1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/pci.h> 19 #include <linux/vmalloc.h> 20 #include <linux/etherdevice.h> 21 #include "liquidio_common.h" 22 #include "octeon_droq.h" 23 #include "octeon_iq.h" 24 #include "response_manager.h" 25 #include "octeon_device.h" 26 #include "cn23xx_pf_device.h" 27 #include "octeon_main.h" 28 #include "octeon_mailbox.h" 29 30 #define RESET_NOTDONE 0 31 #define RESET_DONE 1 32 33 /* Change the value of SLI Packet Input Jabber Register to allow 34 * VXLAN TSO packets which can be 64424 bytes, exceeding the 35 * MAX_GSO_SIZE we supplied to the kernel 36 */ 37 #define CN23XX_INPUT_JABBER 64600 38 39 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct) 40 { 41 int i = 0; 42 u32 regval = 0; 43 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 44 45 /*In cn23xx_soft_reset*/ 46 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n", 47 "CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG), 48 CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG))); 49 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 50 "CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1), 51 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1))); 52 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 53 "CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST, 54 lio_pci_readq(oct, CN23XX_RST_SOFT_RST)); 55 56 /*In cn23xx_set_dpi_regs*/ 57 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 58 "CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL, 59 lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL)); 60 61 for (i = 0; i < 6; i++) { 62 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 63 "CN23XX_DPI_DMA_ENG_ENB", i, 64 CN23XX_DPI_DMA_ENG_ENB(i), 65 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i))); 66 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 67 "CN23XX_DPI_DMA_ENG_BUF", i, 68 CN23XX_DPI_DMA_ENG_BUF(i), 69 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i))); 70 } 71 72 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL", 73 CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL)); 74 75 /*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */ 76 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 77 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 78 "CN23XX_CONFIG_PCIE_DEVCTL", 79 CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval)); 80 81 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 82 "CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port, 83 CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port), 84 lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port))); 85 86 /*In cn23xx_specific_regs_setup */ 87 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 88 "CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port, 89 CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)), 90 CVM_CAST64(octeon_read_csr64( 91 oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)))); 92 93 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 94 "CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST), 95 (u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 96 97 /*In cn23xx_setup_global_mac_regs*/ 98 for (i = 0; i < CN23XX_MAX_MACS; i++) { 99 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 100 "CN23XX_SLI_PKT_MAC_RINFO64", i, 101 CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)), 102 CVM_CAST64(octeon_read_csr64 103 (oct, CN23XX_SLI_PKT_MAC_RINFO64 104 (i, oct->pf_num)))); 105 } 106 107 /*In cn23xx_setup_global_input_regs*/ 108 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { 109 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 110 "CN23XX_SLI_IQ_PKT_CONTROL64", i, 111 CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)), 112 CVM_CAST64(octeon_read_csr64 113 (oct, CN23XX_SLI_IQ_PKT_CONTROL64(i)))); 114 } 115 116 /*In cn23xx_setup_global_output_regs*/ 117 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 118 "CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK), 119 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK))); 120 121 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { 122 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 123 "CN23XX_SLI_OQ_PKT_CONTROL", i, 124 CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)), 125 CVM_CAST64(octeon_read_csr( 126 oct, CN23XX_SLI_OQ_PKT_CONTROL(i)))); 127 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 128 "CN23XX_SLI_OQ_PKT_INT_LEVELS", i, 129 CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)), 130 CVM_CAST64(octeon_read_csr64( 131 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i)))); 132 } 133 134 /*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/ 135 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 136 "cn23xx->intr_enb_reg64", 137 CVM_CAST64((long)(cn23xx->intr_enb_reg64)), 138 CVM_CAST64(readq(cn23xx->intr_enb_reg64))); 139 140 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 141 "cn23xx->intr_sum_reg64", 142 CVM_CAST64((long)(cn23xx->intr_sum_reg64)), 143 CVM_CAST64(readq(cn23xx->intr_sum_reg64))); 144 145 /*In cn23xx_setup_iq_regs*/ 146 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { 147 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 148 "CN23XX_SLI_IQ_BASE_ADDR64", i, 149 CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)), 150 CVM_CAST64(octeon_read_csr64( 151 oct, CN23XX_SLI_IQ_BASE_ADDR64(i)))); 152 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 153 "CN23XX_SLI_IQ_SIZE", i, 154 CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)), 155 CVM_CAST64(octeon_read_csr 156 (oct, CN23XX_SLI_IQ_SIZE(i)))); 157 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 158 "CN23XX_SLI_IQ_DOORBELL", i, 159 CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)), 160 CVM_CAST64(octeon_read_csr64( 161 oct, CN23XX_SLI_IQ_DOORBELL(i)))); 162 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 163 "CN23XX_SLI_IQ_INSTR_COUNT64", i, 164 CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)), 165 CVM_CAST64(octeon_read_csr64( 166 oct, CN23XX_SLI_IQ_INSTR_COUNT64(i)))); 167 } 168 169 /*In cn23xx_setup_oq_regs*/ 170 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { 171 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 172 "CN23XX_SLI_OQ_BASE_ADDR64", i, 173 CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)), 174 CVM_CAST64(octeon_read_csr64( 175 oct, CN23XX_SLI_OQ_BASE_ADDR64(i)))); 176 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 177 "CN23XX_SLI_OQ_SIZE", i, 178 CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)), 179 CVM_CAST64(octeon_read_csr 180 (oct, CN23XX_SLI_OQ_SIZE(i)))); 181 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 182 "CN23XX_SLI_OQ_BUFF_INFO_SIZE", i, 183 CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)), 184 CVM_CAST64(octeon_read_csr( 185 oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)))); 186 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 187 "CN23XX_SLI_OQ_PKTS_SENT", i, 188 CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)), 189 CVM_CAST64(octeon_read_csr64( 190 oct, CN23XX_SLI_OQ_PKTS_SENT(i)))); 191 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 192 "CN23XX_SLI_OQ_PKTS_CREDIT", i, 193 CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)), 194 CVM_CAST64(octeon_read_csr64( 195 oct, CN23XX_SLI_OQ_PKTS_CREDIT(i)))); 196 } 197 198 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 199 "CN23XX_SLI_PKT_TIME_INT", 200 CVM_CAST64(CN23XX_SLI_PKT_TIME_INT), 201 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT))); 202 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 203 "CN23XX_SLI_PKT_CNT_INT", 204 CVM_CAST64(CN23XX_SLI_PKT_CNT_INT), 205 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT))); 206 } 207 208 static int cn23xx_pf_soft_reset(struct octeon_device *oct) 209 { 210 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); 211 212 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n", 213 oct->octeon_id); 214 215 octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL); 216 217 /* Initiate chip-wide soft reset */ 218 lio_pci_readq(oct, CN23XX_RST_SOFT_RST); 219 lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST); 220 221 /* Wait for 100ms as Octeon resets. */ 222 mdelay(100); 223 224 if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) { 225 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n", 226 oct->octeon_id); 227 return 1; 228 } 229 230 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n", 231 oct->octeon_id); 232 233 /* restore the reset value*/ 234 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); 235 236 return 0; 237 } 238 239 static void cn23xx_enable_error_reporting(struct octeon_device *oct) 240 { 241 u32 regval; 242 u32 uncorrectable_err_mask, corrtable_err_status; 243 244 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 245 if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) { 246 uncorrectable_err_mask = 0; 247 corrtable_err_status = 0; 248 pci_read_config_dword(oct->pci_dev, 249 CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK, 250 &uncorrectable_err_mask); 251 pci_read_config_dword(oct->pci_dev, 252 CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS, 253 &corrtable_err_status); 254 dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n" 255 "\tdev_ctl_status_reg = 0x%08x\n" 256 "\tuncorrectable_error_mask_reg = 0x%08x\n" 257 "\tcorrectable_error_status_reg = 0x%08x\n", 258 regval, uncorrectable_err_mask, 259 corrtable_err_status); 260 } 261 262 regval |= 0xf; /* Enable Link error reporting */ 263 264 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n", 265 oct->octeon_id); 266 pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval); 267 } 268 269 static u32 cn23xx_coprocessor_clock(struct octeon_device *oct) 270 { 271 /* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER 272 * for SLI. 273 */ 274 275 /* TBD: get the info in Hand-shake */ 276 return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50); 277 } 278 279 u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us) 280 { 281 /* This gives the SLI clock per microsec */ 282 u32 oqticks_per_us = cn23xx_coprocessor_clock(oct); 283 284 oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us; 285 286 /* This gives the clock cycles per millisecond */ 287 oqticks_per_us *= 1000; 288 289 /* This gives the oq ticks (1024 core clock cycles) per millisecond */ 290 oqticks_per_us /= 1024; 291 292 /* time_intr is in microseconds. The next 2 steps gives the oq ticks 293 * corressponding to time_intr. 294 */ 295 oqticks_per_us *= time_intr_in_us; 296 oqticks_per_us /= 1000; 297 298 return oqticks_per_us; 299 } 300 301 static void cn23xx_setup_global_mac_regs(struct octeon_device *oct) 302 { 303 u16 mac_no = oct->pcie_port; 304 u16 pf_num = oct->pf_num; 305 u64 reg_val; 306 u64 temp; 307 308 /* programming SRN and TRS for each MAC(0..3) */ 309 310 dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n", 311 __func__, mac_no); 312 /* By default, mapping all 64 IOQs to a single MACs */ 313 314 reg_val = 315 octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)); 316 317 if (oct->rev_id == OCTEON_CN23XX_REV_1_1) { 318 /* setting SRN <6:0> */ 319 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1; 320 } else { 321 /* setting SRN <6:0> */ 322 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF; 323 } 324 325 /* setting TRS <23:16> */ 326 reg_val = reg_val | 327 (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS); 328 /* setting RPVF <39:32> */ 329 temp = oct->sriov_info.rings_per_vf & 0xff; 330 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS); 331 332 /* setting NVFS <55:48> */ 333 temp = oct->sriov_info.max_vfs & 0xff; 334 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS); 335 336 /* write these settings to MAC register */ 337 octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num), 338 reg_val); 339 340 dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", 341 mac_no, pf_num, (u64)octeon_read_csr64 342 (oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num))); 343 } 344 345 static int cn23xx_reset_io_queues(struct octeon_device *oct) 346 { 347 int ret_val = 0; 348 u64 d64; 349 u32 q_no, srn, ern; 350 u32 loop = 1000; 351 352 srn = oct->sriov_info.pf_srn; 353 ern = srn + oct->sriov_info.num_pf_rings; 354 355 /*As per HRM reg description, s/w cant write 0 to ENB. */ 356 /*to make the queue off, need to set the RST bit. */ 357 358 /* Reset the Enable bit for all the 64 IQs. */ 359 for (q_no = srn; q_no < ern; q_no++) { 360 /* set RST bit to 1. This bit applies to both IQ and OQ */ 361 d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 362 d64 = d64 | CN23XX_PKT_INPUT_CTL_RST; 363 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); 364 } 365 366 /*wait until the RST bit is clear or the RST and quite bits are set*/ 367 for (q_no = srn; q_no < ern; q_no++) { 368 u64 reg_val = octeon_read_csr64(oct, 369 CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 370 while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) && 371 !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) && 372 loop--) { 373 WRITE_ONCE(reg_val, octeon_read_csr64( 374 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 375 } 376 if (!loop) { 377 dev_err(&oct->pci_dev->dev, 378 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", 379 q_no); 380 return -1; 381 } 382 WRITE_ONCE(reg_val, READ_ONCE(reg_val) & 383 ~CN23XX_PKT_INPUT_CTL_RST); 384 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 385 READ_ONCE(reg_val)); 386 387 WRITE_ONCE(reg_val, octeon_read_csr64( 388 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 389 if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) { 390 dev_err(&oct->pci_dev->dev, 391 "clearing the reset failed for qno: %u\n", 392 q_no); 393 ret_val = -1; 394 } 395 } 396 397 return ret_val; 398 } 399 400 static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct) 401 { 402 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 403 struct octeon_instr_queue *iq; 404 u64 intr_threshold, reg_val; 405 u32 q_no, ern, srn; 406 u64 pf_num; 407 u64 vf_num; 408 409 pf_num = oct->pf_num; 410 411 srn = oct->sriov_info.pf_srn; 412 ern = srn + oct->sriov_info.num_pf_rings; 413 414 if (cn23xx_reset_io_queues(oct)) 415 return -1; 416 417 /** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg 418 * for all queues.Only PF can set these bits. 419 * bits 29:30 indicate the MAC num. 420 * bits 32:47 indicate the PVF num. 421 */ 422 for (q_no = 0; q_no < ern; q_no++) { 423 reg_val = oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS; 424 425 /* for VF assigned queues. */ 426 if (q_no < oct->sriov_info.pf_srn) { 427 vf_num = q_no / oct->sriov_info.rings_per_vf; 428 vf_num += 1; /* VF1, VF2,........ */ 429 } else { 430 vf_num = 0; 431 } 432 433 reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS; 434 reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS; 435 436 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 437 reg_val); 438 } 439 440 /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for 441 * pf queues 442 */ 443 for (q_no = srn; q_no < ern; q_no++) { 444 void __iomem *inst_cnt_reg; 445 446 iq = oct->instr_queue[q_no]; 447 if (iq) 448 inst_cnt_reg = iq->inst_cnt_reg; 449 else 450 inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + 451 CN23XX_SLI_IQ_INSTR_COUNT64(q_no); 452 453 reg_val = 454 octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 455 456 reg_val |= CN23XX_PKT_INPUT_CTL_MASK; 457 458 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 459 reg_val); 460 461 /* Set WMARK level for triggering PI_INT */ 462 /* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */ 463 intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) & 464 CN23XX_PKT_IN_DONE_WMARK_MASK; 465 466 writeq((readq(inst_cnt_reg) & 467 ~(CN23XX_PKT_IN_DONE_WMARK_MASK << 468 CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | 469 (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS), 470 inst_cnt_reg); 471 } 472 return 0; 473 } 474 475 static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct) 476 { 477 u32 reg_val; 478 u32 q_no, ern, srn; 479 u64 time_threshold; 480 481 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 482 483 srn = oct->sriov_info.pf_srn; 484 ern = srn + oct->sriov_info.num_pf_rings; 485 486 if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) { 487 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32); 488 } else { 489 /** Set Output queue watermark to 0 to disable backpressure */ 490 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0); 491 } 492 493 for (q_no = srn; q_no < ern; q_no++) { 494 reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); 495 496 /* set DPTR */ 497 reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR; 498 499 /* reset BMODE */ 500 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE); 501 502 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap 503 * for Output Queue ScatterList 504 * reset ROR_P, NSR_P 505 */ 506 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P); 507 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P); 508 509 #ifdef __LITTLE_ENDIAN_BITFIELD 510 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P); 511 #else 512 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P); 513 #endif 514 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap 515 * for Output Queue Data 516 * reset ROR, NSR 517 */ 518 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR); 519 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR); 520 /* set the ES bit */ 521 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES); 522 523 /* write all the selected settings */ 524 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); 525 526 /* Enabling these interrupt in oct->fn_list.enable_interrupt() 527 * routine which called after IOQ init. 528 * Set up interrupt packet and time thresholds 529 * for all the OQs 530 */ 531 time_threshold = cn23xx_pf_get_oq_ticks( 532 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); 533 534 octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no), 535 (CFG_GET_OQ_INTR_PKT(cn23xx->conf) | 536 (time_threshold << 32))); 537 } 538 539 /** Setting the water mark level for pko back pressure **/ 540 writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK); 541 542 /** Disabling setting OQs in reset when ring has no dorebells 543 * enabling this will cause of head of line blocking 544 */ 545 /* Do it only for pass1.1. and pass1.2 */ 546 if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) || 547 (oct->rev_id == OCTEON_CN23XX_REV_1_1)) 548 writeq(readq((u8 *)oct->mmio[0].hw_addr + 549 CN23XX_SLI_GBL_CONTROL) | 0x2, 550 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL); 551 552 /** Enable channel-level backpressure */ 553 if (oct->pf_num) 554 writeq(0xffffffffffffffffULL, 555 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S); 556 else 557 writeq(0xffffffffffffffffULL, 558 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S); 559 } 560 561 static int cn23xx_setup_pf_device_regs(struct octeon_device *oct) 562 { 563 cn23xx_enable_error_reporting(oct); 564 565 /* program the MAC(0..3)_RINFO before setting up input/output regs */ 566 cn23xx_setup_global_mac_regs(oct); 567 568 if (cn23xx_pf_setup_global_input_regs(oct)) 569 return -1; 570 571 cn23xx_pf_setup_global_output_regs(oct); 572 573 /* Default error timeout value should be 0x200000 to avoid host hang 574 * when reads invalid register 575 */ 576 octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL, 577 CN23XX_SLI_WINDOW_CTL_DEFAULT); 578 579 /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */ 580 octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER); 581 return 0; 582 } 583 584 static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) 585 { 586 struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; 587 u64 pkt_in_done; 588 589 iq_no += oct->sriov_info.pf_srn; 590 591 /* Write the start of the input queue's ring and its size */ 592 octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no), 593 iq->base_addr_dma); 594 octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); 595 596 /* Remember the doorbell & instruction count register addr 597 * for this queue 598 */ 599 iq->doorbell_reg = 600 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no); 601 iq->inst_cnt_reg = 602 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); 603 dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", 604 iq_no, iq->doorbell_reg, iq->inst_cnt_reg); 605 606 /* Store the current instruction counter (used in flush_iq 607 * calculation) 608 */ 609 pkt_in_done = readq(iq->inst_cnt_reg); 610 611 if (oct->msix_on) { 612 /* Set CINT_ENB to enable IQ interrupt */ 613 writeq((pkt_in_done | CN23XX_INTR_CINT_ENB), 614 iq->inst_cnt_reg); 615 } else { 616 /* Clear the count by writing back what we read, but don't 617 * enable interrupts 618 */ 619 writeq(pkt_in_done, iq->inst_cnt_reg); 620 } 621 622 iq->reset_instr_cnt = 0; 623 } 624 625 static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no) 626 { 627 u32 reg_val; 628 struct octeon_droq *droq = oct->droq[oq_no]; 629 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 630 u64 time_threshold; 631 u64 cnt_threshold; 632 633 oq_no += oct->sriov_info.pf_srn; 634 635 octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no), 636 droq->desc_ring_dma); 637 octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); 638 639 octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), 640 droq->buffer_size); 641 642 /* Get the mapped address of the pkt_sent and pkts_credit regs */ 643 droq->pkts_sent_reg = 644 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no); 645 droq->pkts_credit_reg = 646 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); 647 648 if (!oct->msix_on) { 649 /* Enable this output queue to generate Packet Timer Interrupt 650 */ 651 reg_val = 652 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); 653 reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB; 654 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), 655 reg_val); 656 657 /* Enable this output queue to generate Packet Count Interrupt 658 */ 659 reg_val = 660 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); 661 reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB; 662 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), 663 reg_val); 664 } else { 665 time_threshold = cn23xx_pf_get_oq_ticks( 666 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); 667 cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf); 668 669 octeon_write_csr64( 670 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no), 671 ((time_threshold << 32 | cnt_threshold))); 672 } 673 } 674 675 static void cn23xx_pf_mbox_thread(struct work_struct *work) 676 { 677 struct cavium_wk *wk = (struct cavium_wk *)work; 678 struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr; 679 struct octeon_device *oct = mbox->oct_dev; 680 u64 mbox_int_val, val64; 681 u32 q_no, i; 682 683 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) { 684 /*read and clear by writing 1*/ 685 mbox_int_val = readq(mbox->mbox_int_reg); 686 writeq(mbox_int_val, mbox->mbox_int_reg); 687 688 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { 689 q_no = i * oct->sriov_info.rings_per_vf; 690 691 val64 = readq(oct->mbox[q_no]->mbox_write_reg); 692 693 if (val64 && (val64 != OCTEON_PFVFACK)) { 694 if (octeon_mbox_read(oct->mbox[q_no])) 695 octeon_mbox_process_message( 696 oct->mbox[q_no]); 697 } 698 } 699 700 schedule_delayed_work(&wk->work, msecs_to_jiffies(10)); 701 } else { 702 octeon_mbox_process_message(mbox); 703 } 704 } 705 706 static int cn23xx_setup_pf_mbox(struct octeon_device *oct) 707 { 708 struct octeon_mbox *mbox = NULL; 709 u16 mac_no = oct->pcie_port; 710 u16 pf_num = oct->pf_num; 711 u32 q_no, i; 712 713 if (!oct->sriov_info.max_vfs) 714 return 0; 715 716 for (i = 0; i < oct->sriov_info.max_vfs; i++) { 717 q_no = i * oct->sriov_info.rings_per_vf; 718 719 mbox = vmalloc(sizeof(*mbox)); 720 if (!mbox) 721 goto free_mbox; 722 723 memset(mbox, 0, sizeof(struct octeon_mbox)); 724 725 spin_lock_init(&mbox->lock); 726 727 mbox->oct_dev = oct; 728 729 mbox->q_no = q_no; 730 731 mbox->state = OCTEON_MBOX_STATE_IDLE; 732 733 /* PF mbox interrupt reg */ 734 mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr + 735 CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num); 736 737 /* PF writes into SIG0 reg */ 738 mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr + 739 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0); 740 741 /* PF reads from SIG1 reg */ 742 mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr + 743 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1); 744 745 /*Mail Box Thread creation*/ 746 INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work, 747 cn23xx_pf_mbox_thread); 748 mbox->mbox_poll_wk.ctxptr = (void *)mbox; 749 750 oct->mbox[q_no] = mbox; 751 752 writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg); 753 } 754 755 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) 756 schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work, 757 msecs_to_jiffies(0)); 758 759 return 0; 760 761 free_mbox: 762 while (i) { 763 i--; 764 vfree(oct->mbox[i]); 765 } 766 767 return 1; 768 } 769 770 static int cn23xx_free_pf_mbox(struct octeon_device *oct) 771 { 772 u32 q_no, i; 773 774 if (!oct->sriov_info.max_vfs) 775 return 0; 776 777 for (i = 0; i < oct->sriov_info.max_vfs; i++) { 778 q_no = i * oct->sriov_info.rings_per_vf; 779 cancel_delayed_work_sync( 780 &oct->mbox[q_no]->mbox_poll_wk.work); 781 vfree(oct->mbox[q_no]); 782 } 783 784 return 0; 785 } 786 787 static int cn23xx_enable_io_queues(struct octeon_device *oct) 788 { 789 u64 reg_val; 790 u32 srn, ern, q_no; 791 u32 loop = 1000; 792 793 srn = oct->sriov_info.pf_srn; 794 ern = srn + oct->num_iqs; 795 796 for (q_no = srn; q_no < ern; q_no++) { 797 /* set the corresponding IQ IS_64B bit */ 798 if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) { 799 reg_val = octeon_read_csr64( 800 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 801 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B; 802 octeon_write_csr64( 803 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); 804 } 805 806 /* set the corresponding IQ ENB bit */ 807 if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) { 808 /* IOQs are in reset by default in PEM2 mode, 809 * clearing reset bit 810 */ 811 reg_val = octeon_read_csr64( 812 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 813 814 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { 815 while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) && 816 !(reg_val & 817 CN23XX_PKT_INPUT_CTL_QUIET) && 818 --loop) { 819 reg_val = octeon_read_csr64( 820 oct, 821 CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 822 } 823 if (!loop) { 824 dev_err(&oct->pci_dev->dev, 825 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", 826 q_no); 827 return -1; 828 } 829 reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST; 830 octeon_write_csr64( 831 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 832 reg_val); 833 834 reg_val = octeon_read_csr64( 835 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 836 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { 837 dev_err(&oct->pci_dev->dev, 838 "clearing the reset failed for qno: %u\n", 839 q_no); 840 return -1; 841 } 842 } 843 reg_val = octeon_read_csr64( 844 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 845 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB; 846 octeon_write_csr64( 847 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); 848 } 849 } 850 for (q_no = srn; q_no < ern; q_no++) { 851 u32 reg_val; 852 /* set the corresponding OQ ENB bit */ 853 if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) { 854 reg_val = octeon_read_csr( 855 oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); 856 reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB; 857 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), 858 reg_val); 859 } 860 } 861 return 0; 862 } 863 864 static void cn23xx_disable_io_queues(struct octeon_device *oct) 865 { 866 int q_no, loop; 867 u64 d64; 868 u32 d32; 869 u32 srn, ern; 870 871 srn = oct->sriov_info.pf_srn; 872 ern = srn + oct->num_iqs; 873 874 /*** Disable Input Queues. ***/ 875 for (q_no = srn; q_no < ern; q_no++) { 876 loop = HZ; 877 878 /* start the Reset for a particular ring */ 879 WRITE_ONCE(d64, octeon_read_csr64( 880 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 881 WRITE_ONCE(d64, READ_ONCE(d64) & 882 (~(CN23XX_PKT_INPUT_CTL_RING_ENB))); 883 WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST); 884 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 885 READ_ONCE(d64)); 886 887 /* Wait until hardware indicates that the particular IQ 888 * is out of reset. 889 */ 890 WRITE_ONCE(d64, octeon_read_csr64( 891 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 892 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { 893 WRITE_ONCE(d64, octeon_read_csr64( 894 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 895 schedule_timeout_uninterruptible(1); 896 } 897 898 /* Reset the doorbell register for this Input Queue. */ 899 octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); 900 while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) && 901 loop--) { 902 schedule_timeout_uninterruptible(1); 903 } 904 } 905 906 /*** Disable Output Queues. ***/ 907 for (q_no = srn; q_no < ern; q_no++) { 908 loop = HZ; 909 910 /* Wait until hardware indicates that the particular IQ 911 * is out of reset.It given that SLI_PKT_RING_RST is 912 * common for both IQs and OQs 913 */ 914 WRITE_ONCE(d64, octeon_read_csr64( 915 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 916 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { 917 WRITE_ONCE(d64, octeon_read_csr64( 918 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 919 schedule_timeout_uninterruptible(1); 920 } 921 922 /* Reset the doorbell register for this Output Queue. */ 923 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no), 924 0xFFFFFFFF); 925 while (octeon_read_csr64(oct, 926 CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) && 927 loop--) { 928 schedule_timeout_uninterruptible(1); 929 } 930 931 /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */ 932 WRITE_ONCE(d32, octeon_read_csr( 933 oct, CN23XX_SLI_OQ_PKTS_SENT(q_no))); 934 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no), 935 READ_ONCE(d32)); 936 } 937 } 938 939 static u64 cn23xx_pf_msix_interrupt_handler(void *dev) 940 { 941 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; 942 struct octeon_device *oct = ioq_vector->oct_dev; 943 u64 pkts_sent; 944 u64 ret = 0; 945 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; 946 947 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); 948 949 if (!droq) { 950 dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n", 951 oct->pf_num, ioq_vector->ioq_num); 952 return 0; 953 } 954 955 pkts_sent = readq(droq->pkts_sent_reg); 956 957 /* If our device has interrupted, then proceed. Also check 958 * for all f's if interrupt was triggered on an error 959 * and the PCI read fails. 960 */ 961 if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL)) 962 return ret; 963 964 /* Write count reg in sli_pkt_cnts to clear these int.*/ 965 if ((pkts_sent & CN23XX_INTR_PO_INT) || 966 (pkts_sent & CN23XX_INTR_PI_INT)) { 967 if (pkts_sent & CN23XX_INTR_PO_INT) 968 ret |= MSIX_PO_INT; 969 } 970 971 if (pkts_sent & CN23XX_INTR_PI_INT) 972 /* We will clear the count when we update the read_index. */ 973 ret |= MSIX_PI_INT; 974 975 /* Never need to handle msix mbox intr for pf. They arrive on the last 976 * msix 977 */ 978 return ret; 979 } 980 981 static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct) 982 { 983 struct delayed_work *work; 984 u64 mbox_int_val; 985 u32 i, q_no; 986 987 mbox_int_val = readq(oct->mbox[0]->mbox_int_reg); 988 989 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { 990 q_no = i * oct->sriov_info.rings_per_vf; 991 992 if (mbox_int_val & BIT_ULL(q_no)) { 993 writeq(BIT_ULL(q_no), 994 oct->mbox[0]->mbox_int_reg); 995 if (octeon_mbox_read(oct->mbox[q_no])) { 996 work = &oct->mbox[q_no]->mbox_poll_wk.work; 997 schedule_delayed_work(work, 998 msecs_to_jiffies(0)); 999 } 1000 } 1001 } 1002 } 1003 1004 static irqreturn_t cn23xx_interrupt_handler(void *dev) 1005 { 1006 struct octeon_device *oct = (struct octeon_device *)dev; 1007 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1008 u64 intr64; 1009 1010 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); 1011 intr64 = readq(cn23xx->intr_sum_reg64); 1012 1013 oct->int_status = 0; 1014 1015 if (intr64 & CN23XX_INTR_ERR) 1016 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n", 1017 oct->octeon_id, CVM_CAST64(intr64)); 1018 1019 /* When VFs write into MBOX_SIG2 reg,these intr is set in PF */ 1020 if (intr64 & CN23XX_INTR_VF_MBOX) 1021 cn23xx_handle_pf_mbox_intr(oct); 1022 1023 if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) { 1024 if (intr64 & CN23XX_INTR_PKT_DATA) 1025 oct->int_status |= OCT_DEV_INTR_PKT_DATA; 1026 } 1027 1028 if (intr64 & (CN23XX_INTR_DMA0_FORCE)) 1029 oct->int_status |= OCT_DEV_INTR_DMA0_FORCE; 1030 if (intr64 & (CN23XX_INTR_DMA1_FORCE)) 1031 oct->int_status |= OCT_DEV_INTR_DMA1_FORCE; 1032 1033 /* Clear the current interrupts */ 1034 writeq(intr64, cn23xx->intr_sum_reg64); 1035 1036 return IRQ_HANDLED; 1037 } 1038 1039 static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr, 1040 u32 idx, int valid) 1041 { 1042 u64 bar1; 1043 u64 reg_adr; 1044 1045 if (!valid) { 1046 reg_adr = lio_pci_readq( 1047 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1048 WRITE_ONCE(bar1, reg_adr); 1049 lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL), 1050 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1051 reg_adr = lio_pci_readq( 1052 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1053 WRITE_ONCE(bar1, reg_adr); 1054 return; 1055 } 1056 1057 /* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores 1058 * bits <41:22> of the Core Addr 1059 */ 1060 lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK), 1061 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1062 1063 WRITE_ONCE(bar1, lio_pci_readq( 1064 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx))); 1065 } 1066 1067 static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask) 1068 { 1069 lio_pci_writeq(oct, mask, 1070 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1071 } 1072 1073 static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx) 1074 { 1075 return (u32)lio_pci_readq( 1076 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1077 } 1078 1079 /* always call with lock held */ 1080 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq) 1081 { 1082 u32 new_idx; 1083 u32 last_done; 1084 u32 pkt_in_done = readl(iq->inst_cnt_reg); 1085 1086 last_done = pkt_in_done - iq->pkt_in_done; 1087 iq->pkt_in_done = pkt_in_done; 1088 1089 /* Modulo of the new index with the IQ size will give us 1090 * the new index. The iq->reset_instr_cnt is always zero for 1091 * cn23xx, so no extra adjustments are needed. 1092 */ 1093 new_idx = (iq->octeon_read_index + 1094 (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) % 1095 iq->max_count; 1096 1097 return new_idx; 1098 } 1099 1100 static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) 1101 { 1102 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1103 u64 intr_val = 0; 1104 1105 /* Divide the single write to multiple writes based on the flag. */ 1106 /* Enable Interrupt */ 1107 if (intr_flag == OCTEON_ALL_INTR) { 1108 writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64); 1109 } else if (intr_flag & OCTEON_OUTPUT_INTR) { 1110 intr_val = readq(cn23xx->intr_enb_reg64); 1111 intr_val |= CN23XX_INTR_PKT_DATA; 1112 writeq(intr_val, cn23xx->intr_enb_reg64); 1113 } else if ((intr_flag & OCTEON_MBOX_INTR) && 1114 (oct->sriov_info.max_vfs > 0)) { 1115 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { 1116 intr_val = readq(cn23xx->intr_enb_reg64); 1117 intr_val |= CN23XX_INTR_VF_MBOX; 1118 writeq(intr_val, cn23xx->intr_enb_reg64); 1119 } 1120 } 1121 } 1122 1123 static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) 1124 { 1125 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1126 u64 intr_val = 0; 1127 1128 /* Disable Interrupts */ 1129 if (intr_flag == OCTEON_ALL_INTR) { 1130 writeq(0, cn23xx->intr_enb_reg64); 1131 } else if (intr_flag & OCTEON_OUTPUT_INTR) { 1132 intr_val = readq(cn23xx->intr_enb_reg64); 1133 intr_val &= ~CN23XX_INTR_PKT_DATA; 1134 writeq(intr_val, cn23xx->intr_enb_reg64); 1135 } else if ((intr_flag & OCTEON_MBOX_INTR) && 1136 (oct->sriov_info.max_vfs > 0)) { 1137 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { 1138 intr_val = readq(cn23xx->intr_enb_reg64); 1139 intr_val &= ~CN23XX_INTR_VF_MBOX; 1140 writeq(intr_val, cn23xx->intr_enb_reg64); 1141 } 1142 } 1143 } 1144 1145 static void cn23xx_get_pcie_qlmport(struct octeon_device *oct) 1146 { 1147 oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; 1148 1149 dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n", 1150 oct->pcie_port); 1151 } 1152 1153 static int cn23xx_get_pf_num(struct octeon_device *oct) 1154 { 1155 u32 fdl_bit = 0; 1156 u64 pkt0_in_ctl, d64; 1157 int pfnum, mac, trs, ret; 1158 1159 ret = 0; 1160 1161 /** Read Function Dependency Link reg to get the function number */ 1162 if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL, 1163 &fdl_bit) == 0) { 1164 oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) & 1165 CN23XX_PCIE_SRIOV_FDL_MASK); 1166 } else { 1167 ret = EINVAL; 1168 1169 /* Under some virtual environments, extended PCI regs are 1170 * inaccessible, in which case the above read will have failed. 1171 * In this case, read the PF number from the 1172 * SLI_PKT0_INPUT_CONTROL reg (written by f/w) 1173 */ 1174 pkt0_in_ctl = octeon_read_csr64(oct, 1175 CN23XX_SLI_IQ_PKT_CONTROL64(0)); 1176 pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) & 1177 CN23XX_PKT_INPUT_CTL_PF_NUM_MASK; 1178 mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; 1179 1180 /* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/ 1181 d64 = octeon_read_csr64(oct, 1182 CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum)); 1183 trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff; 1184 if (trs == 1) { 1185 dev_err(&oct->pci_dev->dev, 1186 "OCTEON: error reading PCI cfg space pfnum, re-read %u\n", 1187 pfnum); 1188 oct->pf_num = pfnum; 1189 ret = 0; 1190 } else { 1191 dev_err(&oct->pci_dev->dev, 1192 "OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n"); 1193 } 1194 } 1195 1196 return ret; 1197 } 1198 1199 static void cn23xx_setup_reg_address(struct octeon_device *oct) 1200 { 1201 u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr; 1202 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1203 1204 oct->reg_list.pci_win_wr_addr_hi = 1205 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI); 1206 oct->reg_list.pci_win_wr_addr_lo = 1207 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO); 1208 oct->reg_list.pci_win_wr_addr = 1209 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64); 1210 1211 oct->reg_list.pci_win_rd_addr_hi = 1212 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI); 1213 oct->reg_list.pci_win_rd_addr_lo = 1214 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO); 1215 oct->reg_list.pci_win_rd_addr = 1216 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64); 1217 1218 oct->reg_list.pci_win_wr_data_hi = 1219 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI); 1220 oct->reg_list.pci_win_wr_data_lo = 1221 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO); 1222 oct->reg_list.pci_win_wr_data = 1223 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64); 1224 1225 oct->reg_list.pci_win_rd_data_hi = 1226 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI); 1227 oct->reg_list.pci_win_rd_data_lo = 1228 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO); 1229 oct->reg_list.pci_win_rd_data = 1230 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64); 1231 1232 cn23xx_get_pcie_qlmport(oct); 1233 1234 cn23xx->intr_mask64 = CN23XX_INTR_MASK; 1235 if (!oct->msix_on) 1236 cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME; 1237 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) 1238 cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX; 1239 1240 cn23xx->intr_sum_reg64 = 1241 bar0_pciaddr + 1242 CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num); 1243 cn23xx->intr_enb_reg64 = 1244 bar0_pciaddr + 1245 CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num); 1246 } 1247 1248 int cn23xx_sriov_config(struct octeon_device *oct) 1249 { 1250 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1251 u32 max_rings, total_rings, max_vfs, rings_per_vf; 1252 u32 pf_srn, num_pf_rings; 1253 u32 max_possible_vfs; 1254 1255 cn23xx->conf = 1256 (struct octeon_config *)oct_get_config_info(oct, LIO_23XX); 1257 switch (oct->rev_id) { 1258 case OCTEON_CN23XX_REV_1_0: 1259 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0; 1260 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0; 1261 break; 1262 case OCTEON_CN23XX_REV_1_1: 1263 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1; 1264 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1; 1265 break; 1266 default: 1267 max_rings = CN23XX_MAX_RINGS_PER_PF; 1268 max_possible_vfs = CN23XX_MAX_VFS_PER_PF; 1269 break; 1270 } 1271 1272 if (oct->sriov_info.num_pf_rings) 1273 num_pf_rings = oct->sriov_info.num_pf_rings; 1274 else 1275 num_pf_rings = num_present_cpus(); 1276 1277 #ifdef CONFIG_PCI_IOV 1278 max_vfs = min_t(u32, 1279 (max_rings - num_pf_rings), max_possible_vfs); 1280 rings_per_vf = 1; 1281 #else 1282 max_vfs = 0; 1283 rings_per_vf = 0; 1284 #endif 1285 1286 total_rings = num_pf_rings + max_vfs; 1287 1288 /* the first ring of the pf */ 1289 pf_srn = total_rings - num_pf_rings; 1290 1291 oct->sriov_info.trs = total_rings; 1292 oct->sriov_info.max_vfs = max_vfs; 1293 oct->sriov_info.rings_per_vf = rings_per_vf; 1294 oct->sriov_info.pf_srn = pf_srn; 1295 oct->sriov_info.num_pf_rings = num_pf_rings; 1296 dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n", 1297 oct->sriov_info.trs, oct->sriov_info.max_vfs, 1298 oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn, 1299 oct->sriov_info.num_pf_rings); 1300 1301 oct->sriov_info.sriov_enabled = 0; 1302 1303 return 0; 1304 } 1305 1306 int setup_cn23xx_octeon_pf_device(struct octeon_device *oct) 1307 { 1308 u32 data32; 1309 u64 BAR0, BAR1; 1310 1311 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32); 1312 BAR0 = (u64)(data32 & ~0xf); 1313 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32); 1314 BAR0 |= ((u64)data32 << 32); 1315 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32); 1316 BAR1 = (u64)(data32 & ~0xf); 1317 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32); 1318 BAR1 |= ((u64)data32 << 32); 1319 1320 if (!BAR0 || !BAR1) { 1321 if (!BAR0) 1322 dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n"); 1323 if (!BAR1) 1324 dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n"); 1325 return 1; 1326 } 1327 1328 if (octeon_map_pci_barx(oct, 0, 0)) 1329 return 1; 1330 1331 if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) { 1332 dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n", 1333 __func__); 1334 octeon_unmap_pci_barx(oct, 0); 1335 return 1; 1336 } 1337 1338 if (cn23xx_get_pf_num(oct) != 0) 1339 return 1; 1340 1341 if (cn23xx_sriov_config(oct)) { 1342 octeon_unmap_pci_barx(oct, 0); 1343 octeon_unmap_pci_barx(oct, 1); 1344 return 1; 1345 } 1346 1347 octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL); 1348 1349 oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs; 1350 oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs; 1351 oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox; 1352 oct->fn_list.free_mbox = cn23xx_free_pf_mbox; 1353 1354 oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler; 1355 oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler; 1356 1357 oct->fn_list.soft_reset = cn23xx_pf_soft_reset; 1358 oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs; 1359 oct->fn_list.update_iq_read_idx = cn23xx_update_read_index; 1360 1361 oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup; 1362 oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write; 1363 oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read; 1364 1365 oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt; 1366 oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt; 1367 1368 oct->fn_list.enable_io_queues = cn23xx_enable_io_queues; 1369 oct->fn_list.disable_io_queues = cn23xx_disable_io_queues; 1370 1371 cn23xx_setup_reg_address(oct); 1372 1373 oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct); 1374 1375 return 0; 1376 } 1377 1378 int validate_cn23xx_pf_config_info(struct octeon_device *oct, 1379 struct octeon_config *conf23xx) 1380 { 1381 if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) { 1382 dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n", 1383 __func__, CFG_GET_IQ_MAX_Q(conf23xx), 1384 CN23XX_MAX_INPUT_QUEUES); 1385 return 1; 1386 } 1387 1388 if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) { 1389 dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n", 1390 __func__, CFG_GET_OQ_MAX_Q(conf23xx), 1391 CN23XX_MAX_OUTPUT_QUEUES); 1392 return 1; 1393 } 1394 1395 if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR && 1396 CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) { 1397 dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n", 1398 __func__); 1399 return 1; 1400 } 1401 1402 if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) { 1403 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", 1404 __func__); 1405 return 1; 1406 } 1407 1408 if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) { 1409 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", 1410 __func__); 1411 return 1; 1412 } 1413 1414 return 0; 1415 } 1416 1417 void cn23xx_dump_iq_regs(struct octeon_device *oct) 1418 { 1419 u32 regval, q_no; 1420 1421 dev_dbg(&oct->pci_dev->dev, "SLI_IQ_DOORBELL_0 [0x%x]: 0x%016llx\n", 1422 CN23XX_SLI_IQ_DOORBELL(0), 1423 CVM_CAST64(octeon_read_csr64 1424 (oct, CN23XX_SLI_IQ_DOORBELL(0)))); 1425 1426 dev_dbg(&oct->pci_dev->dev, "SLI_IQ_BASEADDR_0 [0x%x]: 0x%016llx\n", 1427 CN23XX_SLI_IQ_BASE_ADDR64(0), 1428 CVM_CAST64(octeon_read_csr64 1429 (oct, CN23XX_SLI_IQ_BASE_ADDR64(0)))); 1430 1431 dev_dbg(&oct->pci_dev->dev, "SLI_IQ_FIFO_RSIZE_0 [0x%x]: 0x%016llx\n", 1432 CN23XX_SLI_IQ_SIZE(0), 1433 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_IQ_SIZE(0)))); 1434 1435 dev_dbg(&oct->pci_dev->dev, "SLI_CTL_STATUS [0x%x]: 0x%016llx\n", 1436 CN23XX_SLI_CTL_STATUS, 1437 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_CTL_STATUS))); 1438 1439 for (q_no = 0; q_no < CN23XX_MAX_INPUT_QUEUES; q_no++) { 1440 dev_dbg(&oct->pci_dev->dev, "SLI_PKT[%d]_INPUT_CTL [0x%x]: 0x%016llx\n", 1441 q_no, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 1442 CVM_CAST64(octeon_read_csr64 1443 (oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)))); 1444 } 1445 1446 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 1447 dev_dbg(&oct->pci_dev->dev, "Config DevCtl [0x%x]: 0x%08x\n", 1448 CN23XX_CONFIG_PCIE_DEVCTL, regval); 1449 1450 dev_dbg(&oct->pci_dev->dev, "SLI_PRT[%d]_CFG [0x%llx]: 0x%016llx\n", 1451 oct->pcie_port, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port), 1452 CVM_CAST64(lio_pci_readq( 1453 oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port)))); 1454 1455 dev_dbg(&oct->pci_dev->dev, "SLI_S2M_PORT[%d]_CTL [0x%x]: 0x%016llx\n", 1456 oct->pcie_port, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port), 1457 CVM_CAST64(octeon_read_csr64( 1458 oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)))); 1459 } 1460 1461 int cn23xx_fw_loaded(struct octeon_device *oct) 1462 { 1463 u64 val; 1464 1465 /* If there's more than one active PF on this NIC, then that 1466 * implies that the NIC firmware is loaded and running. This check 1467 * prevents a rare false negative that might occur if we only relied 1468 * on checking the SCR2_BIT_FW_LOADED flag. The false negative would 1469 * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even 1470 * though the firmware was already loaded but still booting and has yet 1471 * to set SCR2_BIT_FW_LOADED. 1472 */ 1473 if (atomic_read(oct->adapter_refcount) > 1) 1474 return 1; 1475 1476 val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 1477 return (val >> SCR2_BIT_FW_LOADED) & 1ULL; 1478 } 1479 1480 void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx, 1481 u8 *mac) 1482 { 1483 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) { 1484 struct octeon_mbox_cmd mbox_cmd; 1485 1486 mbox_cmd.msg.u64 = 0; 1487 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; 1488 mbox_cmd.msg.s.resp_needed = 0; 1489 mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR; 1490 mbox_cmd.msg.s.len = 1; 1491 mbox_cmd.recv_len = 0; 1492 mbox_cmd.recv_status = 0; 1493 mbox_cmd.fn = NULL; 1494 mbox_cmd.fn_arg = 0; 1495 ether_addr_copy(mbox_cmd.msg.s.params, mac); 1496 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; 1497 octeon_mbox_write(oct, &mbox_cmd); 1498 } 1499 } 1500 1501 static void 1502 cn23xx_get_vf_stats_callback(struct octeon_device *oct, 1503 struct octeon_mbox_cmd *cmd, void *arg) 1504 { 1505 struct oct_vf_stats_ctx *ctx = arg; 1506 1507 memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats)); 1508 atomic_set(&ctx->status, 1); 1509 } 1510 1511 int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx, 1512 struct oct_vf_stats *stats) 1513 { 1514 u32 timeout = HZ; // 1sec 1515 struct octeon_mbox_cmd mbox_cmd; 1516 struct oct_vf_stats_ctx ctx; 1517 u32 count = 0, ret; 1518 1519 if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx))) 1520 return -1; 1521 1522 if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data)) 1523 return -1; 1524 1525 mbox_cmd.msg.u64 = 0; 1526 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; 1527 mbox_cmd.msg.s.resp_needed = 1; 1528 mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS; 1529 mbox_cmd.msg.s.len = 1; 1530 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; 1531 mbox_cmd.recv_len = 0; 1532 mbox_cmd.recv_status = 0; 1533 mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback; 1534 ctx.stats = stats; 1535 atomic_set(&ctx.status, 0); 1536 mbox_cmd.fn_arg = (void *)&ctx; 1537 memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data)); 1538 octeon_mbox_write(oct, &mbox_cmd); 1539 1540 do { 1541 schedule_timeout_uninterruptible(1); 1542 } while ((atomic_read(&ctx.status) == 0) && (count++ < timeout)); 1543 1544 ret = atomic_read(&ctx.status); 1545 if (ret == 0) { 1546 octeon_mbox_cancel(oct, 0); 1547 dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n", 1548 vfidx); 1549 return -1; 1550 } 1551 1552 return 0; 1553 } 1554