xref: /openbmc/linux/drivers/net/ethernet/cavium/common/cavium_ptp.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 // SPDX-License-Identifier: GPL-2.0
2 /* cavium_ptp.c - PTP 1588 clock on Cavium hardware
3  * Copyright (c) 2003-2015, 2017 Cavium, Inc.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/module.h>
8 #include <linux/timecounter.h>
9 #include <linux/pci.h>
10 
11 #include "cavium_ptp.h"
12 
13 #define DRV_NAME	"Cavium PTP Driver"
14 
15 #define PCI_DEVICE_ID_CAVIUM_PTP	0xA00C
16 #define PCI_DEVICE_ID_CAVIUM_RST	0xA00E
17 
18 #define PCI_PTP_BAR_NO	0
19 #define PCI_RST_BAR_NO	0
20 
21 #define PTP_CLOCK_CFG		0xF00ULL
22 #define  PTP_CLOCK_CFG_PTP_EN	BIT(0)
23 #define PTP_CLOCK_LO		0xF08ULL
24 #define PTP_CLOCK_HI		0xF10ULL
25 #define PTP_CLOCK_COMP		0xF18ULL
26 
27 #define RST_BOOT	0x1600ULL
28 #define CLOCK_BASE_RATE	50000000ULL
29 
30 static u64 ptp_cavium_clock_get(void)
31 {
32 	struct pci_dev *pdev;
33 	void __iomem *base;
34 	u64 ret = CLOCK_BASE_RATE * 16;
35 
36 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
37 			      PCI_DEVICE_ID_CAVIUM_RST, NULL);
38 	if (!pdev)
39 		goto error;
40 
41 	base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO);
42 	if (!base)
43 		goto error_put_pdev;
44 
45 	ret = CLOCK_BASE_RATE * ((readq(base + RST_BOOT) >> 33) & 0x3f);
46 
47 	iounmap(base);
48 
49 error_put_pdev:
50 	pci_dev_put(pdev);
51 
52 error:
53 	return ret;
54 }
55 
56 struct cavium_ptp *cavium_ptp_get(void)
57 {
58 	struct cavium_ptp *ptp;
59 	struct pci_dev *pdev;
60 
61 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
62 			      PCI_DEVICE_ID_CAVIUM_PTP, NULL);
63 	if (!pdev)
64 		return ERR_PTR(-ENODEV);
65 
66 	ptp = pci_get_drvdata(pdev);
67 	if (!ptp)
68 		ptp = ERR_PTR(-EPROBE_DEFER);
69 	if (IS_ERR(ptp))
70 		pci_dev_put(pdev);
71 
72 	return ptp;
73 }
74 EXPORT_SYMBOL(cavium_ptp_get);
75 
76 void cavium_ptp_put(struct cavium_ptp *ptp)
77 {
78 	pci_dev_put(ptp->pdev);
79 }
80 EXPORT_SYMBOL(cavium_ptp_put);
81 
82 /**
83  * cavium_ptp_adjfine() - Adjust ptp frequency
84  * @ptp: PTP clock info
85  * @scaled_ppm: how much to adjust by, in parts per million, but with a
86  *              16 bit binary fractional field
87  */
88 static int cavium_ptp_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
89 {
90 	struct cavium_ptp *clock =
91 		container_of(ptp_info, struct cavium_ptp, ptp_info);
92 	unsigned long flags;
93 	u64 comp;
94 	u64 adj;
95 	bool neg_adj = false;
96 
97 	if (scaled_ppm < 0) {
98 		neg_adj = true;
99 		scaled_ppm = -scaled_ppm;
100 	}
101 
102 	/* The hardware adds the clock compensation value to the PTP clock
103 	 * on every coprocessor clock cycle. Typical convention is that it
104 	 * represent number of nanosecond betwen each cycle. In this
105 	 * convention compensation value is in 64 bit fixed-point
106 	 * representation where upper 32 bits are number of nanoseconds
107 	 * and lower is fractions of nanosecond.
108 	 * The scaled_ppm represent the ratio in "parts per bilion" by which the
109 	 * compensation value should be corrected.
110 	 * To calculate new compenstation value we use 64bit fixed point
111 	 * arithmetic on following formula
112 	 * comp = tbase + tbase * scaled_ppm / (1M * 2^16)
113 	 * where tbase is the basic compensation value calculated initialy
114 	 * in cavium_ptp_init() -> tbase = 1/Hz. Then we use endian
115 	 * independent structure definition to write data to PTP register.
116 	 */
117 	comp = ((u64)1000000000ull << 32) / clock->clock_rate;
118 	adj = comp * scaled_ppm;
119 	adj >>= 16;
120 	adj = div_u64(adj, 1000000ull);
121 	comp = neg_adj ? comp - adj : comp + adj;
122 
123 	spin_lock_irqsave(&clock->spin_lock, flags);
124 	writeq(comp, clock->reg_base + PTP_CLOCK_COMP);
125 	spin_unlock_irqrestore(&clock->spin_lock, flags);
126 
127 	return 0;
128 }
129 
130 /**
131  * cavium_ptp_adjtime() - Adjust ptp time
132  * @ptp:   PTP clock info
133  * @delta: how much to adjust by, in nanosecs
134  */
135 static int cavium_ptp_adjtime(struct ptp_clock_info *ptp_info, s64 delta)
136 {
137 	struct cavium_ptp *clock =
138 		container_of(ptp_info, struct cavium_ptp, ptp_info);
139 	unsigned long flags;
140 
141 	spin_lock_irqsave(&clock->spin_lock, flags);
142 	timecounter_adjtime(&clock->time_counter, delta);
143 	spin_unlock_irqrestore(&clock->spin_lock, flags);
144 
145 	/* Sync, for network driver to get latest value */
146 	smp_mb();
147 
148 	return 0;
149 }
150 
151 /**
152  * cavium_ptp_gettime() - Get hardware clock time with adjustment
153  * @ptp: PTP clock info
154  * @ts:  timespec
155  */
156 static int cavium_ptp_gettime(struct ptp_clock_info *ptp_info,
157 			      struct timespec64 *ts)
158 {
159 	struct cavium_ptp *clock =
160 		container_of(ptp_info, struct cavium_ptp, ptp_info);
161 	unsigned long flags;
162 	u64 nsec;
163 
164 	spin_lock_irqsave(&clock->spin_lock, flags);
165 	nsec = timecounter_read(&clock->time_counter);
166 	spin_unlock_irqrestore(&clock->spin_lock, flags);
167 
168 	*ts = ns_to_timespec64(nsec);
169 
170 	return 0;
171 }
172 
173 /**
174  * cavium_ptp_settime() - Set hardware clock time. Reset adjustment
175  * @ptp: PTP clock info
176  * @ts:  timespec
177  */
178 static int cavium_ptp_settime(struct ptp_clock_info *ptp_info,
179 			      const struct timespec64 *ts)
180 {
181 	struct cavium_ptp *clock =
182 		container_of(ptp_info, struct cavium_ptp, ptp_info);
183 	unsigned long flags;
184 	u64 nsec;
185 
186 	nsec = timespec64_to_ns(ts);
187 
188 	spin_lock_irqsave(&clock->spin_lock, flags);
189 	timecounter_init(&clock->time_counter, &clock->cycle_counter, nsec);
190 	spin_unlock_irqrestore(&clock->spin_lock, flags);
191 
192 	return 0;
193 }
194 
195 /**
196  * cavium_ptp_enable() - Request to enable or disable an ancillary feature.
197  * @ptp: PTP clock info
198  * @rq:  request
199  * @on:  is it on
200  */
201 static int cavium_ptp_enable(struct ptp_clock_info *ptp_info,
202 			     struct ptp_clock_request *rq, int on)
203 {
204 	return -EOPNOTSUPP;
205 }
206 
207 static u64 cavium_ptp_cc_read(const struct cyclecounter *cc)
208 {
209 	struct cavium_ptp *clock =
210 		container_of(cc, struct cavium_ptp, cycle_counter);
211 
212 	return readq(clock->reg_base + PTP_CLOCK_HI);
213 }
214 
215 static int cavium_ptp_probe(struct pci_dev *pdev,
216 			    const struct pci_device_id *ent)
217 {
218 	struct device *dev = &pdev->dev;
219 	struct cavium_ptp *clock;
220 	struct cyclecounter *cc;
221 	u64 clock_cfg;
222 	u64 clock_comp;
223 	int err;
224 
225 	clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL);
226 	if (!clock) {
227 		err = -ENOMEM;
228 		goto error;
229 	}
230 
231 	clock->pdev = pdev;
232 
233 	err = pcim_enable_device(pdev);
234 	if (err)
235 		goto error_free;
236 
237 	err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
238 	if (err)
239 		goto error_free;
240 
241 	clock->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
242 
243 	spin_lock_init(&clock->spin_lock);
244 
245 	cc = &clock->cycle_counter;
246 	cc->read = cavium_ptp_cc_read;
247 	cc->mask = CYCLECOUNTER_MASK(64);
248 	cc->mult = 1;
249 	cc->shift = 0;
250 
251 	timecounter_init(&clock->time_counter, &clock->cycle_counter,
252 			 ktime_to_ns(ktime_get_real()));
253 
254 	clock->clock_rate = ptp_cavium_clock_get();
255 
256 	clock->ptp_info = (struct ptp_clock_info) {
257 		.owner		= THIS_MODULE,
258 		.name		= "ThunderX PTP",
259 		.max_adj	= 1000000000ull,
260 		.n_ext_ts	= 0,
261 		.n_pins		= 0,
262 		.pps		= 0,
263 		.adjfine	= cavium_ptp_adjfine,
264 		.adjtime	= cavium_ptp_adjtime,
265 		.gettime64	= cavium_ptp_gettime,
266 		.settime64	= cavium_ptp_settime,
267 		.enable		= cavium_ptp_enable,
268 	};
269 
270 	clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
271 	clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
272 	writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
273 
274 	clock_comp = ((u64)1000000000ull << 32) / clock->clock_rate;
275 	writeq(clock_comp, clock->reg_base + PTP_CLOCK_COMP);
276 
277 	clock->ptp_clock = ptp_clock_register(&clock->ptp_info, dev);
278 	if (!clock->ptp_clock) {
279 		err = -ENODEV;
280 		goto error_stop;
281 	}
282 	if (IS_ERR(clock->ptp_clock)) {
283 		err = PTR_ERR(clock->ptp_clock);
284 		goto error_stop;
285 	}
286 
287 	pci_set_drvdata(pdev, clock);
288 	return 0;
289 
290 error_stop:
291 	clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
292 	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
293 	writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
294 	pcim_iounmap_regions(pdev, 1 << PCI_PTP_BAR_NO);
295 
296 error_free:
297 	devm_kfree(dev, clock);
298 
299 error:
300 	/* For `cavium_ptp_get()` we need to differentiate between the case
301 	 * when the core has not tried to probe this device and the case when
302 	 * the probe failed.  In the later case we pretend that the
303 	 * initialization was successful and keep the error in
304 	 * `dev->driver_data`.
305 	 */
306 	pci_set_drvdata(pdev, ERR_PTR(err));
307 	return 0;
308 }
309 
310 static void cavium_ptp_remove(struct pci_dev *pdev)
311 {
312 	struct cavium_ptp *clock = pci_get_drvdata(pdev);
313 	u64 clock_cfg;
314 
315 	if (IS_ERR_OR_NULL(clock))
316 		return;
317 
318 	ptp_clock_unregister(clock->ptp_clock);
319 
320 	clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
321 	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
322 	writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
323 }
324 
325 static const struct pci_device_id cavium_ptp_id_table[] = {
326 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_CAVIUM_PTP) },
327 	{ 0, }
328 };
329 
330 static struct pci_driver cavium_ptp_driver = {
331 	.name = DRV_NAME,
332 	.id_table = cavium_ptp_id_table,
333 	.probe = cavium_ptp_probe,
334 	.remove = cavium_ptp_remove,
335 };
336 
337 static int __init cavium_ptp_init_module(void)
338 {
339 	return pci_register_driver(&cavium_ptp_driver);
340 }
341 
342 static void __exit cavium_ptp_cleanup_module(void)
343 {
344 	pci_unregister_driver(&cavium_ptp_driver);
345 }
346 
347 module_init(cavium_ptp_init_module);
348 module_exit(cavium_ptp_cleanup_module);
349 
350 MODULE_DESCRIPTION(DRV_NAME);
351 MODULE_AUTHOR("Cavium Networks <support@cavium.com>");
352 MODULE_LICENSE("GPL v2");
353 MODULE_DEVICE_TABLE(pci, cavium_ptp_id_table);
354