1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include "liquidio_common.h"
21 #include "octeon_droq.h"
22 #include "octeon_iq.h"
23 #include "response_manager.h"
24 #include "octeon_device.h"
25 #include "octeon_main.h"
26 #include "cn66xx_regs.h"
27 #include "cn66xx_device.h"
28 
29 int lio_cn6xxx_soft_reset(struct octeon_device *oct)
30 {
31 	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
32 
33 	dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
34 
35 	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
36 	octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
37 
38 	lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
39 	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
40 
41 	/* make sure that the reset is written before starting timer */
42 	mmiowb();
43 
44 	/* Wait for 10ms as Octeon resets. */
45 	mdelay(100);
46 
47 	if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1) == 0x1234ULL) {
48 		dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
49 		return 1;
50 	}
51 
52 	dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
53 	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
54 
55 	return 0;
56 }
57 
58 void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
59 {
60 	u32 val;
61 
62 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
63 	if (val & 0x000c0000) {
64 		dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
65 			val & 0x000c0000);
66 	}
67 
68 	val |= 0xf;          /* Enable Link error reporting */
69 
70 	dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
71 	pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
72 }
73 
74 void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
75 			       enum octeon_pcie_mps mps)
76 {
77 	u32 val;
78 	u64 r64;
79 
80 	/* Read config register for MPS */
81 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
82 
83 	if (mps == PCIE_MPS_DEFAULT) {
84 		mps = ((val & (0x7 << 5)) >> 5);
85 	} else {
86 		val &= ~(0x7 << 5);  /* Turn off any MPS bits */
87 		val |= (mps << 5);   /* Set MPS */
88 		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
89 	}
90 
91 	/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
92 	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
93 	r64 |= (mps << 4);
94 	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
95 }
96 
97 void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
98 				enum octeon_pcie_mrrs mrrs)
99 {
100 	u32 val;
101 	u64 r64;
102 
103 	/* Read config register for MRRS */
104 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
105 
106 	if (mrrs == PCIE_MRRS_DEFAULT) {
107 		mrrs = ((val & (0x7 << 12)) >> 12);
108 	} else {
109 		val &= ~(0x7 << 12); /* Turn off any MRRS bits */
110 		val |= (mrrs << 12); /* Set MRRS */
111 		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
112 	}
113 
114 	/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
115 	r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
116 	r64 |= mrrs;
117 	octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
118 
119 	/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
120 	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
121 	r64 |= mrrs;
122 	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
123 }
124 
125 u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
126 {
127 	/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
128 	 * for SLI.
129 	 */
130 	return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
131 }
132 
133 u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
134 			    u32 time_intr_in_us)
135 {
136 	/* This gives the SLI clock per microsec */
137 	u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
138 
139 	/* core clock per us / oq ticks will be fractional. TO avoid that
140 	 * we use the method below.
141 	 */
142 
143 	/* This gives the clock cycles per millisecond */
144 	oqticks_per_us *= 1000;
145 
146 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
147 	oqticks_per_us /= 1024;
148 
149 	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
150 	 * corressponding to time_intr.
151 	 */
152 	oqticks_per_us *= time_intr_in_us;
153 	oqticks_per_us /= 1000;
154 
155 	return oqticks_per_us;
156 }
157 
158 void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
159 {
160 	/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
161 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
162 			 CN6XXX_INPUT_CTL_MASK);
163 
164 	/* Instruction Read Size - Max 4 instructions per PCIE Read */
165 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
166 			   0xFFFFFFFFFFFFFFFFULL);
167 
168 	/* Select PCIE Port for all Input rings. */
169 	octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
170 			   (oct->pcie_port * 0x5555555555555555ULL));
171 }
172 
173 static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
174 {
175 	u64 pktctl;
176 
177 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
178 
179 	pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
180 
181 	/* 66XX SPECIFIC */
182 	if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
183 		/* Disable RING_EN if only upto 4 rings are used. */
184 		pktctl &= ~(1 << 4);
185 	else
186 		pktctl |= (1 << 4);
187 
188 	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
189 		pktctl |= 0xF;
190 	else
191 		/* Disable per-port backpressure. */
192 		pktctl &= ~0xF;
193 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
194 }
195 
196 void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
197 {
198 	u32 time_threshold;
199 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
200 
201 	/* / Select PCI-E Port for all Output queues */
202 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
203 			   (oct->pcie_port * 0x5555555555555555ULL));
204 
205 	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
206 		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
207 	} else {
208 		/* / Set Output queue watermark to 0 to disable backpressure */
209 		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
210 	}
211 
212 	/* / Select Info Ptr for length & data */
213 	octeon_write_csr(oct, CN6XXX_SLI_PKT_IPTR, 0xFFFFFFFF);
214 
215 	/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
216 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
217 
218 	/* Select ES, RO, NS setting from register for Output Queue Packet
219 	 * Address
220 	 */
221 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
222 
223 	/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
224 	 * Queue ScatterList
225 	 */
226 	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
227 	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
228 
229 	/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
230 #ifdef __BIG_ENDIAN_BITFIELD
231 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
232 			   0x5555555555555555ULL);
233 #else
234 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
235 #endif
236 
237 	/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
238 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
239 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
240 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
241 			   0x5555555555555555ULL);
242 
243 	/* / Set up interrupt packet and time threshold */
244 	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
245 			 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
246 	time_threshold =
247 		lio_cn6xxx_get_oq_ticks(oct, (u32)
248 					CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
249 
250 	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
251 }
252 
253 static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
254 {
255 	lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
256 	lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
257 	lio_cn6xxx_enable_error_reporting(oct);
258 
259 	lio_cn6xxx_setup_global_input_regs(oct);
260 	lio_cn66xx_setup_pkt_ctl_regs(oct);
261 	lio_cn6xxx_setup_global_output_regs(oct);
262 
263 	/* Default error timeout value should be 0x200000 to avoid host hang
264 	 * when reads invalid register
265 	 */
266 	octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
267 	return 0;
268 }
269 
270 void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
271 {
272 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
273 
274 	octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
275 
276 	/* Write the start of the input queue's ring and its size  */
277 	octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
278 			   iq->base_addr_dma);
279 	octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
280 
281 	/* Remember the doorbell & instruction count register addr for this
282 	 * queue
283 	 */
284 	iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
285 	iq->inst_cnt_reg = oct->mmio[0].hw_addr
286 			   + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
287 	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
288 		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
289 
290 	/* Store the current instruction counter
291 	 * (used in flush_iq calculation)
292 	 */
293 	iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
294 }
295 
296 static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
297 {
298 	lio_cn6xxx_setup_iq_regs(oct, iq_no);
299 
300 	/* Backpressure for this queue - WMARK set to all F's. This effectively
301 	 * disables the backpressure mechanism.
302 	 */
303 	octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
304 			   (0xFFFFFFFFULL << 32));
305 }
306 
307 void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
308 {
309 	u32 intr;
310 	struct octeon_droq *droq = oct->droq[oq_no];
311 
312 	octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
313 			   droq->desc_ring_dma);
314 	octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
315 
316 	octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
317 			 (droq->buffer_size | (OCT_RH_SIZE << 16)));
318 
319 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
320 	droq->pkts_sent_reg =
321 		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
322 	droq->pkts_credit_reg =
323 		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
324 
325 	/* Enable this output queue to generate Packet Timer Interrupt */
326 	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
327 	intr |= (1 << oq_no);
328 	octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
329 
330 	/* Enable this output queue to generate Packet Timer Interrupt */
331 	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
332 	intr |= (1 << oq_no);
333 	octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
334 }
335 
336 int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
337 {
338 	u32 mask;
339 
340 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
341 	mask |= oct->io_qmask.iq64B;
342 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
343 
344 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
345 	mask |= oct->io_qmask.iq;
346 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
347 
348 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
349 	mask |= oct->io_qmask.oq;
350 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
351 
352 	return 0;
353 }
354 
355 void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
356 {
357 	int i;
358 	u32 mask, loop = HZ;
359 	u32 d32;
360 
361 	/* Reset the Enable bits for Input Queues. */
362 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
363 	mask ^= oct->io_qmask.iq;
364 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
365 
366 	/* Wait until hardware indicates that the queues are out of reset. */
367 	mask = (u32)oct->io_qmask.iq;
368 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
369 	while (((d32 & mask) != mask) && loop--) {
370 		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
371 		schedule_timeout_uninterruptible(1);
372 	}
373 
374 	/* Reset the doorbell register for each Input queue. */
375 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
376 		if (!(oct->io_qmask.iq & BIT_ULL(i)))
377 			continue;
378 		octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
379 		d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
380 	}
381 
382 	/* Reset the Enable bits for Output Queues. */
383 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
384 	mask ^= oct->io_qmask.oq;
385 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
386 
387 	/* Wait until hardware indicates that the queues are out of reset. */
388 	loop = HZ;
389 	mask = (u32)oct->io_qmask.oq;
390 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
391 	while (((d32 & mask) != mask) && loop--) {
392 		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
393 		schedule_timeout_uninterruptible(1);
394 	}
395 	;
396 
397 	/* Reset the doorbell register for each Output queue. */
398 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
399 		if (!(oct->io_qmask.oq & BIT_ULL(i)))
400 			continue;
401 		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
402 		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
403 
404 		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
405 		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
406 	}
407 
408 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
409 	if (d32)
410 		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
411 
412 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
413 	if (d32)
414 		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
415 }
416 
417 void
418 lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
419 			  u64 core_addr,
420 			  u32 idx,
421 			  int valid)
422 {
423 	u64 bar1;
424 
425 	if (valid == 0) {
426 		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
427 		lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
428 			       CN6XXX_BAR1_REG(idx, oct->pcie_port));
429 		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
430 		return;
431 	}
432 
433 	/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
434 	 * the Core Addr
435 	 */
436 	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
437 		       CN6XXX_BAR1_REG(idx, oct->pcie_port));
438 
439 	bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
440 }
441 
442 void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
443 			       u32 idx,
444 			       u32 mask)
445 {
446 	lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
447 }
448 
449 u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
450 {
451 	return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
452 }
453 
454 u32
455 lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
456 {
457 	u32 new_idx = readl(iq->inst_cnt_reg);
458 
459 	/* The new instr cnt reg is a 32-bit counter that can roll over. We have
460 	 * noted the counter's initial value at init time into
461 	 * reset_instr_cnt
462 	 */
463 	if (iq->reset_instr_cnt < new_idx)
464 		new_idx -= iq->reset_instr_cnt;
465 	else
466 		new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
467 
468 	/* Modulo of the new index with the IQ size will give us
469 	 * the new index.
470 	 */
471 	new_idx %= iq->max_count;
472 
473 	return new_idx;
474 }
475 
476 void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
477 				 u8 unused __attribute__((unused)))
478 {
479 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
480 	u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
481 
482 	/* Enable Interrupt */
483 	writeq(mask, cn6xxx->intr_enb_reg64);
484 }
485 
486 void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
487 				  u8 unused __attribute__((unused)))
488 {
489 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
490 
491 	/* Disable Interrupts */
492 	writeq(0, cn6xxx->intr_enb_reg64);
493 
494 	/* make sure interrupts are really disabled */
495 	mmiowb();
496 }
497 
498 static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
499 {
500 	/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
501 	 * to determine the PCIE port #
502 	 */
503 	oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
504 
505 	dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
506 }
507 
508 static void
509 lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
510 {
511 	dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
512 		CVM_CAST64(intr64));
513 }
514 
515 static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
516 {
517 	struct octeon_droq *droq;
518 	int oq_no;
519 	u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
520 	u32 droq_cnt_enb, droq_cnt_mask;
521 
522 	droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
523 	droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
524 	droq_mask = droq_cnt_mask & droq_cnt_enb;
525 
526 	droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
527 	droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
528 	droq_mask |= (droq_time_mask & droq_int_enb);
529 
530 	droq_mask &= oct->io_qmask.oq;
531 
532 	oct->droq_intr = 0;
533 
534 	for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
535 		if (!(droq_mask & BIT_ULL(oq_no)))
536 			continue;
537 
538 		droq = oct->droq[oq_no];
539 		pkt_count = octeon_droq_check_hw_for_pkts(droq);
540 		if (pkt_count) {
541 			oct->droq_intr |= BIT_ULL(oq_no);
542 			if (droq->ops.poll_mode) {
543 				u32 value;
544 				u32 reg;
545 
546 				struct octeon_cn6xxx *cn6xxx =
547 					(struct octeon_cn6xxx *)oct->chip;
548 
549 				/* disable interrupts for this droq */
550 				spin_lock
551 					(&cn6xxx->lock_for_droq_int_enb_reg);
552 				reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
553 				value = octeon_read_csr(oct, reg);
554 				value &= ~(1 << oq_no);
555 				octeon_write_csr(oct, reg, value);
556 				reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
557 				value = octeon_read_csr(oct, reg);
558 				value &= ~(1 << oq_no);
559 				octeon_write_csr(oct, reg, value);
560 
561 				/* Ensure that the enable register is written.
562 				 */
563 				mmiowb();
564 
565 				spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
566 			}
567 		}
568 	}
569 
570 	droq_time_mask &= oct->io_qmask.oq;
571 	droq_cnt_mask &= oct->io_qmask.oq;
572 
573 	/* Reset the PKT_CNT/TIME_INT registers. */
574 	if (droq_time_mask)
575 		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
576 
577 	if (droq_cnt_mask)      /* reset PKT_CNT register:66xx */
578 		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
579 
580 	return 0;
581 }
582 
583 irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
584 {
585 	struct octeon_device *oct = (struct octeon_device *)dev;
586 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
587 	u64 intr64;
588 
589 	intr64 = readq(cn6xxx->intr_sum_reg64);
590 
591 	/* If our device has interrupted, then proceed.
592 	 * Also check for all f's if interrupt was triggered on an error
593 	 * and the PCI read fails.
594 	 */
595 	if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
596 		return IRQ_NONE;
597 
598 	oct->int_status = 0;
599 
600 	if (intr64 & CN6XXX_INTR_ERR)
601 		lio_cn6xxx_process_pcie_error_intr(oct, intr64);
602 
603 	if (intr64 & CN6XXX_INTR_PKT_DATA) {
604 		lio_cn6xxx_process_droq_intr_regs(oct);
605 		oct->int_status |= OCT_DEV_INTR_PKT_DATA;
606 	}
607 
608 	if (intr64 & CN6XXX_INTR_DMA0_FORCE)
609 		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
610 
611 	if (intr64 & CN6XXX_INTR_DMA1_FORCE)
612 		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
613 
614 	/* Clear the current interrupts */
615 	writeq(intr64, cn6xxx->intr_sum_reg64);
616 
617 	return IRQ_HANDLED;
618 }
619 
620 void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
621 				  void *chip,
622 				  struct octeon_reg_list *reg_list)
623 {
624 	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
625 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
626 
627 	reg_list->pci_win_wr_addr_hi =
628 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
629 	reg_list->pci_win_wr_addr_lo =
630 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
631 	reg_list->pci_win_wr_addr =
632 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
633 
634 	reg_list->pci_win_rd_addr_hi =
635 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
636 	reg_list->pci_win_rd_addr_lo =
637 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
638 	reg_list->pci_win_rd_addr =
639 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
640 
641 	reg_list->pci_win_wr_data_hi =
642 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
643 	reg_list->pci_win_wr_data_lo =
644 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
645 	reg_list->pci_win_wr_data =
646 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
647 
648 	reg_list->pci_win_rd_data_hi =
649 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
650 	reg_list->pci_win_rd_data_lo =
651 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
652 	reg_list->pci_win_rd_data =
653 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
654 
655 	lio_cn6xxx_get_pcie_qlmport(oct);
656 
657 	cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
658 	cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
659 	cn6xxx->intr_enb_reg64 =
660 		bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
661 }
662 
663 int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
664 {
665 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
666 
667 	if (octeon_map_pci_barx(oct, 0, 0))
668 		return 1;
669 
670 	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
671 		dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
672 			__func__);
673 		octeon_unmap_pci_barx(oct, 0);
674 		return 1;
675 	}
676 
677 	spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
678 
679 	oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
680 	oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
681 
682 	oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
683 	oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
684 	oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
685 
686 	oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
687 	oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
688 	oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
689 
690 	oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
691 	oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
692 	oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
693 
694 	oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
695 	oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
696 
697 	lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
698 
699 	cn6xxx->conf = (struct octeon_config *)
700 		       oct_get_config_info(oct, LIO_210SV);
701 	if (!cn6xxx->conf) {
702 		dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
703 			__func__);
704 		octeon_unmap_pci_barx(oct, 0);
705 		octeon_unmap_pci_barx(oct, 1);
706 		return 1;
707 	}
708 
709 	oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
710 
711 	return 0;
712 }
713 
714 int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
715 				    struct octeon_config *conf6xxx)
716 {
717 	if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
718 		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
719 			__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
720 			CN6XXX_MAX_INPUT_QUEUES);
721 		return 1;
722 	}
723 
724 	if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
725 		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
726 			__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
727 			CN6XXX_MAX_OUTPUT_QUEUES);
728 		return 1;
729 	}
730 
731 	if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
732 	    CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
733 		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
734 			__func__);
735 		return 1;
736 	}
737 	if (!(CFG_GET_OQ_INFO_PTR(conf6xxx)) ||
738 	    !(CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx))) {
739 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
740 			__func__);
741 		return 1;
742 	}
743 
744 	if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
745 		dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
746 			__func__);
747 		return 1;
748 	}
749 
750 	return 0;
751 }
752