xref: /openbmc/linux/drivers/net/ethernet/cavium/liquidio/cn23xx_pf_device.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/vmalloc.h>
20 #include <linux/etherdevice.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "cn23xx_pf_device.h"
27 #include "octeon_main.h"
28 #include "octeon_mailbox.h"
29 
30 #define RESET_NOTDONE 0
31 #define RESET_DONE 1
32 
33 /* Change the value of SLI Packet Input Jabber Register to allow
34  * VXLAN TSO packets which can be 64424 bytes, exceeding the
35  * MAX_GSO_SIZE we supplied to the kernel
36  */
37 #define CN23XX_INPUT_JABBER 64600
38 
39 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct)
40 {
41 	int i = 0;
42 	u32 regval = 0;
43 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
44 
45 	/*In cn23xx_soft_reset*/
46 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n",
47 		"CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG),
48 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG)));
49 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
50 		"CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1),
51 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)));
52 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
53 		"CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST,
54 		lio_pci_readq(oct, CN23XX_RST_SOFT_RST));
55 
56 	/*In cn23xx_set_dpi_regs*/
57 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
58 		"CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL,
59 		lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL));
60 
61 	for (i = 0; i < 6; i++) {
62 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
63 			"CN23XX_DPI_DMA_ENG_ENB", i,
64 			CN23XX_DPI_DMA_ENG_ENB(i),
65 			lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i)));
66 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
67 			"CN23XX_DPI_DMA_ENG_BUF", i,
68 			CN23XX_DPI_DMA_ENG_BUF(i),
69 			lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i)));
70 	}
71 
72 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL",
73 		CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL));
74 
75 	/*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */
76 	pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
77 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
78 		"CN23XX_CONFIG_PCIE_DEVCTL",
79 		CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval));
80 
81 	dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
82 		"CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port,
83 		CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port),
84 		lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port)));
85 
86 	/*In cn23xx_specific_regs_setup */
87 	dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
88 		"CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port,
89 		CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)),
90 		CVM_CAST64(octeon_read_csr64(
91 			oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port))));
92 
93 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
94 		"CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST),
95 		(u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST));
96 
97 	/*In cn23xx_setup_global_mac_regs*/
98 	for (i = 0; i < CN23XX_MAX_MACS; i++) {
99 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
100 			"CN23XX_SLI_PKT_MAC_RINFO64", i,
101 			CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)),
102 			CVM_CAST64(octeon_read_csr64
103 				(oct, CN23XX_SLI_PKT_MAC_RINFO64
104 					(i, oct->pf_num))));
105 	}
106 
107 	/*In cn23xx_setup_global_input_regs*/
108 	for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
109 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
110 			"CN23XX_SLI_IQ_PKT_CONTROL64", i,
111 			CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)),
112 			CVM_CAST64(octeon_read_csr64
113 				(oct, CN23XX_SLI_IQ_PKT_CONTROL64(i))));
114 	}
115 
116 	/*In cn23xx_setup_global_output_regs*/
117 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
118 		"CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK),
119 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK)));
120 
121 	for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
122 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
123 			"CN23XX_SLI_OQ_PKT_CONTROL", i,
124 			CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)),
125 			CVM_CAST64(octeon_read_csr(
126 				oct, CN23XX_SLI_OQ_PKT_CONTROL(i))));
127 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
128 			"CN23XX_SLI_OQ_PKT_INT_LEVELS", i,
129 			CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)),
130 			CVM_CAST64(octeon_read_csr64(
131 				oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i))));
132 	}
133 
134 	/*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/
135 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
136 		"cn23xx->intr_enb_reg64",
137 		CVM_CAST64((long)(cn23xx->intr_enb_reg64)),
138 		CVM_CAST64(readq(cn23xx->intr_enb_reg64)));
139 
140 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
141 		"cn23xx->intr_sum_reg64",
142 		CVM_CAST64((long)(cn23xx->intr_sum_reg64)),
143 		CVM_CAST64(readq(cn23xx->intr_sum_reg64)));
144 
145 	/*In cn23xx_setup_iq_regs*/
146 	for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
147 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
148 			"CN23XX_SLI_IQ_BASE_ADDR64", i,
149 			CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)),
150 			CVM_CAST64(octeon_read_csr64(
151 				oct, CN23XX_SLI_IQ_BASE_ADDR64(i))));
152 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
153 			"CN23XX_SLI_IQ_SIZE", i,
154 			CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)),
155 			CVM_CAST64(octeon_read_csr
156 				(oct, CN23XX_SLI_IQ_SIZE(i))));
157 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
158 			"CN23XX_SLI_IQ_DOORBELL", i,
159 			CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)),
160 			CVM_CAST64(octeon_read_csr64(
161 				oct, CN23XX_SLI_IQ_DOORBELL(i))));
162 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
163 			"CN23XX_SLI_IQ_INSTR_COUNT64", i,
164 			CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)),
165 			CVM_CAST64(octeon_read_csr64(
166 				oct, CN23XX_SLI_IQ_INSTR_COUNT64(i))));
167 	}
168 
169 	/*In cn23xx_setup_oq_regs*/
170 	for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
171 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
172 			"CN23XX_SLI_OQ_BASE_ADDR64", i,
173 			CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)),
174 			CVM_CAST64(octeon_read_csr64(
175 				oct, CN23XX_SLI_OQ_BASE_ADDR64(i))));
176 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
177 			"CN23XX_SLI_OQ_SIZE", i,
178 			CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)),
179 			CVM_CAST64(octeon_read_csr
180 				(oct, CN23XX_SLI_OQ_SIZE(i))));
181 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
182 			"CN23XX_SLI_OQ_BUFF_INFO_SIZE", i,
183 			CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)),
184 			CVM_CAST64(octeon_read_csr(
185 				oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i))));
186 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
187 			"CN23XX_SLI_OQ_PKTS_SENT", i,
188 			CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)),
189 			CVM_CAST64(octeon_read_csr64(
190 				oct, CN23XX_SLI_OQ_PKTS_SENT(i))));
191 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
192 			"CN23XX_SLI_OQ_PKTS_CREDIT", i,
193 			CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)),
194 			CVM_CAST64(octeon_read_csr64(
195 				oct, CN23XX_SLI_OQ_PKTS_CREDIT(i))));
196 	}
197 
198 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
199 		"CN23XX_SLI_PKT_TIME_INT",
200 		CVM_CAST64(CN23XX_SLI_PKT_TIME_INT),
201 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT)));
202 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
203 		"CN23XX_SLI_PKT_CNT_INT",
204 		CVM_CAST64(CN23XX_SLI_PKT_CNT_INT),
205 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT)));
206 }
207 
208 static int cn23xx_pf_soft_reset(struct octeon_device *oct)
209 {
210 	octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
211 
212 	dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n",
213 		oct->octeon_id);
214 
215 	octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL);
216 
217 	/* Initiate chip-wide soft reset */
218 	lio_pci_readq(oct, CN23XX_RST_SOFT_RST);
219 	lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST);
220 
221 	/* Wait for 100ms as Octeon resets. */
222 	mdelay(100);
223 
224 	if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) {
225 		dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n",
226 			oct->octeon_id);
227 		return 1;
228 	}
229 
230 	dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n",
231 		oct->octeon_id);
232 
233 	/* restore the  reset value*/
234 	octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
235 
236 	return 0;
237 }
238 
239 static void cn23xx_enable_error_reporting(struct octeon_device *oct)
240 {
241 	u32 regval;
242 	u32 uncorrectable_err_mask, corrtable_err_status;
243 
244 	pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
245 	if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) {
246 		uncorrectable_err_mask = 0;
247 		corrtable_err_status = 0;
248 		pci_read_config_dword(oct->pci_dev,
249 				      CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK,
250 				      &uncorrectable_err_mask);
251 		pci_read_config_dword(oct->pci_dev,
252 				      CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS,
253 				      &corrtable_err_status);
254 		dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n"
255 				 "\tdev_ctl_status_reg = 0x%08x\n"
256 				 "\tuncorrectable_error_mask_reg = 0x%08x\n"
257 				 "\tcorrectable_error_status_reg = 0x%08x\n",
258 			    regval, uncorrectable_err_mask,
259 			    corrtable_err_status);
260 	}
261 
262 	regval |= 0xf; /* Enable Link error reporting */
263 
264 	dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n",
265 		oct->octeon_id);
266 	pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval);
267 }
268 
269 static u32 cn23xx_coprocessor_clock(struct octeon_device *oct)
270 {
271 	/* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER
272 	 * for SLI.
273 	 */
274 
275 	/* TBD: get the info in Hand-shake */
276 	return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50);
277 }
278 
279 u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us)
280 {
281 	/* This gives the SLI clock per microsec */
282 	u32 oqticks_per_us = cn23xx_coprocessor_clock(oct);
283 
284 	oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us;
285 
286 	/* This gives the clock cycles per millisecond */
287 	oqticks_per_us *= 1000;
288 
289 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
290 	oqticks_per_us /= 1024;
291 
292 	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
293 	 *  corressponding to time_intr.
294 	 */
295 	oqticks_per_us *= time_intr_in_us;
296 	oqticks_per_us /= 1000;
297 
298 	return oqticks_per_us;
299 }
300 
301 static void cn23xx_setup_global_mac_regs(struct octeon_device *oct)
302 {
303 	u16 mac_no = oct->pcie_port;
304 	u16 pf_num = oct->pf_num;
305 	u64 reg_val;
306 	u64 temp;
307 
308 	/* programming SRN and TRS for each MAC(0..3)  */
309 
310 	dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n",
311 		__func__, mac_no);
312 	/* By default, mapping all 64 IOQs to  a single MACs */
313 
314 	reg_val =
315 	    octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num));
316 
317 	if (oct->rev_id == OCTEON_CN23XX_REV_1_1) {
318 		/* setting SRN <6:0>  */
319 		reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
320 	} else {
321 		/* setting SRN <6:0>  */
322 		reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF;
323 	}
324 
325 	/* setting TRS <23:16> */
326 	reg_val = reg_val |
327 		  (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS);
328 	/* setting RPVF <39:32> */
329 	temp = oct->sriov_info.rings_per_vf & 0xff;
330 	reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS);
331 
332 	/* setting NVFS <55:48> */
333 	temp = oct->sriov_info.max_vfs & 0xff;
334 	reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS);
335 
336 	/* write these settings to MAC register */
337 	octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num),
338 			   reg_val);
339 
340 	dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n",
341 		mac_no, pf_num, (u64)octeon_read_csr64
342 		(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)));
343 }
344 
345 static int cn23xx_reset_io_queues(struct octeon_device *oct)
346 {
347 	int ret_val = 0;
348 	u64 d64;
349 	u32 q_no, srn, ern;
350 	u32 loop = 1000;
351 
352 	srn = oct->sriov_info.pf_srn;
353 	ern = srn + oct->sriov_info.num_pf_rings;
354 
355 	/*As per HRM reg description, s/w cant write 0 to ENB. */
356 	/*to make the queue off, need to set the RST bit. */
357 
358 	/* Reset the Enable bit for all the 64 IQs.  */
359 	for (q_no = srn; q_no < ern; q_no++) {
360 		/* set RST bit to 1. This bit applies to both IQ and OQ */
361 		d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
362 		d64 = d64 | CN23XX_PKT_INPUT_CTL_RST;
363 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64);
364 	}
365 
366 	/*wait until the RST bit is clear or the RST and quite bits are set*/
367 	for (q_no = srn; q_no < ern; q_no++) {
368 		u64 reg_val = octeon_read_csr64(oct,
369 					CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
370 		while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) &&
371 		       !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) &&
372 		       loop--) {
373 			WRITE_ONCE(reg_val, octeon_read_csr64(
374 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
375 		}
376 		if (!loop) {
377 			dev_err(&oct->pci_dev->dev,
378 				"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
379 				q_no);
380 			return -1;
381 		}
382 		WRITE_ONCE(reg_val, READ_ONCE(reg_val) &
383 			~CN23XX_PKT_INPUT_CTL_RST);
384 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
385 				   READ_ONCE(reg_val));
386 
387 		WRITE_ONCE(reg_val, octeon_read_csr64(
388 			   oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
389 		if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) {
390 			dev_err(&oct->pci_dev->dev,
391 				"clearing the reset failed for qno: %u\n",
392 				q_no);
393 			ret_val = -1;
394 		}
395 	}
396 
397 	return ret_val;
398 }
399 
400 static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct)
401 {
402 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
403 	struct octeon_instr_queue *iq;
404 	u64 intr_threshold, reg_val;
405 	u32 q_no, ern, srn;
406 	u64 pf_num;
407 	u64 vf_num;
408 
409 	pf_num = oct->pf_num;
410 
411 	srn = oct->sriov_info.pf_srn;
412 	ern = srn + oct->sriov_info.num_pf_rings;
413 
414 	if (cn23xx_reset_io_queues(oct))
415 		return -1;
416 
417 	/** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg
418 	 * for all queues.Only PF can set these bits.
419 	 * bits 29:30 indicate the MAC num.
420 	 * bits 32:47 indicate the PVF num.
421 	 */
422 	for (q_no = 0; q_no < ern; q_no++) {
423 		reg_val = oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS;
424 
425 		/* for VF assigned queues. */
426 		if (q_no < oct->sriov_info.pf_srn) {
427 			vf_num = q_no / oct->sriov_info.rings_per_vf;
428 			vf_num += 1; /* VF1, VF2,........ */
429 		} else {
430 			vf_num = 0;
431 		}
432 
433 		reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS;
434 		reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS;
435 
436 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
437 				   reg_val);
438 	}
439 
440 	/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
441 	 * pf queues
442 	 */
443 	for (q_no = srn; q_no < ern; q_no++) {
444 		void __iomem *inst_cnt_reg;
445 
446 		iq = oct->instr_queue[q_no];
447 		if (iq)
448 			inst_cnt_reg = iq->inst_cnt_reg;
449 		else
450 			inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr +
451 				       CN23XX_SLI_IQ_INSTR_COUNT64(q_no);
452 
453 		reg_val =
454 		    octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
455 
456 		reg_val |= CN23XX_PKT_INPUT_CTL_MASK;
457 
458 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
459 				   reg_val);
460 
461 		/* Set WMARK level for triggering PI_INT */
462 		/* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */
463 		intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) &
464 				 CN23XX_PKT_IN_DONE_WMARK_MASK;
465 
466 		writeq((readq(inst_cnt_reg) &
467 			~(CN23XX_PKT_IN_DONE_WMARK_MASK <<
468 			  CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
469 		       (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS),
470 		       inst_cnt_reg);
471 	}
472 	return 0;
473 }
474 
475 static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct)
476 {
477 	u32 reg_val;
478 	u32 q_no, ern, srn;
479 	u64 time_threshold;
480 
481 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
482 
483 	srn = oct->sriov_info.pf_srn;
484 	ern = srn + oct->sriov_info.num_pf_rings;
485 
486 	if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) {
487 		octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32);
488 	} else {
489 		/** Set Output queue watermark to 0 to disable backpressure */
490 		octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0);
491 	}
492 
493 	for (q_no = srn; q_no < ern; q_no++) {
494 		reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
495 
496 		/* set DPTR */
497 		reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR;
498 
499 		/* reset BMODE */
500 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE);
501 
502 		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
503 		 * for Output Queue ScatterList
504 		 * reset ROR_P, NSR_P
505 		 */
506 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P);
507 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P);
508 
509 #ifdef __LITTLE_ENDIAN_BITFIELD
510 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P);
511 #else
512 		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P);
513 #endif
514 		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
515 		 * for Output Queue Data
516 		 * reset ROR, NSR
517 		 */
518 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR);
519 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR);
520 		/* set the ES bit */
521 		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES);
522 
523 		/* write all the selected settings */
524 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val);
525 
526 		/* Enabling these interrupt in oct->fn_list.enable_interrupt()
527 		 * routine which called after IOQ init.
528 		 * Set up interrupt packet and time thresholds
529 		 * for all the OQs
530 		 */
531 		time_threshold = cn23xx_pf_get_oq_ticks(
532 		    oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
533 
534 		octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no),
535 				   (CFG_GET_OQ_INTR_PKT(cn23xx->conf) |
536 				    (time_threshold << 32)));
537 	}
538 
539 	/** Setting the water mark level for pko back pressure **/
540 	writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK);
541 
542 	/** Disabling setting OQs in reset when ring has no dorebells
543 	 * enabling this will cause of head of line blocking
544 	 */
545 	/* Do it only for pass1.1. and pass1.2 */
546 	if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) ||
547 	    (oct->rev_id == OCTEON_CN23XX_REV_1_1))
548 		writeq(readq((u8 *)oct->mmio[0].hw_addr +
549 				     CN23XX_SLI_GBL_CONTROL) | 0x2,
550 		       (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL);
551 
552 	/** Enable channel-level backpressure */
553 	if (oct->pf_num)
554 		writeq(0xffffffffffffffffULL,
555 		       (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S);
556 	else
557 		writeq(0xffffffffffffffffULL,
558 		       (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S);
559 }
560 
561 static int cn23xx_setup_pf_device_regs(struct octeon_device *oct)
562 {
563 	cn23xx_enable_error_reporting(oct);
564 
565 	/* program the MAC(0..3)_RINFO before setting up input/output regs */
566 	cn23xx_setup_global_mac_regs(oct);
567 
568 	if (cn23xx_pf_setup_global_input_regs(oct))
569 		return -1;
570 
571 	cn23xx_pf_setup_global_output_regs(oct);
572 
573 	/* Default error timeout value should be 0x200000 to avoid host hang
574 	 * when reads invalid register
575 	 */
576 	octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL,
577 			   CN23XX_SLI_WINDOW_CTL_DEFAULT);
578 
579 	/* set SLI_PKT_IN_JABBER to handle large VXLAN packets */
580 	octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER);
581 	return 0;
582 }
583 
584 static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
585 {
586 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
587 	u64 pkt_in_done;
588 
589 	iq_no += oct->sriov_info.pf_srn;
590 
591 	/* Write the start of the input queue's ring and its size  */
592 	octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no),
593 			   iq->base_addr_dma);
594 	octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count);
595 
596 	/* Remember the doorbell & instruction count register addr
597 	 * for this queue
598 	 */
599 	iq->doorbell_reg =
600 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no);
601 	iq->inst_cnt_reg =
602 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no);
603 	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
604 		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
605 
606 	/* Store the current instruction counter (used in flush_iq
607 	 * calculation)
608 	 */
609 	pkt_in_done = readq(iq->inst_cnt_reg);
610 
611 	if (oct->msix_on) {
612 		/* Set CINT_ENB to enable IQ interrupt   */
613 		writeq((pkt_in_done | CN23XX_INTR_CINT_ENB),
614 		       iq->inst_cnt_reg);
615 	} else {
616 		/* Clear the count by writing back what we read, but don't
617 		 * enable interrupts
618 		 */
619 		writeq(pkt_in_done, iq->inst_cnt_reg);
620 	}
621 
622 	iq->reset_instr_cnt = 0;
623 }
624 
625 static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
626 {
627 	u32 reg_val;
628 	struct octeon_droq *droq = oct->droq[oq_no];
629 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
630 	u64 time_threshold;
631 	u64 cnt_threshold;
632 
633 	oq_no += oct->sriov_info.pf_srn;
634 
635 	octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no),
636 			   droq->desc_ring_dma);
637 	octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count);
638 
639 	octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
640 			 droq->buffer_size);
641 
642 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
643 	droq->pkts_sent_reg =
644 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no);
645 	droq->pkts_credit_reg =
646 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no);
647 
648 	if (!oct->msix_on) {
649 		/* Enable this output queue to generate Packet Timer Interrupt
650 		 */
651 		reg_val =
652 		    octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
653 		reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB;
654 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
655 				 reg_val);
656 
657 		/* Enable this output queue to generate Packet Count Interrupt
658 		 */
659 		reg_val =
660 		    octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
661 		reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB;
662 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
663 				 reg_val);
664 	} else {
665 		time_threshold = cn23xx_pf_get_oq_ticks(
666 		    oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
667 		cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf);
668 
669 		octeon_write_csr64(
670 		    oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no),
671 		    ((time_threshold << 32 | cnt_threshold)));
672 	}
673 }
674 
675 static void cn23xx_pf_mbox_thread(struct work_struct *work)
676 {
677 	struct cavium_wk *wk = (struct cavium_wk *)work;
678 	struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr;
679 	struct octeon_device *oct = mbox->oct_dev;
680 	u64 mbox_int_val, val64;
681 	u32 q_no, i;
682 
683 	if (oct->rev_id < OCTEON_CN23XX_REV_1_1) {
684 		/*read and clear by writing 1*/
685 		mbox_int_val = readq(mbox->mbox_int_reg);
686 		writeq(mbox_int_val, mbox->mbox_int_reg);
687 
688 		for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
689 			q_no = i * oct->sriov_info.rings_per_vf;
690 
691 			val64 = readq(oct->mbox[q_no]->mbox_write_reg);
692 
693 			if (val64 && (val64 != OCTEON_PFVFACK)) {
694 				if (octeon_mbox_read(oct->mbox[q_no]))
695 					octeon_mbox_process_message(
696 					    oct->mbox[q_no]);
697 			}
698 		}
699 
700 		schedule_delayed_work(&wk->work, msecs_to_jiffies(10));
701 	} else {
702 		octeon_mbox_process_message(mbox);
703 	}
704 }
705 
706 static int cn23xx_setup_pf_mbox(struct octeon_device *oct)
707 {
708 	struct octeon_mbox *mbox = NULL;
709 	u16 mac_no = oct->pcie_port;
710 	u16 pf_num = oct->pf_num;
711 	u32 q_no, i;
712 
713 	if (!oct->sriov_info.max_vfs)
714 		return 0;
715 
716 	for (i = 0; i < oct->sriov_info.max_vfs; i++) {
717 		q_no = i * oct->sriov_info.rings_per_vf;
718 
719 		mbox = vmalloc(sizeof(*mbox));
720 		if (!mbox)
721 			goto free_mbox;
722 
723 		memset(mbox, 0, sizeof(struct octeon_mbox));
724 
725 		spin_lock_init(&mbox->lock);
726 
727 		mbox->oct_dev = oct;
728 
729 		mbox->q_no = q_no;
730 
731 		mbox->state = OCTEON_MBOX_STATE_IDLE;
732 
733 		/* PF mbox interrupt reg */
734 		mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr +
735 				     CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num);
736 
737 		/* PF writes into SIG0 reg */
738 		mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr +
739 				       CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0);
740 
741 		/* PF reads from SIG1 reg */
742 		mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr +
743 				      CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1);
744 
745 		/*Mail Box Thread creation*/
746 		INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work,
747 				  cn23xx_pf_mbox_thread);
748 		mbox->mbox_poll_wk.ctxptr = (void *)mbox;
749 
750 		oct->mbox[q_no] = mbox;
751 
752 		writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg);
753 	}
754 
755 	if (oct->rev_id < OCTEON_CN23XX_REV_1_1)
756 		schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work,
757 				      msecs_to_jiffies(0));
758 
759 	return 0;
760 
761 free_mbox:
762 	while (i) {
763 		i--;
764 		vfree(oct->mbox[i]);
765 	}
766 
767 	return 1;
768 }
769 
770 static int cn23xx_free_pf_mbox(struct octeon_device *oct)
771 {
772 	u32 q_no, i;
773 
774 	if (!oct->sriov_info.max_vfs)
775 		return 0;
776 
777 	for (i = 0; i < oct->sriov_info.max_vfs; i++) {
778 		q_no = i * oct->sriov_info.rings_per_vf;
779 		cancel_delayed_work_sync(
780 		    &oct->mbox[q_no]->mbox_poll_wk.work);
781 		vfree(oct->mbox[q_no]);
782 	}
783 
784 	return 0;
785 }
786 
787 static int cn23xx_enable_io_queues(struct octeon_device *oct)
788 {
789 	u64 reg_val;
790 	u32 srn, ern, q_no;
791 	u32 loop = 1000;
792 
793 	srn = oct->sriov_info.pf_srn;
794 	ern = srn + oct->num_iqs;
795 
796 	for (q_no = srn; q_no < ern; q_no++) {
797 		/* set the corresponding IQ IS_64B bit */
798 		if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) {
799 			reg_val = octeon_read_csr64(
800 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
801 			reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B;
802 			octeon_write_csr64(
803 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
804 		}
805 
806 		/* set the corresponding IQ ENB bit */
807 		if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) {
808 			/* IOQs are in reset by default in PEM2 mode,
809 			 * clearing reset bit
810 			 */
811 			reg_val = octeon_read_csr64(
812 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
813 
814 			if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
815 				while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
816 				       !(reg_val &
817 					 CN23XX_PKT_INPUT_CTL_QUIET) &&
818 				       --loop) {
819 					reg_val = octeon_read_csr64(
820 					    oct,
821 					    CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
822 				}
823 				if (!loop) {
824 					dev_err(&oct->pci_dev->dev,
825 						"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
826 						q_no);
827 					return -1;
828 				}
829 				reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
830 				octeon_write_csr64(
831 				    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
832 				    reg_val);
833 
834 				reg_val = octeon_read_csr64(
835 				    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
836 				if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
837 					dev_err(&oct->pci_dev->dev,
838 						"clearing the reset failed for qno: %u\n",
839 						q_no);
840 					return -1;
841 				}
842 			}
843 			reg_val = octeon_read_csr64(
844 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
845 			reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB;
846 			octeon_write_csr64(
847 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
848 		}
849 	}
850 	for (q_no = srn; q_no < ern; q_no++) {
851 		u32 reg_val;
852 		/* set the corresponding OQ ENB bit */
853 		if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) {
854 			reg_val = octeon_read_csr(
855 			    oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
856 			reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB;
857 			octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no),
858 					 reg_val);
859 		}
860 	}
861 	return 0;
862 }
863 
864 static void cn23xx_disable_io_queues(struct octeon_device *oct)
865 {
866 	int q_no, loop;
867 	u64 d64;
868 	u32 d32;
869 	u32 srn, ern;
870 
871 	srn = oct->sriov_info.pf_srn;
872 	ern = srn + oct->num_iqs;
873 
874 	/*** Disable Input Queues. ***/
875 	for (q_no = srn; q_no < ern; q_no++) {
876 		loop = HZ;
877 
878 		/* start the Reset for a particular ring */
879 		WRITE_ONCE(d64, octeon_read_csr64(
880 			   oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
881 		WRITE_ONCE(d64, READ_ONCE(d64) &
882 					(~(CN23XX_PKT_INPUT_CTL_RING_ENB)));
883 		WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST);
884 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
885 				   READ_ONCE(d64));
886 
887 		/* Wait until hardware indicates that the particular IQ
888 		 * is out of reset.
889 		 */
890 		WRITE_ONCE(d64, octeon_read_csr64(
891 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
892 		while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
893 			WRITE_ONCE(d64, octeon_read_csr64(
894 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
895 			schedule_timeout_uninterruptible(1);
896 		}
897 
898 		/* Reset the doorbell register for this Input Queue. */
899 		octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF);
900 		while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) &&
901 		       loop--) {
902 			schedule_timeout_uninterruptible(1);
903 		}
904 	}
905 
906 	/*** Disable Output Queues. ***/
907 	for (q_no = srn; q_no < ern; q_no++) {
908 		loop = HZ;
909 
910 		/* Wait until hardware indicates that the particular IQ
911 		 * is out of reset.It given that SLI_PKT_RING_RST is
912 		 * common for both IQs and OQs
913 		 */
914 		WRITE_ONCE(d64, octeon_read_csr64(
915 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
916 		while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
917 			WRITE_ONCE(d64, octeon_read_csr64(
918 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
919 			schedule_timeout_uninterruptible(1);
920 		}
921 
922 		/* Reset the doorbell register for this Output Queue. */
923 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no),
924 				 0xFFFFFFFF);
925 		while (octeon_read_csr64(oct,
926 					 CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) &&
927 		       loop--) {
928 			schedule_timeout_uninterruptible(1);
929 		}
930 
931 		/* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */
932 		WRITE_ONCE(d32, octeon_read_csr(
933 					oct, CN23XX_SLI_OQ_PKTS_SENT(q_no)));
934 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no),
935 				 READ_ONCE(d32));
936 	}
937 }
938 
939 static u64 cn23xx_pf_msix_interrupt_handler(void *dev)
940 {
941 	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
942 	struct octeon_device *oct = ioq_vector->oct_dev;
943 	u64 pkts_sent;
944 	u64 ret = 0;
945 	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
946 
947 	dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
948 
949 	if (!droq) {
950 		dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n",
951 			oct->pf_num, ioq_vector->ioq_num);
952 		return 0;
953 	}
954 
955 	pkts_sent = readq(droq->pkts_sent_reg);
956 
957 	/* If our device has interrupted, then proceed. Also check
958 	 * for all f's if interrupt was triggered on an error
959 	 * and the PCI read fails.
960 	 */
961 	if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
962 		return ret;
963 
964 	/* Write count reg in sli_pkt_cnts to clear these int.*/
965 	if ((pkts_sent & CN23XX_INTR_PO_INT) ||
966 	    (pkts_sent & CN23XX_INTR_PI_INT)) {
967 		if (pkts_sent & CN23XX_INTR_PO_INT)
968 			ret |= MSIX_PO_INT;
969 	}
970 
971 	if (pkts_sent & CN23XX_INTR_PI_INT)
972 		/* We will clear the count when we update the read_index. */
973 		ret |= MSIX_PI_INT;
974 
975 	/* Never need to handle msix mbox intr for pf. They arrive on the last
976 	 * msix
977 	 */
978 	return ret;
979 }
980 
981 static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct)
982 {
983 	struct delayed_work *work;
984 	u64 mbox_int_val;
985 	u32 i, q_no;
986 
987 	mbox_int_val = readq(oct->mbox[0]->mbox_int_reg);
988 
989 	for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
990 		q_no = i * oct->sriov_info.rings_per_vf;
991 
992 		if (mbox_int_val & BIT_ULL(q_no)) {
993 			writeq(BIT_ULL(q_no),
994 			       oct->mbox[0]->mbox_int_reg);
995 			if (octeon_mbox_read(oct->mbox[q_no])) {
996 				work = &oct->mbox[q_no]->mbox_poll_wk.work;
997 				schedule_delayed_work(work,
998 						      msecs_to_jiffies(0));
999 			}
1000 		}
1001 	}
1002 }
1003 
1004 static irqreturn_t cn23xx_interrupt_handler(void *dev)
1005 {
1006 	struct octeon_device *oct = (struct octeon_device *)dev;
1007 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1008 	u64 intr64;
1009 
1010 	dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
1011 	intr64 = readq(cn23xx->intr_sum_reg64);
1012 
1013 	oct->int_status = 0;
1014 
1015 	if (intr64 & CN23XX_INTR_ERR)
1016 		dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n",
1017 			oct->octeon_id, CVM_CAST64(intr64));
1018 
1019 	/* When VFs write into MBOX_SIG2 reg,these intr is set in PF */
1020 	if (intr64 & CN23XX_INTR_VF_MBOX)
1021 		cn23xx_handle_pf_mbox_intr(oct);
1022 
1023 	if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) {
1024 		if (intr64 & CN23XX_INTR_PKT_DATA)
1025 			oct->int_status |= OCT_DEV_INTR_PKT_DATA;
1026 	}
1027 
1028 	if (intr64 & (CN23XX_INTR_DMA0_FORCE))
1029 		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
1030 	if (intr64 & (CN23XX_INTR_DMA1_FORCE))
1031 		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
1032 
1033 	/* Clear the current interrupts */
1034 	writeq(intr64, cn23xx->intr_sum_reg64);
1035 
1036 	return IRQ_HANDLED;
1037 }
1038 
1039 static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr,
1040 				  u32 idx, int valid)
1041 {
1042 	u64 bar1;
1043 	u64 reg_adr;
1044 
1045 	if (!valid) {
1046 		reg_adr = lio_pci_readq(
1047 			oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1048 		WRITE_ONCE(bar1, reg_adr);
1049 		lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL),
1050 			       CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1051 		reg_adr = lio_pci_readq(
1052 			oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1053 		WRITE_ONCE(bar1, reg_adr);
1054 		return;
1055 	}
1056 
1057 	/*  The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores
1058 	 *  bits <41:22> of the Core Addr
1059 	 */
1060 	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
1061 		       CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1062 
1063 	WRITE_ONCE(bar1, lio_pci_readq(
1064 		   oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)));
1065 }
1066 
1067 static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask)
1068 {
1069 	lio_pci_writeq(oct, mask,
1070 		       CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1071 }
1072 
1073 static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx)
1074 {
1075 	return (u32)lio_pci_readq(
1076 	    oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1077 }
1078 
1079 /* always call with lock held */
1080 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq)
1081 {
1082 	u32 new_idx;
1083 	u32 last_done;
1084 	u32 pkt_in_done = readl(iq->inst_cnt_reg);
1085 
1086 	last_done = pkt_in_done - iq->pkt_in_done;
1087 	iq->pkt_in_done = pkt_in_done;
1088 
1089 	/* Modulo of the new index with the IQ size will give us
1090 	 * the new index.  The iq->reset_instr_cnt is always zero for
1091 	 * cn23xx, so no extra adjustments are needed.
1092 	 */
1093 	new_idx = (iq->octeon_read_index +
1094 		   (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) %
1095 		  iq->max_count;
1096 
1097 	return new_idx;
1098 }
1099 
1100 static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
1101 {
1102 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1103 	u64 intr_val = 0;
1104 
1105 	/*  Divide the single write to multiple writes based on the flag. */
1106 	/* Enable Interrupt */
1107 	if (intr_flag == OCTEON_ALL_INTR) {
1108 		writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64);
1109 	} else if (intr_flag & OCTEON_OUTPUT_INTR) {
1110 		intr_val = readq(cn23xx->intr_enb_reg64);
1111 		intr_val |= CN23XX_INTR_PKT_DATA;
1112 		writeq(intr_val, cn23xx->intr_enb_reg64);
1113 	} else if ((intr_flag & OCTEON_MBOX_INTR) &&
1114 		   (oct->sriov_info.max_vfs > 0)) {
1115 		if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
1116 			intr_val = readq(cn23xx->intr_enb_reg64);
1117 			intr_val |= CN23XX_INTR_VF_MBOX;
1118 			writeq(intr_val, cn23xx->intr_enb_reg64);
1119 		}
1120 	}
1121 }
1122 
1123 static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
1124 {
1125 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1126 	u64 intr_val = 0;
1127 
1128 	/* Disable Interrupts */
1129 	if (intr_flag == OCTEON_ALL_INTR) {
1130 		writeq(0, cn23xx->intr_enb_reg64);
1131 	} else if (intr_flag & OCTEON_OUTPUT_INTR) {
1132 		intr_val = readq(cn23xx->intr_enb_reg64);
1133 		intr_val &= ~CN23XX_INTR_PKT_DATA;
1134 		writeq(intr_val, cn23xx->intr_enb_reg64);
1135 	} else if ((intr_flag & OCTEON_MBOX_INTR) &&
1136 		   (oct->sriov_info.max_vfs > 0)) {
1137 		if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
1138 			intr_val = readq(cn23xx->intr_enb_reg64);
1139 			intr_val &= ~CN23XX_INTR_VF_MBOX;
1140 			writeq(intr_val, cn23xx->intr_enb_reg64);
1141 		}
1142 	}
1143 }
1144 
1145 static void cn23xx_get_pcie_qlmport(struct octeon_device *oct)
1146 {
1147 	oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
1148 
1149 	dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n",
1150 		oct->pcie_port);
1151 }
1152 
1153 static int cn23xx_get_pf_num(struct octeon_device *oct)
1154 {
1155 	u32 fdl_bit = 0;
1156 	u64 pkt0_in_ctl, d64;
1157 	int pfnum, mac, trs, ret;
1158 
1159 	ret = 0;
1160 
1161 	/** Read Function Dependency Link reg to get the function number */
1162 	if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL,
1163 				  &fdl_bit) == 0) {
1164 		oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) &
1165 			       CN23XX_PCIE_SRIOV_FDL_MASK);
1166 	} else {
1167 		ret = EINVAL;
1168 
1169 		/* Under some virtual environments, extended PCI regs are
1170 		 * inaccessible, in which case the above read will have failed.
1171 		 * In this case, read the PF number from the
1172 		 * SLI_PKT0_INPUT_CONTROL reg (written by f/w)
1173 		 */
1174 		pkt0_in_ctl = octeon_read_csr64(oct,
1175 						CN23XX_SLI_IQ_PKT_CONTROL64(0));
1176 		pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) &
1177 			CN23XX_PKT_INPUT_CTL_PF_NUM_MASK;
1178 		mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
1179 
1180 		/* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/
1181 		d64 = octeon_read_csr64(oct,
1182 					CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum));
1183 		trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff;
1184 		if (trs == 1) {
1185 			dev_err(&oct->pci_dev->dev,
1186 				"OCTEON: error reading PCI cfg space pfnum, re-read %u\n",
1187 				pfnum);
1188 			oct->pf_num = pfnum;
1189 			ret = 0;
1190 		} else {
1191 			dev_err(&oct->pci_dev->dev,
1192 				"OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n");
1193 		}
1194 	}
1195 
1196 	return ret;
1197 }
1198 
1199 static void cn23xx_setup_reg_address(struct octeon_device *oct)
1200 {
1201 	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
1202 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1203 
1204 	oct->reg_list.pci_win_wr_addr_hi =
1205 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI);
1206 	oct->reg_list.pci_win_wr_addr_lo =
1207 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO);
1208 	oct->reg_list.pci_win_wr_addr =
1209 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64);
1210 
1211 	oct->reg_list.pci_win_rd_addr_hi =
1212 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI);
1213 	oct->reg_list.pci_win_rd_addr_lo =
1214 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO);
1215 	oct->reg_list.pci_win_rd_addr =
1216 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64);
1217 
1218 	oct->reg_list.pci_win_wr_data_hi =
1219 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI);
1220 	oct->reg_list.pci_win_wr_data_lo =
1221 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO);
1222 	oct->reg_list.pci_win_wr_data =
1223 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64);
1224 
1225 	oct->reg_list.pci_win_rd_data_hi =
1226 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI);
1227 	oct->reg_list.pci_win_rd_data_lo =
1228 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO);
1229 	oct->reg_list.pci_win_rd_data =
1230 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64);
1231 
1232 	cn23xx_get_pcie_qlmport(oct);
1233 
1234 	cn23xx->intr_mask64 = CN23XX_INTR_MASK;
1235 	if (!oct->msix_on)
1236 		cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME;
1237 	if (oct->rev_id >= OCTEON_CN23XX_REV_1_1)
1238 		cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX;
1239 
1240 	cn23xx->intr_sum_reg64 =
1241 	    bar0_pciaddr +
1242 	    CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num);
1243 	cn23xx->intr_enb_reg64 =
1244 	    bar0_pciaddr +
1245 	    CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num);
1246 }
1247 
1248 int cn23xx_sriov_config(struct octeon_device *oct)
1249 {
1250 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1251 	u32 max_rings, total_rings, max_vfs, rings_per_vf;
1252 	u32 pf_srn, num_pf_rings;
1253 	u32 max_possible_vfs;
1254 
1255 	cn23xx->conf =
1256 		(struct octeon_config *)oct_get_config_info(oct, LIO_23XX);
1257 	switch (oct->rev_id) {
1258 	case OCTEON_CN23XX_REV_1_0:
1259 		max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0;
1260 		max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0;
1261 		break;
1262 	case OCTEON_CN23XX_REV_1_1:
1263 		max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
1264 		max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1;
1265 		break;
1266 	default:
1267 		max_rings = CN23XX_MAX_RINGS_PER_PF;
1268 		max_possible_vfs = CN23XX_MAX_VFS_PER_PF;
1269 		break;
1270 	}
1271 
1272 	if (oct->sriov_info.num_pf_rings)
1273 		num_pf_rings = oct->sriov_info.num_pf_rings;
1274 	else
1275 		num_pf_rings = num_present_cpus();
1276 
1277 #ifdef CONFIG_PCI_IOV
1278 	max_vfs = min_t(u32,
1279 			(max_rings - num_pf_rings), max_possible_vfs);
1280 	rings_per_vf = 1;
1281 #else
1282 	max_vfs = 0;
1283 	rings_per_vf = 0;
1284 #endif
1285 
1286 	total_rings = num_pf_rings + max_vfs;
1287 
1288 	/* the first ring of the pf */
1289 	pf_srn = total_rings - num_pf_rings;
1290 
1291 	oct->sriov_info.trs = total_rings;
1292 	oct->sriov_info.max_vfs = max_vfs;
1293 	oct->sriov_info.rings_per_vf = rings_per_vf;
1294 	oct->sriov_info.pf_srn = pf_srn;
1295 	oct->sriov_info.num_pf_rings = num_pf_rings;
1296 	dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n",
1297 		   oct->sriov_info.trs, oct->sriov_info.max_vfs,
1298 		   oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn,
1299 		   oct->sriov_info.num_pf_rings);
1300 
1301 	oct->sriov_info.sriov_enabled = 0;
1302 
1303 	return 0;
1304 }
1305 
1306 int setup_cn23xx_octeon_pf_device(struct octeon_device *oct)
1307 {
1308 	u32 data32;
1309 	u64 BAR0, BAR1;
1310 
1311 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32);
1312 	BAR0 = (u64)(data32 & ~0xf);
1313 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32);
1314 	BAR0 |= ((u64)data32 << 32);
1315 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32);
1316 	BAR1 = (u64)(data32 & ~0xf);
1317 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32);
1318 	BAR1 |= ((u64)data32 << 32);
1319 
1320 	if (!BAR0 || !BAR1) {
1321 		if (!BAR0)
1322 			dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n");
1323 		if (!BAR1)
1324 			dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n");
1325 		return 1;
1326 	}
1327 
1328 	if (octeon_map_pci_barx(oct, 0, 0))
1329 		return 1;
1330 
1331 	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
1332 		dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n",
1333 			__func__);
1334 		octeon_unmap_pci_barx(oct, 0);
1335 		return 1;
1336 	}
1337 
1338 	if (cn23xx_get_pf_num(oct) != 0)
1339 		return 1;
1340 
1341 	if (cn23xx_sriov_config(oct)) {
1342 		octeon_unmap_pci_barx(oct, 0);
1343 		octeon_unmap_pci_barx(oct, 1);
1344 		return 1;
1345 	}
1346 
1347 	octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL);
1348 
1349 	oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs;
1350 	oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs;
1351 	oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox;
1352 	oct->fn_list.free_mbox = cn23xx_free_pf_mbox;
1353 
1354 	oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler;
1355 	oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler;
1356 
1357 	oct->fn_list.soft_reset = cn23xx_pf_soft_reset;
1358 	oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs;
1359 	oct->fn_list.update_iq_read_idx = cn23xx_update_read_index;
1360 
1361 	oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup;
1362 	oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write;
1363 	oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read;
1364 
1365 	oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt;
1366 	oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt;
1367 
1368 	oct->fn_list.enable_io_queues = cn23xx_enable_io_queues;
1369 	oct->fn_list.disable_io_queues = cn23xx_disable_io_queues;
1370 
1371 	cn23xx_setup_reg_address(oct);
1372 
1373 	oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct);
1374 
1375 	return 0;
1376 }
1377 
1378 int validate_cn23xx_pf_config_info(struct octeon_device *oct,
1379 				   struct octeon_config *conf23xx)
1380 {
1381 	if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) {
1382 		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
1383 			__func__, CFG_GET_IQ_MAX_Q(conf23xx),
1384 			CN23XX_MAX_INPUT_QUEUES);
1385 		return 1;
1386 	}
1387 
1388 	if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) {
1389 		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
1390 			__func__, CFG_GET_OQ_MAX_Q(conf23xx),
1391 			CN23XX_MAX_OUTPUT_QUEUES);
1392 		return 1;
1393 	}
1394 
1395 	if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR &&
1396 	    CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) {
1397 		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
1398 			__func__);
1399 		return 1;
1400 	}
1401 
1402 	if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) {
1403 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
1404 			__func__);
1405 		return 1;
1406 	}
1407 
1408 	if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) {
1409 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
1410 			__func__);
1411 		return 1;
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 void cn23xx_dump_iq_regs(struct octeon_device *oct)
1418 {
1419 	u32 regval, q_no;
1420 
1421 	dev_dbg(&oct->pci_dev->dev, "SLI_IQ_DOORBELL_0 [0x%x]: 0x%016llx\n",
1422 		CN23XX_SLI_IQ_DOORBELL(0),
1423 		CVM_CAST64(octeon_read_csr64
1424 			(oct, CN23XX_SLI_IQ_DOORBELL(0))));
1425 
1426 	dev_dbg(&oct->pci_dev->dev, "SLI_IQ_BASEADDR_0 [0x%x]: 0x%016llx\n",
1427 		CN23XX_SLI_IQ_BASE_ADDR64(0),
1428 		CVM_CAST64(octeon_read_csr64
1429 			(oct, CN23XX_SLI_IQ_BASE_ADDR64(0))));
1430 
1431 	dev_dbg(&oct->pci_dev->dev, "SLI_IQ_FIFO_RSIZE_0 [0x%x]: 0x%016llx\n",
1432 		CN23XX_SLI_IQ_SIZE(0),
1433 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_IQ_SIZE(0))));
1434 
1435 	dev_dbg(&oct->pci_dev->dev, "SLI_CTL_STATUS [0x%x]: 0x%016llx\n",
1436 		CN23XX_SLI_CTL_STATUS,
1437 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_CTL_STATUS)));
1438 
1439 	for (q_no = 0; q_no < CN23XX_MAX_INPUT_QUEUES; q_no++) {
1440 		dev_dbg(&oct->pci_dev->dev, "SLI_PKT[%d]_INPUT_CTL [0x%x]: 0x%016llx\n",
1441 			q_no, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
1442 			CVM_CAST64(octeon_read_csr64
1443 				(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))));
1444 	}
1445 
1446 	pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
1447 	dev_dbg(&oct->pci_dev->dev, "Config DevCtl [0x%x]: 0x%08x\n",
1448 		CN23XX_CONFIG_PCIE_DEVCTL, regval);
1449 
1450 	dev_dbg(&oct->pci_dev->dev, "SLI_PRT[%d]_CFG [0x%llx]: 0x%016llx\n",
1451 		oct->pcie_port, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port),
1452 		CVM_CAST64(lio_pci_readq(
1453 			oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port))));
1454 
1455 	dev_dbg(&oct->pci_dev->dev, "SLI_S2M_PORT[%d]_CTL [0x%x]: 0x%016llx\n",
1456 		oct->pcie_port, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port),
1457 		CVM_CAST64(octeon_read_csr64(
1458 			oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port))));
1459 }
1460 
1461 int cn23xx_fw_loaded(struct octeon_device *oct)
1462 {
1463 	u64 val;
1464 
1465 	/* If there's more than one active PF on this NIC, then that
1466 	 * implies that the NIC firmware is loaded and running.  This check
1467 	 * prevents a rare false negative that might occur if we only relied
1468 	 * on checking the SCR2_BIT_FW_LOADED flag.  The false negative would
1469 	 * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even
1470 	 * though the firmware was already loaded but still booting and has yet
1471 	 * to set SCR2_BIT_FW_LOADED.
1472 	 */
1473 	if (atomic_read(oct->adapter_refcount) > 1)
1474 		return 1;
1475 
1476 	val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1477 	return (val >> SCR2_BIT_FW_LOADED) & 1ULL;
1478 }
1479 
1480 void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx,
1481 					u8 *mac)
1482 {
1483 	if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) {
1484 		struct octeon_mbox_cmd mbox_cmd;
1485 
1486 		mbox_cmd.msg.u64 = 0;
1487 		mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
1488 		mbox_cmd.msg.s.resp_needed = 0;
1489 		mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR;
1490 		mbox_cmd.msg.s.len = 1;
1491 		mbox_cmd.recv_len = 0;
1492 		mbox_cmd.recv_status = 0;
1493 		mbox_cmd.fn = NULL;
1494 		mbox_cmd.fn_arg = 0;
1495 		ether_addr_copy(mbox_cmd.msg.s.params, mac);
1496 		mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
1497 		octeon_mbox_write(oct, &mbox_cmd);
1498 	}
1499 }
1500 
1501 static void
1502 cn23xx_get_vf_stats_callback(struct octeon_device *oct,
1503 			     struct octeon_mbox_cmd *cmd, void *arg)
1504 {
1505 	struct oct_vf_stats_ctx *ctx = arg;
1506 
1507 	memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats));
1508 	atomic_set(&ctx->status, 1);
1509 }
1510 
1511 int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx,
1512 			struct oct_vf_stats *stats)
1513 {
1514 	u32 timeout = HZ; // 1sec
1515 	struct octeon_mbox_cmd mbox_cmd;
1516 	struct oct_vf_stats_ctx ctx;
1517 	u32 count = 0, ret;
1518 
1519 	if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx)))
1520 		return -1;
1521 
1522 	if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data))
1523 		return -1;
1524 
1525 	mbox_cmd.msg.u64 = 0;
1526 	mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
1527 	mbox_cmd.msg.s.resp_needed = 1;
1528 	mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS;
1529 	mbox_cmd.msg.s.len = 1;
1530 	mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
1531 	mbox_cmd.recv_len = 0;
1532 	mbox_cmd.recv_status = 0;
1533 	mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback;
1534 	ctx.stats = stats;
1535 	atomic_set(&ctx.status, 0);
1536 	mbox_cmd.fn_arg = (void *)&ctx;
1537 	memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data));
1538 	octeon_mbox_write(oct, &mbox_cmd);
1539 
1540 	do {
1541 		schedule_timeout_uninterruptible(1);
1542 	} while ((atomic_read(&ctx.status) == 0) && (count++ < timeout));
1543 
1544 	ret = atomic_read(&ctx.status);
1545 	if (ret == 0) {
1546 		octeon_mbox_cancel(oct, 0);
1547 		dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n",
1548 			vfidx);
1549 		return -1;
1550 	}
1551 
1552 	return 0;
1553 }
1554