xref: /openbmc/linux/drivers/net/ethernet/cavium/liquidio/cn23xx_vf_device.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include <linux/vmalloc.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "cn23xx_vf_device.h"
27 #include "octeon_main.h"
28 #include "octeon_mailbox.h"
29 
30 u32 cn23xx_vf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us)
31 {
32 	/* This gives the SLI clock per microsec */
33 	u32 oqticks_per_us = (u32)oct->pfvf_hsword.coproc_tics_per_us;
34 
35 	/* This gives the clock cycles per millisecond */
36 	oqticks_per_us *= 1000;
37 
38 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
39 	oqticks_per_us /= 1024;
40 
41 	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
42 	 * corressponding to time_intr.
43 	 */
44 	oqticks_per_us *= time_intr_in_us;
45 	oqticks_per_us /= 1000;
46 
47 	return oqticks_per_us;
48 }
49 
50 static int cn23xx_vf_reset_io_queues(struct octeon_device *oct, u32 num_queues)
51 {
52 	u32 loop = BUSY_READING_REG_VF_LOOP_COUNT;
53 	int ret_val = 0;
54 	u32 q_no;
55 	u64 d64;
56 
57 	for (q_no = 0; q_no < num_queues; q_no++) {
58 		/* set RST bit to 1. This bit applies to both IQ and OQ */
59 		d64 = octeon_read_csr64(oct,
60 					CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
61 		d64 |= CN23XX_PKT_INPUT_CTL_RST;
62 		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
63 				   d64);
64 	}
65 
66 	/* wait until the RST bit is clear or the RST and QUIET bits are set */
67 	for (q_no = 0; q_no < num_queues; q_no++) {
68 		u64 reg_val = octeon_read_csr64(oct,
69 					CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
70 		while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) &&
71 		       !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) &&
72 		       loop) {
73 			WRITE_ONCE(reg_val, octeon_read_csr64(
74 			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)));
75 			loop--;
76 		}
77 		if (!loop) {
78 			dev_err(&oct->pci_dev->dev,
79 				"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
80 				q_no);
81 			return -1;
82 		}
83 		WRITE_ONCE(reg_val, READ_ONCE(reg_val) &
84 			   ~CN23XX_PKT_INPUT_CTL_RST);
85 		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
86 				   READ_ONCE(reg_val));
87 
88 		WRITE_ONCE(reg_val, octeon_read_csr64(
89 		    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)));
90 		if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) {
91 			dev_err(&oct->pci_dev->dev,
92 				"clearing the reset failed for qno: %u\n",
93 				q_no);
94 			ret_val = -1;
95 		}
96 	}
97 
98 	return ret_val;
99 }
100 
101 static int cn23xx_vf_setup_global_input_regs(struct octeon_device *oct)
102 {
103 	struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip;
104 	struct octeon_instr_queue *iq;
105 	u64 q_no, intr_threshold;
106 	u64 d64;
107 
108 	if (cn23xx_vf_reset_io_queues(oct, oct->sriov_info.rings_per_vf))
109 		return -1;
110 
111 	for (q_no = 0; q_no < (oct->sriov_info.rings_per_vf); q_no++) {
112 		void __iomem *inst_cnt_reg;
113 
114 		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_DOORBELL(q_no),
115 				   0xFFFFFFFF);
116 		iq = oct->instr_queue[q_no];
117 
118 		if (iq)
119 			inst_cnt_reg = iq->inst_cnt_reg;
120 		else
121 			inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr +
122 				       CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no);
123 
124 		d64 = octeon_read_csr64(oct,
125 					CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no));
126 
127 		d64 &= 0xEFFFFFFFFFFFFFFFL;
128 
129 		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no),
130 				   d64);
131 
132 		/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
133 		 * the Input Queues
134 		 */
135 		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
136 				   CN23XX_PKT_INPUT_CTL_MASK);
137 
138 		/* set the wmark level to trigger PI_INT */
139 		intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) &
140 				 CN23XX_PKT_IN_DONE_WMARK_MASK;
141 
142 		writeq((readq(inst_cnt_reg) &
143 			~(CN23XX_PKT_IN_DONE_WMARK_MASK <<
144 			  CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
145 		       (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS),
146 		       inst_cnt_reg);
147 	}
148 	return 0;
149 }
150 
151 static void cn23xx_vf_setup_global_output_regs(struct octeon_device *oct)
152 {
153 	u32 reg_val;
154 	u32 q_no;
155 
156 	for (q_no = 0; q_no < (oct->sriov_info.rings_per_vf); q_no++) {
157 		octeon_write_csr(oct, CN23XX_VF_SLI_OQ_PKTS_CREDIT(q_no),
158 				 0xFFFFFFFF);
159 
160 		reg_val =
161 		    octeon_read_csr(oct, CN23XX_VF_SLI_OQ_PKTS_SENT(q_no));
162 
163 		reg_val &= 0xEFFFFFFFFFFFFFFFL;
164 
165 		reg_val =
166 		    octeon_read_csr(oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no));
167 
168 		/* clear IPTR */
169 		reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR;
170 
171 		/* set DPTR */
172 		reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR;
173 
174 		/* reset BMODE */
175 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE);
176 
177 		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
178 		 * for Output Queue ScatterList reset ROR_P, NSR_P
179 		 */
180 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P);
181 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P);
182 
183 #ifdef __LITTLE_ENDIAN_BITFIELD
184 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P);
185 #else
186 		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P);
187 #endif
188 		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
189 		 * for Output Queue Data reset ROR, NSR
190 		 */
191 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR);
192 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR);
193 		/* set the ES bit */
194 		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES);
195 
196 		/* write all the selected settings */
197 		octeon_write_csr(oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no),
198 				 reg_val);
199 	}
200 }
201 
202 static int cn23xx_setup_vf_device_regs(struct octeon_device *oct)
203 {
204 	if (cn23xx_vf_setup_global_input_regs(oct))
205 		return -1;
206 
207 	cn23xx_vf_setup_global_output_regs(oct);
208 
209 	return 0;
210 }
211 
212 static void cn23xx_setup_vf_iq_regs(struct octeon_device *oct, u32 iq_no)
213 {
214 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
215 	u64 pkt_in_done;
216 
217 	/* Write the start of the input queue's ring and its size */
218 	octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_BASE_ADDR64(iq_no),
219 			   iq->base_addr_dma);
220 	octeon_write_csr(oct, CN23XX_VF_SLI_IQ_SIZE(iq_no), iq->max_count);
221 
222 	/* Remember the doorbell & instruction count register addr
223 	 * for this queue
224 	 */
225 	iq->doorbell_reg =
226 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_DOORBELL(iq_no);
227 	iq->inst_cnt_reg =
228 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_INSTR_COUNT64(iq_no);
229 	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
230 		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
231 
232 	/* Store the current instruction counter (used in flush_iq
233 	 * calculation)
234 	 */
235 	pkt_in_done = readq(iq->inst_cnt_reg);
236 
237 	if (oct->msix_on) {
238 		/* Set CINT_ENB to enable IQ interrupt */
239 		writeq((pkt_in_done | CN23XX_INTR_CINT_ENB),
240 		       iq->inst_cnt_reg);
241 	}
242 	iq->reset_instr_cnt = 0;
243 }
244 
245 static void cn23xx_setup_vf_oq_regs(struct octeon_device *oct, u32 oq_no)
246 {
247 	struct octeon_droq *droq = oct->droq[oq_no];
248 
249 	octeon_write_csr64(oct, CN23XX_VF_SLI_OQ_BASE_ADDR64(oq_no),
250 			   droq->desc_ring_dma);
251 	octeon_write_csr(oct, CN23XX_VF_SLI_OQ_SIZE(oq_no), droq->max_count);
252 
253 	octeon_write_csr(oct, CN23XX_VF_SLI_OQ_BUFF_INFO_SIZE(oq_no),
254 			 droq->buffer_size);
255 
256 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
257 	droq->pkts_sent_reg =
258 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_OQ_PKTS_SENT(oq_no);
259 	droq->pkts_credit_reg =
260 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_OQ_PKTS_CREDIT(oq_no);
261 }
262 
263 static void cn23xx_vf_mbox_thread(struct work_struct *work)
264 {
265 	struct cavium_wk *wk = (struct cavium_wk *)work;
266 	struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr;
267 
268 	octeon_mbox_process_message(mbox);
269 }
270 
271 static int cn23xx_free_vf_mbox(struct octeon_device *oct)
272 {
273 	cancel_delayed_work_sync(&oct->mbox[0]->mbox_poll_wk.work);
274 	vfree(oct->mbox[0]);
275 	return 0;
276 }
277 
278 static int cn23xx_setup_vf_mbox(struct octeon_device *oct)
279 {
280 	struct octeon_mbox *mbox = NULL;
281 
282 	mbox = vmalloc(sizeof(*mbox));
283 	if (!mbox)
284 		return 1;
285 
286 	memset(mbox, 0, sizeof(struct octeon_mbox));
287 
288 	spin_lock_init(&mbox->lock);
289 
290 	mbox->oct_dev = oct;
291 
292 	mbox->q_no = 0;
293 
294 	mbox->state = OCTEON_MBOX_STATE_IDLE;
295 
296 	/* VF mbox interrupt reg */
297 	mbox->mbox_int_reg =
298 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_PKT_MBOX_INT(0);
299 	/* VF reads from SIG0 reg */
300 	mbox->mbox_read_reg =
301 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(0, 0);
302 	/* VF writes into SIG1 reg */
303 	mbox->mbox_write_reg =
304 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(0, 1);
305 
306 	INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work,
307 			  cn23xx_vf_mbox_thread);
308 
309 	mbox->mbox_poll_wk.ctxptr = mbox;
310 
311 	oct->mbox[0] = mbox;
312 
313 	writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg);
314 
315 	return 0;
316 }
317 
318 static int cn23xx_enable_vf_io_queues(struct octeon_device *oct)
319 {
320 	u32 q_no;
321 
322 	for (q_no = 0; q_no < oct->num_iqs; q_no++) {
323 		u64 reg_val;
324 
325 		/* set the corresponding IQ IS_64B bit */
326 		if (oct->io_qmask.iq64B & BIT_ULL(q_no)) {
327 			reg_val = octeon_read_csr64(
328 			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
329 			reg_val |= CN23XX_PKT_INPUT_CTL_IS_64B;
330 			octeon_write_csr64(
331 			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
332 		}
333 
334 		/* set the corresponding IQ ENB bit */
335 		if (oct->io_qmask.iq & BIT_ULL(q_no)) {
336 			reg_val = octeon_read_csr64(
337 			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
338 			reg_val |= CN23XX_PKT_INPUT_CTL_RING_ENB;
339 			octeon_write_csr64(
340 			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
341 		}
342 	}
343 	for (q_no = 0; q_no < oct->num_oqs; q_no++) {
344 		u32 reg_val;
345 
346 		/* set the corresponding OQ ENB bit */
347 		if (oct->io_qmask.oq & BIT_ULL(q_no)) {
348 			reg_val = octeon_read_csr(
349 			    oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no));
350 			reg_val |= CN23XX_PKT_OUTPUT_CTL_RING_ENB;
351 			octeon_write_csr(
352 			    oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no), reg_val);
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 static void cn23xx_disable_vf_io_queues(struct octeon_device *oct)
360 {
361 	u32 num_queues = oct->num_iqs;
362 
363 	/* per HRM, rings can only be disabled via reset operation,
364 	 * NOT via SLI_PKT()_INPUT/OUTPUT_CONTROL[ENB]
365 	 */
366 	if (num_queues < oct->num_oqs)
367 		num_queues = oct->num_oqs;
368 
369 	cn23xx_vf_reset_io_queues(oct, num_queues);
370 }
371 
372 void cn23xx_vf_ask_pf_to_do_flr(struct octeon_device *oct)
373 {
374 	struct octeon_mbox_cmd mbox_cmd;
375 
376 	mbox_cmd.msg.u64 = 0;
377 	mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
378 	mbox_cmd.msg.s.resp_needed = 0;
379 	mbox_cmd.msg.s.cmd = OCTEON_VF_FLR_REQUEST;
380 	mbox_cmd.msg.s.len = 1;
381 	mbox_cmd.q_no = 0;
382 	mbox_cmd.recv_len = 0;
383 	mbox_cmd.recv_status = 0;
384 	mbox_cmd.fn = NULL;
385 	mbox_cmd.fn_arg = NULL;
386 
387 	octeon_mbox_write(oct, &mbox_cmd);
388 }
389 
390 static void octeon_pfvf_hs_callback(struct octeon_device *oct,
391 				    struct octeon_mbox_cmd *cmd,
392 				    void *arg)
393 {
394 	u32 major = 0;
395 
396 	memcpy((uint8_t *)&oct->pfvf_hsword, cmd->msg.s.params,
397 	       CN23XX_MAILBOX_MSGPARAM_SIZE);
398 	if (cmd->recv_len > 1)  {
399 		major = ((struct lio_version *)(cmd->data))->major;
400 		major = major << 16;
401 	}
402 
403 	atomic_set((atomic_t *)arg, major | 1);
404 }
405 
406 int cn23xx_octeon_pfvf_handshake(struct octeon_device *oct)
407 {
408 	struct octeon_mbox_cmd mbox_cmd;
409 	u32 q_no, count = 0;
410 	atomic_t status;
411 	u32 pfmajor;
412 	u32 vfmajor;
413 	u32 ret;
414 
415 	/* Sending VF_ACTIVE indication to the PF driver */
416 	dev_dbg(&oct->pci_dev->dev, "requesting info from pf\n");
417 
418 	mbox_cmd.msg.u64 = 0;
419 	mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
420 	mbox_cmd.msg.s.resp_needed = 1;
421 	mbox_cmd.msg.s.cmd = OCTEON_VF_ACTIVE;
422 	mbox_cmd.msg.s.len = 2;
423 	mbox_cmd.data[0] = 0;
424 	((struct lio_version *)&mbox_cmd.data[0])->major =
425 						LIQUIDIO_BASE_MAJOR_VERSION;
426 	((struct lio_version *)&mbox_cmd.data[0])->minor =
427 						LIQUIDIO_BASE_MINOR_VERSION;
428 	((struct lio_version *)&mbox_cmd.data[0])->micro =
429 						LIQUIDIO_BASE_MICRO_VERSION;
430 	mbox_cmd.q_no = 0;
431 	mbox_cmd.recv_len = 0;
432 	mbox_cmd.recv_status = 0;
433 	mbox_cmd.fn = (octeon_mbox_callback_t)octeon_pfvf_hs_callback;
434 	mbox_cmd.fn_arg = &status;
435 
436 	octeon_mbox_write(oct, &mbox_cmd);
437 
438 	atomic_set(&status, 0);
439 
440 	do {
441 		schedule_timeout_uninterruptible(1);
442 	} while ((!atomic_read(&status)) && (count++ < 100000));
443 
444 	ret = atomic_read(&status);
445 	if (!ret) {
446 		dev_err(&oct->pci_dev->dev, "octeon_pfvf_handshake timeout\n");
447 		return 1;
448 	}
449 
450 	for (q_no = 0 ; q_no < oct->num_iqs ; q_no++)
451 		oct->instr_queue[q_no]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
452 
453 	vfmajor = LIQUIDIO_BASE_MAJOR_VERSION;
454 	pfmajor = ret >> 16;
455 	if (pfmajor != vfmajor) {
456 		dev_err(&oct->pci_dev->dev,
457 			"VF Liquidio driver (major version %d) is not compatible with Liquidio PF driver (major version %d)\n",
458 			vfmajor, pfmajor);
459 		return 1;
460 	}
461 
462 	dev_dbg(&oct->pci_dev->dev,
463 		"VF Liquidio driver (major version %d), Liquidio PF driver (major version %d)\n",
464 		vfmajor, pfmajor);
465 
466 	dev_dbg(&oct->pci_dev->dev, "got data from pf pkind is %d\n",
467 		oct->pfvf_hsword.pkind);
468 
469 	return 0;
470 }
471 
472 static void cn23xx_handle_vf_mbox_intr(struct octeon_ioq_vector *ioq_vector)
473 {
474 	struct octeon_device *oct = ioq_vector->oct_dev;
475 	u64 mbox_int_val;
476 
477 	if (!ioq_vector->droq_index) {
478 		/* read and clear by writing 1 */
479 		mbox_int_val = readq(oct->mbox[0]->mbox_int_reg);
480 		writeq(mbox_int_val, oct->mbox[0]->mbox_int_reg);
481 		if (octeon_mbox_read(oct->mbox[0]))
482 			schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work,
483 					      msecs_to_jiffies(0));
484 	}
485 }
486 
487 static u64 cn23xx_vf_msix_interrupt_handler(void *dev)
488 {
489 	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
490 	struct octeon_device *oct = ioq_vector->oct_dev;
491 	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
492 	u64 pkts_sent;
493 	u64 ret = 0;
494 
495 	dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
496 	pkts_sent = readq(droq->pkts_sent_reg);
497 
498 	/* If our device has interrupted, then proceed. Also check
499 	 * for all f's if interrupt was triggered on an error
500 	 * and the PCI read fails.
501 	 */
502 	if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
503 		return ret;
504 
505 	/* Write count reg in sli_pkt_cnts to clear these int. */
506 	if ((pkts_sent & CN23XX_INTR_PO_INT) ||
507 	    (pkts_sent & CN23XX_INTR_PI_INT)) {
508 		if (pkts_sent & CN23XX_INTR_PO_INT)
509 			ret |= MSIX_PO_INT;
510 	}
511 
512 	if (pkts_sent & CN23XX_INTR_PI_INT)
513 		/* We will clear the count when we update the read_index. */
514 		ret |= MSIX_PI_INT;
515 
516 	if (pkts_sent & CN23XX_INTR_MBOX_INT) {
517 		cn23xx_handle_vf_mbox_intr(ioq_vector);
518 		ret |= MSIX_MBOX_INT;
519 	}
520 
521 	return ret;
522 }
523 
524 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq)
525 {
526 	u32 pkt_in_done = readl(iq->inst_cnt_reg);
527 	u32 last_done;
528 	u32 new_idx;
529 
530 	last_done = pkt_in_done - iq->pkt_in_done;
531 	iq->pkt_in_done = pkt_in_done;
532 
533 	/* Modulo of the new index with the IQ size will give us
534 	 * the new index.  The iq->reset_instr_cnt is always zero for
535 	 * cn23xx, so no extra adjustments are needed.
536 	 */
537 	new_idx = (iq->octeon_read_index +
538 		   (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) %
539 		  iq->max_count;
540 
541 	return new_idx;
542 }
543 
544 static void cn23xx_enable_vf_interrupt(struct octeon_device *oct, u8 intr_flag)
545 {
546 	struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip;
547 	u32 q_no, time_threshold;
548 
549 	if (intr_flag & OCTEON_OUTPUT_INTR) {
550 		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
551 			/* Set up interrupt packet and time thresholds
552 			 * for all the OQs
553 			 */
554 			time_threshold = cn23xx_vf_get_oq_ticks(
555 				oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
556 
557 			octeon_write_csr64(
558 			    oct, CN23XX_VF_SLI_OQ_PKT_INT_LEVELS(q_no),
559 			    (CFG_GET_OQ_INTR_PKT(cn23xx->conf) |
560 			     ((u64)time_threshold << 32)));
561 		}
562 	}
563 
564 	if (intr_flag & OCTEON_INPUT_INTR) {
565 		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
566 			/* Set CINT_ENB to enable IQ interrupt */
567 			octeon_write_csr64(
568 			    oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no),
569 			    ((octeon_read_csr64(
570 				  oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)) &
571 			      ~CN23XX_PKT_IN_DONE_CNT_MASK) |
572 			     CN23XX_INTR_CINT_ENB));
573 		}
574 	}
575 
576 	/* Set queue-0 MBOX_ENB to enable VF mailbox interrupt */
577 	if (intr_flag & OCTEON_MBOX_INTR) {
578 		octeon_write_csr64(
579 		    oct, CN23XX_VF_SLI_PKT_MBOX_INT(0),
580 		    (octeon_read_csr64(oct, CN23XX_VF_SLI_PKT_MBOX_INT(0)) |
581 		     CN23XX_INTR_MBOX_ENB));
582 	}
583 }
584 
585 static void cn23xx_disable_vf_interrupt(struct octeon_device *oct, u8 intr_flag)
586 {
587 	u32 q_no;
588 
589 	if (intr_flag & OCTEON_OUTPUT_INTR) {
590 		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
591 			/* Write all 1's in INT_LEVEL reg to disable PO_INT */
592 			octeon_write_csr64(
593 			    oct, CN23XX_VF_SLI_OQ_PKT_INT_LEVELS(q_no),
594 			    0x3fffffffffffff);
595 		}
596 	}
597 	if (intr_flag & OCTEON_INPUT_INTR) {
598 		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
599 			octeon_write_csr64(
600 			    oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no),
601 			    (octeon_read_csr64(
602 				 oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)) &
603 			     ~(CN23XX_INTR_CINT_ENB |
604 			       CN23XX_PKT_IN_DONE_CNT_MASK)));
605 		}
606 	}
607 
608 	if (intr_flag & OCTEON_MBOX_INTR) {
609 		octeon_write_csr64(
610 		    oct, CN23XX_VF_SLI_PKT_MBOX_INT(0),
611 		    (octeon_read_csr64(oct, CN23XX_VF_SLI_PKT_MBOX_INT(0)) &
612 		     ~CN23XX_INTR_MBOX_ENB));
613 	}
614 }
615 
616 int cn23xx_setup_octeon_vf_device(struct octeon_device *oct)
617 {
618 	struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip;
619 	u32 rings_per_vf;
620 	u64 reg_val;
621 
622 	if (octeon_map_pci_barx(oct, 0, 0))
623 		return 1;
624 
625 	/* INPUT_CONTROL[RPVF] gives the VF IOq count */
626 	reg_val = octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(0));
627 
628 	oct->pf_num = (reg_val >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) &
629 		      CN23XX_PKT_INPUT_CTL_PF_NUM_MASK;
630 	oct->vf_num = (reg_val >> CN23XX_PKT_INPUT_CTL_VF_NUM_POS) &
631 		      CN23XX_PKT_INPUT_CTL_VF_NUM_MASK;
632 
633 	reg_val = reg_val >> CN23XX_PKT_INPUT_CTL_RPVF_POS;
634 
635 	rings_per_vf = reg_val & CN23XX_PKT_INPUT_CTL_RPVF_MASK;
636 
637 	cn23xx->conf  = oct_get_config_info(oct, LIO_23XX);
638 	if (!cn23xx->conf) {
639 		dev_err(&oct->pci_dev->dev, "%s No Config found for CN23XX\n",
640 			__func__);
641 		octeon_unmap_pci_barx(oct, 0);
642 		return 1;
643 	}
644 
645 	if (oct->sriov_info.rings_per_vf > rings_per_vf) {
646 		dev_warn(&oct->pci_dev->dev,
647 			 "num_queues:%d greater than PF configured rings_per_vf:%d. Reducing to %d.\n",
648 			 oct->sriov_info.rings_per_vf, rings_per_vf,
649 			 rings_per_vf);
650 		oct->sriov_info.rings_per_vf = rings_per_vf;
651 	} else {
652 		if (rings_per_vf > num_present_cpus()) {
653 			dev_warn(&oct->pci_dev->dev,
654 				 "PF configured rings_per_vf:%d greater than num_cpu:%d. Using rings_per_vf:%d equal to num cpus\n",
655 				 rings_per_vf,
656 				 num_present_cpus(),
657 				 num_present_cpus());
658 			oct->sriov_info.rings_per_vf =
659 				num_present_cpus();
660 		} else {
661 			oct->sriov_info.rings_per_vf = rings_per_vf;
662 		}
663 	}
664 
665 	oct->fn_list.setup_iq_regs = cn23xx_setup_vf_iq_regs;
666 	oct->fn_list.setup_oq_regs = cn23xx_setup_vf_oq_regs;
667 	oct->fn_list.setup_mbox = cn23xx_setup_vf_mbox;
668 	oct->fn_list.free_mbox = cn23xx_free_vf_mbox;
669 
670 	oct->fn_list.msix_interrupt_handler = cn23xx_vf_msix_interrupt_handler;
671 
672 	oct->fn_list.setup_device_regs = cn23xx_setup_vf_device_regs;
673 	oct->fn_list.update_iq_read_idx = cn23xx_update_read_index;
674 
675 	oct->fn_list.enable_interrupt = cn23xx_enable_vf_interrupt;
676 	oct->fn_list.disable_interrupt = cn23xx_disable_vf_interrupt;
677 
678 	oct->fn_list.enable_io_queues = cn23xx_enable_vf_io_queues;
679 	oct->fn_list.disable_io_queues = cn23xx_disable_vf_io_queues;
680 
681 	return 0;
682 }
683