1 /**
2  * 1588 PTP support for Cadence GEM device.
3  *
4  * Copyright (C) 2017 Cadence Design Systems - http://www.cadence.com
5  *
6  * Authors: Rafal Ozieblo <rafalo@cadence.com>
7  *          Bartosz Folta <bfolta@cadence.com>
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2  of
11  * the License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 #include <linux/kernel.h>
22 #include <linux/types.h>
23 #include <linux/clk.h>
24 #include <linux/device.h>
25 #include <linux/etherdevice.h>
26 #include <linux/platform_device.h>
27 #include <linux/time64.h>
28 #include <linux/ptp_classify.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/net_tstamp.h>
32 #include <linux/circ_buf.h>
33 #include <linux/spinlock.h>
34 
35 #include "macb.h"
36 
37 #define  GEM_PTP_TIMER_NAME "gem-ptp-timer"
38 
39 static struct macb_dma_desc_ptp *macb_ptp_desc(struct macb *bp,
40 					       struct macb_dma_desc *desc)
41 {
42 	if (bp->hw_dma_cap == HW_DMA_CAP_PTP)
43 		return (struct macb_dma_desc_ptp *)
44 				((u8 *)desc + sizeof(struct macb_dma_desc));
45 	if (bp->hw_dma_cap == HW_DMA_CAP_64B_PTP)
46 		return (struct macb_dma_desc_ptp *)
47 				((u8 *)desc + sizeof(struct macb_dma_desc)
48 				+ sizeof(struct macb_dma_desc_64));
49 	return NULL;
50 }
51 
52 static int gem_tsu_get_time(struct ptp_clock_info *ptp, struct timespec64 *ts)
53 {
54 	struct macb *bp = container_of(ptp, struct macb, ptp_clock_info);
55 	unsigned long flags;
56 	long first, second;
57 	u32 secl, sech;
58 
59 	spin_lock_irqsave(&bp->tsu_clk_lock, flags);
60 	first = gem_readl(bp, TN);
61 	secl = gem_readl(bp, TSL);
62 	sech = gem_readl(bp, TSH);
63 	second = gem_readl(bp, TN);
64 
65 	/* test for nsec rollover */
66 	if (first > second) {
67 		/* if so, use later read & re-read seconds
68 		 * (assume all done within 1s)
69 		 */
70 		ts->tv_nsec = gem_readl(bp, TN);
71 		secl = gem_readl(bp, TSL);
72 		sech = gem_readl(bp, TSH);
73 	} else {
74 		ts->tv_nsec = first;
75 	}
76 
77 	spin_unlock_irqrestore(&bp->tsu_clk_lock, flags);
78 	ts->tv_sec = (((u64)sech << GEM_TSL_SIZE) | secl)
79 			& TSU_SEC_MAX_VAL;
80 	return 0;
81 }
82 
83 static int gem_tsu_set_time(struct ptp_clock_info *ptp,
84 			    const struct timespec64 *ts)
85 {
86 	struct macb *bp = container_of(ptp, struct macb, ptp_clock_info);
87 	unsigned long flags;
88 	u32 ns, sech, secl;
89 
90 	secl = (u32)ts->tv_sec;
91 	sech = (ts->tv_sec >> GEM_TSL_SIZE) & ((1 << GEM_TSH_SIZE) - 1);
92 	ns = ts->tv_nsec;
93 
94 	spin_lock_irqsave(&bp->tsu_clk_lock, flags);
95 
96 	/* TSH doesn't latch the time and no atomicity! */
97 	gem_writel(bp, TN, 0); /* clear to avoid overflow */
98 	gem_writel(bp, TSH, sech);
99 	/* write lower bits 2nd, for synchronized secs update */
100 	gem_writel(bp, TSL, secl);
101 	gem_writel(bp, TN, ns);
102 
103 	spin_unlock_irqrestore(&bp->tsu_clk_lock, flags);
104 
105 	return 0;
106 }
107 
108 static int gem_tsu_incr_set(struct macb *bp, struct tsu_incr *incr_spec)
109 {
110 	unsigned long flags;
111 
112 	/* tsu_timer_incr register must be written after
113 	 * the tsu_timer_incr_sub_ns register and the write operation
114 	 * will cause the value written to the tsu_timer_incr_sub_ns register
115 	 * to take effect.
116 	 */
117 	spin_lock_irqsave(&bp->tsu_clk_lock, flags);
118 	gem_writel(bp, TISUBN, GEM_BF(SUBNSINCR, incr_spec->sub_ns));
119 	gem_writel(bp, TI, GEM_BF(NSINCR, incr_spec->ns));
120 	spin_unlock_irqrestore(&bp->tsu_clk_lock, flags);
121 
122 	return 0;
123 }
124 
125 static int gem_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
126 {
127 	struct macb *bp = container_of(ptp, struct macb, ptp_clock_info);
128 	struct tsu_incr incr_spec;
129 	bool neg_adj = false;
130 	u32 word;
131 	u64 adj;
132 
133 	if (scaled_ppm < 0) {
134 		neg_adj = true;
135 		scaled_ppm = -scaled_ppm;
136 	}
137 
138 	/* Adjustment is relative to base frequency */
139 	incr_spec.sub_ns = bp->tsu_incr.sub_ns;
140 	incr_spec.ns = bp->tsu_incr.ns;
141 
142 	/* scaling: unused(8bit) | ns(8bit) | fractions(16bit) */
143 	word = ((u64)incr_spec.ns << GEM_SUBNSINCR_SIZE) + incr_spec.sub_ns;
144 	adj = (u64)scaled_ppm * word;
145 	/* Divide with rounding, equivalent to floating dividing:
146 	 * (temp / USEC_PER_SEC) + 0.5
147 	 */
148 	adj += (USEC_PER_SEC >> 1);
149 	adj >>= GEM_SUBNSINCR_SIZE; /* remove fractions */
150 	adj = div_u64(adj, USEC_PER_SEC);
151 	adj = neg_adj ? (word - adj) : (word + adj);
152 
153 	incr_spec.ns = (adj >> GEM_SUBNSINCR_SIZE)
154 			& ((1 << GEM_NSINCR_SIZE) - 1);
155 	incr_spec.sub_ns = adj & ((1 << GEM_SUBNSINCR_SIZE) - 1);
156 	gem_tsu_incr_set(bp, &incr_spec);
157 	return 0;
158 }
159 
160 static int gem_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
161 {
162 	struct macb *bp = container_of(ptp, struct macb, ptp_clock_info);
163 	struct timespec64 now, then = ns_to_timespec64(delta);
164 	u32 adj, sign = 0;
165 
166 	if (delta < 0) {
167 		sign = 1;
168 		delta = -delta;
169 	}
170 
171 	if (delta > TSU_NSEC_MAX_VAL) {
172 		gem_tsu_get_time(&bp->ptp_clock_info, &now);
173 		if (sign)
174 			now = timespec64_sub(now, then);
175 		else
176 			now = timespec64_add(now, then);
177 
178 		gem_tsu_set_time(&bp->ptp_clock_info,
179 				 (const struct timespec64 *)&now);
180 	} else {
181 		adj = (sign << GEM_ADDSUB_OFFSET) | delta;
182 
183 		gem_writel(bp, TA, adj);
184 	}
185 
186 	return 0;
187 }
188 
189 static int gem_ptp_enable(struct ptp_clock_info *ptp,
190 			  struct ptp_clock_request *rq, int on)
191 {
192 	return -EOPNOTSUPP;
193 }
194 
195 static struct ptp_clock_info gem_ptp_caps_template = {
196 	.owner		= THIS_MODULE,
197 	.name		= GEM_PTP_TIMER_NAME,
198 	.max_adj	= 0,
199 	.n_alarm	= 0,
200 	.n_ext_ts	= 0,
201 	.n_per_out	= 0,
202 	.n_pins		= 0,
203 	.pps		= 1,
204 	.adjfine	= gem_ptp_adjfine,
205 	.adjtime	= gem_ptp_adjtime,
206 	.gettime64	= gem_tsu_get_time,
207 	.settime64	= gem_tsu_set_time,
208 	.enable		= gem_ptp_enable,
209 };
210 
211 static void gem_ptp_init_timer(struct macb *bp)
212 {
213 	u32 rem = 0;
214 	u64 adj;
215 
216 	bp->tsu_incr.ns = div_u64_rem(NSEC_PER_SEC, bp->tsu_rate, &rem);
217 	if (rem) {
218 		adj = rem;
219 		adj <<= GEM_SUBNSINCR_SIZE;
220 		bp->tsu_incr.sub_ns = div_u64(adj, bp->tsu_rate);
221 	} else {
222 		bp->tsu_incr.sub_ns = 0;
223 	}
224 }
225 
226 static void gem_ptp_init_tsu(struct macb *bp)
227 {
228 	struct timespec64 ts;
229 
230 	/* 1. get current system time */
231 	ts = ns_to_timespec64(ktime_to_ns(ktime_get_real()));
232 
233 	/* 2. set ptp timer */
234 	gem_tsu_set_time(&bp->ptp_clock_info, &ts);
235 
236 	/* 3. set PTP timer increment value to BASE_INCREMENT */
237 	gem_tsu_incr_set(bp, &bp->tsu_incr);
238 
239 	gem_writel(bp, TA, 0);
240 }
241 
242 static void gem_ptp_clear_timer(struct macb *bp)
243 {
244 	bp->tsu_incr.sub_ns = 0;
245 	bp->tsu_incr.ns = 0;
246 
247 	gem_writel(bp, TISUBN, GEM_BF(SUBNSINCR, 0));
248 	gem_writel(bp, TI, GEM_BF(NSINCR, 0));
249 	gem_writel(bp, TA, 0);
250 }
251 
252 static int gem_hw_timestamp(struct macb *bp, u32 dma_desc_ts_1,
253 			    u32 dma_desc_ts_2, struct timespec64 *ts)
254 {
255 	struct timespec64 tsu;
256 
257 	ts->tv_sec = (GEM_BFEXT(DMA_SECH, dma_desc_ts_2) << GEM_DMA_SECL_SIZE) |
258 			GEM_BFEXT(DMA_SECL, dma_desc_ts_1);
259 	ts->tv_nsec = GEM_BFEXT(DMA_NSEC, dma_desc_ts_1);
260 
261 	/* TSU overlapping workaround
262 	 * The timestamp only contains lower few bits of seconds,
263 	 * so add value from 1588 timer
264 	 */
265 	gem_tsu_get_time(&bp->ptp_clock_info, &tsu);
266 
267 	/* If the top bit is set in the timestamp,
268 	 * but not in 1588 timer, it has rolled over,
269 	 * so subtract max size
270 	 */
271 	if ((ts->tv_sec & (GEM_DMA_SEC_TOP >> 1)) &&
272 	    !(tsu.tv_sec & (GEM_DMA_SEC_TOP >> 1)))
273 		ts->tv_sec -= GEM_DMA_SEC_TOP;
274 
275 	ts->tv_sec += ((~GEM_DMA_SEC_MASK) & tsu.tv_sec);
276 
277 	return 0;
278 }
279 
280 void gem_ptp_rxstamp(struct macb *bp, struct sk_buff *skb,
281 		     struct macb_dma_desc *desc)
282 {
283 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
284 	struct macb_dma_desc_ptp *desc_ptp;
285 	struct timespec64 ts;
286 
287 	if (GEM_BFEXT(DMA_RXVALID, desc->addr)) {
288 		desc_ptp = macb_ptp_desc(bp, desc);
289 		gem_hw_timestamp(bp, desc_ptp->ts_1, desc_ptp->ts_2, &ts);
290 		memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
291 		shhwtstamps->hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
292 	}
293 }
294 
295 static void gem_tstamp_tx(struct macb *bp, struct sk_buff *skb,
296 			  struct macb_dma_desc_ptp *desc_ptp)
297 {
298 	struct skb_shared_hwtstamps shhwtstamps;
299 	struct timespec64 ts;
300 
301 	gem_hw_timestamp(bp, desc_ptp->ts_1, desc_ptp->ts_2, &ts);
302 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
303 	shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
304 	skb_tstamp_tx(skb, &shhwtstamps);
305 }
306 
307 int gem_ptp_txstamp(struct macb_queue *queue, struct sk_buff *skb,
308 		    struct macb_dma_desc *desc)
309 {
310 	unsigned long tail = READ_ONCE(queue->tx_ts_tail);
311 	unsigned long head = queue->tx_ts_head;
312 	struct macb_dma_desc_ptp *desc_ptp;
313 	struct gem_tx_ts *tx_timestamp;
314 
315 	if (!GEM_BFEXT(DMA_TXVALID, desc->ctrl))
316 		return -EINVAL;
317 
318 	if (CIRC_SPACE(head, tail, PTP_TS_BUFFER_SIZE) == 0)
319 		return -ENOMEM;
320 
321 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
322 	desc_ptp = macb_ptp_desc(queue->bp, desc);
323 	tx_timestamp = &queue->tx_timestamps[head];
324 	tx_timestamp->skb = skb;
325 	tx_timestamp->desc_ptp.ts_1 = desc_ptp->ts_1;
326 	tx_timestamp->desc_ptp.ts_2 = desc_ptp->ts_2;
327 	/* move head */
328 	smp_store_release(&queue->tx_ts_head,
329 			  (head + 1) & (PTP_TS_BUFFER_SIZE - 1));
330 
331 	schedule_work(&queue->tx_ts_task);
332 	return 0;
333 }
334 
335 static void gem_tx_timestamp_flush(struct work_struct *work)
336 {
337 	struct macb_queue *queue =
338 			container_of(work, struct macb_queue, tx_ts_task);
339 	unsigned long head, tail;
340 	struct gem_tx_ts *tx_ts;
341 
342 	/* take current head */
343 	head = smp_load_acquire(&queue->tx_ts_head);
344 	tail = queue->tx_ts_tail;
345 
346 	while (CIRC_CNT(head, tail, PTP_TS_BUFFER_SIZE)) {
347 		tx_ts = &queue->tx_timestamps[tail];
348 		gem_tstamp_tx(queue->bp, tx_ts->skb, &tx_ts->desc_ptp);
349 		/* cleanup */
350 		dev_kfree_skb_any(tx_ts->skb);
351 		/* remove old tail */
352 		smp_store_release(&queue->tx_ts_tail,
353 				  (tail + 1) & (PTP_TS_BUFFER_SIZE - 1));
354 		tail = queue->tx_ts_tail;
355 	}
356 }
357 
358 void gem_ptp_init(struct net_device *dev)
359 {
360 	struct macb *bp = netdev_priv(dev);
361 	struct macb_queue *queue;
362 	unsigned int q;
363 
364 	bp->ptp_clock_info = gem_ptp_caps_template;
365 
366 	/* nominal frequency and maximum adjustment in ppb */
367 	bp->tsu_rate = bp->ptp_info->get_tsu_rate(bp);
368 	bp->ptp_clock_info.max_adj = bp->ptp_info->get_ptp_max_adj();
369 	gem_ptp_init_timer(bp);
370 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &dev->dev);
371 	if (IS_ERR(bp->ptp_clock)) {
372 		pr_err("ptp clock register failed: %ld\n",
373 			PTR_ERR(bp->ptp_clock));
374 		bp->ptp_clock = NULL;
375 		return;
376 	} else if (bp->ptp_clock == NULL) {
377 		pr_err("ptp clock register failed\n");
378 		return;
379 	}
380 
381 	spin_lock_init(&bp->tsu_clk_lock);
382 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
383 		queue->tx_ts_head = 0;
384 		queue->tx_ts_tail = 0;
385 		INIT_WORK(&queue->tx_ts_task, gem_tx_timestamp_flush);
386 	}
387 
388 	gem_ptp_init_tsu(bp);
389 
390 	dev_info(&bp->pdev->dev, "%s ptp clock registered.\n",
391 		 GEM_PTP_TIMER_NAME);
392 }
393 
394 void gem_ptp_remove(struct net_device *ndev)
395 {
396 	struct macb *bp = netdev_priv(ndev);
397 
398 	if (bp->ptp_clock)
399 		ptp_clock_unregister(bp->ptp_clock);
400 
401 	gem_ptp_clear_timer(bp);
402 
403 	dev_info(&bp->pdev->dev, "%s ptp clock unregistered.\n",
404 		 GEM_PTP_TIMER_NAME);
405 }
406 
407 static int gem_ptp_set_ts_mode(struct macb *bp,
408 			       enum macb_bd_control tx_bd_control,
409 			       enum macb_bd_control rx_bd_control)
410 {
411 	gem_writel(bp, TXBDCTRL, GEM_BF(TXTSMODE, tx_bd_control));
412 	gem_writel(bp, RXBDCTRL, GEM_BF(RXTSMODE, rx_bd_control));
413 
414 	return 0;
415 }
416 
417 int gem_get_hwtst(struct net_device *dev, struct ifreq *rq)
418 {
419 	struct hwtstamp_config *tstamp_config;
420 	struct macb *bp = netdev_priv(dev);
421 
422 	tstamp_config = &bp->tstamp_config;
423 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0)
424 		return -EOPNOTSUPP;
425 
426 	if (copy_to_user(rq->ifr_data, tstamp_config, sizeof(*tstamp_config)))
427 		return -EFAULT;
428 	else
429 		return 0;
430 }
431 
432 static int gem_ptp_set_one_step_sync(struct macb *bp, u8 enable)
433 {
434 	u32 reg_val;
435 
436 	reg_val = macb_readl(bp, NCR);
437 
438 	if (enable)
439 		macb_writel(bp, NCR, reg_val | MACB_BIT(OSSMODE));
440 	else
441 		macb_writel(bp, NCR, reg_val & ~MACB_BIT(OSSMODE));
442 
443 	return 0;
444 }
445 
446 int gem_set_hwtst(struct net_device *dev, struct ifreq *ifr, int cmd)
447 {
448 	enum macb_bd_control tx_bd_control = TSTAMP_DISABLED;
449 	enum macb_bd_control rx_bd_control = TSTAMP_DISABLED;
450 	struct hwtstamp_config *tstamp_config;
451 	struct macb *bp = netdev_priv(dev);
452 	u32 regval;
453 
454 	tstamp_config = &bp->tstamp_config;
455 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0)
456 		return -EOPNOTSUPP;
457 
458 	if (copy_from_user(tstamp_config, ifr->ifr_data,
459 			   sizeof(*tstamp_config)))
460 		return -EFAULT;
461 
462 	/* reserved for future extensions */
463 	if (tstamp_config->flags)
464 		return -EINVAL;
465 
466 	switch (tstamp_config->tx_type) {
467 	case HWTSTAMP_TX_OFF:
468 		break;
469 	case HWTSTAMP_TX_ONESTEP_SYNC:
470 		if (gem_ptp_set_one_step_sync(bp, 1) != 0)
471 			return -ERANGE;
472 	case HWTSTAMP_TX_ON:
473 		tx_bd_control = TSTAMP_ALL_FRAMES;
474 		break;
475 	default:
476 		return -ERANGE;
477 	}
478 
479 	switch (tstamp_config->rx_filter) {
480 	case HWTSTAMP_FILTER_NONE:
481 		break;
482 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
483 		break;
484 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
485 		break;
486 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
487 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
488 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
489 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
490 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
491 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
492 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
493 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
494 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
495 		rx_bd_control =  TSTAMP_ALL_PTP_FRAMES;
496 		tstamp_config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
497 		regval = macb_readl(bp, NCR);
498 		macb_writel(bp, NCR, (regval | MACB_BIT(SRTSM)));
499 		break;
500 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
501 	case HWTSTAMP_FILTER_ALL:
502 		rx_bd_control = TSTAMP_ALL_FRAMES;
503 		tstamp_config->rx_filter = HWTSTAMP_FILTER_ALL;
504 		break;
505 	default:
506 		tstamp_config->rx_filter = HWTSTAMP_FILTER_NONE;
507 		return -ERANGE;
508 	}
509 
510 	if (gem_ptp_set_ts_mode(bp, tx_bd_control, rx_bd_control) != 0)
511 		return -ERANGE;
512 
513 	if (copy_to_user(ifr->ifr_data, tstamp_config, sizeof(*tstamp_config)))
514 		return -EFAULT;
515 	else
516 		return 0;
517 }
518 
519