup_cn68xx_octeon_device(oct);
1286 		break;
1287 
1288 	case OCTEON_CN66XX_PCIID:
1289 		oct->chip_id = OCTEON_CN66XX;
1290 		ret = lio_setup_cn66xx_octeon_device(oct);
1291 		break;
1292 	default:
1293 		dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1294 			dev_id);
1295 	}
1296 
1297 	if (!ret)
1298 		dev_info(&oct->pci_dev->dev, "CN68XX PASS%d.%d %s\n",
1299 			 OCTEON_MAJOR_REV(oct),
1300 			 OCTEON_MINOR_REV(oct),
1301 			 octeon_get_conf(oct)->card_name);
1302 
1303 	return ret;
1304 }
1305 
1306 /**
1307  * \brief PCI initialization for each Octeon device.
1308  * @param oct octeon device
1309  */
1310 static int octeon_pci_os_setup(struct octeon_device *oct)
1311 {
1312 	/* setup PCI stuff first */
1313 	if (pci_enable_device(oct->pci_dev)) {
1314 		dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1315 		return 1;
1316 	}
1317 
1318 	if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1319 		dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1320 		return 1;
1321 	}
1322 
1323 	/* Enable PCI DMA Master. */
1324 	pci_set_master(oct->pci_dev);
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * \brief Check Tx queue state for a given network buffer
1331  * @param lio per-network private data
1332  * @param skb network buffer
1333  */
1334 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1335 {
1336 	int q = 0, iq = 0;
1337 
1338 	if (netif_is_multiqueue(lio->netdev)) {
1339 		q = skb->queue_mapping;
1340 		iq = lio->linfo.txpciq[(q & (lio->linfo.num_txpciq - 1))];
1341 	} else {
1342 		iq = lio->txq;
1343 	}
1344 
1345 	if (octnet_iq_is_full(lio->oct_dev, iq))
1346 		return 0;
1347 	wake_q(lio->netdev, q);
1348 	return 1;
1349 }
1350 
1351 /**
1352  * \brief Unmap and free network buffer
1353  * @param buf buffer
1354  */
1355 static void free_netbuf(void *buf)
1356 {
1357 	struct sk_buff *skb;
1358 	struct octnet_buf_free_info *finfo;
1359 	struct lio *lio;
1360 
1361 	finfo = (struct octnet_buf_free_info *)buf;
1362 	skb = finfo->skb;
1363 	lio = finfo->lio;
1364 
1365 	dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1366 			 DMA_TO_DEVICE);
1367 
1368 	check_txq_state(lio, skb);
1369 
1370 	recv_buffer_free((struct sk_buff *)skb);
1371 }
1372 
1373 /**
1374  * \brief Unmap and free gather buffer
1375  * @param buf buffer
1376  */
1377 static void free_netsgbuf(void *buf)
1378 {
1379 	struct octnet_buf_free_info *finfo;
1380 	struct sk_buff *skb;
1381 	struct lio *lio;
1382 	struct octnic_gather *g;
1383 	int i, frags;
1384 
1385 	finfo = (struct octnet_buf_free_info *)buf;
1386 	skb = finfo->skb;
1387 	lio = finfo->lio;
1388 	g = finfo->g;
1389 	frags = skb_shinfo(skb)->nr_frags;
1390 
1391 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1392 			 g->sg[0].ptr[0], (skb->len - skb->data_len),
1393 			 DMA_TO_DEVICE);
1394 
1395 	i = 1;
1396 	while (frags--) {
1397 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1398 
1399 		pci_unmap_page((lio->oct_dev)->pci_dev,
1400 			       g->sg[(i >> 2)].ptr[(i & 3)],
1401 			       frag->size, DMA_TO_DEVICE);
1402 		i++;
1403 	}
1404 
1405 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1406 			 finfo->dptr, g->sg_size,
1407 			 DMA_TO_DEVICE);
1408 
1409 	spin_lock(&lio->lock);
1410 	list_add_tail(&g->list, &lio->glist);
1411 	spin_unlock(&lio->lock);
1412 
1413 	check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1414 
1415 	recv_buffer_free((struct sk_buff *)skb);
1416 }
1417 
1418 /**
1419  * \brief Unmap and free gather buffer with response
1420  * @param buf buffer
1421  */
1422 static void free_netsgbuf_with_resp(void *buf)
1423 {
1424 	struct octeon_soft_command *sc;
1425 	struct octnet_buf_free_info *finfo;
1426 	struct sk_buff *skb;
1427 	struct lio *lio;
1428 	struct octnic_gather *g;
1429 	int i, frags;
1430 
1431 	sc = (struct octeon_soft_command *)buf;
1432 	skb = (struct sk_buff *)sc->callback_arg;
1433 	finfo = (struct octnet_buf_free_info *)&skb->cb;
1434 
1435 	lio = finfo->lio;
1436 	g = finfo->g;
1437 	frags = skb_shinfo(skb)->nr_frags;
1438 
1439 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1440 			 g->sg[0].ptr[0], (skb->len - skb->data_len),
1441 			 DMA_TO_DEVICE);
1442 
1443 	i = 1;
1444 	while (frags--) {
1445 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1446 
1447 		pci_unmap_page((lio->oct_dev)->pci_dev,
1448 			       g->sg[(i >> 2)].ptr[(i & 3)],
1449 			       frag->size, DMA_TO_DEVICE);
1450 		i++;
1451 	}
1452 
1453 	dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1454 			 finfo->dptr, g->sg_size,
1455 			 DMA_TO_DEVICE);
1456 
1457 	spin_lock(&lio->lock);
1458 	list_add_tail(&g->list, &lio->glist);
1459 	spin_unlock(&lio->lock);
1460 
1461 	/* Don't free the skb yet */
1462 
1463 	check_txq_state(lio, skb);
1464 }
1465 
1466 /**
1467  * \brief Adjust ptp frequency
1468  * @param ptp PTP clock info
1469  * @param ppb how much to adjust by, in parts-per-billion
1470  */
1471 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1472 {
1473 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
1474 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1475 	u64 comp, delta;
1476 	unsigned long flags;
1477 	bool neg_adj = false;
1478 
1479 	if (ppb < 0) {
1480 		neg_adj = true;
1481 		ppb = -ppb;
1482 	}
1483 
1484 	/* The hardware adds the clock compensation value to the
1485 	 * PTP clock on every coprocessor clock cycle, so we
1486 	 * compute the delta in terms of coprocessor clocks.
1487 	 */
1488 	delta = (u64)ppb << 32;
1489 	do_div(delta, oct->coproc_clock_rate);
1490 
1491 	spin_lock_irqsave(&lio->ptp_lock, flags);
1492 	comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1493 	if (neg_adj)
1494 		comp -= delta;
1495 	else
1496 		comp += delta;
1497 	lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1498 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  * \brief Adjust ptp time
1505  * @param ptp PTP clock info
1506  * @param delta how much to adjust by, in nanosecs
1507  */
1508 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1509 {
1510 	unsigned long flags;
1511 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
1512 
1513 	spin_lock_irqsave(&lio->ptp_lock, flags);
1514 	lio->ptp_adjust += delta;
1515 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
1516 
1517 	return 0;
1518 }
1519 
1520 /**
1521  * \brief Get hardware clock time, including any adjustment
1522  * @param ptp PTP clock info
1523  * @param ts timespec
1524  */
1525 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1526 				struct timespec64 *ts)
1527 {
1528 	u64 ns;
1529 	unsigned long flags;
1530 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
1531 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1532 
1533 	spin_lock_irqsave(&lio->ptp_lock, flags);
1534 	ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1535 	ns += lio->ptp_adjust;
1536 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
1537 
1538 	*ts = ns_to_timespec64(ns);
1539 
1540 	return 0;
1541 }
1542 
1543 /**
1544  * \brief Set hardware clock time. Reset adjustment
1545  * @param ptp PTP clock info
1546  * @param ts timespec
1547  */
1548 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1549 				const struct timespec64 *ts)
1550 {
1551 	u64 ns;
1552 	unsigned long flags;
1553 	struct lio *lio = container_of(ptp, struct lio, ptp_info);
1554 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1555 
1556 	ns = timespec_to_ns(ts);
1557 
1558 	spin_lock_irqsave(&lio->ptp_lock, flags);
1559 	lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1560 	lio->ptp_adjust = 0;
1561 	spin_unlock_irqrestore(&lio->ptp_lock, flags);
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * \brief Check if PTP is enabled
1568  * @param ptp PTP clock info
1569  * @param rq request
1570  * @param on is it on
1571  */
1572 static int liquidio_ptp_enable(struct ptp_clock_info *ptp,
1573 			       struct ptp_clock_request *rq, int on)
1574 {
1575 	return -EOPNOTSUPP;
1576 }
1577 
1578 /**
1579  * \brief Open PTP clock source
1580  * @param netdev network device
1581  */
1582 static void oct_ptp_open(struct net_device *netdev)
1583 {
1584 	struct lio *lio = GET_LIO(netdev);
1585 	struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1586 
1587 	spin_lock_init(&lio->ptp_lock);
1588 
1589 	snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1590 	lio->ptp_info.owner = THIS_MODULE;
1591 	lio->ptp_info.max_adj = 250000000;
1592 	lio->ptp_info.n_alarm = 0;
1593 	lio->ptp_info.n_ext_ts = 0;
1594 	lio->ptp_info.n_per_out = 0;
1595 	lio->ptp_info.pps = 0;
1596 	lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1597 	lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1598 	lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1599 	lio->ptp_info.settime64 = liquidio_ptp_settime;
1600 	lio->ptp_info.enable = liquidio_ptp_enable;
1601 
1602 	lio->ptp_adjust = 0;
1603 
1604 	lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1605 					     &oct->pci_dev->dev);
1606 
1607 	if (IS_ERR(lio->ptp_clock))
1608 		lio->ptp_clock = NULL;
1609 }
1610 
1611 /**
1612  * \brief Init PTP clock
1613  * @param oct octeon device
1614  */
1615 static void liquidio_ptp_init(struct octeon_device *oct)
1616 {
1617 	u64 clock_comp, cfg;
1618 
1619 	clock_comp = (u64)NSEC_PER_SEC << 32;
1620 	do_div(clock_comp, oct->coproc_clock_rate);
1621 	lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1622 
1623 	/* Enable */
1624 	cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1625 	lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1626 }
1627 
1628 /**
1629  * \brief Load firmware to device
1630  * @param oct octeon device
1631  *
1632  * Maps device to firmware filename, requests firmware, and downloads it
1633  */
1634 static int load_firmware(struct octeon_device *oct)
1635 {
1636 	int ret = 0;
1637 	const struct firmware *fw;
1638 	char fw_name[LIO_MAX_FW_FILENAME_LEN];
1639 	char *tmp_fw_type;
1640 
1641 	if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1642 		    sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1643 		dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1644 		return ret;
1645 	}
1646 
1647 	if (fw_type[0] == '\0')
1648 		tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1649 	else
1650 		tmp_fw_type = fw_type;
1651 
1652 	sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1653 		octeon_get_conf(oct)->card_name, tmp_fw_type,
1654 		LIO_FW_NAME_SUFFIX);
1655 
1656 	ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1657 	if (ret) {
1658 		dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1659 			fw_name);
1660 		return ret;
1661 	}
1662 
1663 	ret = octeon_download_firmware(oct, fw->data, fw->size);
1664 
1665 	release_firmware(fw);
1666 
1667 	return ret;
1668 }
1669 
1670 /**
1671  * \brief Setup output queue
1672  * @param oct octeon device
1673  * @param q_no which queue
1674  * @param num_descs how many descriptors
1675  * @param desc_size size of each descriptor
1676  * @param app_ctx application context
1677  */
1678 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1679 			     int desc_size, void *app_ctx)
1680 {
1681 	int ret_val = 0;
1682 
1683 	dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1684 	/* droq creation and local register settings. */
1685 	ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1686 	if (ret_val < 0)
1687 		return ret_val;
1688 
1689 	if (ret_val == 1) {
1690 		dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1691 		return 0;
1692 	}
1693 	/* tasklet creation for the droq */
1694 
1695 	/* Enable the droq queues */
1696 	octeon_set_droq_pkt_op(oct, q_no, 1);
1697 
1698 	/* Send Credit for Octeon Output queues. Credits are always
1699 	 * sent after the output queue is enabled.
1700 	 */
1701 	writel(oct->droq[q_no]->max_count,
1702 	       oct->droq[q_no]->pkts_credit_reg);
1703 
1704 	return ret_val;
1705 }
1706 
1707 /**
1708  * \brief Callback for getting interface configuration
1709  * @param status status of request
1710  * @param buf pointer to resp structure
1711  */
1712 static void if_cfg_callback(struct octeon_device *oct,
1713 			    u32 status,
1714 			    void *buf)
1715 {
1716 	struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1717 	struct liquidio_if_cfg_resp *resp;
1718 	struct liquidio_if_cfg_context *ctx;
1719 
1720 	resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1721 	ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
1722 
1723 	oct = lio_get_device(ctx->octeon_id);
1724 	if (resp->status)
1725 		dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1726 			CVM_CAST64(resp->status));
1727 	ACCESS_ONCE(ctx->cond) = 1;
1728 
1729 	/* This barrier is required to be sure that the response has been
1730 	 * written fully before waking up the handler
1731 	 */
1732 	wmb();
1733 
1734 	wake_up_interruptible(&ctx->wc);
1735 }
1736 
1737 /**
1738  * \brief Select queue based on hash
1739  * @param dev Net device
1740  * @param skb sk_buff structure
1741  * @returns selected queue number
1742  */
1743 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1744 		    void *accel_priv, select_queue_fallback_t fallback)
1745 {
1746 	int qindex;
1747 	struct lio *lio;
1748 
1749 	lio = GET_LIO(dev);
1750 	/* select queue on chosen queue_mapping or core */
1751 	qindex = skb_rx_queue_recorded(skb) ?
1752 		 skb_get_rx_queue(skb) : smp_processor_id();
1753 	return (u16)(qindex & (lio->linfo.num_txpciq - 1));
1754 }
1755 
1756 /** Routine to push packets arriving on Octeon interface upto network layer.
1757  * @param oct_id   - octeon device id.
1758  * @param skbuff   - skbuff struct to be passed to network layer.
1759  * @param len      - size of total data received.
1760  * @param rh       - Control header associated with the packet
1761  * @param param    - additional control data with the packet
1762  */
1763 static void
1764 liquidio_push_packet(u32 octeon_id,
1765 		     void *skbuff,
1766 		     u32 len,
1767 		     union octeon_rh *rh,
1768 		     void *param)
1769 {
1770 	struct napi_struct *napi = param;
1771 	struct octeon_device *oct = lio_get_device(octeon_id);
1772 	struct sk_buff *skb = (struct sk_buff *)skbuff;
1773 	struct skb_shared_hwtstamps *shhwtstamps;
1774 	u64 ns;
1775 	struct net_device *netdev =
1776 		(struct net_device *)oct->props[rh->r_dh.link].netdev;
1777 	struct octeon_droq *droq = container_of(param, struct octeon_droq,
1778 						napi);
1779 	if (netdev) {
1780 		int packet_was_received;
1781 		struct lio *lio = GET_LIO(netdev);
1782 
1783 		/* Do not proceed if the interface is not in RUNNING state. */
1784 		if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1785 			recv_buffer_free(skb);
1786 			droq->stats.rx_dropped++;
1787 			return;
1788 		}
1789 
1790 		skb->dev = netdev;
1791 
1792 		if (rh->r_dh.has_hwtstamp) {
1793 			/* timestamp is included from the hardware at the
1794 			 * beginning of the packet.
1795 			 */
1796 			if (ifstate_check(lio,
1797 					  LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1798 				/* Nanoseconds are in the first 64-bits
1799 				 * of the packet.
1800 				 */
1801 				memcpy(&ns, (skb->data), sizeof(ns));
1802 				shhwtstamps = skb_hwtstamps(skb);
1803 				shhwtstamps->hwtstamp =
1804 					ns_to_ktime(ns + lio->ptp_adjust);
1805 			}
1806 			skb_pull(skb, sizeof(ns));
1807 		}
1808 
1809 		skb->protocol = eth_type_trans(skb, skb->dev);
1810 
1811 		if ((netdev->features & NETIF_F_RXCSUM) &&
1812 		    (rh->r_dh.csum_verified == CNNIC_CSUM_VERIFIED))
1813 			/* checksum has already been verified */
1814 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1815 		else
1816 			skb->ip_summed = CHECKSUM_NONE;
1817 
1818 		packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
1819 
1820 		if (packet_was_received) {
1821 			droq->stats.rx_bytes_received += len;
1822 			droq->stats.rx_pkts_received++;
1823 			netdev->last_rx = jiffies;
1824 		} else {
1825 			droq->stats.rx_dropped++;
1826 			netif_info(lio, rx_err, lio->netdev,
1827 				   "droq:%d  error rx_dropped:%llu\n",
1828 				   droq->q_no, droq->stats.rx_dropped);
1829 		}
1830 
1831 	} else {
1832 		recv_buffer_free(skb);
1833 	}
1834 }
1835 
1836 /**
1837  * \brief wrapper for calling napi_schedule
1838  * @param param parameters to pass to napi_schedule
1839  *
1840  * Used when scheduling on different CPUs
1841  */
1842 static void napi_schedule_wrapper(void *param)
1843 {
1844 	struct napi_struct *napi = param;
1845 
1846 	napi_schedule(napi);
1847 }
1848 
1849 /**
1850  * \brief callback when receive interrupt occurs and we are in NAPI mode
1851  * @param arg pointer to octeon output queue
1852  */
1853 static void liquidio_napi_drv_callback(void *arg)
1854 {
1855 	struct octeon_droq *droq = arg;
1856 	int this_cpu = smp_processor_id();
1857 
1858 	if (droq->cpu_id == this_cpu) {
1859 		napi_schedule(&droq->napi);
1860 	} else {
1861 		struct call_single_data *csd = &droq->csd;
1862 
1863 		csd->func = napi_schedule_wrapper;
1864 		csd->info = &droq->napi;
1865 		csd->flags = 0;
1866 
1867 		smp_call_function_single_async(droq->cpu_id, csd);
1868 	}
1869 }
1870 
1871 /**
1872  * \brief Main NAPI poll function
1873  * @param droq octeon output queue
1874  * @param budget maximum number of items to process
1875  */
1876 static int liquidio_napi_do_rx(struct octeon_droq *droq, int budget)
1877 {
1878 	int work_done;
1879 	struct lio *lio = GET_LIO(droq->napi.dev);
1880 	struct octeon_device *oct = lio->oct_dev;
1881 
1882 	work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1883 						 POLL_EVENT_PROCESS_PKTS,
1884 						 budget);
1885 	if (work_done < 0) {
1886 		netif_info(lio, rx_err, lio->netdev,
1887 			   "Receive work_done < 0, rxq:%d\n", droq->q_no);
1888 		goto octnet_napi_finish;
1889 	}
1890 
1891 	if (work_done > budget)
1892 		dev_err(&oct->pci_dev->dev, ">>>> %s work_done: %d budget: %d\n",
1893 			__func__, work_done, budget);
1894 
1895 	return work_done;
1896 
1897 octnet_napi_finish:
1898 	napi_complete(&droq->napi);
1899 	octeon_process_droq_poll_cmd(oct, droq->q_no, POLL_EVENT_ENABLE_INTR,
1900 				     0);
1901 	return 0;
1902 }
1903 
1904 /**
1905  * \brief Entry point for NAPI polling
1906  * @param napi NAPI structure
1907  * @param budget maximum number of items to process
1908  */
1909 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1910 {
1911 	struct octeon_droq *droq;
1912 	int work_done;
1913 
1914 	droq = container_of(napi, struct octeon_droq, napi);
1915 
1916 	work_done = liquidio_napi_do_rx(droq, budget);
1917 
1918 	if (work_done < budget) {
1919 		napi_complete(napi);
1920 		octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1921 					     POLL_EVENT_ENABLE_INTR, 0);
1922 		return 0;
1923 	}
1924 
1925 	return work_done;
1926 }
1927 
1928 /**
1929  * \brief Setup input and output queues
1930  * @param octeon_dev octeon device
1931  * @param net_device Net device
1932  *
1933  * Note: Queues are with respect to the octeon device. Thus
1934  * an input queue is for egress packets, and output queues
1935  * are for ingress packets.
1936  */
1937 static inline int setup_io_queues(struct octeon_device *octeon_dev,
1938 				  struct net_device *net_device)
1939 {
1940 	static int first_time = 1;
1941 	static struct octeon_droq_ops droq_ops;
1942 	static int cpu_id;
1943 	static int cpu_id_modulus;
1944 	struct octeon_droq *droq;
1945 	struct napi_struct *napi;
1946 	int q, q_no, retval = 0;
1947 	struct lio *lio;
1948 	int num_tx_descs;
1949 
1950 	lio = GET_LIO(net_device);
1951 	if (first_time) {
1952 		first_time = 0;
1953 		memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1954 
1955 		droq_ops.fptr = liquidio_push_packet;
1956 
1957 		droq_ops.poll_mode = 1;
1958 		droq_ops.napi_fn = liquidio_napi_drv_callback;
1959 		cpu_id = 0;
1960 		cpu_id_modulus = num_present_cpus();
1961 	}
1962 
1963 	/* set up DROQs. */
1964 	for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1965 		q_no = lio->linfo.rxpciq[q];
1966 
1967 		retval = octeon_setup_droq(octeon_dev, q_no,
1968 					   CFG_GET_NUM_RX_DESCS_NIC_IF
1969 						   (octeon_get_conf(octeon_dev),
1970 						   lio->ifidx),
1971 					   CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
1972 						   (octeon_get_conf(octeon_dev),
1973 						   lio->ifidx), NULL);
1974 		if (retval) {
1975 			dev_err(&octeon_dev->pci_dev->dev,
1976 				" %s : Runtime DROQ(RxQ) creation failed.\n",
1977 				__func__);
1978 			return 1;
1979 		}
1980 
1981 		droq = octeon_dev->droq[q_no];
1982 		napi = &droq->napi;
1983 		netif_napi_add(net_device, napi, liquidio_napi_poll, 64);
1984 
1985 		/* designate a CPU for this droq */
1986 		droq->cpu_id = cpu_id;
1987 		cpu_id++;
1988 		if (cpu_id >= cpu_id_modulus)
1989 			cpu_id = 0;
1990 
1991 		octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1992 	}
1993 
1994 	/* set up IQs. */
1995 	for (q = 0; q < lio->linfo.num_txpciq; q++) {
1996 		num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
1997 							   (octeon_dev),
1998 							   lio->ifidx);
1999 		retval = octeon_setup_iq(octeon_dev, lio->linfo.txpciq[q],
2000 					 num_tx_descs,
2001 					 netdev_get_tx_queue(net_device, q));
2002 		if (retval) {
2003 			dev_err(&octeon_dev->pci_dev->dev,
2004 				" %s : Runtime IQ(TxQ) creation failed.\n",
2005 				__func__);
2006 			return 1;
2007 		}
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 /**
2014  * \brief Poll routine for checking transmit queue status
2015  * @param work work_struct data structure
2016  */
2017 static void octnet_poll_check_txq_status(struct work_struct *work)
2018 {
2019 	struct cavium_wk *wk = (struct cavium_wk *)work;
2020 	struct lio *lio = (struct lio *)wk->ctxptr;
2021 
2022 	if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2023 		return;
2024 
2025 	check_txq_status(lio);
2026 	queue_delayed_work(lio->txq_status_wq.wq,
2027 			   &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2028 }
2029 
2030 /**
2031  * \brief Sets up the txq poll check
2032  * @param netdev network device
2033  */
2034 static inline void setup_tx_poll_fn(struct net_device *netdev)
2035 {
2036 	struct lio *lio = GET_LIO(netdev);
2037 	struct octeon_device *oct = lio->oct_dev;
2038 
2039 	lio->txq_status_wq.wq = create_workqueue("txq-status");
2040 	if (!lio->txq_status_wq.wq) {
2041 		dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2042 		return;
2043 	}
2044 	INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2045 			  octnet_poll_check_txq_status);
2046 	lio->txq_status_wq.wk.ctxptr = lio;
2047 	queue_delayed_work(lio->txq_status_wq.wq,
2048 			   &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2049 }
2050 
2051 /**
2052  * \brief Net device open for LiquidIO
2053  * @param netdev network device
2054  */
2055 static int liquidio_open(struct net_device *netdev)
2056 {
2057 	struct lio *lio = GET_LIO(netdev);
2058 	struct octeon_device *oct = lio->oct_dev;
2059 	struct napi_struct *napi, *n;
2060 
2061 	list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2062 		napi_enable(napi);
2063 
2064 	oct_ptp_open(netdev);
2065 
2066 	ifstate_set(lio, LIO_IFSTATE_RUNNING);
2067 	setup_tx_poll_fn(netdev);
2068 	start_txq(netdev);
2069 
2070 	netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2071 	try_module_get(THIS_MODULE);
2072 
2073 	/* tell Octeon to start forwarding packets to host */
2074 	send_rx_ctrl_cmd(lio, 1);
2075 
2076 	/* Ready for link status updates */
2077 	lio->intf_open = 1;
2078 
2079 	dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2080 		 netdev->name);
2081 
2082 	return 0;
2083 }
2084 
2085 /**
2086  * \brief Net device stop for LiquidIO
2087  * @param netdev network device
2088  */
2089 static int liquidio_stop(struct net_device *netdev)
2090 {
2091 	struct napi_struct *napi, *n;
2092 	struct lio *lio = GET_LIO(netdev);
2093 	struct octeon_device *oct = lio->oct_dev;
2094 
2095 	netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
2096 	/* Inform that netif carrier is down */
2097 	lio->intf_open = 0;
2098 	lio->linfo.link.s.status = 0;
2099 
2100 	netif_carrier_off(netdev);
2101 
2102 	/* tell Octeon to stop forwarding packets to host */
2103 	send_rx_ctrl_cmd(lio, 0);
2104 
2105 	cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2106 	flush_workqueue(lio->txq_status_wq.wq);
2107 	destroy_workqueue(lio->txq_status_wq.wq);
2108 
2109 	if (lio->ptp_clock) {
2110 		ptp_clock_unregister(lio->ptp_clock);
2111 		lio->ptp_clock = NULL;
2112 	}
2113 
2114 	ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2115 
2116 	/* This is a hack that allows DHCP to continue working. */
2117 	set_bit(__LINK_STATE_START, &lio->netdev->state);
2118 
2119 	list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2120 		napi_disable(napi);
2121 
2122 	txqs_stop(netdev);
2123 
2124 	dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2125 	module_put(THIS_MODULE);
2126 
2127 	return 0;
2128 }
2129 
2130 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2131 {
2132 	struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2133 	struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2134 	struct lio *lio = GET_LIO(netdev);
2135 	struct octeon_device *oct = lio->oct_dev;
2136 
2137 	switch (nctrl->ncmd.s.cmd) {
2138 	case OCTNET_CMD_CHANGE_DEVFLAGS:
2139 	case OCTNET_CMD_SET_MULTI_LIST:
2140 		break;
2141 
2142 	case OCTNET_CMD_CHANGE_MACADDR:
2143 		/* If command is successful, change the MACADDR. */
2144 		netif_info(lio, probe, lio->netdev, " MACAddr changed to 0x%llx\n",
2145 			   CVM_CAST64(nctrl->udd[0]));
2146 		dev_info(&oct->pci_dev->dev, "%s MACAddr changed to 0x%llx\n",
2147 			 netdev->name, CVM_CAST64(nctrl->udd[0]));
2148 		memcpy(netdev->dev_addr, ((u8 *)&nctrl->udd[0]) + 2, ETH_ALEN);
2149 		break;
2150 
2151 	case OCTNET_CMD_CHANGE_MTU:
2152 		/* If command is successful, change the MTU. */
2153 		netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2154 			   netdev->mtu, nctrl->ncmd.s.param2);
2155 		dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2156 			 netdev->name, netdev->mtu,
2157 			 nctrl->ncmd.s.param2);
2158 		netdev->mtu = nctrl->ncmd.s.param2;
2159 		break;
2160 
2161 	case OCTNET_CMD_GPIO_ACCESS:
2162 		netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2163 
2164 		break;
2165 
2166 	case OCTNET_CMD_LRO_ENABLE:
2167 		dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2168 		break;
2169 
2170 	case OCTNET_CMD_LRO_DISABLE:
2171 		dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2172 			 netdev->name);
2173 		break;
2174 
2175 	case OCTNET_CMD_VERBOSE_ENABLE:
2176 		dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2177 		break;
2178 
2179 	case OCTNET_CMD_VERBOSE_DISABLE:
2180 		dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2181 			 netdev->name);
2182 		break;
2183 
2184 	case OCTNET_CMD_SET_SETTINGS:
2185 		dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2186 			 netdev->name);
2187 
2188 		break;
2189 
2190 	default:
2191 		dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2192 			nctrl->ncmd.s.cmd);
2193 	}
2194 }
2195 
2196 /**
2197  * \brief Converts a mask based on net device flags
2198  * @param netdev network device
2199  *
2200  * This routine generates a octnet_ifflags mask from the net device flags
2201  * received from the OS.
2202  */
2203 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2204 {
2205 	enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2206 
2207 	if (netdev->flags & IFF_PROMISC)
2208 		f |= OCTNET_IFFLAG_PROMISC;
2209 
2210 	if (netdev->flags & IFF_ALLMULTI)
2211 		f |= OCTNET_IFFLAG_ALLMULTI;
2212 
2213 	if (netdev->flags & IFF_MULTICAST) {
2214 		f |= OCTNET_IFFLAG_MULTICAST;
2215 
2216 		/* Accept all multicast addresses if there are more than we
2217 		 * can handle
2218 		 */
2219 		if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2220 			f |= OCTNET_IFFLAG_ALLMULTI;
2221 	}
2222 
2223 	if (netdev->flags & IFF_BROADCAST)
2224 		f |= OCTNET_IFFLAG_BROADCAST;
2225 
2226 	return f;
2227 }
2228 
2229 /**
2230  * \brief Net device set_multicast_list
2231  * @param netdev network device
2232  */
2233 static void liquidio_set_mcast_list(struct net_device *netdev)
2234 {
2235 	struct lio *lio = GET_LIO(netdev);
2236 	struct octeon_device *oct = lio->oct_dev;
2237 	struct octnic_ctrl_pkt nctrl;
2238 	struct octnic_ctrl_params nparams;
2239 	struct netdev_hw_addr *ha;
2240 	u64 *mc;
2241 	int ret, i;
2242 	int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2243 
2244 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2245 
2246 	/* Create a ctrl pkt command to be sent to core app. */
2247 	nctrl.ncmd.u64 = 0;
2248 	nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2249 	nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2250 	nctrl.ncmd.s.param2 = get_new_flags(netdev);
2251 	nctrl.ncmd.s.param3 = mc_count;
2252 	nctrl.ncmd.s.more = mc_count;
2253 	nctrl.netpndev = (u64)netdev;
2254 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2255 
2256 	/* copy all the addresses into the udd */
2257 	i = 0;
2258 	mc = &nctrl.udd[0];
2259 	netdev_for_each_mc_addr(ha, netdev) {
2260 		*mc = 0;
2261 		memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2262 		/* no need to swap bytes */
2263 
2264 		if (++mc > &nctrl.udd[mc_count])
2265 			break;
2266 	}
2267 
2268 	/* Apparently, any activity in this call from the kernel has to
2269 	 * be atomic. So we won't wait for response.
2270 	 */
2271 	nctrl.wait_time = 0;
2272 
2273 	nparams.resp_order = OCTEON_RESP_NORESPONSE;
2274 
2275 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2276 	if (ret < 0) {
2277 		dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2278 			ret);
2279 	}
2280 }
2281 
2282 /**
2283  * \brief Net device set_mac_address
2284  * @param netdev network device
2285  */
2286 static int liquidio_set_mac(struct net_device *netdev, void *p)
2287 {
2288 	int ret = 0;
2289 	struct lio *lio = GET_LIO(netdev);
2290 	struct octeon_device *oct = lio->oct_dev;
2291 	struct sockaddr *addr = (struct sockaddr *)p;
2292 	struct octnic_ctrl_pkt nctrl;
2293 	struct octnic_ctrl_params nparams;
2294 
2295 	if ((!is_valid_ether_addr(addr->sa_data)) ||
2296 	    (ifstate_check(lio, LIO_IFSTATE_RUNNING)))
2297 		return -EADDRNOTAVAIL;
2298 
2299 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2300 
2301 	nctrl.ncmd.u64 = 0;
2302 	nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2303 	nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2304 	nctrl.ncmd.s.param2 = 0;
2305 	nctrl.ncmd.s.more = 1;
2306 	nctrl.netpndev = (u64)netdev;
2307 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2308 	nctrl.wait_time = 100;
2309 
2310 	nctrl.udd[0] = 0;
2311 	/* The MAC Address is presented in network byte order. */
2312 	memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2313 
2314 	nparams.resp_order = OCTEON_RESP_ORDERED;
2315 
2316 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2317 	if (ret < 0) {
2318 		dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2319 		return -ENOMEM;
2320 	}
2321 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2322 	memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2323 
2324 	return 0;
2325 }
2326 
2327 /**
2328  * \brief Net device get_stats
2329  * @param netdev network device
2330  */
2331 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2332 {
2333 	struct lio *lio = GET_LIO(netdev);
2334 	struct net_device_stats *stats = &netdev->stats;
2335 	struct octeon_device *oct;
2336 	u64 pkts = 0, drop = 0, bytes = 0;
2337 	struct oct_droq_stats *oq_stats;
2338 	struct oct_iq_stats *iq_stats;
2339 	int i, iq_no, oq_no;
2340 
2341 	oct = lio->oct_dev;
2342 
2343 	for (i = 0; i < lio->linfo.num_txpciq; i++) {
2344 		iq_no = lio->linfo.txpciq[i];
2345 		iq_stats = &oct->instr_queue[iq_no]->stats;
2346 		pkts += iq_stats->tx_done;
2347 		drop += iq_stats->tx_dropped;
2348 		bytes += iq_stats->tx_tot_bytes;
2349 	}
2350 
2351 	stats->tx_packets = pkts;
2352 	stats->tx_bytes = bytes;
2353 	stats->tx_dropped = drop;
2354 
2355 	pkts = 0;
2356 	drop = 0;
2357 	bytes = 0;
2358 
2359 	for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2360 		oq_no = lio->linfo.rxpciq[i];
2361 		oq_stats = &oct->droq[oq_no]->stats;
2362 		pkts += oq_stats->rx_pkts_received;
2363 		drop += (oq_stats->rx_dropped +
2364 			 oq_stats->dropped_nodispatch +
2365 			 oq_stats->dropped_toomany +
2366 			 oq_stats->dropped_nomem);
2367 		bytes += oq_stats->rx_bytes_received;
2368 	}
2369 
2370 	stats->rx_bytes = bytes;
2371 	stats->rx_packets = pkts;
2372 	stats->rx_dropped = drop;
2373 
2374 	return stats;
2375 }
2376 
2377 /**
2378  * \brief Net device change_mtu
2379  * @param netdev network device
2380  */
2381 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2382 {
2383 	struct lio *lio = GET_LIO(netdev);
2384 	struct octeon_device *oct = lio->oct_dev;
2385 	struct octnic_ctrl_pkt nctrl;
2386 	struct octnic_ctrl_params nparams;
2387 	int max_frm_size = new_mtu + OCTNET_FRM_HEADER_SIZE;
2388 	int ret = 0;
2389 
2390 	/* Limit the MTU to make sure the ethernet packets are between 64 bytes
2391 	 * and 65535 bytes
2392 	 */
2393 	if ((max_frm_size < OCTNET_MIN_FRM_SIZE) ||
2394 	    (max_frm_size > OCTNET_MAX_FRM_SIZE)) {
2395 		dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2396 		dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2397 			(OCTNET_MIN_FRM_SIZE - OCTNET_FRM_HEADER_SIZE),
2398 			(OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE));
2399 		return -EINVAL;
2400 	}
2401 
2402 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2403 
2404 	nctrl.ncmd.u64 = 0;
2405 	nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2406 	nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2407 	nctrl.ncmd.s.param2 = new_mtu;
2408 	nctrl.wait_time = 100;
2409 	nctrl.netpndev = (u64)netdev;
2410 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2411 
2412 	nparams.resp_order = OCTEON_RESP_ORDERED;
2413 
2414 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2415 	if (ret < 0) {
2416 		dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2417 		return -1;
2418 	}
2419 
2420 	lio->mtu = new_mtu;
2421 
2422 	return 0;
2423 }
2424 
2425 /**
2426  * \brief Handler for SIOCSHWTSTAMP ioctl
2427  * @param netdev network device
2428  * @param ifr interface request
2429  * @param cmd command
2430  */
2431 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2432 {
2433 	struct hwtstamp_config conf;
2434 	struct lio *lio = GET_LIO(netdev);
2435 
2436 	if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2437 		return -EFAULT;
2438 
2439 	if (conf.flags)
2440 		return -EINVAL;
2441 
2442 	switch (conf.tx_type) {
2443 	case HWTSTAMP_TX_ON:
2444 	case HWTSTAMP_TX_OFF:
2445 		break;
2446 	default:
2447 		return -ERANGE;
2448 	}
2449 
2450 	switch (conf.rx_filter) {
2451 	case HWTSTAMP_FILTER_NONE:
2452 		break;
2453 	case HWTSTAMP_FILTER_ALL:
2454 	case HWTSTAMP_FILTER_SOME:
2455 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2456 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2457 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2458 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2459 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2460 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2461 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2462 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2463 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2464 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2465 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2466 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2467 		conf.rx_filter = HWTSTAMP_FILTER_ALL;
2468 		break;
2469 	default:
2470 		return -ERANGE;
2471 	}
2472 
2473 	if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2474 		ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2475 
2476 	else
2477 		ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2478 
2479 	return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2480 }
2481 
2482 /**
2483  * \brief ioctl handler
2484  * @param netdev network device
2485  * @param ifr interface request
2486  * @param cmd command
2487  */
2488 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2489 {
2490 	switch (cmd) {
2491 	case SIOCSHWTSTAMP:
2492 		return hwtstamp_ioctl(netdev, ifr, cmd);
2493 	default:
2494 		return -EOPNOTSUPP;
2495 	}
2496 }
2497 
2498 /**
2499  * \brief handle a Tx timestamp response
2500  * @param status response status
2501  * @param buf pointer to skb
2502  */
2503 static void handle_timestamp(struct octeon_device *oct,
2504 			     u32 status,
2505 			     void *buf)
2506 {
2507 	struct octnet_buf_free_info *finfo;
2508 	struct octeon_soft_command *sc;
2509 	struct oct_timestamp_resp *resp;
2510 	struct lio *lio;
2511 	struct sk_buff *skb = (struct sk_buff *)buf;
2512 
2513 	finfo = (struct octnet_buf_free_info *)skb->cb;
2514 	lio = finfo->lio;
2515 	sc = finfo->sc;
2516 	oct = lio->oct_dev;
2517 	resp = (struct oct_timestamp_resp *)sc->virtrptr;
2518 
2519 	if (status != OCTEON_REQUEST_DONE) {
2520 		dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2521 			CVM_CAST64(status));
2522 		resp->timestamp = 0;
2523 	}
2524 
2525 	octeon_swap_8B_data(&resp->timestamp, 1);
2526 
2527 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) {
2528 		struct skb_shared_hwtstamps ts;
2529 		u64 ns = resp->timestamp;
2530 
2531 		netif_info(lio, tx_done, lio->netdev,
2532 			   "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2533 			   skb, (unsigned long long)ns);
2534 		ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2535 		skb_tstamp_tx(skb, &ts);
2536 	}
2537 
2538 	octeon_free_soft_command(oct, sc);
2539 	recv_buffer_free(skb);
2540 }
2541 
2542 /* \brief Send a data packet that will be timestamped
2543  * @param oct octeon device
2544  * @param ndata pointer to network data
2545  * @param finfo pointer to private network data
2546  */
2547 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2548 					 struct octnic_data_pkt *ndata,
2549 					 struct octnet_buf_free_info *finfo,
2550 					 int xmit_more)
2551 {
2552 	int retval;
2553 	struct octeon_soft_command *sc;
2554 	struct octeon_instr_ih *ih;
2555 	struct octeon_instr_rdp *rdp;
2556 	struct lio *lio;
2557 	int ring_doorbell;
2558 
2559 	lio = finfo->lio;
2560 
2561 	sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2562 					    sizeof(struct oct_timestamp_resp));
2563 	finfo->sc = sc;
2564 
2565 	if (!sc) {
2566 		dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2567 		return IQ_SEND_FAILED;
2568 	}
2569 
2570 	if (ndata->reqtype == REQTYPE_NORESP_NET)
2571 		ndata->reqtype = REQTYPE_RESP_NET;
2572 	else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2573 		ndata->reqtype = REQTYPE_RESP_NET_SG;
2574 
2575 	sc->callback = handle_timestamp;
2576 	sc->callback_arg = finfo->skb;
2577 	sc->iq_no = ndata->q_no;
2578 
2579 	ih = (struct octeon_instr_ih *)&sc->cmd.ih;
2580 	rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
2581 
2582 	ring_doorbell = !xmit_more;
2583 	retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2584 				     sc, ih->dlengsz, ndata->reqtype);
2585 
2586 	if (retval) {
2587 		dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2588 			retval);
2589 		octeon_free_soft_command(oct, sc);
2590 	} else {
2591 		netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2592 	}
2593 
2594 	return retval;
2595 }
2596 
2597 static inline int is_ipv4(struct sk_buff *skb)
2598 {
2599 	return (skb->protocol == htons(ETH_P_IP)) &&
2600 	       (ip_hdr(skb)->version == 4);
2601 }
2602 
2603 static inline int is_vlan(struct sk_buff *skb)
2604 {
2605 	return skb->protocol == htons(ETH_P_8021Q);
2606 }
2607 
2608 static inline int is_ip_fragmented(struct sk_buff *skb)
2609 {
2610 	/* The Don't fragment and Reserved flag fields are ignored.
2611 	 * IP is fragmented if
2612 	 * -  the More fragments bit is set (indicating this IP is a fragment
2613 	 * with more to follow; the current offset could be 0 ).
2614 	 * -  ths offset field is non-zero.
2615 	 */
2616 	return (ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)) ? 1 : 0;
2617 }
2618 
2619 static inline int is_ipv6(struct sk_buff *skb)
2620 {
2621 	return (skb->protocol == htons(ETH_P_IPV6)) &&
2622 	       (ipv6_hdr(skb)->version == 6);
2623 }
2624 
2625 static inline int is_with_extn_hdr(struct sk_buff *skb)
2626 {
2627 	return (ipv6_hdr(skb)->nexthdr != IPPROTO_TCP) &&
2628 	       (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP);
2629 }
2630 
2631 static inline int is_tcpudp(struct sk_buff *skb)
2632 {
2633 	return (ip_hdr(skb)->protocol == IPPROTO_TCP) ||
2634 	       (ip_hdr(skb)->protocol == IPPROTO_UDP);
2635 }
2636 
2637 static inline u32 get_ipv4_5tuple_tag(struct sk_buff *skb)
2638 {
2639 	u32 tag;
2640 	struct iphdr *iphdr = ip_hdr(skb);
2641 
2642 	tag = crc32(0, &iphdr->protocol, 1);
2643 	tag = crc32(tag, (u8 *)&iphdr->saddr, 8);
2644 	tag = crc32(tag, skb_transport_header(skb), 4);
2645 	return tag;
2646 }
2647 
2648 static inline u32 get_ipv6_5tuple_tag(struct sk_buff *skb)
2649 {
2650 	u32 tag;
2651 	struct ipv6hdr *ipv6hdr = ipv6_hdr(skb);
2652 
2653 	tag = crc32(0, &ipv6hdr->nexthdr, 1);
2654 	tag = crc32(tag, (u8 *)&ipv6hdr->saddr, 32);
2655 	tag = crc32(tag, skb_transport_header(skb), 4);
2656 	return tag;
2657 }
2658 
2659 /** \brief Transmit networks packets to the Octeon interface
2660  * @param skbuff   skbuff struct to be passed to network layer.
2661  * @param netdev    pointer to network device
2662  * @returns whether the packet was transmitted to the device okay or not
2663  *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
2664  */
2665 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2666 {
2667 	struct lio *lio;
2668 	struct octnet_buf_free_info *finfo;
2669 	union octnic_cmd_setup cmdsetup;
2670 	struct octnic_data_pkt ndata;
2671 	struct octeon_device *oct;
2672 	struct oct_iq_stats *stats;
2673 	int cpu = 0, status = 0;
2674 	int q_idx = 0, iq_no = 0;
2675 	int xmit_more;
2676 	u32 tag = 0;
2677 
2678 	lio = GET_LIO(netdev);
2679 	oct = lio->oct_dev;
2680 
2681 	if (netif_is_multiqueue(netdev)) {
2682 		cpu = skb->queue_mapping;
2683 		q_idx = (cpu & (lio->linfo.num_txpciq - 1));
2684 		iq_no = lio->linfo.txpciq[q_idx];
2685 	} else {
2686 		iq_no = lio->txq;
2687 	}
2688 
2689 	stats = &oct->instr_queue[iq_no]->stats;
2690 
2691 	/* Check for all conditions in which the current packet cannot be
2692 	 * transmitted.
2693 	 */
2694 	if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2695 	    (!lio->linfo.link.s.status) ||
2696 	    (skb->len <= 0)) {
2697 		netif_info(lio, tx_err, lio->netdev,
2698 			   "Transmit failed link_status : %d\n",
2699 			   lio->linfo.link.s.status);
2700 		goto lio_xmit_failed;
2701 	}
2702 
2703 	/* Use space in skb->cb to store info used to unmap and
2704 	 * free the buffers.
2705 	 */
2706 	finfo = (struct octnet_buf_free_info *)skb->cb;
2707 	finfo->lio = lio;
2708 	finfo->skb = skb;
2709 	finfo->sc = NULL;
2710 
2711 	/* Prepare the attributes for the data to be passed to OSI. */
2712 	memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2713 
2714 	ndata.buf = (void *)finfo;
2715 
2716 	ndata.q_no = iq_no;
2717 
2718 	if (netif_is_multiqueue(netdev)) {
2719 		if (octnet_iq_is_full(oct, ndata.q_no)) {
2720 			/* defer sending if queue is full */
2721 			netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2722 				   ndata.q_no);
2723 			stats->tx_iq_busy++;
2724 			return NETDEV_TX_BUSY;
2725 		}
2726 	} else {
2727 		if (octnet_iq_is_full(oct, lio->txq)) {
2728 			/* defer sending if queue is full */
2729 			stats->tx_iq_busy++;
2730 			netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2731 				   ndata.q_no);
2732 			return NETDEV_TX_BUSY;
2733 		}
2734 	}
2735 	/* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
2736 	 *	lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no );
2737 	 */
2738 
2739 	ndata.datasize = skb->len;
2740 
2741 	cmdsetup.u64 = 0;
2742 	cmdsetup.s.ifidx = lio->linfo.ifidx;
2743 
2744 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2745 		if (is_ipv4(skb) && !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2746 			tag = get_ipv4_5tuple_tag(skb);
2747 
2748 			cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2749 
2750 			if (ip_hdr(skb)->ihl > 5)
2751 				cmdsetup.s.ipv4opts_ipv6exthdr =
2752 						OCT_PKT_PARAM_IPV4OPTS;
2753 
2754 		} else if (is_ipv6(skb)) {
2755 			tag = get_ipv6_5tuple_tag(skb);
2756 
2757 			cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2758 
2759 			if (is_with_extn_hdr(skb))
2760 				cmdsetup.s.ipv4opts_ipv6exthdr =
2761 						OCT_PKT_PARAM_IPV6EXTHDR;
2762 
2763 		} else if (is_vlan(skb)) {
2764 			if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2765 				== htons(ETH_P_IP) &&
2766 				!is_ip_fragmented(skb) && is_tcpudp(skb)) {
2767 				tag = get_ipv4_5tuple_tag(skb);
2768 
2769 				cmdsetup.s.cksum_offset =
2770 					sizeof(struct vlan_ethhdr) + 1;
2771 
2772 				if (ip_hdr(skb)->ihl > 5)
2773 					cmdsetup.s.ipv4opts_ipv6exthdr =
2774 						OCT_PKT_PARAM_IPV4OPTS;
2775 
2776 			} else if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2777 				== htons(ETH_P_IPV6)) {
2778 				tag = get_ipv6_5tuple_tag(skb);
2779 
2780 				cmdsetup.s.cksum_offset =
2781 					sizeof(struct vlan_ethhdr) + 1;
2782 
2783 				if (is_with_extn_hdr(skb))
2784 					cmdsetup.s.ipv4opts_ipv6exthdr =
2785 						OCT_PKT_PARAM_IPV6EXTHDR;
2786 			}
2787 		}
2788 	}
2789 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2790 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2791 		cmdsetup.s.timestamp = 1;
2792 	}
2793 
2794 	if (skb_shinfo(skb)->nr_frags == 0) {
2795 		cmdsetup.s.u.datasize = skb->len;
2796 		octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2797 		/* Offload checksum calculation for TCP/UDP packets */
2798 		ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2799 						skb->data,
2800 						skb->len,
2801 						DMA_TO_DEVICE);
2802 		if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2803 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2804 				__func__);
2805 			return NETDEV_TX_BUSY;
2806 		}
2807 
2808 		finfo->dptr = ndata.cmd.dptr;
2809 
2810 		ndata.reqtype = REQTYPE_NORESP_NET;
2811 
2812 	} else {
2813 		int i, frags;
2814 		struct skb_frag_struct *frag;
2815 		struct octnic_gather *g;
2816 
2817 		spin_lock(&lio->lock);
2818 		g = (struct octnic_gather *)list_delete_head(&lio->glist);
2819 		spin_unlock(&lio->lock);
2820 
2821 		if (!g) {
2822 			netif_info(lio, tx_err, lio->netdev,
2823 				   "Transmit scatter gather: glist null!\n");
2824 			goto lio_xmit_failed;
2825 		}
2826 
2827 		cmdsetup.s.gather = 1;
2828 		cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2829 		octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2830 
2831 		memset(g->sg, 0, g->sg_size);
2832 
2833 		g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2834 						 skb->data,
2835 						 (skb->len - skb->data_len),
2836 						 DMA_TO_DEVICE);
2837 		if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2838 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2839 				__func__);
2840 			return NETDEV_TX_BUSY;
2841 		}
2842 		add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2843 
2844 		frags = skb_shinfo(skb)->nr_frags;
2845 		i = 1;
2846 		while (frags--) {
2847 			frag = &skb_shinfo(skb)->frags[i - 1];
2848 
2849 			g->sg[(i >> 2)].ptr[(i & 3)] =
2850 				dma_map_page(&oct->pci_dev->dev,
2851 					     frag->page.p,
2852 					     frag->page_offset,
2853 					     frag->size,
2854 					     DMA_TO_DEVICE);
2855 
2856 			add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2857 			i++;
2858 		}
2859 
2860 		ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2861 						g->sg, g->sg_size,
2862 						DMA_TO_DEVICE);
2863 		if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2864 			dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2865 				__func__);
2866 			dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2867 					 skb->len - skb->data_len,
2868 					 DMA_TO_DEVICE);
2869 			return NETDEV_TX_BUSY;
2870 		}
2871 
2872 		finfo->dptr = ndata.cmd.dptr;
2873 		finfo->g = g;
2874 
2875 		ndata.reqtype = REQTYPE_NORESP_NET_SG;
2876 	}
2877 
2878 	if (skb_shinfo(skb)->gso_size) {
2879 		struct octeon_instr_irh *irh =
2880 			(struct octeon_instr_irh *)&ndata.cmd.irh;
2881 		union tx_info *tx_info = (union tx_info *)&ndata.cmd.ossp[0];
2882 
2883 		irh->len = 1;   /* to indicate that ossp[0] contains tx_info */
2884 		tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2885 		tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2886 	}
2887 
2888 	xmit_more = skb->xmit_more;
2889 
2890 	if (unlikely(cmdsetup.s.timestamp))
2891 		status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
2892 	else
2893 		status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
2894 	if (status == IQ_SEND_FAILED)
2895 		goto lio_xmit_failed;
2896 
2897 	netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2898 
2899 	if (status == IQ_SEND_STOP)
2900 		stop_q(lio->netdev, q_idx);
2901 
2902 	netdev->trans_start = jiffies;
2903 
2904 	stats->tx_done++;
2905 	stats->tx_tot_bytes += skb->len;
2906 
2907 	return NETDEV_TX_OK;
2908 
2909 lio_xmit_failed:
2910 	stats->tx_dropped++;
2911 	netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2912 		   iq_no, stats->tx_dropped);
2913 	dma_unmap_single(&oct->pci_dev->dev, ndata.cmd.dptr,
2914 			 ndata.datasize, DMA_TO_DEVICE);
2915 	recv_buffer_free(skb);
2916 	return NETDEV_TX_OK;
2917 }
2918 
2919 /** \brief Network device Tx timeout
2920  * @param netdev    pointer to network device
2921  */
2922 static void liquidio_tx_timeout(struct net_device *netdev)
2923 {
2924 	struct lio *lio;
2925 
2926 	lio = GET_LIO(netdev);
2927 
2928 	netif_info(lio, tx_err, lio->netdev,
2929 		   "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2930 		   netdev->stats.tx_dropped);
2931 	netdev->trans_start = jiffies;
2932 	txqs_wake(netdev);
2933 }
2934 
2935 int liquidio_set_feature(struct net_device *netdev, int cmd)
2936 {
2937 	struct lio *lio = GET_LIO(netdev);
2938 	struct octeon_device *oct = lio->oct_dev;
2939 	struct octnic_ctrl_pkt nctrl;
2940 	struct octnic_ctrl_params nparams;
2941 	int ret = 0;
2942 
2943 	memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2944 
2945 	nctrl.ncmd.u64 = 0;
2946 	nctrl.ncmd.s.cmd = cmd;
2947 	nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2948 	nctrl.ncmd.s.param2 = OCTNIC_LROIPV4 | OCTNIC_LROIPV6;
2949 	nctrl.wait_time = 100;
2950 	nctrl.netpndev = (u64)netdev;
2951 	nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2952 
2953 	nparams.resp_order = OCTEON_RESP_NORESPONSE;
2954 
2955 	ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2956 	if (ret < 0) {
2957 		dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
2958 			ret);
2959 	}
2960 	return ret;
2961 }
2962 
2963 /** \brief Net device fix features
2964  * @param netdev  pointer to network device
2965  * @param request features requested
2966  * @returns updated features list
2967  */
2968 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2969 					       netdev_features_t request)
2970 {
2971 	struct lio *lio = netdev_priv(netdev);
2972 
2973 	if ((request & NETIF_F_RXCSUM) &&
2974 	    !(lio->dev_capability & NETIF_F_RXCSUM))
2975 		request &= ~NETIF_F_RXCSUM;
2976 
2977 	if ((request & NETIF_F_HW_CSUM) &&
2978 	    !(lio->dev_capability & NETIF_F_HW_CSUM))
2979 		request &= ~NETIF_F_HW_CSUM;
2980 
2981 	if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2982 		request &= ~NETIF_F_TSO;
2983 
2984 	if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2985 		request &= ~NETIF_F_TSO6;
2986 
2987 	if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2988 		request &= ~NETIF_F_LRO;
2989 
2990 	/*Disable LRO if RXCSUM is off */
2991 	if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2992 	    (lio->dev_capability & NETIF_F_LRO))
2993 		request &= ~NETIF_F_LRO;
2994 
2995 	return request;
2996 }
2997 
2998 /** \brief Net device set features
2999  * @param netdev  pointer to network device
3000  * @param features features to enable/disable
3001  */
3002 static int liquidio_set_features(struct net_device *netdev,
3003 				 netdev_features_t features)
3004 {
3005 	struct lio *lio = netdev_priv(netdev);
3006 
3007 	if (!((netdev->features ^ features) & NETIF_F_LRO))
3008 		return 0;
3009 
3010 	if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3011 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3012 	else if (!(features & NETIF_F_LRO) &&
3013 		 (lio->dev_capability & NETIF_F_LRO))
3014 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE);
3015 
3016 	return 0;
3017 }
3018 
3019 static struct net_device_ops lionetdevops = {
3020 	.ndo_open		= liquidio_open,
3021 	.ndo_stop		= liquidio_stop,
3022 	.ndo_start_xmit		= liquidio_xmit,
3023 	.ndo_get_stats		= liquidio_get_stats,
3024 	.ndo_set_mac_address	= liquidio_set_mac,
3025 	.ndo_set_rx_mode	= liquidio_set_mcast_list,
3026 	.ndo_tx_timeout		= liquidio_tx_timeout,
3027 	.ndo_change_mtu		= liquidio_change_mtu,
3028 	.ndo_do_ioctl		= liquidio_ioctl,
3029 	.ndo_fix_features	= liquidio_fix_features,
3030 	.ndo_set_features	= liquidio_set_features,
3031 };
3032 
3033 /** \brief Entry point for the liquidio module
3034  */
3035 static int __init liquidio_init(void)
3036 {
3037 	int i;
3038 	struct handshake *hs;
3039 
3040 	init_completion(&first_stage);
3041 
3042 	octeon_init_device_list(conf_type);
3043 
3044 	if (liquidio_init_pci())
3045 		return -EINVAL;
3046 
3047 	wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3048 
3049 	for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3050 		hs = &handshake[i];
3051 		if (hs->pci_dev) {
3052 			wait_for_completion(&hs->init);
3053 			if (!hs->init_ok) {
3054 				/* init handshake failed */
3055 				dev_err(&hs->pci_dev->dev,
3056 					"Failed to init device\n");
3057 				liquidio_deinit_pci();
3058 				return -EIO;
3059 			}
3060 		}
3061 	}
3062 
3063 	for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3064 		hs = &handshake[i];
3065 		if (hs->pci_dev) {
3066 			wait_for_completion_timeout(&hs->started,
3067 						    msecs_to_jiffies(30000));
3068 			if (!hs->started_ok) {
3069 				/* starter handshake failed */
3070 				dev_err(&hs->pci_dev->dev,
3071 					"Firmware failed to start\n");
3072 				liquidio_deinit_pci();
3073 				return -EIO;
3074 			}
3075 		}
3076 	}
3077 
3078 	return 0;
3079 }
3080 
3081 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3082 {
3083 	struct octeon_device *oct = (struct octeon_device *)buf;
3084 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3085 	int ifidx = 0;
3086 	union oct_link_status *ls;
3087 	int i;
3088 
3089 	if ((recv_pkt->buffer_size[0] != sizeof(*ls)) ||
3090 	    (recv_pkt->rh.r_nic_info.ifidx > oct->ifcount)) {
3091 		dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3092 			recv_pkt->buffer_size[0],
3093 			recv_pkt->rh.r_nic_info.ifidx);
3094 		goto nic_info_err;
3095 	}
3096 
3097 	ifidx = recv_pkt->rh.r_nic_info.ifidx;
3098 	ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3099 
3100 	octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3101 
3102 	update_link_status(oct->props[ifidx].netdev, ls);
3103 
3104 nic_info_err:
3105 	for (i = 0; i < recv_pkt->buffer_count; i++)
3106 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
3107 	octeon_free_recv_info(recv_info);
3108 	return 0;
3109 }
3110 
3111 /**
3112  * \brief Setup network interfaces
3113  * @param octeon_dev  octeon device
3114  *
3115  * Called during init time for each device. It assumes the NIC
3116  * is already up and running.  The link information for each
3117  * interface is passed in link_info.
3118  */
3119 static int setup_nic_devices(struct octeon_device *octeon_dev)
3120 {
3121 	struct lio *lio = NULL;
3122 	struct net_device *netdev;
3123 	u8 mac[6], i, j;
3124 	struct octeon_soft_command *sc;
3125 	struct liquidio_if_cfg_context *ctx;
3126 	struct liquidio_if_cfg_resp *resp;
3127 	struct octdev_props *props;
3128 	int retval, num_iqueues, num_oqueues, q_no;
3129 	u64 q_mask;
3130 	int num_cpus = num_online_cpus();
3131 	union oct_nic_if_cfg if_cfg;
3132 	unsigned int base_queue;
3133 	unsigned int gmx_port_id;
3134 	u32 resp_size, ctx_size;
3135 
3136 	/* This is to handle link status changes */
3137 	octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3138 				    OPCODE_NIC_INFO,
3139 				    lio_nic_info, octeon_dev);
3140 
3141 	/* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3142 	 * They are handled directly.
3143 	 */
3144 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3145 					free_netbuf);
3146 
3147 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3148 					free_netsgbuf);
3149 
3150 	octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3151 					free_netsgbuf_with_resp);
3152 
3153 	for (i = 0; i < octeon_dev->ifcount; i++) {
3154 		resp_size = sizeof(struct liquidio_if_cfg_resp);
3155 		ctx_size = sizeof(struct liquidio_if_cfg_context);
3156 		sc = (struct octeon_soft_command *)
3157 			octeon_alloc_soft_command(octeon_dev, 0,
3158 						  resp_size, ctx_size);
3159 		resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3160 		ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3161 
3162 		num_iqueues =
3163 			CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3164 		num_oqueues =
3165 			CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3166 		base_queue =
3167 			CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3168 		gmx_port_id =
3169 			CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3170 		if (num_iqueues > num_cpus)
3171 			num_iqueues = num_cpus;
3172 		if (num_oqueues > num_cpus)
3173 			num_oqueues = num_cpus;
3174 		dev_dbg(&octeon_dev->pci_dev->dev,
3175 			"requesting config for interface %d, iqs %d, oqs %d\n",
3176 			i, num_iqueues, num_oqueues);
3177 		ACCESS_ONCE(ctx->cond) = 0;
3178 		ctx->octeon_id = lio_get_device_id(octeon_dev);
3179 		init_waitqueue_head(&ctx->wc);
3180 
3181 		if_cfg.u64 = 0;
3182 		if_cfg.s.num_iqueues = num_iqueues;
3183 		if_cfg.s.num_oqueues = num_oqueues;
3184 		if_cfg.s.base_queue = base_queue;
3185 		if_cfg.s.gmx_port_id = gmx_port_id;
3186 		octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3187 					    OPCODE_NIC_IF_CFG, i,
3188 					    if_cfg.u64, 0);
3189 
3190 		sc->callback = if_cfg_callback;
3191 		sc->callback_arg = sc;
3192 		sc->wait_time = 1000;
3193 
3194 		retval = octeon_send_soft_command(octeon_dev, sc);
3195 		if (retval) {
3196 			dev_err(&octeon_dev->pci_dev->dev,
3197 				"iq/oq config failed status: %x\n",
3198 				retval);
3199 			/* Soft instr is freed by driver in case of failure. */
3200 			goto setup_nic_dev_fail;
3201 		}
3202 
3203 		/* Sleep on a wait queue till the cond flag indicates that the
3204 		 * response arrived or timed-out.
3205 		 */
3206 		sleep_cond(&ctx->wc, &ctx->cond);
3207 		retval = resp->status;
3208 		if (retval) {
3209 			dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3210 			goto setup_nic_dev_fail;
3211 		}
3212 
3213 		octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3214 				    (sizeof(struct liquidio_if_cfg_info)) >> 3);
3215 
3216 		num_iqueues = hweight64(resp->cfg_info.iqmask);
3217 		num_oqueues = hweight64(resp->cfg_info.oqmask);
3218 
3219 		if (!(num_iqueues) || !(num_oqueues)) {
3220 			dev_err(&octeon_dev->pci_dev->dev,
3221 				"Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3222 				resp->cfg_info.iqmask,
3223 				resp->cfg_info.oqmask);
3224 			goto setup_nic_dev_fail;
3225 		}
3226 		dev_dbg(&octeon_dev->pci_dev->dev,
3227 			"interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3228 			i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3229 			num_iqueues, num_oqueues);
3230 		netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3231 
3232 		if (!netdev) {
3233 			dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3234 			goto setup_nic_dev_fail;
3235 		}
3236 
3237 		props = &octeon_dev->props[i];
3238 		props->netdev = netdev;
3239 
3240 		if (num_iqueues > 1)
3241 			lionetdevops.ndo_select_queue = select_q;
3242 
3243 		/* Associate the routines that will handle different
3244 		 * netdev tasks.
3245 		 */
3246 		netdev->netdev_ops = &lionetdevops;
3247 
3248 		lio = GET_LIO(netdev);
3249 
3250 		memset(lio, 0, sizeof(struct lio));
3251 
3252 		lio->linfo.ifidx = resp->cfg_info.ifidx;
3253 		lio->ifidx = resp->cfg_info.ifidx;
3254 
3255 		lio->linfo.num_rxpciq = num_oqueues;
3256 		lio->linfo.num_txpciq = num_iqueues;
3257 		q_mask = resp->cfg_info.oqmask;
3258 		/* q_mask is 0-based and already verified mask is nonzero */
3259 		for (j = 0; j < num_oqueues; j++) {
3260 			q_no = __ffs64(q_mask);
3261 			q_mask &= (~(1UL << q_no));
3262 			lio->linfo.rxpciq[j] = q_no;
3263 		}
3264 		q_mask = resp->cfg_info.iqmask;
3265 		for (j = 0; j < num_iqueues; j++) {
3266 			q_no = __ffs64(q_mask);
3267 			q_mask &= (~(1UL << q_no));
3268 			lio->linfo.txpciq[j] = q_no;
3269 		}
3270 		lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3271 		lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3272 		lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3273 
3274 		lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3275 
3276 		lio->dev_capability = NETIF_F_HIGHDMA
3277 				      | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3278 				      | NETIF_F_SG | NETIF_F_RXCSUM
3279 				      | NETIF_F_TSO | NETIF_F_TSO6
3280 				      | NETIF_F_LRO;
3281 		netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3282 
3283 		netdev->features = lio->dev_capability;
3284 		netdev->vlan_features = lio->dev_capability;
3285 
3286 		netdev->hw_features = lio->dev_capability;
3287 
3288 		/* Point to the  properties for octeon device to which this
3289 		 * interface belongs.
3290 		 */
3291 		lio->oct_dev = octeon_dev;
3292 		lio->octprops = props;
3293 		lio->netdev = netdev;
3294 		spin_lock_init(&lio->lock);
3295 
3296 		dev_dbg(&octeon_dev->pci_dev->dev,
3297 			"if%d gmx: %d hw_addr: 0x%llx\n", i,
3298 			lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3299 
3300 		/* 64-bit swap required on LE machines */
3301 		octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3302 		for (j = 0; j < 6; j++)
3303 			mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3304 
3305 		/* Copy MAC Address to OS network device structure */
3306 
3307 		ether_addr_copy(netdev->dev_addr, mac);
3308 
3309 		if (setup_io_queues(octeon_dev, netdev)) {
3310 			dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3311 			goto setup_nic_dev_fail;
3312 		}
3313 
3314 		ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3315 
3316 		/* By default all interfaces on a single Octeon uses the same
3317 		 * tx and rx queues
3318 		 */
3319 		lio->txq = lio->linfo.txpciq[0];
3320 		lio->rxq = lio->linfo.rxpciq[0];
3321 
3322 		lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3323 		lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3324 
3325 		if (setup_glist(lio)) {
3326 			dev_err(&octeon_dev->pci_dev->dev,
3327 				"Gather list allocation failed\n");
3328 			goto setup_nic_dev_fail;
3329 		}
3330 
3331 		/* Register ethtool support */
3332 		liquidio_set_ethtool_ops(netdev);
3333 
3334 		liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3335 
3336 		if ((debug != -1) && (debug & NETIF_MSG_HW))
3337 			liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE);
3338 
3339 		/* Register the network device with the OS */
3340 		if (register_netdev(netdev)) {
3341 			dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3342 			goto setup_nic_dev_fail;
3343 		}
3344 
3345 		dev_dbg(&octeon_dev->pci_dev->dev,
3346 			"Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3347 			i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3348 		netif_carrier_off(netdev);
3349 
3350 		if (lio->linfo.link.s.status) {
3351 			netif_carrier_on(netdev);
3352 			start_txq(netdev);
3353 		} else {
3354 			netif_carrier_off(netdev);
3355 		}
3356 
3357 		ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3358 
3359 		dev_dbg(&octeon_dev->pci_dev->dev,
3360 			"NIC ifidx:%d Setup successful\n", i);
3361 
3362 		octeon_free_soft_command(octeon_dev, sc);
3363 	}
3364 
3365 	return 0;
3366 
3367 setup_nic_dev_fail:
3368 
3369 	octeon_free_soft_command(octeon_dev, sc);
3370 
3371 	while (i--) {
3372 		dev_err(&octeon_dev->pci_dev->dev,
3373 			"NIC ifidx:%d Setup failed\n", i);
3374 		liquidio_destroy_nic_device(octeon_dev, i);
3375 	}
3376 	return -ENODEV;
3377 }
3378 
3379 /**
3380  * \brief initialize the NIC
3381  * @param oct octeon device
3382  *
3383  * This initialization routine is called once the Octeon device application is
3384  * up and running
3385  */
3386 static int liquidio_init_nic_module(struct octeon_device *oct)
3387 {
3388 	struct oct_intrmod_cfg *intrmod_cfg;
3389 	int retval = 0;
3390 	int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3391 
3392 	dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3393 
3394 	/* only default iq and oq were initialized
3395 	 * initialize the rest as well
3396 	 */
3397 	/* run port_config command for each port */
3398 	oct->ifcount = num_nic_ports;
3399 
3400 	memset(oct->props, 0,
3401 	       sizeof(struct octdev_props) * num_nic_ports);
3402 
3403 	retval = setup_nic_devices(oct);
3404 	if (retval) {
3405 		dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3406 		goto octnet_init_failure;
3407 	}
3408 
3409 	liquidio_ptp_init(oct);
3410 
3411 	/* Initialize interrupt moderation params */
3412 	intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3413 	intrmod_cfg->intrmod_enable = 1;
3414 	intrmod_cfg->intrmod_check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3415 	intrmod_cfg->intrmod_maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3416 	intrmod_cfg->intrmod_minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3417 	intrmod_cfg->intrmod_maxcnt_trigger = LIO_INTRMOD_MAXCNT_TRIGGER;
3418 	intrmod_cfg->intrmod_maxtmr_trigger = LIO_INTRMOD_MAXTMR_TRIGGER;
3419 	intrmod_cfg->intrmod_mintmr_trigger = LIO_INTRMOD_MINTMR_TRIGGER;
3420 	intrmod_cfg->intrmod_mincnt_trigger = LIO_INTRMOD_MINCNT_TRIGGER;
3421 
3422 	dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3423 
3424 	return retval;
3425 
3426 octnet_init_failure:
3427 
3428 	oct->ifcount = 0;
3429 
3430 	return retval;
3431 }
3432 
3433 /**
3434  * \brief starter callback that invokes the remaining initialization work after
3435  * the NIC is up and running.
3436  * @param octptr  work struct work_struct
3437  */
3438 static void nic_starter(struct work_struct *work)
3439 {
3440 	struct octeon_device *oct;
3441 	struct cavium_wk *wk = (struct cavium_wk *)work;
3442 
3443 	oct = (struct octeon_device *)wk->ctxptr;
3444 
3445 	if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3446 		return;
3447 
3448 	/* If the status of the device is CORE_OK, the core
3449 	 * application has reported its application type. Call
3450 	 * any registered handlers now and move to the RUNNING
3451 	 * state.
3452 	 */
3453 	if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3454 		schedule_delayed_work(&oct->nic_poll_work.work,
3455 				      LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3456 		return;
3457 	}
3458 
3459 	atomic_set(&oct->status, OCT_DEV_RUNNING);
3460 
3461 	if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3462 		dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3463 
3464 		if (liquidio_init_nic_module(oct))
3465 			dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3466 		else
3467 			handshake[oct->octeon_id].started_ok = 1;
3468 	} else {
3469 		dev_err(&oct->pci_dev->dev,
3470 			"Unexpected application running on NIC (%d). Check firmware.\n",
3471 			oct->app_mode);
3472 	}
3473 
3474 	complete(&handshake[oct->octeon_id].started);
3475 }
3476 
3477 /**
3478  * \brief Device initialization for each Octeon device that is probed
3479  * @param octeon_dev  octeon device
3480  */
3481 static int octeon_device_init(struct octeon_device *octeon_dev)
3482 {
3483 	int j, ret;
3484 	struct octeon_device_priv *oct_priv =
3485 		(struct octeon_device_priv *)octeon_dev->priv;
3486 	atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3487 
3488 	/* Enable access to the octeon device and make its DMA capability
3489 	 * known to the OS.
3490 	 */
3491 	if (octeon_pci_os_setup(octeon_dev))
3492 		return 1;
3493 
3494 	/* Identify the Octeon type and map the BAR address space. */
3495 	if (octeon_chip_specific_setup(octeon_dev)) {
3496 		dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3497 		return 1;
3498 	}
3499 
3500 	atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3501 
3502 	octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3503 
3504 	/* Do a soft reset of the Octeon device. */
3505 	if (octeon_dev->fn_list.soft_reset(octeon_dev))
3506 		return 1;
3507 
3508 	/* Initialize the dispatch mechanism used to push packets arriving on
3509 	 * Octeon Output queues.
3510 	 */
3511 	if (octeon_init_dispatch_list(octeon_dev))
3512 		return 1;
3513 
3514 	octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3515 				    OPCODE_NIC_CORE_DRV_ACTIVE,
3516 				    octeon_core_drv_init,
3517 				    octeon_dev);
3518 
3519 	INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3520 	octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3521 	schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3522 			      LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3523 
3524 	atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3525 
3526 	octeon_set_io_queues_off(octeon_dev);
3527 
3528 	/*  Setup the data structures that manage this Octeon's Input queues. */
3529 	if (octeon_setup_instr_queues(octeon_dev)) {
3530 		dev_err(&octeon_dev->pci_dev->dev,
3531 			"instruction queue initialization failed\n");
3532 		/* On error, release any previously allocated queues */
3533 		for (j = 0; j < octeon_dev->num_iqs; j++)
3534 			octeon_delete_instr_queue(octeon_dev, j);
3535 		return 1;
3536 	}
3537 	atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3538 
3539 	/* Initialize soft command buffer pool
3540 	 */
3541 	if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3542 		dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3543 		return 1;
3544 	}
3545 	atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3546 
3547 	/* Initialize lists to manage the requests of different types that
3548 	 * arrive from user & kernel applications for this octeon device.
3549 	 */
3550 	if (octeon_setup_response_list(octeon_dev)) {
3551 		dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3552 		return 1;
3553 	}
3554 	atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3555 
3556 	if (octeon_setup_output_queues(octeon_dev)) {
3557 		dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3558 		/* Release any previously allocated queues */
3559 		for (j = 0; j < octeon_dev->num_oqs; j++)
3560 			octeon_delete_droq(octeon_dev, j);
3561 	}
3562 
3563 	atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3564 
3565 	/* The input and output queue registers were setup earlier (the queues
3566 	 * were not enabled). Any additional registers that need to be
3567 	 * programmed should be done now.
3568 	 */
3569 	ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3570 	if (ret) {
3571 		dev_err(&octeon_dev->pci_dev->dev,
3572 			"Failed to configure device registers\n");
3573 		return ret;
3574 	}
3575 
3576 	/* Initialize the tasklet that handles output queue packet processing.*/
3577 	dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3578 	tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3579 		     (unsigned long)octeon_dev);
3580 
3581 	/* Setup the interrupt handler and record the INT SUM register address
3582 	 */
3583 	octeon_setup_interrupt(octeon_dev);
3584 
3585 	/* Enable Octeon device interrupts */
3586 	octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3587 
3588 	/* Enable the input and output queues for this Octeon device */
3589 	octeon_dev->fn_list.enable_io_queues(octeon_dev);
3590 
3591 	atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3592 
3593 	dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3594 
3595 	if (ddr_timeout == 0) {
3596 		dev_info(&octeon_dev->pci_dev->dev,
3597 			 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3598 	}
3599 
3600 	schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
3601 
3602 	/* Wait for the octeon to initialize DDR after the soft-reset. */
3603 	ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
3604 	if (ret) {
3605 		dev_err(&octeon_dev->pci_dev->dev,
3606 			"DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
3607 			ret);
3608 		return 1;
3609 	}
3610 
3611 	if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
3612 		dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
3613 		return 1;
3614 	}
3615 
3616 	dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
3617 	ret = octeon_init_consoles(octeon_dev);
3618 	if (ret) {
3619 		dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
3620 		return 1;
3621 	}
3622 	ret = octeon_add_console(octeon_dev, 0);
3623 	if (ret) {
3624 		dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
3625 		return 1;
3626 	}
3627 
3628 	atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
3629 
3630 	dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
3631 	ret = load_firmware(octeon_dev);
3632 	if (ret) {
3633 		dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
3634 		return 1;
3635 	}
3636 
3637 	handshake[octeon_dev->octeon_id].init_ok = 1;
3638 	complete(&handshake[octeon_dev->octeon_id].init);
3639 
3640 	atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
3641 
3642 	/* Send Credit for Octeon Output queues. Credits are always sent after
3643 	 * the output queue is enabled.
3644 	 */
3645 	for (j = 0; j < octeon_dev->num_oqs; j++)
3646 		writel(octeon_dev->droq[j]->max_count,
3647 		       octeon_dev->droq[j]->pkts_credit_reg);
3648 
3649 	/* Packets can start arriving on the output queues from this point. */
3650 
3651 	return 0;
3652 }
3653 
3654 /**
3655  * \brief Exits the module
3656  */
3657 static void __exit liquidio_exit(void)
3658 {
3659 	liquidio_deinit_pci();
3660 
3661 	pr_info("LiquidIO network module is now unloaded\n");
3662 }
3663 
3664 module_init(liquidio_init);
3665 module_exit(liquidio_exit);
3666