1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/pci.h> 19 #include <linux/vmalloc.h> 20 #include <linux/etherdevice.h> 21 #include "liquidio_common.h" 22 #include "octeon_droq.h" 23 #include "octeon_iq.h" 24 #include "response_manager.h" 25 #include "octeon_device.h" 26 #include "cn23xx_pf_device.h" 27 #include "octeon_main.h" 28 #include "octeon_mailbox.h" 29 30 #define RESET_NOTDONE 0 31 #define RESET_DONE 1 32 33 /* Change the value of SLI Packet Input Jabber Register to allow 34 * VXLAN TSO packets which can be 64424 bytes, exceeding the 35 * MAX_GSO_SIZE we supplied to the kernel 36 */ 37 #define CN23XX_INPUT_JABBER 64600 38 39 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct) 40 { 41 int i = 0; 42 u32 regval = 0; 43 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 44 45 /*In cn23xx_soft_reset*/ 46 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n", 47 "CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG), 48 CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG))); 49 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 50 "CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1), 51 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1))); 52 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 53 "CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST, 54 lio_pci_readq(oct, CN23XX_RST_SOFT_RST)); 55 56 /*In cn23xx_set_dpi_regs*/ 57 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 58 "CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL, 59 lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL)); 60 61 for (i = 0; i < 6; i++) { 62 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 63 "CN23XX_DPI_DMA_ENG_ENB", i, 64 CN23XX_DPI_DMA_ENG_ENB(i), 65 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i))); 66 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 67 "CN23XX_DPI_DMA_ENG_BUF", i, 68 CN23XX_DPI_DMA_ENG_BUF(i), 69 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i))); 70 } 71 72 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL", 73 CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL)); 74 75 /*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */ 76 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 77 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 78 "CN23XX_CONFIG_PCIE_DEVCTL", 79 CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval)); 80 81 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 82 "CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port, 83 CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port), 84 lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port))); 85 86 /*In cn23xx_specific_regs_setup */ 87 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 88 "CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port, 89 CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)), 90 CVM_CAST64(octeon_read_csr64( 91 oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)))); 92 93 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 94 "CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST), 95 (u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 96 97 /*In cn23xx_setup_global_mac_regs*/ 98 for (i = 0; i < CN23XX_MAX_MACS; i++) { 99 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 100 "CN23XX_SLI_PKT_MAC_RINFO64", i, 101 CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)), 102 CVM_CAST64(octeon_read_csr64 103 (oct, CN23XX_SLI_PKT_MAC_RINFO64 104 (i, oct->pf_num)))); 105 } 106 107 /*In cn23xx_setup_global_input_regs*/ 108 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { 109 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 110 "CN23XX_SLI_IQ_PKT_CONTROL64", i, 111 CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)), 112 CVM_CAST64(octeon_read_csr64 113 (oct, CN23XX_SLI_IQ_PKT_CONTROL64(i)))); 114 } 115 116 /*In cn23xx_setup_global_output_regs*/ 117 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 118 "CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK), 119 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK))); 120 121 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { 122 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 123 "CN23XX_SLI_OQ_PKT_CONTROL", i, 124 CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)), 125 CVM_CAST64(octeon_read_csr( 126 oct, CN23XX_SLI_OQ_PKT_CONTROL(i)))); 127 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 128 "CN23XX_SLI_OQ_PKT_INT_LEVELS", i, 129 CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)), 130 CVM_CAST64(octeon_read_csr64( 131 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i)))); 132 } 133 134 /*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/ 135 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 136 "cn23xx->intr_enb_reg64", 137 CVM_CAST64((long)(cn23xx->intr_enb_reg64)), 138 CVM_CAST64(readq(cn23xx->intr_enb_reg64))); 139 140 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 141 "cn23xx->intr_sum_reg64", 142 CVM_CAST64((long)(cn23xx->intr_sum_reg64)), 143 CVM_CAST64(readq(cn23xx->intr_sum_reg64))); 144 145 /*In cn23xx_setup_iq_regs*/ 146 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { 147 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 148 "CN23XX_SLI_IQ_BASE_ADDR64", i, 149 CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)), 150 CVM_CAST64(octeon_read_csr64( 151 oct, CN23XX_SLI_IQ_BASE_ADDR64(i)))); 152 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 153 "CN23XX_SLI_IQ_SIZE", i, 154 CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)), 155 CVM_CAST64(octeon_read_csr 156 (oct, CN23XX_SLI_IQ_SIZE(i)))); 157 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 158 "CN23XX_SLI_IQ_DOORBELL", i, 159 CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)), 160 CVM_CAST64(octeon_read_csr64( 161 oct, CN23XX_SLI_IQ_DOORBELL(i)))); 162 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 163 "CN23XX_SLI_IQ_INSTR_COUNT64", i, 164 CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)), 165 CVM_CAST64(octeon_read_csr64( 166 oct, CN23XX_SLI_IQ_INSTR_COUNT64(i)))); 167 } 168 169 /*In cn23xx_setup_oq_regs*/ 170 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { 171 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 172 "CN23XX_SLI_OQ_BASE_ADDR64", i, 173 CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)), 174 CVM_CAST64(octeon_read_csr64( 175 oct, CN23XX_SLI_OQ_BASE_ADDR64(i)))); 176 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 177 "CN23XX_SLI_OQ_SIZE", i, 178 CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)), 179 CVM_CAST64(octeon_read_csr 180 (oct, CN23XX_SLI_OQ_SIZE(i)))); 181 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 182 "CN23XX_SLI_OQ_BUFF_INFO_SIZE", i, 183 CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)), 184 CVM_CAST64(octeon_read_csr( 185 oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)))); 186 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 187 "CN23XX_SLI_OQ_PKTS_SENT", i, 188 CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)), 189 CVM_CAST64(octeon_read_csr64( 190 oct, CN23XX_SLI_OQ_PKTS_SENT(i)))); 191 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 192 "CN23XX_SLI_OQ_PKTS_CREDIT", i, 193 CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)), 194 CVM_CAST64(octeon_read_csr64( 195 oct, CN23XX_SLI_OQ_PKTS_CREDIT(i)))); 196 } 197 198 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 199 "CN23XX_SLI_PKT_TIME_INT", 200 CVM_CAST64(CN23XX_SLI_PKT_TIME_INT), 201 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT))); 202 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 203 "CN23XX_SLI_PKT_CNT_INT", 204 CVM_CAST64(CN23XX_SLI_PKT_CNT_INT), 205 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT))); 206 } 207 208 static int cn23xx_pf_soft_reset(struct octeon_device *oct) 209 { 210 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); 211 212 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n", 213 oct->octeon_id); 214 215 octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL); 216 217 /* Initiate chip-wide soft reset */ 218 lio_pci_readq(oct, CN23XX_RST_SOFT_RST); 219 lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST); 220 221 /* Wait for 100ms as Octeon resets. */ 222 mdelay(100); 223 224 if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) { 225 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n", 226 oct->octeon_id); 227 return 1; 228 } 229 230 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n", 231 oct->octeon_id); 232 233 /* restore the reset value*/ 234 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); 235 236 return 0; 237 } 238 239 static void cn23xx_enable_error_reporting(struct octeon_device *oct) 240 { 241 u32 regval; 242 u32 uncorrectable_err_mask, corrtable_err_status; 243 244 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 245 if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) { 246 uncorrectable_err_mask = 0; 247 corrtable_err_status = 0; 248 pci_read_config_dword(oct->pci_dev, 249 CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK, 250 &uncorrectable_err_mask); 251 pci_read_config_dword(oct->pci_dev, 252 CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS, 253 &corrtable_err_status); 254 dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n" 255 "\tdev_ctl_status_reg = 0x%08x\n" 256 "\tuncorrectable_error_mask_reg = 0x%08x\n" 257 "\tcorrectable_error_status_reg = 0x%08x\n", 258 regval, uncorrectable_err_mask, 259 corrtable_err_status); 260 } 261 262 regval |= 0xf; /* Enable Link error reporting */ 263 264 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n", 265 oct->octeon_id); 266 pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval); 267 } 268 269 static u32 cn23xx_coprocessor_clock(struct octeon_device *oct) 270 { 271 /* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER 272 * for SLI. 273 */ 274 275 /* TBD: get the info in Hand-shake */ 276 return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50); 277 } 278 279 u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us) 280 { 281 /* This gives the SLI clock per microsec */ 282 u32 oqticks_per_us = cn23xx_coprocessor_clock(oct); 283 284 oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us; 285 286 /* This gives the clock cycles per millisecond */ 287 oqticks_per_us *= 1000; 288 289 /* This gives the oq ticks (1024 core clock cycles) per millisecond */ 290 oqticks_per_us /= 1024; 291 292 /* time_intr is in microseconds. The next 2 steps gives the oq ticks 293 * corressponding to time_intr. 294 */ 295 oqticks_per_us *= time_intr_in_us; 296 oqticks_per_us /= 1000; 297 298 return oqticks_per_us; 299 } 300 301 static void cn23xx_setup_global_mac_regs(struct octeon_device *oct) 302 { 303 u16 mac_no = oct->pcie_port; 304 u16 pf_num = oct->pf_num; 305 u64 reg_val; 306 u64 temp; 307 308 /* programming SRN and TRS for each MAC(0..3) */ 309 310 dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n", 311 __func__, mac_no); 312 /* By default, mapping all 64 IOQs to a single MACs */ 313 314 reg_val = 315 octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)); 316 317 if (oct->rev_id == OCTEON_CN23XX_REV_1_1) { 318 /* setting SRN <6:0> */ 319 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1; 320 } else { 321 /* setting SRN <6:0> */ 322 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF; 323 } 324 325 /* setting TRS <23:16> */ 326 reg_val = reg_val | 327 (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS); 328 /* setting RPVF <39:32> */ 329 temp = oct->sriov_info.rings_per_vf & 0xff; 330 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS); 331 332 /* setting NVFS <55:48> */ 333 temp = oct->sriov_info.max_vfs & 0xff; 334 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS); 335 336 /* write these settings to MAC register */ 337 octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num), 338 reg_val); 339 340 dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", 341 mac_no, pf_num, (u64)octeon_read_csr64 342 (oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num))); 343 } 344 345 static int cn23xx_reset_io_queues(struct octeon_device *oct) 346 { 347 int ret_val = 0; 348 u64 d64; 349 u32 q_no, srn, ern; 350 u32 loop = 1000; 351 352 srn = oct->sriov_info.pf_srn; 353 ern = srn + oct->sriov_info.num_pf_rings; 354 355 /*As per HRM reg description, s/w cant write 0 to ENB. */ 356 /*to make the queue off, need to set the RST bit. */ 357 358 /* Reset the Enable bit for all the 64 IQs. */ 359 for (q_no = srn; q_no < ern; q_no++) { 360 /* set RST bit to 1. This bit applies to both IQ and OQ */ 361 d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 362 d64 = d64 | CN23XX_PKT_INPUT_CTL_RST; 363 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); 364 } 365 366 /*wait until the RST bit is clear or the RST and quite bits are set*/ 367 for (q_no = srn; q_no < ern; q_no++) { 368 u64 reg_val = octeon_read_csr64(oct, 369 CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 370 while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) && 371 !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) && 372 loop--) { 373 WRITE_ONCE(reg_val, octeon_read_csr64( 374 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 375 } 376 if (!loop) { 377 dev_err(&oct->pci_dev->dev, 378 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", 379 q_no); 380 return -1; 381 } 382 WRITE_ONCE(reg_val, READ_ONCE(reg_val) & 383 ~CN23XX_PKT_INPUT_CTL_RST); 384 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 385 READ_ONCE(reg_val)); 386 387 WRITE_ONCE(reg_val, octeon_read_csr64( 388 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 389 if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) { 390 dev_err(&oct->pci_dev->dev, 391 "clearing the reset failed for qno: %u\n", 392 q_no); 393 ret_val = -1; 394 } 395 } 396 397 return ret_val; 398 } 399 400 static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct) 401 { 402 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 403 struct octeon_instr_queue *iq; 404 u64 intr_threshold, reg_val; 405 u32 q_no, ern, srn; 406 u64 pf_num; 407 u64 vf_num; 408 409 pf_num = oct->pf_num; 410 411 srn = oct->sriov_info.pf_srn; 412 ern = srn + oct->sriov_info.num_pf_rings; 413 414 if (cn23xx_reset_io_queues(oct)) 415 return -1; 416 417 /** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg 418 * for all queues.Only PF can set these bits. 419 * bits 29:30 indicate the MAC num. 420 * bits 32:47 indicate the PVF num. 421 */ 422 for (q_no = 0; q_no < ern; q_no++) { 423 reg_val = (u64)oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS; 424 425 /* for VF assigned queues. */ 426 if (q_no < oct->sriov_info.pf_srn) { 427 vf_num = q_no / oct->sriov_info.rings_per_vf; 428 vf_num += 1; /* VF1, VF2,........ */ 429 } else { 430 vf_num = 0; 431 } 432 433 reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS; 434 reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS; 435 436 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 437 reg_val); 438 } 439 440 /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for 441 * pf queues 442 */ 443 for (q_no = srn; q_no < ern; q_no++) { 444 void __iomem *inst_cnt_reg; 445 446 iq = oct->instr_queue[q_no]; 447 if (iq) 448 inst_cnt_reg = iq->inst_cnt_reg; 449 else 450 inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + 451 CN23XX_SLI_IQ_INSTR_COUNT64(q_no); 452 453 reg_val = 454 octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 455 456 reg_val |= CN23XX_PKT_INPUT_CTL_MASK; 457 458 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 459 reg_val); 460 461 /* Set WMARK level for triggering PI_INT */ 462 /* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */ 463 intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) & 464 CN23XX_PKT_IN_DONE_WMARK_MASK; 465 466 writeq((readq(inst_cnt_reg) & 467 ~(CN23XX_PKT_IN_DONE_WMARK_MASK << 468 CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | 469 (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS), 470 inst_cnt_reg); 471 } 472 return 0; 473 } 474 475 static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct) 476 { 477 u32 reg_val; 478 u32 q_no, ern, srn; 479 u64 time_threshold; 480 481 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 482 483 srn = oct->sriov_info.pf_srn; 484 ern = srn + oct->sriov_info.num_pf_rings; 485 486 if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) { 487 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32); 488 } else { 489 /** Set Output queue watermark to 0 to disable backpressure */ 490 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0); 491 } 492 493 for (q_no = srn; q_no < ern; q_no++) { 494 reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); 495 496 /* clear IPTR */ 497 reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR; 498 499 /* set DPTR */ 500 reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR; 501 502 /* reset BMODE */ 503 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE); 504 505 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap 506 * for Output Queue ScatterList 507 * reset ROR_P, NSR_P 508 */ 509 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P); 510 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P); 511 512 #ifdef __LITTLE_ENDIAN_BITFIELD 513 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P); 514 #else 515 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P); 516 #endif 517 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap 518 * for Output Queue Data 519 * reset ROR, NSR 520 */ 521 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR); 522 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR); 523 /* set the ES bit */ 524 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES); 525 526 /* write all the selected settings */ 527 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); 528 529 /* Enabling these interrupt in oct->fn_list.enable_interrupt() 530 * routine which called after IOQ init. 531 * Set up interrupt packet and time thresholds 532 * for all the OQs 533 */ 534 time_threshold = cn23xx_pf_get_oq_ticks( 535 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); 536 537 octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no), 538 (CFG_GET_OQ_INTR_PKT(cn23xx->conf) | 539 (time_threshold << 32))); 540 } 541 542 /** Setting the water mark level for pko back pressure **/ 543 writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK); 544 545 /** Disabling setting OQs in reset when ring has no dorebells 546 * enabling this will cause of head of line blocking 547 */ 548 /* Do it only for pass1.1. and pass1.2 */ 549 if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) || 550 (oct->rev_id == OCTEON_CN23XX_REV_1_1)) 551 writeq(readq((u8 *)oct->mmio[0].hw_addr + 552 CN23XX_SLI_GBL_CONTROL) | 0x2, 553 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL); 554 555 /** Enable channel-level backpressure */ 556 if (oct->pf_num) 557 writeq(0xffffffffffffffffULL, 558 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S); 559 else 560 writeq(0xffffffffffffffffULL, 561 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S); 562 } 563 564 static int cn23xx_setup_pf_device_regs(struct octeon_device *oct) 565 { 566 cn23xx_enable_error_reporting(oct); 567 568 /* program the MAC(0..3)_RINFO before setting up input/output regs */ 569 cn23xx_setup_global_mac_regs(oct); 570 571 if (cn23xx_pf_setup_global_input_regs(oct)) 572 return -1; 573 574 cn23xx_pf_setup_global_output_regs(oct); 575 576 /* Default error timeout value should be 0x200000 to avoid host hang 577 * when reads invalid register 578 */ 579 octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL, 580 CN23XX_SLI_WINDOW_CTL_DEFAULT); 581 582 /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */ 583 octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER); 584 return 0; 585 } 586 587 static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) 588 { 589 struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; 590 u64 pkt_in_done; 591 592 iq_no += oct->sriov_info.pf_srn; 593 594 /* Write the start of the input queue's ring and its size */ 595 octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no), 596 iq->base_addr_dma); 597 octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); 598 599 /* Remember the doorbell & instruction count register addr 600 * for this queue 601 */ 602 iq->doorbell_reg = 603 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no); 604 iq->inst_cnt_reg = 605 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); 606 dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", 607 iq_no, iq->doorbell_reg, iq->inst_cnt_reg); 608 609 /* Store the current instruction counter (used in flush_iq 610 * calculation) 611 */ 612 pkt_in_done = readq(iq->inst_cnt_reg); 613 614 if (oct->msix_on) { 615 /* Set CINT_ENB to enable IQ interrupt */ 616 writeq((pkt_in_done | CN23XX_INTR_CINT_ENB), 617 iq->inst_cnt_reg); 618 } else { 619 /* Clear the count by writing back what we read, but don't 620 * enable interrupts 621 */ 622 writeq(pkt_in_done, iq->inst_cnt_reg); 623 } 624 625 iq->reset_instr_cnt = 0; 626 } 627 628 static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no) 629 { 630 u32 reg_val; 631 struct octeon_droq *droq = oct->droq[oq_no]; 632 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 633 u64 time_threshold; 634 u64 cnt_threshold; 635 636 oq_no += oct->sriov_info.pf_srn; 637 638 octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no), 639 droq->desc_ring_dma); 640 octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); 641 642 octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), 643 droq->buffer_size); 644 645 /* Get the mapped address of the pkt_sent and pkts_credit regs */ 646 droq->pkts_sent_reg = 647 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no); 648 droq->pkts_credit_reg = 649 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); 650 651 if (!oct->msix_on) { 652 /* Enable this output queue to generate Packet Timer Interrupt 653 */ 654 reg_val = 655 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); 656 reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB; 657 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), 658 reg_val); 659 660 /* Enable this output queue to generate Packet Count Interrupt 661 */ 662 reg_val = 663 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); 664 reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB; 665 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), 666 reg_val); 667 } else { 668 time_threshold = cn23xx_pf_get_oq_ticks( 669 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); 670 cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf); 671 672 octeon_write_csr64( 673 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no), 674 ((time_threshold << 32 | cnt_threshold))); 675 } 676 } 677 678 static void cn23xx_pf_mbox_thread(struct work_struct *work) 679 { 680 struct cavium_wk *wk = (struct cavium_wk *)work; 681 struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr; 682 struct octeon_device *oct = mbox->oct_dev; 683 u64 mbox_int_val, val64; 684 u32 q_no, i; 685 686 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) { 687 /*read and clear by writing 1*/ 688 mbox_int_val = readq(mbox->mbox_int_reg); 689 writeq(mbox_int_val, mbox->mbox_int_reg); 690 691 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { 692 q_no = i * oct->sriov_info.rings_per_vf; 693 694 val64 = readq(oct->mbox[q_no]->mbox_write_reg); 695 696 if (val64 && (val64 != OCTEON_PFVFACK)) { 697 if (octeon_mbox_read(oct->mbox[q_no])) 698 octeon_mbox_process_message( 699 oct->mbox[q_no]); 700 } 701 } 702 703 schedule_delayed_work(&wk->work, msecs_to_jiffies(10)); 704 } else { 705 octeon_mbox_process_message(mbox); 706 } 707 } 708 709 static int cn23xx_setup_pf_mbox(struct octeon_device *oct) 710 { 711 struct octeon_mbox *mbox = NULL; 712 u16 mac_no = oct->pcie_port; 713 u16 pf_num = oct->pf_num; 714 u32 q_no, i; 715 716 if (!oct->sriov_info.max_vfs) 717 return 0; 718 719 for (i = 0; i < oct->sriov_info.max_vfs; i++) { 720 q_no = i * oct->sriov_info.rings_per_vf; 721 722 mbox = vmalloc(sizeof(*mbox)); 723 if (!mbox) 724 goto free_mbox; 725 726 memset(mbox, 0, sizeof(struct octeon_mbox)); 727 728 spin_lock_init(&mbox->lock); 729 730 mbox->oct_dev = oct; 731 732 mbox->q_no = q_no; 733 734 mbox->state = OCTEON_MBOX_STATE_IDLE; 735 736 /* PF mbox interrupt reg */ 737 mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr + 738 CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num); 739 740 /* PF writes into SIG0 reg */ 741 mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr + 742 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0); 743 744 /* PF reads from SIG1 reg */ 745 mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr + 746 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1); 747 748 /*Mail Box Thread creation*/ 749 INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work, 750 cn23xx_pf_mbox_thread); 751 mbox->mbox_poll_wk.ctxptr = (void *)mbox; 752 753 oct->mbox[q_no] = mbox; 754 755 writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg); 756 } 757 758 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) 759 schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work, 760 msecs_to_jiffies(0)); 761 762 return 0; 763 764 free_mbox: 765 while (i) { 766 i--; 767 vfree(oct->mbox[i]); 768 } 769 770 return 1; 771 } 772 773 static int cn23xx_free_pf_mbox(struct octeon_device *oct) 774 { 775 u32 q_no, i; 776 777 if (!oct->sriov_info.max_vfs) 778 return 0; 779 780 for (i = 0; i < oct->sriov_info.max_vfs; i++) { 781 q_no = i * oct->sriov_info.rings_per_vf; 782 cancel_delayed_work_sync( 783 &oct->mbox[q_no]->mbox_poll_wk.work); 784 vfree(oct->mbox[q_no]); 785 } 786 787 return 0; 788 } 789 790 static int cn23xx_enable_io_queues(struct octeon_device *oct) 791 { 792 u64 reg_val; 793 u32 srn, ern, q_no; 794 u32 loop = 1000; 795 796 srn = oct->sriov_info.pf_srn; 797 ern = srn + oct->num_iqs; 798 799 for (q_no = srn; q_no < ern; q_no++) { 800 /* set the corresponding IQ IS_64B bit */ 801 if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) { 802 reg_val = octeon_read_csr64( 803 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 804 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B; 805 octeon_write_csr64( 806 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); 807 } 808 809 /* set the corresponding IQ ENB bit */ 810 if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) { 811 /* IOQs are in reset by default in PEM2 mode, 812 * clearing reset bit 813 */ 814 reg_val = octeon_read_csr64( 815 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 816 817 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { 818 while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) && 819 !(reg_val & 820 CN23XX_PKT_INPUT_CTL_QUIET) && 821 --loop) { 822 reg_val = octeon_read_csr64( 823 oct, 824 CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 825 } 826 if (!loop) { 827 dev_err(&oct->pci_dev->dev, 828 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", 829 q_no); 830 return -1; 831 } 832 reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST; 833 octeon_write_csr64( 834 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 835 reg_val); 836 837 reg_val = octeon_read_csr64( 838 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 839 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { 840 dev_err(&oct->pci_dev->dev, 841 "clearing the reset failed for qno: %u\n", 842 q_no); 843 return -1; 844 } 845 } 846 reg_val = octeon_read_csr64( 847 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 848 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB; 849 octeon_write_csr64( 850 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); 851 } 852 } 853 for (q_no = srn; q_no < ern; q_no++) { 854 u32 reg_val; 855 /* set the corresponding OQ ENB bit */ 856 if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) { 857 reg_val = octeon_read_csr( 858 oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); 859 reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB; 860 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), 861 reg_val); 862 } 863 } 864 return 0; 865 } 866 867 static void cn23xx_disable_io_queues(struct octeon_device *oct) 868 { 869 int q_no, loop; 870 u64 d64; 871 u32 d32; 872 u32 srn, ern; 873 874 srn = oct->sriov_info.pf_srn; 875 ern = srn + oct->num_iqs; 876 877 /*** Disable Input Queues. ***/ 878 for (q_no = srn; q_no < ern; q_no++) { 879 loop = HZ; 880 881 /* start the Reset for a particular ring */ 882 WRITE_ONCE(d64, octeon_read_csr64( 883 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 884 WRITE_ONCE(d64, READ_ONCE(d64) & 885 (~(CN23XX_PKT_INPUT_CTL_RING_ENB))); 886 WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST); 887 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 888 READ_ONCE(d64)); 889 890 /* Wait until hardware indicates that the particular IQ 891 * is out of reset. 892 */ 893 WRITE_ONCE(d64, octeon_read_csr64( 894 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 895 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { 896 WRITE_ONCE(d64, octeon_read_csr64( 897 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 898 schedule_timeout_uninterruptible(1); 899 } 900 901 /* Reset the doorbell register for this Input Queue. */ 902 octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); 903 while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) && 904 loop--) { 905 schedule_timeout_uninterruptible(1); 906 } 907 } 908 909 /*** Disable Output Queues. ***/ 910 for (q_no = srn; q_no < ern; q_no++) { 911 loop = HZ; 912 913 /* Wait until hardware indicates that the particular IQ 914 * is out of reset.It given that SLI_PKT_RING_RST is 915 * common for both IQs and OQs 916 */ 917 WRITE_ONCE(d64, octeon_read_csr64( 918 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 919 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { 920 WRITE_ONCE(d64, octeon_read_csr64( 921 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 922 schedule_timeout_uninterruptible(1); 923 } 924 925 /* Reset the doorbell register for this Output Queue. */ 926 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no), 927 0xFFFFFFFF); 928 while (octeon_read_csr64(oct, 929 CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) && 930 loop--) { 931 schedule_timeout_uninterruptible(1); 932 } 933 934 /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */ 935 WRITE_ONCE(d32, octeon_read_csr( 936 oct, CN23XX_SLI_OQ_PKTS_SENT(q_no))); 937 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no), 938 READ_ONCE(d32)); 939 } 940 } 941 942 static u64 cn23xx_pf_msix_interrupt_handler(void *dev) 943 { 944 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; 945 struct octeon_device *oct = ioq_vector->oct_dev; 946 u64 pkts_sent; 947 u64 ret = 0; 948 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; 949 950 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); 951 952 if (!droq) { 953 dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n", 954 oct->pf_num, ioq_vector->ioq_num); 955 return 0; 956 } 957 958 pkts_sent = readq(droq->pkts_sent_reg); 959 960 /* If our device has interrupted, then proceed. Also check 961 * for all f's if interrupt was triggered on an error 962 * and the PCI read fails. 963 */ 964 if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL)) 965 return ret; 966 967 /* Write count reg in sli_pkt_cnts to clear these int.*/ 968 if ((pkts_sent & CN23XX_INTR_PO_INT) || 969 (pkts_sent & CN23XX_INTR_PI_INT)) { 970 if (pkts_sent & CN23XX_INTR_PO_INT) 971 ret |= MSIX_PO_INT; 972 } 973 974 if (pkts_sent & CN23XX_INTR_PI_INT) 975 /* We will clear the count when we update the read_index. */ 976 ret |= MSIX_PI_INT; 977 978 /* Never need to handle msix mbox intr for pf. They arrive on the last 979 * msix 980 */ 981 return ret; 982 } 983 984 static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct) 985 { 986 struct delayed_work *work; 987 u64 mbox_int_val; 988 u32 i, q_no; 989 990 mbox_int_val = readq(oct->mbox[0]->mbox_int_reg); 991 992 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { 993 q_no = i * oct->sriov_info.rings_per_vf; 994 995 if (mbox_int_val & BIT_ULL(q_no)) { 996 writeq(BIT_ULL(q_no), 997 oct->mbox[0]->mbox_int_reg); 998 if (octeon_mbox_read(oct->mbox[q_no])) { 999 work = &oct->mbox[q_no]->mbox_poll_wk.work; 1000 schedule_delayed_work(work, 1001 msecs_to_jiffies(0)); 1002 } 1003 } 1004 } 1005 } 1006 1007 static irqreturn_t cn23xx_interrupt_handler(void *dev) 1008 { 1009 struct octeon_device *oct = (struct octeon_device *)dev; 1010 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1011 u64 intr64; 1012 1013 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); 1014 intr64 = readq(cn23xx->intr_sum_reg64); 1015 1016 oct->int_status = 0; 1017 1018 if (intr64 & CN23XX_INTR_ERR) 1019 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n", 1020 oct->octeon_id, CVM_CAST64(intr64)); 1021 1022 /* When VFs write into MBOX_SIG2 reg,these intr is set in PF */ 1023 if (intr64 & CN23XX_INTR_VF_MBOX) 1024 cn23xx_handle_pf_mbox_intr(oct); 1025 1026 if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) { 1027 if (intr64 & CN23XX_INTR_PKT_DATA) 1028 oct->int_status |= OCT_DEV_INTR_PKT_DATA; 1029 } 1030 1031 if (intr64 & (CN23XX_INTR_DMA0_FORCE)) 1032 oct->int_status |= OCT_DEV_INTR_DMA0_FORCE; 1033 if (intr64 & (CN23XX_INTR_DMA1_FORCE)) 1034 oct->int_status |= OCT_DEV_INTR_DMA1_FORCE; 1035 1036 /* Clear the current interrupts */ 1037 writeq(intr64, cn23xx->intr_sum_reg64); 1038 1039 return IRQ_HANDLED; 1040 } 1041 1042 static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr, 1043 u32 idx, int valid) 1044 { 1045 u64 bar1; 1046 u64 reg_adr; 1047 1048 if (!valid) { 1049 reg_adr = lio_pci_readq( 1050 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1051 WRITE_ONCE(bar1, reg_adr); 1052 lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL), 1053 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1054 reg_adr = lio_pci_readq( 1055 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1056 WRITE_ONCE(bar1, reg_adr); 1057 return; 1058 } 1059 1060 /* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores 1061 * bits <41:22> of the Core Addr 1062 */ 1063 lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK), 1064 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1065 1066 WRITE_ONCE(bar1, lio_pci_readq( 1067 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx))); 1068 } 1069 1070 static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask) 1071 { 1072 lio_pci_writeq(oct, mask, 1073 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1074 } 1075 1076 static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx) 1077 { 1078 return (u32)lio_pci_readq( 1079 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1080 } 1081 1082 /* always call with lock held */ 1083 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq) 1084 { 1085 u32 new_idx; 1086 u32 last_done; 1087 u32 pkt_in_done = readl(iq->inst_cnt_reg); 1088 1089 last_done = pkt_in_done - iq->pkt_in_done; 1090 iq->pkt_in_done = pkt_in_done; 1091 1092 /* Modulo of the new index with the IQ size will give us 1093 * the new index. The iq->reset_instr_cnt is always zero for 1094 * cn23xx, so no extra adjustments are needed. 1095 */ 1096 new_idx = (iq->octeon_read_index + 1097 (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) % 1098 iq->max_count; 1099 1100 return new_idx; 1101 } 1102 1103 static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) 1104 { 1105 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1106 u64 intr_val = 0; 1107 1108 /* Divide the single write to multiple writes based on the flag. */ 1109 /* Enable Interrupt */ 1110 if (intr_flag == OCTEON_ALL_INTR) { 1111 writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64); 1112 } else if (intr_flag & OCTEON_OUTPUT_INTR) { 1113 intr_val = readq(cn23xx->intr_enb_reg64); 1114 intr_val |= CN23XX_INTR_PKT_DATA; 1115 writeq(intr_val, cn23xx->intr_enb_reg64); 1116 } else if ((intr_flag & OCTEON_MBOX_INTR) && 1117 (oct->sriov_info.max_vfs > 0)) { 1118 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { 1119 intr_val = readq(cn23xx->intr_enb_reg64); 1120 intr_val |= CN23XX_INTR_VF_MBOX; 1121 writeq(intr_val, cn23xx->intr_enb_reg64); 1122 } 1123 } 1124 } 1125 1126 static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) 1127 { 1128 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1129 u64 intr_val = 0; 1130 1131 /* Disable Interrupts */ 1132 if (intr_flag == OCTEON_ALL_INTR) { 1133 writeq(0, cn23xx->intr_enb_reg64); 1134 } else if (intr_flag & OCTEON_OUTPUT_INTR) { 1135 intr_val = readq(cn23xx->intr_enb_reg64); 1136 intr_val &= ~CN23XX_INTR_PKT_DATA; 1137 writeq(intr_val, cn23xx->intr_enb_reg64); 1138 } else if ((intr_flag & OCTEON_MBOX_INTR) && 1139 (oct->sriov_info.max_vfs > 0)) { 1140 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { 1141 intr_val = readq(cn23xx->intr_enb_reg64); 1142 intr_val &= ~CN23XX_INTR_VF_MBOX; 1143 writeq(intr_val, cn23xx->intr_enb_reg64); 1144 } 1145 } 1146 } 1147 1148 static void cn23xx_get_pcie_qlmport(struct octeon_device *oct) 1149 { 1150 oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; 1151 1152 dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n", 1153 oct->pcie_port); 1154 } 1155 1156 static int cn23xx_get_pf_num(struct octeon_device *oct) 1157 { 1158 u32 fdl_bit = 0; 1159 u64 pkt0_in_ctl, d64; 1160 int pfnum, mac, trs, ret; 1161 1162 ret = 0; 1163 1164 /** Read Function Dependency Link reg to get the function number */ 1165 if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL, 1166 &fdl_bit) == 0) { 1167 oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) & 1168 CN23XX_PCIE_SRIOV_FDL_MASK); 1169 } else { 1170 ret = -EINVAL; 1171 1172 /* Under some virtual environments, extended PCI regs are 1173 * inaccessible, in which case the above read will have failed. 1174 * In this case, read the PF number from the 1175 * SLI_PKT0_INPUT_CONTROL reg (written by f/w) 1176 */ 1177 pkt0_in_ctl = octeon_read_csr64(oct, 1178 CN23XX_SLI_IQ_PKT_CONTROL64(0)); 1179 pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) & 1180 CN23XX_PKT_INPUT_CTL_PF_NUM_MASK; 1181 mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; 1182 1183 /* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/ 1184 d64 = octeon_read_csr64(oct, 1185 CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum)); 1186 trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff; 1187 if (trs == 1) { 1188 dev_err(&oct->pci_dev->dev, 1189 "OCTEON: error reading PCI cfg space pfnum, re-read %u\n", 1190 pfnum); 1191 oct->pf_num = pfnum; 1192 ret = 0; 1193 } else { 1194 dev_err(&oct->pci_dev->dev, 1195 "OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n"); 1196 } 1197 } 1198 1199 return ret; 1200 } 1201 1202 static void cn23xx_setup_reg_address(struct octeon_device *oct) 1203 { 1204 u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr; 1205 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1206 1207 oct->reg_list.pci_win_wr_addr_hi = 1208 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI); 1209 oct->reg_list.pci_win_wr_addr_lo = 1210 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO); 1211 oct->reg_list.pci_win_wr_addr = 1212 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64); 1213 1214 oct->reg_list.pci_win_rd_addr_hi = 1215 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI); 1216 oct->reg_list.pci_win_rd_addr_lo = 1217 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO); 1218 oct->reg_list.pci_win_rd_addr = 1219 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64); 1220 1221 oct->reg_list.pci_win_wr_data_hi = 1222 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI); 1223 oct->reg_list.pci_win_wr_data_lo = 1224 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO); 1225 oct->reg_list.pci_win_wr_data = 1226 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64); 1227 1228 oct->reg_list.pci_win_rd_data_hi = 1229 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI); 1230 oct->reg_list.pci_win_rd_data_lo = 1231 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO); 1232 oct->reg_list.pci_win_rd_data = 1233 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64); 1234 1235 cn23xx_get_pcie_qlmport(oct); 1236 1237 cn23xx->intr_mask64 = CN23XX_INTR_MASK; 1238 if (!oct->msix_on) 1239 cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME; 1240 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) 1241 cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX; 1242 1243 cn23xx->intr_sum_reg64 = 1244 bar0_pciaddr + 1245 CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num); 1246 cn23xx->intr_enb_reg64 = 1247 bar0_pciaddr + 1248 CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num); 1249 } 1250 1251 int cn23xx_sriov_config(struct octeon_device *oct) 1252 { 1253 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1254 u32 max_rings, total_rings, max_vfs, rings_per_vf; 1255 u32 pf_srn, num_pf_rings; 1256 u32 max_possible_vfs; 1257 1258 cn23xx->conf = 1259 (struct octeon_config *)oct_get_config_info(oct, LIO_23XX); 1260 switch (oct->rev_id) { 1261 case OCTEON_CN23XX_REV_1_0: 1262 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0; 1263 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0; 1264 break; 1265 case OCTEON_CN23XX_REV_1_1: 1266 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1; 1267 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1; 1268 break; 1269 default: 1270 max_rings = CN23XX_MAX_RINGS_PER_PF; 1271 max_possible_vfs = CN23XX_MAX_VFS_PER_PF; 1272 break; 1273 } 1274 1275 if (oct->sriov_info.num_pf_rings) 1276 num_pf_rings = oct->sriov_info.num_pf_rings; 1277 else 1278 num_pf_rings = num_present_cpus(); 1279 1280 #ifdef CONFIG_PCI_IOV 1281 max_vfs = min_t(u32, 1282 (max_rings - num_pf_rings), max_possible_vfs); 1283 rings_per_vf = 1; 1284 #else 1285 max_vfs = 0; 1286 rings_per_vf = 0; 1287 #endif 1288 1289 total_rings = num_pf_rings + max_vfs; 1290 1291 /* the first ring of the pf */ 1292 pf_srn = total_rings - num_pf_rings; 1293 1294 oct->sriov_info.trs = total_rings; 1295 oct->sriov_info.max_vfs = max_vfs; 1296 oct->sriov_info.rings_per_vf = rings_per_vf; 1297 oct->sriov_info.pf_srn = pf_srn; 1298 oct->sriov_info.num_pf_rings = num_pf_rings; 1299 dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n", 1300 oct->sriov_info.trs, oct->sriov_info.max_vfs, 1301 oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn, 1302 oct->sriov_info.num_pf_rings); 1303 1304 oct->sriov_info.sriov_enabled = 0; 1305 1306 return 0; 1307 } 1308 1309 int setup_cn23xx_octeon_pf_device(struct octeon_device *oct) 1310 { 1311 u32 data32; 1312 u64 BAR0, BAR1; 1313 1314 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32); 1315 BAR0 = (u64)(data32 & ~0xf); 1316 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32); 1317 BAR0 |= ((u64)data32 << 32); 1318 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32); 1319 BAR1 = (u64)(data32 & ~0xf); 1320 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32); 1321 BAR1 |= ((u64)data32 << 32); 1322 1323 if (!BAR0 || !BAR1) { 1324 if (!BAR0) 1325 dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n"); 1326 if (!BAR1) 1327 dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n"); 1328 return 1; 1329 } 1330 1331 if (octeon_map_pci_barx(oct, 0, 0)) 1332 return 1; 1333 1334 if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) { 1335 dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n", 1336 __func__); 1337 octeon_unmap_pci_barx(oct, 0); 1338 return 1; 1339 } 1340 1341 if (cn23xx_get_pf_num(oct) != 0) 1342 return 1; 1343 1344 if (cn23xx_sriov_config(oct)) { 1345 octeon_unmap_pci_barx(oct, 0); 1346 octeon_unmap_pci_barx(oct, 1); 1347 return 1; 1348 } 1349 1350 octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL); 1351 1352 oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs; 1353 oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs; 1354 oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox; 1355 oct->fn_list.free_mbox = cn23xx_free_pf_mbox; 1356 1357 oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler; 1358 oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler; 1359 1360 oct->fn_list.soft_reset = cn23xx_pf_soft_reset; 1361 oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs; 1362 oct->fn_list.update_iq_read_idx = cn23xx_update_read_index; 1363 1364 oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup; 1365 oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write; 1366 oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read; 1367 1368 oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt; 1369 oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt; 1370 1371 oct->fn_list.enable_io_queues = cn23xx_enable_io_queues; 1372 oct->fn_list.disable_io_queues = cn23xx_disable_io_queues; 1373 1374 cn23xx_setup_reg_address(oct); 1375 1376 oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct); 1377 1378 return 0; 1379 } 1380 1381 int validate_cn23xx_pf_config_info(struct octeon_device *oct, 1382 struct octeon_config *conf23xx) 1383 { 1384 if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) { 1385 dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n", 1386 __func__, CFG_GET_IQ_MAX_Q(conf23xx), 1387 CN23XX_MAX_INPUT_QUEUES); 1388 return 1; 1389 } 1390 1391 if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) { 1392 dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n", 1393 __func__, CFG_GET_OQ_MAX_Q(conf23xx), 1394 CN23XX_MAX_OUTPUT_QUEUES); 1395 return 1; 1396 } 1397 1398 if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR && 1399 CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) { 1400 dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n", 1401 __func__); 1402 return 1; 1403 } 1404 1405 if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) { 1406 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", 1407 __func__); 1408 return 1; 1409 } 1410 1411 if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) { 1412 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", 1413 __func__); 1414 return 1; 1415 } 1416 1417 return 0; 1418 } 1419 1420 int cn23xx_fw_loaded(struct octeon_device *oct) 1421 { 1422 u64 val; 1423 1424 /* If there's more than one active PF on this NIC, then that 1425 * implies that the NIC firmware is loaded and running. This check 1426 * prevents a rare false negative that might occur if we only relied 1427 * on checking the SCR2_BIT_FW_LOADED flag. The false negative would 1428 * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even 1429 * though the firmware was already loaded but still booting and has yet 1430 * to set SCR2_BIT_FW_LOADED. 1431 */ 1432 if (atomic_read(oct->adapter_refcount) > 1) 1433 return 1; 1434 1435 val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 1436 return (val >> SCR2_BIT_FW_LOADED) & 1ULL; 1437 } 1438 1439 void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx, 1440 u8 *mac) 1441 { 1442 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) { 1443 struct octeon_mbox_cmd mbox_cmd; 1444 1445 mbox_cmd.msg.u64 = 0; 1446 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; 1447 mbox_cmd.msg.s.resp_needed = 0; 1448 mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR; 1449 mbox_cmd.msg.s.len = 1; 1450 mbox_cmd.recv_len = 0; 1451 mbox_cmd.recv_status = 0; 1452 mbox_cmd.fn = NULL; 1453 mbox_cmd.fn_arg = NULL; 1454 ether_addr_copy(mbox_cmd.msg.s.params, mac); 1455 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; 1456 octeon_mbox_write(oct, &mbox_cmd); 1457 } 1458 } 1459 1460 static void 1461 cn23xx_get_vf_stats_callback(struct octeon_device *oct, 1462 struct octeon_mbox_cmd *cmd, void *arg) 1463 { 1464 struct oct_vf_stats_ctx *ctx = arg; 1465 1466 memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats)); 1467 atomic_set(&ctx->status, 1); 1468 } 1469 1470 int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx, 1471 struct oct_vf_stats *stats) 1472 { 1473 u32 timeout = HZ; // 1sec 1474 struct octeon_mbox_cmd mbox_cmd; 1475 struct oct_vf_stats_ctx ctx; 1476 u32 count = 0, ret; 1477 1478 if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx))) 1479 return -1; 1480 1481 if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data)) 1482 return -1; 1483 1484 mbox_cmd.msg.u64 = 0; 1485 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; 1486 mbox_cmd.msg.s.resp_needed = 1; 1487 mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS; 1488 mbox_cmd.msg.s.len = 1; 1489 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; 1490 mbox_cmd.recv_len = 0; 1491 mbox_cmd.recv_status = 0; 1492 mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback; 1493 ctx.stats = stats; 1494 atomic_set(&ctx.status, 0); 1495 mbox_cmd.fn_arg = (void *)&ctx; 1496 memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data)); 1497 octeon_mbox_write(oct, &mbox_cmd); 1498 1499 do { 1500 schedule_timeout_uninterruptible(1); 1501 } while ((atomic_read(&ctx.status) == 0) && (count++ < timeout)); 1502 1503 ret = atomic_read(&ctx.status); 1504 if (ret == 0) { 1505 octeon_mbox_cancel(oct, 0); 1506 dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n", 1507 vfidx); 1508 return -1; 1509 } 1510 1511 return 0; 1512 } 1513