xref: /openbmc/linux/drivers/net/ethernet/cavium/liquidio/cn66xx_device.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include "liquidio_common.h"
21 #include "octeon_droq.h"
22 #include "octeon_iq.h"
23 #include "response_manager.h"
24 #include "octeon_device.h"
25 #include "octeon_main.h"
26 #include "cn66xx_regs.h"
27 #include "cn66xx_device.h"
28 
29 int lio_cn6xxx_soft_reset(struct octeon_device *oct)
30 {
31 	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
32 
33 	dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
34 
35 	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
36 	octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
37 
38 	lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
39 	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
40 
41 	/* make sure that the reset is written before starting timer */
42 	mmiowb();
43 
44 	/* Wait for 10ms as Octeon resets. */
45 	mdelay(100);
46 
47 	if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1)) {
48 		dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
49 		return 1;
50 	}
51 
52 	dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
53 	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
54 
55 	return 0;
56 }
57 
58 void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
59 {
60 	u32 val;
61 
62 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
63 	if (val & 0x000c0000) {
64 		dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
65 			val & 0x000c0000);
66 	}
67 
68 	val |= 0xf;          /* Enable Link error reporting */
69 
70 	dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
71 	pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
72 }
73 
74 void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
75 			       enum octeon_pcie_mps mps)
76 {
77 	u32 val;
78 	u64 r64;
79 
80 	/* Read config register for MPS */
81 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
82 
83 	if (mps == PCIE_MPS_DEFAULT) {
84 		mps = ((val & (0x7 << 5)) >> 5);
85 	} else {
86 		val &= ~(0x7 << 5);  /* Turn off any MPS bits */
87 		val |= (mps << 5);   /* Set MPS */
88 		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
89 	}
90 
91 	/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
92 	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
93 	r64 |= (mps << 4);
94 	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
95 }
96 
97 void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
98 				enum octeon_pcie_mrrs mrrs)
99 {
100 	u32 val;
101 	u64 r64;
102 
103 	/* Read config register for MRRS */
104 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
105 
106 	if (mrrs == PCIE_MRRS_DEFAULT) {
107 		mrrs = ((val & (0x7 << 12)) >> 12);
108 	} else {
109 		val &= ~(0x7 << 12); /* Turn off any MRRS bits */
110 		val |= (mrrs << 12); /* Set MRRS */
111 		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
112 	}
113 
114 	/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
115 	r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
116 	r64 |= mrrs;
117 	octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
118 
119 	/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
120 	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
121 	r64 |= mrrs;
122 	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
123 }
124 
125 u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
126 {
127 	/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
128 	 * for SLI.
129 	 */
130 	return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
131 }
132 
133 u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
134 			    u32 time_intr_in_us)
135 {
136 	/* This gives the SLI clock per microsec */
137 	u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
138 
139 	/* core clock per us / oq ticks will be fractional. TO avoid that
140 	 * we use the method below.
141 	 */
142 
143 	/* This gives the clock cycles per millisecond */
144 	oqticks_per_us *= 1000;
145 
146 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
147 	oqticks_per_us /= 1024;
148 
149 	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
150 	 * corressponding to time_intr.
151 	 */
152 	oqticks_per_us *= time_intr_in_us;
153 	oqticks_per_us /= 1000;
154 
155 	return oqticks_per_us;
156 }
157 
158 void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
159 {
160 	/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
161 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
162 			 CN6XXX_INPUT_CTL_MASK);
163 
164 	/* Instruction Read Size - Max 4 instructions per PCIE Read */
165 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
166 			   0xFFFFFFFFFFFFFFFFULL);
167 
168 	/* Select PCIE Port for all Input rings. */
169 	octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
170 			   (oct->pcie_port * 0x5555555555555555ULL));
171 }
172 
173 static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
174 {
175 	u64 pktctl;
176 
177 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
178 
179 	pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
180 
181 	/* 66XX SPECIFIC */
182 	if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
183 		/* Disable RING_EN if only upto 4 rings are used. */
184 		pktctl &= ~(1 << 4);
185 	else
186 		pktctl |= (1 << 4);
187 
188 	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
189 		pktctl |= 0xF;
190 	else
191 		/* Disable per-port backpressure. */
192 		pktctl &= ~0xF;
193 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
194 }
195 
196 void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
197 {
198 	u32 time_threshold;
199 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
200 
201 	/* / Select PCI-E Port for all Output queues */
202 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
203 			   (oct->pcie_port * 0x5555555555555555ULL));
204 
205 	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
206 		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
207 	} else {
208 		/* / Set Output queue watermark to 0 to disable backpressure */
209 		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
210 	}
211 
212 	/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
213 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
214 
215 	/* Select ES, RO, NS setting from register for Output Queue Packet
216 	 * Address
217 	 */
218 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
219 
220 	/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
221 	 * Queue ScatterList
222 	 */
223 	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
224 	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
225 
226 	/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
227 #ifdef __BIG_ENDIAN_BITFIELD
228 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
229 			   0x5555555555555555ULL);
230 #else
231 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
232 #endif
233 
234 	/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
235 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
236 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
237 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
238 			   0x5555555555555555ULL);
239 
240 	/* / Set up interrupt packet and time threshold */
241 	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
242 			 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
243 	time_threshold =
244 		lio_cn6xxx_get_oq_ticks(oct, (u32)
245 					CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
246 
247 	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
248 }
249 
250 static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
251 {
252 	lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
253 	lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
254 	lio_cn6xxx_enable_error_reporting(oct);
255 
256 	lio_cn6xxx_setup_global_input_regs(oct);
257 	lio_cn66xx_setup_pkt_ctl_regs(oct);
258 	lio_cn6xxx_setup_global_output_regs(oct);
259 
260 	/* Default error timeout value should be 0x200000 to avoid host hang
261 	 * when reads invalid register
262 	 */
263 	octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
264 	return 0;
265 }
266 
267 void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
268 {
269 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
270 
271 	octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
272 
273 	/* Write the start of the input queue's ring and its size  */
274 	octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
275 			   iq->base_addr_dma);
276 	octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
277 
278 	/* Remember the doorbell & instruction count register addr for this
279 	 * queue
280 	 */
281 	iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
282 	iq->inst_cnt_reg = oct->mmio[0].hw_addr
283 			   + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
284 	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
285 		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
286 
287 	/* Store the current instruction counter
288 	 * (used in flush_iq calculation)
289 	 */
290 	iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
291 }
292 
293 static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
294 {
295 	lio_cn6xxx_setup_iq_regs(oct, iq_no);
296 
297 	/* Backpressure for this queue - WMARK set to all F's. This effectively
298 	 * disables the backpressure mechanism.
299 	 */
300 	octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
301 			   (0xFFFFFFFFULL << 32));
302 }
303 
304 void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
305 {
306 	u32 intr;
307 	struct octeon_droq *droq = oct->droq[oq_no];
308 
309 	octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
310 			   droq->desc_ring_dma);
311 	octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
312 
313 	octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
314 			 droq->buffer_size);
315 
316 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
317 	droq->pkts_sent_reg =
318 		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
319 	droq->pkts_credit_reg =
320 		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
321 
322 	/* Enable this output queue to generate Packet Timer Interrupt */
323 	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
324 	intr |= (1 << oq_no);
325 	octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
326 
327 	/* Enable this output queue to generate Packet Timer Interrupt */
328 	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
329 	intr |= (1 << oq_no);
330 	octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
331 }
332 
333 int lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
334 {
335 	u32 mask;
336 
337 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
338 	mask |= oct->io_qmask.iq64B;
339 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
340 
341 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
342 	mask |= oct->io_qmask.iq;
343 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
344 
345 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
346 	mask |= oct->io_qmask.oq;
347 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
348 
349 	return 0;
350 }
351 
352 void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
353 {
354 	int i;
355 	u32 mask, loop = HZ;
356 	u32 d32;
357 
358 	/* Reset the Enable bits for Input Queues. */
359 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
360 	mask ^= oct->io_qmask.iq;
361 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
362 
363 	/* Wait until hardware indicates that the queues are out of reset. */
364 	mask = (u32)oct->io_qmask.iq;
365 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
366 	while (((d32 & mask) != mask) && loop--) {
367 		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
368 		schedule_timeout_uninterruptible(1);
369 	}
370 
371 	/* Reset the doorbell register for each Input queue. */
372 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
373 		if (!(oct->io_qmask.iq & BIT_ULL(i)))
374 			continue;
375 		octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
376 		d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
377 	}
378 
379 	/* Reset the Enable bits for Output Queues. */
380 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
381 	mask ^= oct->io_qmask.oq;
382 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
383 
384 	/* Wait until hardware indicates that the queues are out of reset. */
385 	loop = HZ;
386 	mask = (u32)oct->io_qmask.oq;
387 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
388 	while (((d32 & mask) != mask) && loop--) {
389 		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
390 		schedule_timeout_uninterruptible(1);
391 	}
392 	;
393 
394 	/* Reset the doorbell register for each Output queue. */
395 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
396 		if (!(oct->io_qmask.oq & BIT_ULL(i)))
397 			continue;
398 		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
399 		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
400 
401 		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
402 		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
403 	}
404 
405 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
406 	if (d32)
407 		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
408 
409 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
410 	if (d32)
411 		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
412 }
413 
414 void
415 lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
416 			  u64 core_addr,
417 			  u32 idx,
418 			  int valid)
419 {
420 	u64 bar1;
421 
422 	if (valid == 0) {
423 		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
424 		lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
425 			       CN6XXX_BAR1_REG(idx, oct->pcie_port));
426 		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
427 		return;
428 	}
429 
430 	/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
431 	 * the Core Addr
432 	 */
433 	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
434 		       CN6XXX_BAR1_REG(idx, oct->pcie_port));
435 
436 	bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
437 }
438 
439 void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
440 			       u32 idx,
441 			       u32 mask)
442 {
443 	lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
444 }
445 
446 u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
447 {
448 	return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
449 }
450 
451 u32
452 lio_cn6xxx_update_read_index(struct octeon_instr_queue *iq)
453 {
454 	u32 new_idx = readl(iq->inst_cnt_reg);
455 
456 	/* The new instr cnt reg is a 32-bit counter that can roll over. We have
457 	 * noted the counter's initial value at init time into
458 	 * reset_instr_cnt
459 	 */
460 	if (iq->reset_instr_cnt < new_idx)
461 		new_idx -= iq->reset_instr_cnt;
462 	else
463 		new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
464 
465 	/* Modulo of the new index with the IQ size will give us
466 	 * the new index.
467 	 */
468 	new_idx %= iq->max_count;
469 
470 	return new_idx;
471 }
472 
473 void lio_cn6xxx_enable_interrupt(struct octeon_device *oct,
474 				 u8 unused __attribute__((unused)))
475 {
476 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
477 	u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
478 
479 	/* Enable Interrupt */
480 	writeq(mask, cn6xxx->intr_enb_reg64);
481 }
482 
483 void lio_cn6xxx_disable_interrupt(struct octeon_device *oct,
484 				  u8 unused __attribute__((unused)))
485 {
486 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
487 
488 	/* Disable Interrupts */
489 	writeq(0, cn6xxx->intr_enb_reg64);
490 
491 	/* make sure interrupts are really disabled */
492 	mmiowb();
493 }
494 
495 static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
496 {
497 	/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
498 	 * to determine the PCIE port #
499 	 */
500 	oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
501 
502 	dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
503 }
504 
505 static void
506 lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
507 {
508 	dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
509 		CVM_CAST64(intr64));
510 }
511 
512 static int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
513 {
514 	struct octeon_droq *droq;
515 	int oq_no;
516 	u32 pkt_count, droq_time_mask, droq_mask, droq_int_enb;
517 	u32 droq_cnt_enb, droq_cnt_mask;
518 
519 	droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
520 	droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
521 	droq_mask = droq_cnt_mask & droq_cnt_enb;
522 
523 	droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
524 	droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
525 	droq_mask |= (droq_time_mask & droq_int_enb);
526 
527 	droq_mask &= oct->io_qmask.oq;
528 
529 	oct->droq_intr = 0;
530 
531 	for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES(oct); oq_no++) {
532 		if (!(droq_mask & BIT_ULL(oq_no)))
533 			continue;
534 
535 		droq = oct->droq[oq_no];
536 		pkt_count = octeon_droq_check_hw_for_pkts(droq);
537 		if (pkt_count) {
538 			oct->droq_intr |= BIT_ULL(oq_no);
539 			if (droq->ops.poll_mode) {
540 				u32 value;
541 				u32 reg;
542 
543 				struct octeon_cn6xxx *cn6xxx =
544 					(struct octeon_cn6xxx *)oct->chip;
545 
546 				/* disable interrupts for this droq */
547 				spin_lock
548 					(&cn6xxx->lock_for_droq_int_enb_reg);
549 				reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
550 				value = octeon_read_csr(oct, reg);
551 				value &= ~(1 << oq_no);
552 				octeon_write_csr(oct, reg, value);
553 				reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
554 				value = octeon_read_csr(oct, reg);
555 				value &= ~(1 << oq_no);
556 				octeon_write_csr(oct, reg, value);
557 
558 				/* Ensure that the enable register is written.
559 				 */
560 				mmiowb();
561 
562 				spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
563 			}
564 		}
565 	}
566 
567 	droq_time_mask &= oct->io_qmask.oq;
568 	droq_cnt_mask &= oct->io_qmask.oq;
569 
570 	/* Reset the PKT_CNT/TIME_INT registers. */
571 	if (droq_time_mask)
572 		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
573 
574 	if (droq_cnt_mask)      /* reset PKT_CNT register:66xx */
575 		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
576 
577 	return 0;
578 }
579 
580 irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
581 {
582 	struct octeon_device *oct = (struct octeon_device *)dev;
583 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
584 	u64 intr64;
585 
586 	intr64 = readq(cn6xxx->intr_sum_reg64);
587 
588 	/* If our device has interrupted, then proceed.
589 	 * Also check for all f's if interrupt was triggered on an error
590 	 * and the PCI read fails.
591 	 */
592 	if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
593 		return IRQ_NONE;
594 
595 	oct->int_status = 0;
596 
597 	if (intr64 & CN6XXX_INTR_ERR)
598 		lio_cn6xxx_process_pcie_error_intr(oct, intr64);
599 
600 	if (intr64 & CN6XXX_INTR_PKT_DATA) {
601 		lio_cn6xxx_process_droq_intr_regs(oct);
602 		oct->int_status |= OCT_DEV_INTR_PKT_DATA;
603 	}
604 
605 	if (intr64 & CN6XXX_INTR_DMA0_FORCE)
606 		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
607 
608 	if (intr64 & CN6XXX_INTR_DMA1_FORCE)
609 		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
610 
611 	/* Clear the current interrupts */
612 	writeq(intr64, cn6xxx->intr_sum_reg64);
613 
614 	return IRQ_HANDLED;
615 }
616 
617 void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
618 				  void *chip,
619 				  struct octeon_reg_list *reg_list)
620 {
621 	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
622 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
623 
624 	reg_list->pci_win_wr_addr_hi =
625 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
626 	reg_list->pci_win_wr_addr_lo =
627 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
628 	reg_list->pci_win_wr_addr =
629 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
630 
631 	reg_list->pci_win_rd_addr_hi =
632 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
633 	reg_list->pci_win_rd_addr_lo =
634 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
635 	reg_list->pci_win_rd_addr =
636 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
637 
638 	reg_list->pci_win_wr_data_hi =
639 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
640 	reg_list->pci_win_wr_data_lo =
641 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
642 	reg_list->pci_win_wr_data =
643 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
644 
645 	reg_list->pci_win_rd_data_hi =
646 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
647 	reg_list->pci_win_rd_data_lo =
648 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
649 	reg_list->pci_win_rd_data =
650 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
651 
652 	lio_cn6xxx_get_pcie_qlmport(oct);
653 
654 	cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
655 	cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
656 	cn6xxx->intr_enb_reg64 =
657 		bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
658 }
659 
660 int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
661 {
662 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
663 
664 	if (octeon_map_pci_barx(oct, 0, 0))
665 		return 1;
666 
667 	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
668 		dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
669 			__func__);
670 		octeon_unmap_pci_barx(oct, 0);
671 		return 1;
672 	}
673 
674 	spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
675 
676 	oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
677 	oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
678 
679 	oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
680 	oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
681 	oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
682 
683 	oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
684 	oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
685 	oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
686 
687 	oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
688 	oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
689 	oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
690 
691 	oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
692 	oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
693 
694 	lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
695 
696 	cn6xxx->conf = (struct octeon_config *)
697 		       oct_get_config_info(oct, LIO_210SV);
698 	if (!cn6xxx->conf) {
699 		dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
700 			__func__);
701 		octeon_unmap_pci_barx(oct, 0);
702 		octeon_unmap_pci_barx(oct, 1);
703 		return 1;
704 	}
705 
706 	oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
707 
708 	return 0;
709 }
710 
711 int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
712 				    struct octeon_config *conf6xxx)
713 {
714 	if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
715 		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
716 			__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
717 			CN6XXX_MAX_INPUT_QUEUES);
718 		return 1;
719 	}
720 
721 	if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
722 		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
723 			__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
724 			CN6XXX_MAX_OUTPUT_QUEUES);
725 		return 1;
726 	}
727 
728 	if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
729 	    CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
730 		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
731 			__func__);
732 		return 1;
733 	}
734 	if (!CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx)) {
735 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
736 			__func__);
737 		return 1;
738 	}
739 
740 	if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
741 		dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
742 			__func__);
743 		return 1;
744 	}
745 
746 	return 0;
747 }
748