xref: /openbmc/linux/drivers/net/ethernet/cadence/macb_main.c (revision b1c3d2beed8ef3699fab106340e33a79052df116)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/tcp.h>
36 #include <linux/iopoll.h>
37 #include <linux/phy/phy.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/ptp_classify.h>
40 #include <linux/reset.h>
41 #include <linux/firmware/xlnx-zynqmp.h>
42 #include "macb.h"
43 
44 /* This structure is only used for MACB on SiFive FU540 devices */
45 struct sifive_fu540_macb_mgmt {
46 	void __iomem *reg;
47 	unsigned long rate;
48 	struct clk_hw hw;
49 };
50 
51 #define MACB_RX_BUFFER_SIZE	128
52 #define RX_BUFFER_MULTIPLE	64  /* bytes */
53 
54 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
55 #define MIN_RX_RING_SIZE	64
56 #define MAX_RX_RING_SIZE	8192
57 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
58 				 * (bp)->rx_ring_size)
59 
60 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
61 #define MIN_TX_RING_SIZE	64
62 #define MAX_TX_RING_SIZE	4096
63 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
64 				 * (bp)->tx_ring_size)
65 
66 /* level of occupied TX descriptors under which we wake up TX process */
67 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
68 
69 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
70 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
71 					| MACB_BIT(ISR_RLE)		\
72 					| MACB_BIT(TXERR))
73 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
74 					| MACB_BIT(TXUBR))
75 
76 /* Max length of transmit frame must be a multiple of 8 bytes */
77 #define MACB_TX_LEN_ALIGN	8
78 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
80  * false amba_error in TX path from the DMA assuming there is not enough
81  * space in the SRAM (16KB) even when there is.
82  */
83 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
84 
85 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
86 #define MACB_NETIF_LSO		NETIF_F_TSO
87 
88 #define MACB_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
89 #define MACB_WOL_ENABLED		(0x1 << 1)
90 
91 #define HS_SPEED_10000M			4
92 #define MACB_SERDES_RATE_10G		1
93 
94 /* Graceful stop timeouts in us. We should allow up to
95  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
96  */
97 #define MACB_HALT_TIMEOUT	1230
98 
99 #define MACB_PM_TIMEOUT  100 /* ms */
100 
101 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
102 
103 /* DMA buffer descriptor might be different size
104  * depends on hardware configuration:
105  *
106  * 1. dma address width 32 bits:
107  *    word 1: 32 bit address of Data Buffer
108  *    word 2: control
109  *
110  * 2. dma address width 64 bits:
111  *    word 1: 32 bit address of Data Buffer
112  *    word 2: control
113  *    word 3: upper 32 bit address of Data Buffer
114  *    word 4: unused
115  *
116  * 3. dma address width 32 bits with hardware timestamping:
117  *    word 1: 32 bit address of Data Buffer
118  *    word 2: control
119  *    word 3: timestamp word 1
120  *    word 4: timestamp word 2
121  *
122  * 4. dma address width 64 bits with hardware timestamping:
123  *    word 1: 32 bit address of Data Buffer
124  *    word 2: control
125  *    word 3: upper 32 bit address of Data Buffer
126  *    word 4: unused
127  *    word 5: timestamp word 1
128  *    word 6: timestamp word 2
129  */
130 static unsigned int macb_dma_desc_get_size(struct macb *bp)
131 {
132 #ifdef MACB_EXT_DESC
133 	unsigned int desc_size;
134 
135 	switch (bp->hw_dma_cap) {
136 	case HW_DMA_CAP_64B:
137 		desc_size = sizeof(struct macb_dma_desc)
138 			+ sizeof(struct macb_dma_desc_64);
139 		break;
140 	case HW_DMA_CAP_PTP:
141 		desc_size = sizeof(struct macb_dma_desc)
142 			+ sizeof(struct macb_dma_desc_ptp);
143 		break;
144 	case HW_DMA_CAP_64B_PTP:
145 		desc_size = sizeof(struct macb_dma_desc)
146 			+ sizeof(struct macb_dma_desc_64)
147 			+ sizeof(struct macb_dma_desc_ptp);
148 		break;
149 	default:
150 		desc_size = sizeof(struct macb_dma_desc);
151 	}
152 	return desc_size;
153 #endif
154 	return sizeof(struct macb_dma_desc);
155 }
156 
157 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
158 {
159 #ifdef MACB_EXT_DESC
160 	switch (bp->hw_dma_cap) {
161 	case HW_DMA_CAP_64B:
162 	case HW_DMA_CAP_PTP:
163 		desc_idx <<= 1;
164 		break;
165 	case HW_DMA_CAP_64B_PTP:
166 		desc_idx *= 3;
167 		break;
168 	default:
169 		break;
170 	}
171 #endif
172 	return desc_idx;
173 }
174 
175 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
176 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
177 {
178 	return (struct macb_dma_desc_64 *)((void *)desc
179 		+ sizeof(struct macb_dma_desc));
180 }
181 #endif
182 
183 /* Ring buffer accessors */
184 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
185 {
186 	return index & (bp->tx_ring_size - 1);
187 }
188 
189 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
190 					  unsigned int index)
191 {
192 	index = macb_tx_ring_wrap(queue->bp, index);
193 	index = macb_adj_dma_desc_idx(queue->bp, index);
194 	return &queue->tx_ring[index];
195 }
196 
197 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
198 				       unsigned int index)
199 {
200 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
201 }
202 
203 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
204 {
205 	dma_addr_t offset;
206 
207 	offset = macb_tx_ring_wrap(queue->bp, index) *
208 			macb_dma_desc_get_size(queue->bp);
209 
210 	return queue->tx_ring_dma + offset;
211 }
212 
213 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
214 {
215 	return index & (bp->rx_ring_size - 1);
216 }
217 
218 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
219 {
220 	index = macb_rx_ring_wrap(queue->bp, index);
221 	index = macb_adj_dma_desc_idx(queue->bp, index);
222 	return &queue->rx_ring[index];
223 }
224 
225 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
226 {
227 	return queue->rx_buffers + queue->bp->rx_buffer_size *
228 	       macb_rx_ring_wrap(queue->bp, index);
229 }
230 
231 /* I/O accessors */
232 static u32 hw_readl_native(struct macb *bp, int offset)
233 {
234 	return __raw_readl(bp->regs + offset);
235 }
236 
237 static void hw_writel_native(struct macb *bp, int offset, u32 value)
238 {
239 	__raw_writel(value, bp->regs + offset);
240 }
241 
242 static u32 hw_readl(struct macb *bp, int offset)
243 {
244 	return readl_relaxed(bp->regs + offset);
245 }
246 
247 static void hw_writel(struct macb *bp, int offset, u32 value)
248 {
249 	writel_relaxed(value, bp->regs + offset);
250 }
251 
252 /* Find the CPU endianness by using the loopback bit of NCR register. When the
253  * CPU is in big endian we need to program swapped mode for management
254  * descriptor access.
255  */
256 static bool hw_is_native_io(void __iomem *addr)
257 {
258 	u32 value = MACB_BIT(LLB);
259 
260 	__raw_writel(value, addr + MACB_NCR);
261 	value = __raw_readl(addr + MACB_NCR);
262 
263 	/* Write 0 back to disable everything */
264 	__raw_writel(0, addr + MACB_NCR);
265 
266 	return value == MACB_BIT(LLB);
267 }
268 
269 static bool hw_is_gem(void __iomem *addr, bool native_io)
270 {
271 	u32 id;
272 
273 	if (native_io)
274 		id = __raw_readl(addr + MACB_MID);
275 	else
276 		id = readl_relaxed(addr + MACB_MID);
277 
278 	return MACB_BFEXT(IDNUM, id) >= 0x2;
279 }
280 
281 static void macb_set_hwaddr(struct macb *bp)
282 {
283 	u32 bottom;
284 	u16 top;
285 
286 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
287 	macb_or_gem_writel(bp, SA1B, bottom);
288 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
289 	macb_or_gem_writel(bp, SA1T, top);
290 
291 	/* Clear unused address register sets */
292 	macb_or_gem_writel(bp, SA2B, 0);
293 	macb_or_gem_writel(bp, SA2T, 0);
294 	macb_or_gem_writel(bp, SA3B, 0);
295 	macb_or_gem_writel(bp, SA3T, 0);
296 	macb_or_gem_writel(bp, SA4B, 0);
297 	macb_or_gem_writel(bp, SA4T, 0);
298 }
299 
300 static void macb_get_hwaddr(struct macb *bp)
301 {
302 	u32 bottom;
303 	u16 top;
304 	u8 addr[6];
305 	int i;
306 
307 	/* Check all 4 address register for valid address */
308 	for (i = 0; i < 4; i++) {
309 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
310 		top = macb_or_gem_readl(bp, SA1T + i * 8);
311 
312 		addr[0] = bottom & 0xff;
313 		addr[1] = (bottom >> 8) & 0xff;
314 		addr[2] = (bottom >> 16) & 0xff;
315 		addr[3] = (bottom >> 24) & 0xff;
316 		addr[4] = top & 0xff;
317 		addr[5] = (top >> 8) & 0xff;
318 
319 		if (is_valid_ether_addr(addr)) {
320 			eth_hw_addr_set(bp->dev, addr);
321 			return;
322 		}
323 	}
324 
325 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
326 	eth_hw_addr_random(bp->dev);
327 }
328 
329 static int macb_mdio_wait_for_idle(struct macb *bp)
330 {
331 	u32 val;
332 
333 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
334 				  1, MACB_MDIO_TIMEOUT);
335 }
336 
337 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
338 {
339 	struct macb *bp = bus->priv;
340 	int status;
341 
342 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
343 	if (status < 0)
344 		goto mdio_pm_exit;
345 
346 	status = macb_mdio_wait_for_idle(bp);
347 	if (status < 0)
348 		goto mdio_read_exit;
349 
350 	if (regnum & MII_ADDR_C45) {
351 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
352 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
353 			    | MACB_BF(PHYA, mii_id)
354 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
355 			    | MACB_BF(DATA, regnum & 0xFFFF)
356 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
357 
358 		status = macb_mdio_wait_for_idle(bp);
359 		if (status < 0)
360 			goto mdio_read_exit;
361 
362 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
363 			    | MACB_BF(RW, MACB_MAN_C45_READ)
364 			    | MACB_BF(PHYA, mii_id)
365 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
366 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
367 	} else {
368 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
369 				| MACB_BF(RW, MACB_MAN_C22_READ)
370 				| MACB_BF(PHYA, mii_id)
371 				| MACB_BF(REGA, regnum)
372 				| MACB_BF(CODE, MACB_MAN_C22_CODE)));
373 	}
374 
375 	status = macb_mdio_wait_for_idle(bp);
376 	if (status < 0)
377 		goto mdio_read_exit;
378 
379 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
380 
381 mdio_read_exit:
382 	pm_runtime_mark_last_busy(&bp->pdev->dev);
383 	pm_runtime_put_autosuspend(&bp->pdev->dev);
384 mdio_pm_exit:
385 	return status;
386 }
387 
388 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
389 			   u16 value)
390 {
391 	struct macb *bp = bus->priv;
392 	int status;
393 
394 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
395 	if (status < 0)
396 		goto mdio_pm_exit;
397 
398 	status = macb_mdio_wait_for_idle(bp);
399 	if (status < 0)
400 		goto mdio_write_exit;
401 
402 	if (regnum & MII_ADDR_C45) {
403 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
404 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
405 			    | MACB_BF(PHYA, mii_id)
406 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
407 			    | MACB_BF(DATA, regnum & 0xFFFF)
408 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
409 
410 		status = macb_mdio_wait_for_idle(bp);
411 		if (status < 0)
412 			goto mdio_write_exit;
413 
414 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
415 			    | MACB_BF(RW, MACB_MAN_C45_WRITE)
416 			    | MACB_BF(PHYA, mii_id)
417 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
418 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)
419 			    | MACB_BF(DATA, value)));
420 	} else {
421 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
422 				| MACB_BF(RW, MACB_MAN_C22_WRITE)
423 				| MACB_BF(PHYA, mii_id)
424 				| MACB_BF(REGA, regnum)
425 				| MACB_BF(CODE, MACB_MAN_C22_CODE)
426 				| MACB_BF(DATA, value)));
427 	}
428 
429 	status = macb_mdio_wait_for_idle(bp);
430 	if (status < 0)
431 		goto mdio_write_exit;
432 
433 mdio_write_exit:
434 	pm_runtime_mark_last_busy(&bp->pdev->dev);
435 	pm_runtime_put_autosuspend(&bp->pdev->dev);
436 mdio_pm_exit:
437 	return status;
438 }
439 
440 static void macb_init_buffers(struct macb *bp)
441 {
442 	struct macb_queue *queue;
443 	unsigned int q;
444 
445 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
446 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
447 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
448 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
449 			queue_writel(queue, RBQPH,
450 				     upper_32_bits(queue->rx_ring_dma));
451 #endif
452 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
453 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
454 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
455 			queue_writel(queue, TBQPH,
456 				     upper_32_bits(queue->tx_ring_dma));
457 #endif
458 	}
459 }
460 
461 /**
462  * macb_set_tx_clk() - Set a clock to a new frequency
463  * @bp:		pointer to struct macb
464  * @speed:	New frequency in Hz
465  */
466 static void macb_set_tx_clk(struct macb *bp, int speed)
467 {
468 	long ferr, rate, rate_rounded;
469 
470 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
471 		return;
472 
473 	/* In case of MII the PHY is the clock master */
474 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
475 		return;
476 
477 	switch (speed) {
478 	case SPEED_10:
479 		rate = 2500000;
480 		break;
481 	case SPEED_100:
482 		rate = 25000000;
483 		break;
484 	case SPEED_1000:
485 		rate = 125000000;
486 		break;
487 	default:
488 		return;
489 	}
490 
491 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
492 	if (rate_rounded < 0)
493 		return;
494 
495 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
496 	 * is not satisfied.
497 	 */
498 	ferr = abs(rate_rounded - rate);
499 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
500 	if (ferr > 5)
501 		netdev_warn(bp->dev,
502 			    "unable to generate target frequency: %ld Hz\n",
503 			    rate);
504 
505 	if (clk_set_rate(bp->tx_clk, rate_rounded))
506 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
507 }
508 
509 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
510 				 phy_interface_t interface, int speed,
511 				 int duplex)
512 {
513 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
514 	u32 config;
515 
516 	config = gem_readl(bp, USX_CONTROL);
517 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
518 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
519 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
520 	config |= GEM_BIT(TX_EN);
521 	gem_writel(bp, USX_CONTROL, config);
522 }
523 
524 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
525 				   struct phylink_link_state *state)
526 {
527 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
528 	u32 val;
529 
530 	state->speed = SPEED_10000;
531 	state->duplex = 1;
532 	state->an_complete = 1;
533 
534 	val = gem_readl(bp, USX_STATUS);
535 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
536 	val = gem_readl(bp, NCFGR);
537 	if (val & GEM_BIT(PAE))
538 		state->pause = MLO_PAUSE_RX;
539 }
540 
541 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
542 			       unsigned int mode,
543 			       phy_interface_t interface,
544 			       const unsigned long *advertising,
545 			       bool permit_pause_to_mac)
546 {
547 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
548 
549 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
550 		   GEM_BIT(SIGNAL_OK));
551 
552 	return 0;
553 }
554 
555 static void macb_pcs_get_state(struct phylink_pcs *pcs,
556 			       struct phylink_link_state *state)
557 {
558 	state->link = 0;
559 }
560 
561 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
562 {
563 	/* Not supported */
564 }
565 
566 static int macb_pcs_config(struct phylink_pcs *pcs,
567 			   unsigned int mode,
568 			   phy_interface_t interface,
569 			   const unsigned long *advertising,
570 			   bool permit_pause_to_mac)
571 {
572 	return 0;
573 }
574 
575 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
576 	.pcs_get_state = macb_usx_pcs_get_state,
577 	.pcs_config = macb_usx_pcs_config,
578 	.pcs_link_up = macb_usx_pcs_link_up,
579 };
580 
581 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
582 	.pcs_get_state = macb_pcs_get_state,
583 	.pcs_an_restart = macb_pcs_an_restart,
584 	.pcs_config = macb_pcs_config,
585 };
586 
587 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
588 			    const struct phylink_link_state *state)
589 {
590 	struct net_device *ndev = to_net_dev(config->dev);
591 	struct macb *bp = netdev_priv(ndev);
592 	unsigned long flags;
593 	u32 old_ctrl, ctrl;
594 	u32 old_ncr, ncr;
595 
596 	spin_lock_irqsave(&bp->lock, flags);
597 
598 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
599 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
600 
601 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
602 		if (state->interface == PHY_INTERFACE_MODE_RMII)
603 			ctrl |= MACB_BIT(RM9200_RMII);
604 	} else if (macb_is_gem(bp)) {
605 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
606 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
607 
608 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
609 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
610 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
611 			ctrl |= GEM_BIT(PCSSEL);
612 			ncr |= GEM_BIT(ENABLE_HS_MAC);
613 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
614 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
615 			ncr |= MACB_BIT(MIIONRGMII);
616 		}
617 	}
618 
619 	/* Apply the new configuration, if any */
620 	if (old_ctrl ^ ctrl)
621 		macb_or_gem_writel(bp, NCFGR, ctrl);
622 
623 	if (old_ncr ^ ncr)
624 		macb_or_gem_writel(bp, NCR, ncr);
625 
626 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
627 	 * Must be written after PCSSEL is set in NCFGR,
628 	 * otherwise writes will not take effect.
629 	 */
630 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
631 		u32 pcsctrl, old_pcsctrl;
632 
633 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
634 		if (mode == MLO_AN_FIXED)
635 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
636 		else
637 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
638 		if (old_pcsctrl != pcsctrl)
639 			gem_writel(bp, PCSCNTRL, pcsctrl);
640 	}
641 
642 	spin_unlock_irqrestore(&bp->lock, flags);
643 }
644 
645 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
646 			       phy_interface_t interface)
647 {
648 	struct net_device *ndev = to_net_dev(config->dev);
649 	struct macb *bp = netdev_priv(ndev);
650 	struct macb_queue *queue;
651 	unsigned int q;
652 	u32 ctrl;
653 
654 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
655 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
656 			queue_writel(queue, IDR,
657 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
658 
659 	/* Disable Rx and Tx */
660 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
661 	macb_writel(bp, NCR, ctrl);
662 
663 	netif_tx_stop_all_queues(ndev);
664 }
665 
666 static void macb_mac_link_up(struct phylink_config *config,
667 			     struct phy_device *phy,
668 			     unsigned int mode, phy_interface_t interface,
669 			     int speed, int duplex,
670 			     bool tx_pause, bool rx_pause)
671 {
672 	struct net_device *ndev = to_net_dev(config->dev);
673 	struct macb *bp = netdev_priv(ndev);
674 	struct macb_queue *queue;
675 	unsigned long flags;
676 	unsigned int q;
677 	u32 ctrl;
678 
679 	spin_lock_irqsave(&bp->lock, flags);
680 
681 	ctrl = macb_or_gem_readl(bp, NCFGR);
682 
683 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
684 
685 	if (speed == SPEED_100)
686 		ctrl |= MACB_BIT(SPD);
687 
688 	if (duplex)
689 		ctrl |= MACB_BIT(FD);
690 
691 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
692 		ctrl &= ~MACB_BIT(PAE);
693 		if (macb_is_gem(bp)) {
694 			ctrl &= ~GEM_BIT(GBE);
695 
696 			if (speed == SPEED_1000)
697 				ctrl |= GEM_BIT(GBE);
698 		}
699 
700 		if (rx_pause)
701 			ctrl |= MACB_BIT(PAE);
702 
703 		macb_set_tx_clk(bp, speed);
704 
705 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
706 		 * cleared the pipeline and control registers.
707 		 */
708 		bp->macbgem_ops.mog_init_rings(bp);
709 		macb_init_buffers(bp);
710 
711 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
712 			queue_writel(queue, IER,
713 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
714 	}
715 
716 	macb_or_gem_writel(bp, NCFGR, ctrl);
717 
718 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
719 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
720 							gem_readl(bp, HS_MAC_CONFIG)));
721 
722 	spin_unlock_irqrestore(&bp->lock, flags);
723 
724 	/* Enable Rx and Tx */
725 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE));
726 
727 	netif_tx_wake_all_queues(ndev);
728 }
729 
730 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
731 					       phy_interface_t interface)
732 {
733 	struct net_device *ndev = to_net_dev(config->dev);
734 	struct macb *bp = netdev_priv(ndev);
735 
736 	if (interface == PHY_INTERFACE_MODE_10GBASER)
737 		return &bp->phylink_usx_pcs;
738 	else if (interface == PHY_INTERFACE_MODE_SGMII)
739 		return &bp->phylink_sgmii_pcs;
740 	else
741 		return NULL;
742 }
743 
744 static const struct phylink_mac_ops macb_phylink_ops = {
745 	.mac_select_pcs = macb_mac_select_pcs,
746 	.mac_config = macb_mac_config,
747 	.mac_link_down = macb_mac_link_down,
748 	.mac_link_up = macb_mac_link_up,
749 };
750 
751 static bool macb_phy_handle_exists(struct device_node *dn)
752 {
753 	dn = of_parse_phandle(dn, "phy-handle", 0);
754 	of_node_put(dn);
755 	return dn != NULL;
756 }
757 
758 static int macb_phylink_connect(struct macb *bp)
759 {
760 	struct device_node *dn = bp->pdev->dev.of_node;
761 	struct net_device *dev = bp->dev;
762 	struct phy_device *phydev;
763 	int ret;
764 
765 	if (dn)
766 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
767 
768 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
769 		phydev = phy_find_first(bp->mii_bus);
770 		if (!phydev) {
771 			netdev_err(dev, "no PHY found\n");
772 			return -ENXIO;
773 		}
774 
775 		/* attach the mac to the phy */
776 		ret = phylink_connect_phy(bp->phylink, phydev);
777 	}
778 
779 	if (ret) {
780 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
781 		return ret;
782 	}
783 
784 	phylink_start(bp->phylink);
785 
786 	return 0;
787 }
788 
789 static void macb_get_pcs_fixed_state(struct phylink_config *config,
790 				     struct phylink_link_state *state)
791 {
792 	struct net_device *ndev = to_net_dev(config->dev);
793 	struct macb *bp = netdev_priv(ndev);
794 
795 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
796 }
797 
798 /* based on au1000_eth. c*/
799 static int macb_mii_probe(struct net_device *dev)
800 {
801 	struct macb *bp = netdev_priv(dev);
802 
803 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
804 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
805 
806 	bp->phylink_config.dev = &dev->dev;
807 	bp->phylink_config.type = PHYLINK_NETDEV;
808 	bp->phylink_config.mac_managed_pm = true;
809 
810 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
811 		bp->phylink_config.poll_fixed_state = true;
812 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
813 	}
814 
815 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
816 		MAC_10 | MAC_100;
817 
818 	__set_bit(PHY_INTERFACE_MODE_MII,
819 		  bp->phylink_config.supported_interfaces);
820 	__set_bit(PHY_INTERFACE_MODE_RMII,
821 		  bp->phylink_config.supported_interfaces);
822 
823 	/* Determine what modes are supported */
824 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
825 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
826 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
827 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
828 
829 		__set_bit(PHY_INTERFACE_MODE_GMII,
830 			  bp->phylink_config.supported_interfaces);
831 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
832 
833 		if (bp->caps & MACB_CAPS_PCS)
834 			__set_bit(PHY_INTERFACE_MODE_SGMII,
835 				  bp->phylink_config.supported_interfaces);
836 
837 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
838 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
839 				  bp->phylink_config.supported_interfaces);
840 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
841 		}
842 	}
843 
844 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
845 				     bp->phy_interface, &macb_phylink_ops);
846 	if (IS_ERR(bp->phylink)) {
847 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
848 			   PTR_ERR(bp->phylink));
849 		return PTR_ERR(bp->phylink);
850 	}
851 
852 	return 0;
853 }
854 
855 static int macb_mdiobus_register(struct macb *bp)
856 {
857 	struct device_node *child, *np = bp->pdev->dev.of_node;
858 
859 	/* If we have a child named mdio, probe it instead of looking for PHYs
860 	 * directly under the MAC node
861 	 */
862 	child = of_get_child_by_name(np, "mdio");
863 	if (child) {
864 		int ret = of_mdiobus_register(bp->mii_bus, child);
865 
866 		of_node_put(child);
867 		return ret;
868 	}
869 
870 	if (of_phy_is_fixed_link(np))
871 		return mdiobus_register(bp->mii_bus);
872 
873 	/* Only create the PHY from the device tree if at least one PHY is
874 	 * described. Otherwise scan the entire MDIO bus. We do this to support
875 	 * old device tree that did not follow the best practices and did not
876 	 * describe their network PHYs.
877 	 */
878 	for_each_available_child_of_node(np, child)
879 		if (of_mdiobus_child_is_phy(child)) {
880 			/* The loop increments the child refcount,
881 			 * decrement it before returning.
882 			 */
883 			of_node_put(child);
884 
885 			return of_mdiobus_register(bp->mii_bus, np);
886 		}
887 
888 	return mdiobus_register(bp->mii_bus);
889 }
890 
891 static int macb_mii_init(struct macb *bp)
892 {
893 	int err = -ENXIO;
894 
895 	/* Enable management port */
896 	macb_writel(bp, NCR, MACB_BIT(MPE));
897 
898 	bp->mii_bus = mdiobus_alloc();
899 	if (!bp->mii_bus) {
900 		err = -ENOMEM;
901 		goto err_out;
902 	}
903 
904 	bp->mii_bus->name = "MACB_mii_bus";
905 	bp->mii_bus->read = &macb_mdio_read;
906 	bp->mii_bus->write = &macb_mdio_write;
907 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
908 		 bp->pdev->name, bp->pdev->id);
909 	bp->mii_bus->priv = bp;
910 	bp->mii_bus->parent = &bp->pdev->dev;
911 
912 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
913 
914 	err = macb_mdiobus_register(bp);
915 	if (err)
916 		goto err_out_free_mdiobus;
917 
918 	err = macb_mii_probe(bp->dev);
919 	if (err)
920 		goto err_out_unregister_bus;
921 
922 	return 0;
923 
924 err_out_unregister_bus:
925 	mdiobus_unregister(bp->mii_bus);
926 err_out_free_mdiobus:
927 	mdiobus_free(bp->mii_bus);
928 err_out:
929 	return err;
930 }
931 
932 static void macb_update_stats(struct macb *bp)
933 {
934 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
935 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
936 	int offset = MACB_PFR;
937 
938 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
939 
940 	for (; p < end; p++, offset += 4)
941 		*p += bp->macb_reg_readl(bp, offset);
942 }
943 
944 static int macb_halt_tx(struct macb *bp)
945 {
946 	unsigned long	halt_time, timeout;
947 	u32		status;
948 
949 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
950 
951 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
952 	do {
953 		halt_time = jiffies;
954 		status = macb_readl(bp, TSR);
955 		if (!(status & MACB_BIT(TGO)))
956 			return 0;
957 
958 		udelay(250);
959 	} while (time_before(halt_time, timeout));
960 
961 	return -ETIMEDOUT;
962 }
963 
964 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
965 {
966 	if (tx_skb->mapping) {
967 		if (tx_skb->mapped_as_page)
968 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
969 				       tx_skb->size, DMA_TO_DEVICE);
970 		else
971 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
972 					 tx_skb->size, DMA_TO_DEVICE);
973 		tx_skb->mapping = 0;
974 	}
975 
976 	if (tx_skb->skb) {
977 		napi_consume_skb(tx_skb->skb, budget);
978 		tx_skb->skb = NULL;
979 	}
980 }
981 
982 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
983 {
984 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
985 	struct macb_dma_desc_64 *desc_64;
986 
987 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
988 		desc_64 = macb_64b_desc(bp, desc);
989 		desc_64->addrh = upper_32_bits(addr);
990 		/* The low bits of RX address contain the RX_USED bit, clearing
991 		 * of which allows packet RX. Make sure the high bits are also
992 		 * visible to HW at that point.
993 		 */
994 		dma_wmb();
995 	}
996 #endif
997 	desc->addr = lower_32_bits(addr);
998 }
999 
1000 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1001 {
1002 	dma_addr_t addr = 0;
1003 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1004 	struct macb_dma_desc_64 *desc_64;
1005 
1006 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1007 		desc_64 = macb_64b_desc(bp, desc);
1008 		addr = ((u64)(desc_64->addrh) << 32);
1009 	}
1010 #endif
1011 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1012 	return addr;
1013 }
1014 
1015 static void macb_tx_error_task(struct work_struct *work)
1016 {
1017 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1018 						      tx_error_task);
1019 	struct macb		*bp = queue->bp;
1020 	struct macb_tx_skb	*tx_skb;
1021 	struct macb_dma_desc	*desc;
1022 	struct sk_buff		*skb;
1023 	unsigned int		tail;
1024 	unsigned long		flags;
1025 
1026 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1027 		    (unsigned int)(queue - bp->queues),
1028 		    queue->tx_tail, queue->tx_head);
1029 
1030 	/* Prevent the queue NAPI TX poll from running, as it calls
1031 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1032 	 * As explained below, we have to halt the transmission before updating
1033 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1034 	 * network engine about the macb/gem being halted.
1035 	 */
1036 	napi_disable(&queue->napi_tx);
1037 	spin_lock_irqsave(&bp->lock, flags);
1038 
1039 	/* Make sure nobody is trying to queue up new packets */
1040 	netif_tx_stop_all_queues(bp->dev);
1041 
1042 	/* Stop transmission now
1043 	 * (in case we have just queued new packets)
1044 	 * macb/gem must be halted to write TBQP register
1045 	 */
1046 	if (macb_halt_tx(bp))
1047 		/* Just complain for now, reinitializing TX path can be good */
1048 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1049 
1050 	/* Treat frames in TX queue including the ones that caused the error.
1051 	 * Free transmit buffers in upper layer.
1052 	 */
1053 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1054 		u32	ctrl;
1055 
1056 		desc = macb_tx_desc(queue, tail);
1057 		ctrl = desc->ctrl;
1058 		tx_skb = macb_tx_skb(queue, tail);
1059 		skb = tx_skb->skb;
1060 
1061 		if (ctrl & MACB_BIT(TX_USED)) {
1062 			/* skb is set for the last buffer of the frame */
1063 			while (!skb) {
1064 				macb_tx_unmap(bp, tx_skb, 0);
1065 				tail++;
1066 				tx_skb = macb_tx_skb(queue, tail);
1067 				skb = tx_skb->skb;
1068 			}
1069 
1070 			/* ctrl still refers to the first buffer descriptor
1071 			 * since it's the only one written back by the hardware
1072 			 */
1073 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1074 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1075 					    macb_tx_ring_wrap(bp, tail),
1076 					    skb->data);
1077 				bp->dev->stats.tx_packets++;
1078 				queue->stats.tx_packets++;
1079 				bp->dev->stats.tx_bytes += skb->len;
1080 				queue->stats.tx_bytes += skb->len;
1081 			}
1082 		} else {
1083 			/* "Buffers exhausted mid-frame" errors may only happen
1084 			 * if the driver is buggy, so complain loudly about
1085 			 * those. Statistics are updated by hardware.
1086 			 */
1087 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1088 				netdev_err(bp->dev,
1089 					   "BUG: TX buffers exhausted mid-frame\n");
1090 
1091 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1092 		}
1093 
1094 		macb_tx_unmap(bp, tx_skb, 0);
1095 	}
1096 
1097 	/* Set end of TX queue */
1098 	desc = macb_tx_desc(queue, 0);
1099 	macb_set_addr(bp, desc, 0);
1100 	desc->ctrl = MACB_BIT(TX_USED);
1101 
1102 	/* Make descriptor updates visible to hardware */
1103 	wmb();
1104 
1105 	/* Reinitialize the TX desc queue */
1106 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1107 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1108 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1109 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1110 #endif
1111 	/* Make TX ring reflect state of hardware */
1112 	queue->tx_head = 0;
1113 	queue->tx_tail = 0;
1114 
1115 	/* Housework before enabling TX IRQ */
1116 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1117 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1118 
1119 	/* Now we are ready to start transmission again */
1120 	netif_tx_start_all_queues(bp->dev);
1121 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1122 
1123 	spin_unlock_irqrestore(&bp->lock, flags);
1124 	napi_enable(&queue->napi_tx);
1125 }
1126 
1127 static bool ptp_one_step_sync(struct sk_buff *skb)
1128 {
1129 	struct ptp_header *hdr;
1130 	unsigned int ptp_class;
1131 	u8 msgtype;
1132 
1133 	/* No need to parse packet if PTP TS is not involved */
1134 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1135 		goto not_oss;
1136 
1137 	/* Identify and return whether PTP one step sync is being processed */
1138 	ptp_class = ptp_classify_raw(skb);
1139 	if (ptp_class == PTP_CLASS_NONE)
1140 		goto not_oss;
1141 
1142 	hdr = ptp_parse_header(skb, ptp_class);
1143 	if (!hdr)
1144 		goto not_oss;
1145 
1146 	if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1147 		goto not_oss;
1148 
1149 	msgtype = ptp_get_msgtype(hdr, ptp_class);
1150 	if (msgtype == PTP_MSGTYPE_SYNC)
1151 		return true;
1152 
1153 not_oss:
1154 	return false;
1155 }
1156 
1157 static int macb_tx_complete(struct macb_queue *queue, int budget)
1158 {
1159 	struct macb *bp = queue->bp;
1160 	u16 queue_index = queue - bp->queues;
1161 	unsigned int tail;
1162 	unsigned int head;
1163 	int packets = 0;
1164 
1165 	spin_lock(&queue->tx_ptr_lock);
1166 	head = queue->tx_head;
1167 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1168 		struct macb_tx_skb	*tx_skb;
1169 		struct sk_buff		*skb;
1170 		struct macb_dma_desc	*desc;
1171 		u32			ctrl;
1172 
1173 		desc = macb_tx_desc(queue, tail);
1174 
1175 		/* Make hw descriptor updates visible to CPU */
1176 		rmb();
1177 
1178 		ctrl = desc->ctrl;
1179 
1180 		/* TX_USED bit is only set by hardware on the very first buffer
1181 		 * descriptor of the transmitted frame.
1182 		 */
1183 		if (!(ctrl & MACB_BIT(TX_USED)))
1184 			break;
1185 
1186 		/* Process all buffers of the current transmitted frame */
1187 		for (;; tail++) {
1188 			tx_skb = macb_tx_skb(queue, tail);
1189 			skb = tx_skb->skb;
1190 
1191 			/* First, update TX stats if needed */
1192 			if (skb) {
1193 				if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1194 				    !ptp_one_step_sync(skb) &&
1195 				    gem_ptp_do_txstamp(queue, skb, desc) == 0) {
1196 					/* skb now belongs to timestamp buffer
1197 					 * and will be removed later
1198 					 */
1199 					tx_skb->skb = NULL;
1200 				}
1201 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1202 					    macb_tx_ring_wrap(bp, tail),
1203 					    skb->data);
1204 				bp->dev->stats.tx_packets++;
1205 				queue->stats.tx_packets++;
1206 				bp->dev->stats.tx_bytes += skb->len;
1207 				queue->stats.tx_bytes += skb->len;
1208 				packets++;
1209 			}
1210 
1211 			/* Now we can safely release resources */
1212 			macb_tx_unmap(bp, tx_skb, budget);
1213 
1214 			/* skb is set only for the last buffer of the frame.
1215 			 * WARNING: at this point skb has been freed by
1216 			 * macb_tx_unmap().
1217 			 */
1218 			if (skb)
1219 				break;
1220 		}
1221 	}
1222 
1223 	queue->tx_tail = tail;
1224 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1225 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1226 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1227 		netif_wake_subqueue(bp->dev, queue_index);
1228 	spin_unlock(&queue->tx_ptr_lock);
1229 
1230 	return packets;
1231 }
1232 
1233 static void gem_rx_refill(struct macb_queue *queue)
1234 {
1235 	unsigned int		entry;
1236 	struct sk_buff		*skb;
1237 	dma_addr_t		paddr;
1238 	struct macb *bp = queue->bp;
1239 	struct macb_dma_desc *desc;
1240 
1241 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1242 			bp->rx_ring_size) > 0) {
1243 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1244 
1245 		/* Make hw descriptor updates visible to CPU */
1246 		rmb();
1247 
1248 		desc = macb_rx_desc(queue, entry);
1249 
1250 		if (!queue->rx_skbuff[entry]) {
1251 			/* allocate sk_buff for this free entry in ring */
1252 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1253 			if (unlikely(!skb)) {
1254 				netdev_err(bp->dev,
1255 					   "Unable to allocate sk_buff\n");
1256 				break;
1257 			}
1258 
1259 			/* now fill corresponding descriptor entry */
1260 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1261 					       bp->rx_buffer_size,
1262 					       DMA_FROM_DEVICE);
1263 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1264 				dev_kfree_skb(skb);
1265 				break;
1266 			}
1267 
1268 			queue->rx_skbuff[entry] = skb;
1269 
1270 			if (entry == bp->rx_ring_size - 1)
1271 				paddr |= MACB_BIT(RX_WRAP);
1272 			desc->ctrl = 0;
1273 			/* Setting addr clears RX_USED and allows reception,
1274 			 * make sure ctrl is cleared first to avoid a race.
1275 			 */
1276 			dma_wmb();
1277 			macb_set_addr(bp, desc, paddr);
1278 
1279 			/* properly align Ethernet header */
1280 			skb_reserve(skb, NET_IP_ALIGN);
1281 		} else {
1282 			desc->ctrl = 0;
1283 			dma_wmb();
1284 			desc->addr &= ~MACB_BIT(RX_USED);
1285 		}
1286 		queue->rx_prepared_head++;
1287 	}
1288 
1289 	/* Make descriptor updates visible to hardware */
1290 	wmb();
1291 
1292 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1293 			queue, queue->rx_prepared_head, queue->rx_tail);
1294 }
1295 
1296 /* Mark DMA descriptors from begin up to and not including end as unused */
1297 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1298 				  unsigned int end)
1299 {
1300 	unsigned int frag;
1301 
1302 	for (frag = begin; frag != end; frag++) {
1303 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1304 
1305 		desc->addr &= ~MACB_BIT(RX_USED);
1306 	}
1307 
1308 	/* Make descriptor updates visible to hardware */
1309 	wmb();
1310 
1311 	/* When this happens, the hardware stats registers for
1312 	 * whatever caused this is updated, so we don't have to record
1313 	 * anything.
1314 	 */
1315 }
1316 
1317 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1318 		  int budget)
1319 {
1320 	struct macb *bp = queue->bp;
1321 	unsigned int		len;
1322 	unsigned int		entry;
1323 	struct sk_buff		*skb;
1324 	struct macb_dma_desc	*desc;
1325 	int			count = 0;
1326 
1327 	while (count < budget) {
1328 		u32 ctrl;
1329 		dma_addr_t addr;
1330 		bool rxused;
1331 
1332 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1333 		desc = macb_rx_desc(queue, entry);
1334 
1335 		/* Make hw descriptor updates visible to CPU */
1336 		rmb();
1337 
1338 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1339 		addr = macb_get_addr(bp, desc);
1340 
1341 		if (!rxused)
1342 			break;
1343 
1344 		/* Ensure ctrl is at least as up-to-date as rxused */
1345 		dma_rmb();
1346 
1347 		ctrl = desc->ctrl;
1348 
1349 		queue->rx_tail++;
1350 		count++;
1351 
1352 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1353 			netdev_err(bp->dev,
1354 				   "not whole frame pointed by descriptor\n");
1355 			bp->dev->stats.rx_dropped++;
1356 			queue->stats.rx_dropped++;
1357 			break;
1358 		}
1359 		skb = queue->rx_skbuff[entry];
1360 		if (unlikely(!skb)) {
1361 			netdev_err(bp->dev,
1362 				   "inconsistent Rx descriptor chain\n");
1363 			bp->dev->stats.rx_dropped++;
1364 			queue->stats.rx_dropped++;
1365 			break;
1366 		}
1367 		/* now everything is ready for receiving packet */
1368 		queue->rx_skbuff[entry] = NULL;
1369 		len = ctrl & bp->rx_frm_len_mask;
1370 
1371 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1372 
1373 		skb_put(skb, len);
1374 		dma_unmap_single(&bp->pdev->dev, addr,
1375 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1376 
1377 		skb->protocol = eth_type_trans(skb, bp->dev);
1378 		skb_checksum_none_assert(skb);
1379 		if (bp->dev->features & NETIF_F_RXCSUM &&
1380 		    !(bp->dev->flags & IFF_PROMISC) &&
1381 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1382 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1383 
1384 		bp->dev->stats.rx_packets++;
1385 		queue->stats.rx_packets++;
1386 		bp->dev->stats.rx_bytes += skb->len;
1387 		queue->stats.rx_bytes += skb->len;
1388 
1389 		gem_ptp_do_rxstamp(bp, skb, desc);
1390 
1391 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1392 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1393 			    skb->len, skb->csum);
1394 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1395 			       skb_mac_header(skb), 16, true);
1396 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1397 			       skb->data, 32, true);
1398 #endif
1399 
1400 		napi_gro_receive(napi, skb);
1401 	}
1402 
1403 	gem_rx_refill(queue);
1404 
1405 	return count;
1406 }
1407 
1408 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1409 			 unsigned int first_frag, unsigned int last_frag)
1410 {
1411 	unsigned int len;
1412 	unsigned int frag;
1413 	unsigned int offset;
1414 	struct sk_buff *skb;
1415 	struct macb_dma_desc *desc;
1416 	struct macb *bp = queue->bp;
1417 
1418 	desc = macb_rx_desc(queue, last_frag);
1419 	len = desc->ctrl & bp->rx_frm_len_mask;
1420 
1421 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1422 		macb_rx_ring_wrap(bp, first_frag),
1423 		macb_rx_ring_wrap(bp, last_frag), len);
1424 
1425 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1426 	 * first buffer. Since the header is 14 bytes, this makes the
1427 	 * payload word-aligned.
1428 	 *
1429 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1430 	 * the two padding bytes into the skb so that we avoid hitting
1431 	 * the slowpath in memcpy(), and pull them off afterwards.
1432 	 */
1433 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1434 	if (!skb) {
1435 		bp->dev->stats.rx_dropped++;
1436 		for (frag = first_frag; ; frag++) {
1437 			desc = macb_rx_desc(queue, frag);
1438 			desc->addr &= ~MACB_BIT(RX_USED);
1439 			if (frag == last_frag)
1440 				break;
1441 		}
1442 
1443 		/* Make descriptor updates visible to hardware */
1444 		wmb();
1445 
1446 		return 1;
1447 	}
1448 
1449 	offset = 0;
1450 	len += NET_IP_ALIGN;
1451 	skb_checksum_none_assert(skb);
1452 	skb_put(skb, len);
1453 
1454 	for (frag = first_frag; ; frag++) {
1455 		unsigned int frag_len = bp->rx_buffer_size;
1456 
1457 		if (offset + frag_len > len) {
1458 			if (unlikely(frag != last_frag)) {
1459 				dev_kfree_skb_any(skb);
1460 				return -1;
1461 			}
1462 			frag_len = len - offset;
1463 		}
1464 		skb_copy_to_linear_data_offset(skb, offset,
1465 					       macb_rx_buffer(queue, frag),
1466 					       frag_len);
1467 		offset += bp->rx_buffer_size;
1468 		desc = macb_rx_desc(queue, frag);
1469 		desc->addr &= ~MACB_BIT(RX_USED);
1470 
1471 		if (frag == last_frag)
1472 			break;
1473 	}
1474 
1475 	/* Make descriptor updates visible to hardware */
1476 	wmb();
1477 
1478 	__skb_pull(skb, NET_IP_ALIGN);
1479 	skb->protocol = eth_type_trans(skb, bp->dev);
1480 
1481 	bp->dev->stats.rx_packets++;
1482 	bp->dev->stats.rx_bytes += skb->len;
1483 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1484 		    skb->len, skb->csum);
1485 	napi_gro_receive(napi, skb);
1486 
1487 	return 0;
1488 }
1489 
1490 static inline void macb_init_rx_ring(struct macb_queue *queue)
1491 {
1492 	struct macb *bp = queue->bp;
1493 	dma_addr_t addr;
1494 	struct macb_dma_desc *desc = NULL;
1495 	int i;
1496 
1497 	addr = queue->rx_buffers_dma;
1498 	for (i = 0; i < bp->rx_ring_size; i++) {
1499 		desc = macb_rx_desc(queue, i);
1500 		macb_set_addr(bp, desc, addr);
1501 		desc->ctrl = 0;
1502 		addr += bp->rx_buffer_size;
1503 	}
1504 	desc->addr |= MACB_BIT(RX_WRAP);
1505 	queue->rx_tail = 0;
1506 }
1507 
1508 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1509 		   int budget)
1510 {
1511 	struct macb *bp = queue->bp;
1512 	bool reset_rx_queue = false;
1513 	int received = 0;
1514 	unsigned int tail;
1515 	int first_frag = -1;
1516 
1517 	for (tail = queue->rx_tail; budget > 0; tail++) {
1518 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1519 		u32 ctrl;
1520 
1521 		/* Make hw descriptor updates visible to CPU */
1522 		rmb();
1523 
1524 		if (!(desc->addr & MACB_BIT(RX_USED)))
1525 			break;
1526 
1527 		/* Ensure ctrl is at least as up-to-date as addr */
1528 		dma_rmb();
1529 
1530 		ctrl = desc->ctrl;
1531 
1532 		if (ctrl & MACB_BIT(RX_SOF)) {
1533 			if (first_frag != -1)
1534 				discard_partial_frame(queue, first_frag, tail);
1535 			first_frag = tail;
1536 		}
1537 
1538 		if (ctrl & MACB_BIT(RX_EOF)) {
1539 			int dropped;
1540 
1541 			if (unlikely(first_frag == -1)) {
1542 				reset_rx_queue = true;
1543 				continue;
1544 			}
1545 
1546 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1547 			first_frag = -1;
1548 			if (unlikely(dropped < 0)) {
1549 				reset_rx_queue = true;
1550 				continue;
1551 			}
1552 			if (!dropped) {
1553 				received++;
1554 				budget--;
1555 			}
1556 		}
1557 	}
1558 
1559 	if (unlikely(reset_rx_queue)) {
1560 		unsigned long flags;
1561 		u32 ctrl;
1562 
1563 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1564 
1565 		spin_lock_irqsave(&bp->lock, flags);
1566 
1567 		ctrl = macb_readl(bp, NCR);
1568 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1569 
1570 		macb_init_rx_ring(queue);
1571 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1572 
1573 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1574 
1575 		spin_unlock_irqrestore(&bp->lock, flags);
1576 		return received;
1577 	}
1578 
1579 	if (first_frag != -1)
1580 		queue->rx_tail = first_frag;
1581 	else
1582 		queue->rx_tail = tail;
1583 
1584 	return received;
1585 }
1586 
1587 static bool macb_rx_pending(struct macb_queue *queue)
1588 {
1589 	struct macb *bp = queue->bp;
1590 	unsigned int		entry;
1591 	struct macb_dma_desc	*desc;
1592 
1593 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1594 	desc = macb_rx_desc(queue, entry);
1595 
1596 	/* Make hw descriptor updates visible to CPU */
1597 	rmb();
1598 
1599 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1600 }
1601 
1602 static int macb_rx_poll(struct napi_struct *napi, int budget)
1603 {
1604 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1605 	struct macb *bp = queue->bp;
1606 	int work_done;
1607 
1608 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1609 
1610 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1611 		    (unsigned int)(queue - bp->queues), work_done, budget);
1612 
1613 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1614 		queue_writel(queue, IER, bp->rx_intr_mask);
1615 
1616 		/* Packet completions only seem to propagate to raise
1617 		 * interrupts when interrupts are enabled at the time, so if
1618 		 * packets were received while interrupts were disabled,
1619 		 * they will not cause another interrupt to be generated when
1620 		 * interrupts are re-enabled.
1621 		 * Check for this case here to avoid losing a wakeup. This can
1622 		 * potentially race with the interrupt handler doing the same
1623 		 * actions if an interrupt is raised just after enabling them,
1624 		 * but this should be harmless.
1625 		 */
1626 		if (macb_rx_pending(queue)) {
1627 			queue_writel(queue, IDR, bp->rx_intr_mask);
1628 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1629 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1630 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1631 			napi_schedule(napi);
1632 		}
1633 	}
1634 
1635 	/* TODO: Handle errors */
1636 
1637 	return work_done;
1638 }
1639 
1640 static void macb_tx_restart(struct macb_queue *queue)
1641 {
1642 	struct macb *bp = queue->bp;
1643 	unsigned int head_idx, tbqp;
1644 
1645 	spin_lock(&queue->tx_ptr_lock);
1646 
1647 	if (queue->tx_head == queue->tx_tail)
1648 		goto out_tx_ptr_unlock;
1649 
1650 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1651 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1652 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1653 
1654 	if (tbqp == head_idx)
1655 		goto out_tx_ptr_unlock;
1656 
1657 	spin_lock_irq(&bp->lock);
1658 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1659 	spin_unlock_irq(&bp->lock);
1660 
1661 out_tx_ptr_unlock:
1662 	spin_unlock(&queue->tx_ptr_lock);
1663 }
1664 
1665 static bool macb_tx_complete_pending(struct macb_queue *queue)
1666 {
1667 	bool retval = false;
1668 
1669 	spin_lock(&queue->tx_ptr_lock);
1670 	if (queue->tx_head != queue->tx_tail) {
1671 		/* Make hw descriptor updates visible to CPU */
1672 		rmb();
1673 
1674 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1675 			retval = true;
1676 	}
1677 	spin_unlock(&queue->tx_ptr_lock);
1678 	return retval;
1679 }
1680 
1681 static int macb_tx_poll(struct napi_struct *napi, int budget)
1682 {
1683 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1684 	struct macb *bp = queue->bp;
1685 	int work_done;
1686 
1687 	work_done = macb_tx_complete(queue, budget);
1688 
1689 	rmb(); // ensure txubr_pending is up to date
1690 	if (queue->txubr_pending) {
1691 		queue->txubr_pending = false;
1692 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1693 		macb_tx_restart(queue);
1694 	}
1695 
1696 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1697 		    (unsigned int)(queue - bp->queues), work_done, budget);
1698 
1699 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1700 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1701 
1702 		/* Packet completions only seem to propagate to raise
1703 		 * interrupts when interrupts are enabled at the time, so if
1704 		 * packets were sent while interrupts were disabled,
1705 		 * they will not cause another interrupt to be generated when
1706 		 * interrupts are re-enabled.
1707 		 * Check for this case here to avoid losing a wakeup. This can
1708 		 * potentially race with the interrupt handler doing the same
1709 		 * actions if an interrupt is raised just after enabling them,
1710 		 * but this should be harmless.
1711 		 */
1712 		if (macb_tx_complete_pending(queue)) {
1713 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1714 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1715 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1716 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1717 			napi_schedule(napi);
1718 		}
1719 	}
1720 
1721 	return work_done;
1722 }
1723 
1724 static void macb_hresp_error_task(struct tasklet_struct *t)
1725 {
1726 	struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet);
1727 	struct net_device *dev = bp->dev;
1728 	struct macb_queue *queue;
1729 	unsigned int q;
1730 	u32 ctrl;
1731 
1732 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1733 		queue_writel(queue, IDR, bp->rx_intr_mask |
1734 					 MACB_TX_INT_FLAGS |
1735 					 MACB_BIT(HRESP));
1736 	}
1737 	ctrl = macb_readl(bp, NCR);
1738 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1739 	macb_writel(bp, NCR, ctrl);
1740 
1741 	netif_tx_stop_all_queues(dev);
1742 	netif_carrier_off(dev);
1743 
1744 	bp->macbgem_ops.mog_init_rings(bp);
1745 
1746 	/* Initialize TX and RX buffers */
1747 	macb_init_buffers(bp);
1748 
1749 	/* Enable interrupts */
1750 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1751 		queue_writel(queue, IER,
1752 			     bp->rx_intr_mask |
1753 			     MACB_TX_INT_FLAGS |
1754 			     MACB_BIT(HRESP));
1755 
1756 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1757 	macb_writel(bp, NCR, ctrl);
1758 
1759 	netif_carrier_on(dev);
1760 	netif_tx_start_all_queues(dev);
1761 }
1762 
1763 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1764 {
1765 	struct macb_queue *queue = dev_id;
1766 	struct macb *bp = queue->bp;
1767 	u32 status;
1768 
1769 	status = queue_readl(queue, ISR);
1770 
1771 	if (unlikely(!status))
1772 		return IRQ_NONE;
1773 
1774 	spin_lock(&bp->lock);
1775 
1776 	if (status & MACB_BIT(WOL)) {
1777 		queue_writel(queue, IDR, MACB_BIT(WOL));
1778 		macb_writel(bp, WOL, 0);
1779 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1780 			    (unsigned int)(queue - bp->queues),
1781 			    (unsigned long)status);
1782 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1783 			queue_writel(queue, ISR, MACB_BIT(WOL));
1784 		pm_wakeup_event(&bp->pdev->dev, 0);
1785 	}
1786 
1787 	spin_unlock(&bp->lock);
1788 
1789 	return IRQ_HANDLED;
1790 }
1791 
1792 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1793 {
1794 	struct macb_queue *queue = dev_id;
1795 	struct macb *bp = queue->bp;
1796 	u32 status;
1797 
1798 	status = queue_readl(queue, ISR);
1799 
1800 	if (unlikely(!status))
1801 		return IRQ_NONE;
1802 
1803 	spin_lock(&bp->lock);
1804 
1805 	if (status & GEM_BIT(WOL)) {
1806 		queue_writel(queue, IDR, GEM_BIT(WOL));
1807 		gem_writel(bp, WOL, 0);
1808 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1809 			    (unsigned int)(queue - bp->queues),
1810 			    (unsigned long)status);
1811 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1812 			queue_writel(queue, ISR, GEM_BIT(WOL));
1813 		pm_wakeup_event(&bp->pdev->dev, 0);
1814 	}
1815 
1816 	spin_unlock(&bp->lock);
1817 
1818 	return IRQ_HANDLED;
1819 }
1820 
1821 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1822 {
1823 	struct macb_queue *queue = dev_id;
1824 	struct macb *bp = queue->bp;
1825 	struct net_device *dev = bp->dev;
1826 	u32 status, ctrl;
1827 
1828 	status = queue_readl(queue, ISR);
1829 
1830 	if (unlikely(!status))
1831 		return IRQ_NONE;
1832 
1833 	spin_lock(&bp->lock);
1834 
1835 	while (status) {
1836 		/* close possible race with dev_close */
1837 		if (unlikely(!netif_running(dev))) {
1838 			queue_writel(queue, IDR, -1);
1839 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1840 				queue_writel(queue, ISR, -1);
1841 			break;
1842 		}
1843 
1844 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1845 			    (unsigned int)(queue - bp->queues),
1846 			    (unsigned long)status);
1847 
1848 		if (status & bp->rx_intr_mask) {
1849 			/* There's no point taking any more interrupts
1850 			 * until we have processed the buffers. The
1851 			 * scheduling call may fail if the poll routine
1852 			 * is already scheduled, so disable interrupts
1853 			 * now.
1854 			 */
1855 			queue_writel(queue, IDR, bp->rx_intr_mask);
1856 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1857 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1858 
1859 			if (napi_schedule_prep(&queue->napi_rx)) {
1860 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1861 				__napi_schedule(&queue->napi_rx);
1862 			}
1863 		}
1864 
1865 		if (status & (MACB_BIT(TCOMP) |
1866 			      MACB_BIT(TXUBR))) {
1867 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1868 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1869 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1870 							 MACB_BIT(TXUBR));
1871 
1872 			if (status & MACB_BIT(TXUBR)) {
1873 				queue->txubr_pending = true;
1874 				wmb(); // ensure softirq can see update
1875 			}
1876 
1877 			if (napi_schedule_prep(&queue->napi_tx)) {
1878 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1879 				__napi_schedule(&queue->napi_tx);
1880 			}
1881 		}
1882 
1883 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1884 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1885 			schedule_work(&queue->tx_error_task);
1886 
1887 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1888 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1889 
1890 			break;
1891 		}
1892 
1893 		/* Link change detection isn't possible with RMII, so we'll
1894 		 * add that if/when we get our hands on a full-blown MII PHY.
1895 		 */
1896 
1897 		/* There is a hardware issue under heavy load where DMA can
1898 		 * stop, this causes endless "used buffer descriptor read"
1899 		 * interrupts but it can be cleared by re-enabling RX. See
1900 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1901 		 * section 16.7.4 for details. RXUBR is only enabled for
1902 		 * these two versions.
1903 		 */
1904 		if (status & MACB_BIT(RXUBR)) {
1905 			ctrl = macb_readl(bp, NCR);
1906 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1907 			wmb();
1908 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1909 
1910 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1911 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1912 		}
1913 
1914 		if (status & MACB_BIT(ISR_ROVR)) {
1915 			/* We missed at least one packet */
1916 			if (macb_is_gem(bp))
1917 				bp->hw_stats.gem.rx_overruns++;
1918 			else
1919 				bp->hw_stats.macb.rx_overruns++;
1920 
1921 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1922 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1923 		}
1924 
1925 		if (status & MACB_BIT(HRESP)) {
1926 			tasklet_schedule(&bp->hresp_err_tasklet);
1927 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1928 
1929 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1930 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1931 		}
1932 		status = queue_readl(queue, ISR);
1933 	}
1934 
1935 	spin_unlock(&bp->lock);
1936 
1937 	return IRQ_HANDLED;
1938 }
1939 
1940 #ifdef CONFIG_NET_POLL_CONTROLLER
1941 /* Polling receive - used by netconsole and other diagnostic tools
1942  * to allow network i/o with interrupts disabled.
1943  */
1944 static void macb_poll_controller(struct net_device *dev)
1945 {
1946 	struct macb *bp = netdev_priv(dev);
1947 	struct macb_queue *queue;
1948 	unsigned long flags;
1949 	unsigned int q;
1950 
1951 	local_irq_save(flags);
1952 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1953 		macb_interrupt(dev->irq, queue);
1954 	local_irq_restore(flags);
1955 }
1956 #endif
1957 
1958 static unsigned int macb_tx_map(struct macb *bp,
1959 				struct macb_queue *queue,
1960 				struct sk_buff *skb,
1961 				unsigned int hdrlen)
1962 {
1963 	dma_addr_t mapping;
1964 	unsigned int len, entry, i, tx_head = queue->tx_head;
1965 	struct macb_tx_skb *tx_skb = NULL;
1966 	struct macb_dma_desc *desc;
1967 	unsigned int offset, size, count = 0;
1968 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1969 	unsigned int eof = 1, mss_mfs = 0;
1970 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
1971 
1972 	/* LSO */
1973 	if (skb_shinfo(skb)->gso_size != 0) {
1974 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
1975 			/* UDP - UFO */
1976 			lso_ctrl = MACB_LSO_UFO_ENABLE;
1977 		else
1978 			/* TCP - TSO */
1979 			lso_ctrl = MACB_LSO_TSO_ENABLE;
1980 	}
1981 
1982 	/* First, map non-paged data */
1983 	len = skb_headlen(skb);
1984 
1985 	/* first buffer length */
1986 	size = hdrlen;
1987 
1988 	offset = 0;
1989 	while (len) {
1990 		entry = macb_tx_ring_wrap(bp, tx_head);
1991 		tx_skb = &queue->tx_skb[entry];
1992 
1993 		mapping = dma_map_single(&bp->pdev->dev,
1994 					 skb->data + offset,
1995 					 size, DMA_TO_DEVICE);
1996 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1997 			goto dma_error;
1998 
1999 		/* Save info to properly release resources */
2000 		tx_skb->skb = NULL;
2001 		tx_skb->mapping = mapping;
2002 		tx_skb->size = size;
2003 		tx_skb->mapped_as_page = false;
2004 
2005 		len -= size;
2006 		offset += size;
2007 		count++;
2008 		tx_head++;
2009 
2010 		size = min(len, bp->max_tx_length);
2011 	}
2012 
2013 	/* Then, map paged data from fragments */
2014 	for (f = 0; f < nr_frags; f++) {
2015 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2016 
2017 		len = skb_frag_size(frag);
2018 		offset = 0;
2019 		while (len) {
2020 			size = min(len, bp->max_tx_length);
2021 			entry = macb_tx_ring_wrap(bp, tx_head);
2022 			tx_skb = &queue->tx_skb[entry];
2023 
2024 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2025 						   offset, size, DMA_TO_DEVICE);
2026 			if (dma_mapping_error(&bp->pdev->dev, mapping))
2027 				goto dma_error;
2028 
2029 			/* Save info to properly release resources */
2030 			tx_skb->skb = NULL;
2031 			tx_skb->mapping = mapping;
2032 			tx_skb->size = size;
2033 			tx_skb->mapped_as_page = true;
2034 
2035 			len -= size;
2036 			offset += size;
2037 			count++;
2038 			tx_head++;
2039 		}
2040 	}
2041 
2042 	/* Should never happen */
2043 	if (unlikely(!tx_skb)) {
2044 		netdev_err(bp->dev, "BUG! empty skb!\n");
2045 		return 0;
2046 	}
2047 
2048 	/* This is the last buffer of the frame: save socket buffer */
2049 	tx_skb->skb = skb;
2050 
2051 	/* Update TX ring: update buffer descriptors in reverse order
2052 	 * to avoid race condition
2053 	 */
2054 
2055 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2056 	 * to set the end of TX queue
2057 	 */
2058 	i = tx_head;
2059 	entry = macb_tx_ring_wrap(bp, i);
2060 	ctrl = MACB_BIT(TX_USED);
2061 	desc = macb_tx_desc(queue, entry);
2062 	desc->ctrl = ctrl;
2063 
2064 	if (lso_ctrl) {
2065 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2066 			/* include header and FCS in value given to h/w */
2067 			mss_mfs = skb_shinfo(skb)->gso_size +
2068 					skb_transport_offset(skb) +
2069 					ETH_FCS_LEN;
2070 		else /* TSO */ {
2071 			mss_mfs = skb_shinfo(skb)->gso_size;
2072 			/* TCP Sequence Number Source Select
2073 			 * can be set only for TSO
2074 			 */
2075 			seq_ctrl = 0;
2076 		}
2077 	}
2078 
2079 	do {
2080 		i--;
2081 		entry = macb_tx_ring_wrap(bp, i);
2082 		tx_skb = &queue->tx_skb[entry];
2083 		desc = macb_tx_desc(queue, entry);
2084 
2085 		ctrl = (u32)tx_skb->size;
2086 		if (eof) {
2087 			ctrl |= MACB_BIT(TX_LAST);
2088 			eof = 0;
2089 		}
2090 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2091 			ctrl |= MACB_BIT(TX_WRAP);
2092 
2093 		/* First descriptor is header descriptor */
2094 		if (i == queue->tx_head) {
2095 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2096 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2097 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2098 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2099 			    !ptp_one_step_sync(skb))
2100 				ctrl |= MACB_BIT(TX_NOCRC);
2101 		} else
2102 			/* Only set MSS/MFS on payload descriptors
2103 			 * (second or later descriptor)
2104 			 */
2105 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2106 
2107 		/* Set TX buffer descriptor */
2108 		macb_set_addr(bp, desc, tx_skb->mapping);
2109 		/* desc->addr must be visible to hardware before clearing
2110 		 * 'TX_USED' bit in desc->ctrl.
2111 		 */
2112 		wmb();
2113 		desc->ctrl = ctrl;
2114 	} while (i != queue->tx_head);
2115 
2116 	queue->tx_head = tx_head;
2117 
2118 	return count;
2119 
2120 dma_error:
2121 	netdev_err(bp->dev, "TX DMA map failed\n");
2122 
2123 	for (i = queue->tx_head; i != tx_head; i++) {
2124 		tx_skb = macb_tx_skb(queue, i);
2125 
2126 		macb_tx_unmap(bp, tx_skb, 0);
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 static netdev_features_t macb_features_check(struct sk_buff *skb,
2133 					     struct net_device *dev,
2134 					     netdev_features_t features)
2135 {
2136 	unsigned int nr_frags, f;
2137 	unsigned int hdrlen;
2138 
2139 	/* Validate LSO compatibility */
2140 
2141 	/* there is only one buffer or protocol is not UDP */
2142 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2143 		return features;
2144 
2145 	/* length of header */
2146 	hdrlen = skb_transport_offset(skb);
2147 
2148 	/* For UFO only:
2149 	 * When software supplies two or more payload buffers all payload buffers
2150 	 * apart from the last must be a multiple of 8 bytes in size.
2151 	 */
2152 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2153 		return features & ~MACB_NETIF_LSO;
2154 
2155 	nr_frags = skb_shinfo(skb)->nr_frags;
2156 	/* No need to check last fragment */
2157 	nr_frags--;
2158 	for (f = 0; f < nr_frags; f++) {
2159 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2160 
2161 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2162 			return features & ~MACB_NETIF_LSO;
2163 	}
2164 	return features;
2165 }
2166 
2167 static inline int macb_clear_csum(struct sk_buff *skb)
2168 {
2169 	/* no change for packets without checksum offloading */
2170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2171 		return 0;
2172 
2173 	/* make sure we can modify the header */
2174 	if (unlikely(skb_cow_head(skb, 0)))
2175 		return -1;
2176 
2177 	/* initialize checksum field
2178 	 * This is required - at least for Zynq, which otherwise calculates
2179 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2180 	 */
2181 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2182 	return 0;
2183 }
2184 
2185 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2186 {
2187 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2188 		      skb_is_nonlinear(*skb);
2189 	int padlen = ETH_ZLEN - (*skb)->len;
2190 	int tailroom = skb_tailroom(*skb);
2191 	struct sk_buff *nskb;
2192 	u32 fcs;
2193 
2194 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2195 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2196 	    skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2197 		return 0;
2198 
2199 	if (padlen <= 0) {
2200 		/* FCS could be appeded to tailroom. */
2201 		if (tailroom >= ETH_FCS_LEN)
2202 			goto add_fcs;
2203 		/* No room for FCS, need to reallocate skb. */
2204 		else
2205 			padlen = ETH_FCS_LEN;
2206 	} else {
2207 		/* Add room for FCS. */
2208 		padlen += ETH_FCS_LEN;
2209 	}
2210 
2211 	if (cloned || tailroom < padlen) {
2212 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2213 		if (!nskb)
2214 			return -ENOMEM;
2215 
2216 		dev_consume_skb_any(*skb);
2217 		*skb = nskb;
2218 	}
2219 
2220 	if (padlen > ETH_FCS_LEN)
2221 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2222 
2223 add_fcs:
2224 	/* set FCS to packet */
2225 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2226 	fcs = ~fcs;
2227 
2228 	skb_put_u8(*skb, fcs		& 0xff);
2229 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2230 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2231 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2232 
2233 	return 0;
2234 }
2235 
2236 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2237 {
2238 	u16 queue_index = skb_get_queue_mapping(skb);
2239 	struct macb *bp = netdev_priv(dev);
2240 	struct macb_queue *queue = &bp->queues[queue_index];
2241 	unsigned int desc_cnt, nr_frags, frag_size, f;
2242 	unsigned int hdrlen;
2243 	bool is_lso;
2244 	netdev_tx_t ret = NETDEV_TX_OK;
2245 
2246 	if (macb_clear_csum(skb)) {
2247 		dev_kfree_skb_any(skb);
2248 		return ret;
2249 	}
2250 
2251 	if (macb_pad_and_fcs(&skb, dev)) {
2252 		dev_kfree_skb_any(skb);
2253 		return ret;
2254 	}
2255 
2256 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2257 
2258 	if (is_lso) {
2259 		/* length of headers */
2260 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2261 			/* only queue eth + ip headers separately for UDP */
2262 			hdrlen = skb_transport_offset(skb);
2263 		else
2264 			hdrlen = skb_tcp_all_headers(skb);
2265 		if (skb_headlen(skb) < hdrlen) {
2266 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2267 			/* if this is required, would need to copy to single buffer */
2268 			return NETDEV_TX_BUSY;
2269 		}
2270 	} else
2271 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2272 
2273 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2274 	netdev_vdbg(bp->dev,
2275 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2276 		    queue_index, skb->len, skb->head, skb->data,
2277 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2278 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2279 		       skb->data, 16, true);
2280 #endif
2281 
2282 	/* Count how many TX buffer descriptors are needed to send this
2283 	 * socket buffer: skb fragments of jumbo frames may need to be
2284 	 * split into many buffer descriptors.
2285 	 */
2286 	if (is_lso && (skb_headlen(skb) > hdrlen))
2287 		/* extra header descriptor if also payload in first buffer */
2288 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2289 	else
2290 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2291 	nr_frags = skb_shinfo(skb)->nr_frags;
2292 	for (f = 0; f < nr_frags; f++) {
2293 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2294 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2295 	}
2296 
2297 	spin_lock_bh(&queue->tx_ptr_lock);
2298 
2299 	/* This is a hard error, log it. */
2300 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2301 		       bp->tx_ring_size) < desc_cnt) {
2302 		netif_stop_subqueue(dev, queue_index);
2303 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2304 			   queue->tx_head, queue->tx_tail);
2305 		ret = NETDEV_TX_BUSY;
2306 		goto unlock;
2307 	}
2308 
2309 	/* Map socket buffer for DMA transfer */
2310 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2311 		dev_kfree_skb_any(skb);
2312 		goto unlock;
2313 	}
2314 
2315 	/* Make newly initialized descriptor visible to hardware */
2316 	wmb();
2317 	skb_tx_timestamp(skb);
2318 
2319 	spin_lock_irq(&bp->lock);
2320 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2321 	spin_unlock_irq(&bp->lock);
2322 
2323 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2324 		netif_stop_subqueue(dev, queue_index);
2325 
2326 unlock:
2327 	spin_unlock_bh(&queue->tx_ptr_lock);
2328 
2329 	return ret;
2330 }
2331 
2332 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2333 {
2334 	if (!macb_is_gem(bp)) {
2335 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2336 	} else {
2337 		bp->rx_buffer_size = size;
2338 
2339 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2340 			netdev_dbg(bp->dev,
2341 				   "RX buffer must be multiple of %d bytes, expanding\n",
2342 				   RX_BUFFER_MULTIPLE);
2343 			bp->rx_buffer_size =
2344 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2345 		}
2346 	}
2347 
2348 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2349 		   bp->dev->mtu, bp->rx_buffer_size);
2350 }
2351 
2352 static void gem_free_rx_buffers(struct macb *bp)
2353 {
2354 	struct sk_buff		*skb;
2355 	struct macb_dma_desc	*desc;
2356 	struct macb_queue *queue;
2357 	dma_addr_t		addr;
2358 	unsigned int q;
2359 	int i;
2360 
2361 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2362 		if (!queue->rx_skbuff)
2363 			continue;
2364 
2365 		for (i = 0; i < bp->rx_ring_size; i++) {
2366 			skb = queue->rx_skbuff[i];
2367 
2368 			if (!skb)
2369 				continue;
2370 
2371 			desc = macb_rx_desc(queue, i);
2372 			addr = macb_get_addr(bp, desc);
2373 
2374 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2375 					DMA_FROM_DEVICE);
2376 			dev_kfree_skb_any(skb);
2377 			skb = NULL;
2378 		}
2379 
2380 		kfree(queue->rx_skbuff);
2381 		queue->rx_skbuff = NULL;
2382 	}
2383 }
2384 
2385 static void macb_free_rx_buffers(struct macb *bp)
2386 {
2387 	struct macb_queue *queue = &bp->queues[0];
2388 
2389 	if (queue->rx_buffers) {
2390 		dma_free_coherent(&bp->pdev->dev,
2391 				  bp->rx_ring_size * bp->rx_buffer_size,
2392 				  queue->rx_buffers, queue->rx_buffers_dma);
2393 		queue->rx_buffers = NULL;
2394 	}
2395 }
2396 
2397 static void macb_free_consistent(struct macb *bp)
2398 {
2399 	struct macb_queue *queue;
2400 	unsigned int q;
2401 	int size;
2402 
2403 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2404 
2405 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2406 		kfree(queue->tx_skb);
2407 		queue->tx_skb = NULL;
2408 		if (queue->tx_ring) {
2409 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2410 			dma_free_coherent(&bp->pdev->dev, size,
2411 					  queue->tx_ring, queue->tx_ring_dma);
2412 			queue->tx_ring = NULL;
2413 		}
2414 		if (queue->rx_ring) {
2415 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2416 			dma_free_coherent(&bp->pdev->dev, size,
2417 					  queue->rx_ring, queue->rx_ring_dma);
2418 			queue->rx_ring = NULL;
2419 		}
2420 	}
2421 }
2422 
2423 static int gem_alloc_rx_buffers(struct macb *bp)
2424 {
2425 	struct macb_queue *queue;
2426 	unsigned int q;
2427 	int size;
2428 
2429 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2430 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2431 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2432 		if (!queue->rx_skbuff)
2433 			return -ENOMEM;
2434 		else
2435 			netdev_dbg(bp->dev,
2436 				   "Allocated %d RX struct sk_buff entries at %p\n",
2437 				   bp->rx_ring_size, queue->rx_skbuff);
2438 	}
2439 	return 0;
2440 }
2441 
2442 static int macb_alloc_rx_buffers(struct macb *bp)
2443 {
2444 	struct macb_queue *queue = &bp->queues[0];
2445 	int size;
2446 
2447 	size = bp->rx_ring_size * bp->rx_buffer_size;
2448 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2449 					    &queue->rx_buffers_dma, GFP_KERNEL);
2450 	if (!queue->rx_buffers)
2451 		return -ENOMEM;
2452 
2453 	netdev_dbg(bp->dev,
2454 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2455 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2456 	return 0;
2457 }
2458 
2459 static int macb_alloc_consistent(struct macb *bp)
2460 {
2461 	struct macb_queue *queue;
2462 	unsigned int q;
2463 	int size;
2464 
2465 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2466 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2467 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2468 						    &queue->tx_ring_dma,
2469 						    GFP_KERNEL);
2470 		if (!queue->tx_ring)
2471 			goto out_err;
2472 		netdev_dbg(bp->dev,
2473 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2474 			   q, size, (unsigned long)queue->tx_ring_dma,
2475 			   queue->tx_ring);
2476 
2477 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2478 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2479 		if (!queue->tx_skb)
2480 			goto out_err;
2481 
2482 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2483 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2484 						 &queue->rx_ring_dma, GFP_KERNEL);
2485 		if (!queue->rx_ring)
2486 			goto out_err;
2487 		netdev_dbg(bp->dev,
2488 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2489 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2490 	}
2491 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2492 		goto out_err;
2493 
2494 	return 0;
2495 
2496 out_err:
2497 	macb_free_consistent(bp);
2498 	return -ENOMEM;
2499 }
2500 
2501 static void gem_init_rings(struct macb *bp)
2502 {
2503 	struct macb_queue *queue;
2504 	struct macb_dma_desc *desc = NULL;
2505 	unsigned int q;
2506 	int i;
2507 
2508 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2509 		for (i = 0; i < bp->tx_ring_size; i++) {
2510 			desc = macb_tx_desc(queue, i);
2511 			macb_set_addr(bp, desc, 0);
2512 			desc->ctrl = MACB_BIT(TX_USED);
2513 		}
2514 		desc->ctrl |= MACB_BIT(TX_WRAP);
2515 		queue->tx_head = 0;
2516 		queue->tx_tail = 0;
2517 
2518 		queue->rx_tail = 0;
2519 		queue->rx_prepared_head = 0;
2520 
2521 		gem_rx_refill(queue);
2522 	}
2523 
2524 }
2525 
2526 static void macb_init_rings(struct macb *bp)
2527 {
2528 	int i;
2529 	struct macb_dma_desc *desc = NULL;
2530 
2531 	macb_init_rx_ring(&bp->queues[0]);
2532 
2533 	for (i = 0; i < bp->tx_ring_size; i++) {
2534 		desc = macb_tx_desc(&bp->queues[0], i);
2535 		macb_set_addr(bp, desc, 0);
2536 		desc->ctrl = MACB_BIT(TX_USED);
2537 	}
2538 	bp->queues[0].tx_head = 0;
2539 	bp->queues[0].tx_tail = 0;
2540 	desc->ctrl |= MACB_BIT(TX_WRAP);
2541 }
2542 
2543 static void macb_reset_hw(struct macb *bp)
2544 {
2545 	struct macb_queue *queue;
2546 	unsigned int q;
2547 	u32 ctrl = macb_readl(bp, NCR);
2548 
2549 	/* Disable RX and TX (XXX: Should we halt the transmission
2550 	 * more gracefully?)
2551 	 */
2552 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2553 
2554 	/* Clear the stats registers (XXX: Update stats first?) */
2555 	ctrl |= MACB_BIT(CLRSTAT);
2556 
2557 	macb_writel(bp, NCR, ctrl);
2558 
2559 	/* Clear all status flags */
2560 	macb_writel(bp, TSR, -1);
2561 	macb_writel(bp, RSR, -1);
2562 
2563 	/* Disable all interrupts */
2564 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2565 		queue_writel(queue, IDR, -1);
2566 		queue_readl(queue, ISR);
2567 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2568 			queue_writel(queue, ISR, -1);
2569 	}
2570 }
2571 
2572 static u32 gem_mdc_clk_div(struct macb *bp)
2573 {
2574 	u32 config;
2575 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2576 
2577 	if (pclk_hz <= 20000000)
2578 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2579 	else if (pclk_hz <= 40000000)
2580 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2581 	else if (pclk_hz <= 80000000)
2582 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2583 	else if (pclk_hz <= 120000000)
2584 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2585 	else if (pclk_hz <= 160000000)
2586 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2587 	else
2588 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2589 
2590 	return config;
2591 }
2592 
2593 static u32 macb_mdc_clk_div(struct macb *bp)
2594 {
2595 	u32 config;
2596 	unsigned long pclk_hz;
2597 
2598 	if (macb_is_gem(bp))
2599 		return gem_mdc_clk_div(bp);
2600 
2601 	pclk_hz = clk_get_rate(bp->pclk);
2602 	if (pclk_hz <= 20000000)
2603 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2604 	else if (pclk_hz <= 40000000)
2605 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2606 	else if (pclk_hz <= 80000000)
2607 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2608 	else
2609 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2610 
2611 	return config;
2612 }
2613 
2614 /* Get the DMA bus width field of the network configuration register that we
2615  * should program.  We find the width from decoding the design configuration
2616  * register to find the maximum supported data bus width.
2617  */
2618 static u32 macb_dbw(struct macb *bp)
2619 {
2620 	if (!macb_is_gem(bp))
2621 		return 0;
2622 
2623 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2624 	case 4:
2625 		return GEM_BF(DBW, GEM_DBW128);
2626 	case 2:
2627 		return GEM_BF(DBW, GEM_DBW64);
2628 	case 1:
2629 	default:
2630 		return GEM_BF(DBW, GEM_DBW32);
2631 	}
2632 }
2633 
2634 /* Configure the receive DMA engine
2635  * - use the correct receive buffer size
2636  * - set best burst length for DMA operations
2637  *   (if not supported by FIFO, it will fallback to default)
2638  * - set both rx/tx packet buffers to full memory size
2639  * These are configurable parameters for GEM.
2640  */
2641 static void macb_configure_dma(struct macb *bp)
2642 {
2643 	struct macb_queue *queue;
2644 	u32 buffer_size;
2645 	unsigned int q;
2646 	u32 dmacfg;
2647 
2648 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2649 	if (macb_is_gem(bp)) {
2650 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2651 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2652 			if (q)
2653 				queue_writel(queue, RBQS, buffer_size);
2654 			else
2655 				dmacfg |= GEM_BF(RXBS, buffer_size);
2656 		}
2657 		if (bp->dma_burst_length)
2658 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2659 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2660 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2661 
2662 		if (bp->native_io)
2663 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2664 		else
2665 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2666 
2667 		if (bp->dev->features & NETIF_F_HW_CSUM)
2668 			dmacfg |= GEM_BIT(TXCOEN);
2669 		else
2670 			dmacfg &= ~GEM_BIT(TXCOEN);
2671 
2672 		dmacfg &= ~GEM_BIT(ADDR64);
2673 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2674 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2675 			dmacfg |= GEM_BIT(ADDR64);
2676 #endif
2677 #ifdef CONFIG_MACB_USE_HWSTAMP
2678 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2679 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2680 #endif
2681 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2682 			   dmacfg);
2683 		gem_writel(bp, DMACFG, dmacfg);
2684 	}
2685 }
2686 
2687 static void macb_init_hw(struct macb *bp)
2688 {
2689 	u32 config;
2690 
2691 	macb_reset_hw(bp);
2692 	macb_set_hwaddr(bp);
2693 
2694 	config = macb_mdc_clk_div(bp);
2695 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2696 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2697 	if (bp->caps & MACB_CAPS_JUMBO)
2698 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2699 	else
2700 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2701 	if (bp->dev->flags & IFF_PROMISC)
2702 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2703 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2704 		config |= GEM_BIT(RXCOEN);
2705 	if (!(bp->dev->flags & IFF_BROADCAST))
2706 		config |= MACB_BIT(NBC);	/* No BroadCast */
2707 	config |= macb_dbw(bp);
2708 	macb_writel(bp, NCFGR, config);
2709 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2710 		gem_writel(bp, JML, bp->jumbo_max_len);
2711 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2712 	if (bp->caps & MACB_CAPS_JUMBO)
2713 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2714 
2715 	macb_configure_dma(bp);
2716 }
2717 
2718 /* The hash address register is 64 bits long and takes up two
2719  * locations in the memory map.  The least significant bits are stored
2720  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2721  *
2722  * The unicast hash enable and the multicast hash enable bits in the
2723  * network configuration register enable the reception of hash matched
2724  * frames. The destination address is reduced to a 6 bit index into
2725  * the 64 bit hash register using the following hash function.  The
2726  * hash function is an exclusive or of every sixth bit of the
2727  * destination address.
2728  *
2729  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2730  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2731  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2732  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2733  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2734  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2735  *
2736  * da[0] represents the least significant bit of the first byte
2737  * received, that is, the multicast/unicast indicator, and da[47]
2738  * represents the most significant bit of the last byte received.  If
2739  * the hash index, hi[n], points to a bit that is set in the hash
2740  * register then the frame will be matched according to whether the
2741  * frame is multicast or unicast.  A multicast match will be signalled
2742  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2743  * index points to a bit set in the hash register.  A unicast match
2744  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2745  * and the hash index points to a bit set in the hash register.  To
2746  * receive all multicast frames, the hash register should be set with
2747  * all ones and the multicast hash enable bit should be set in the
2748  * network configuration register.
2749  */
2750 
2751 static inline int hash_bit_value(int bitnr, __u8 *addr)
2752 {
2753 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2754 		return 1;
2755 	return 0;
2756 }
2757 
2758 /* Return the hash index value for the specified address. */
2759 static int hash_get_index(__u8 *addr)
2760 {
2761 	int i, j, bitval;
2762 	int hash_index = 0;
2763 
2764 	for (j = 0; j < 6; j++) {
2765 		for (i = 0, bitval = 0; i < 8; i++)
2766 			bitval ^= hash_bit_value(i * 6 + j, addr);
2767 
2768 		hash_index |= (bitval << j);
2769 	}
2770 
2771 	return hash_index;
2772 }
2773 
2774 /* Add multicast addresses to the internal multicast-hash table. */
2775 static void macb_sethashtable(struct net_device *dev)
2776 {
2777 	struct netdev_hw_addr *ha;
2778 	unsigned long mc_filter[2];
2779 	unsigned int bitnr;
2780 	struct macb *bp = netdev_priv(dev);
2781 
2782 	mc_filter[0] = 0;
2783 	mc_filter[1] = 0;
2784 
2785 	netdev_for_each_mc_addr(ha, dev) {
2786 		bitnr = hash_get_index(ha->addr);
2787 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2788 	}
2789 
2790 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2791 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2792 }
2793 
2794 /* Enable/Disable promiscuous and multicast modes. */
2795 static void macb_set_rx_mode(struct net_device *dev)
2796 {
2797 	unsigned long cfg;
2798 	struct macb *bp = netdev_priv(dev);
2799 
2800 	cfg = macb_readl(bp, NCFGR);
2801 
2802 	if (dev->flags & IFF_PROMISC) {
2803 		/* Enable promiscuous mode */
2804 		cfg |= MACB_BIT(CAF);
2805 
2806 		/* Disable RX checksum offload */
2807 		if (macb_is_gem(bp))
2808 			cfg &= ~GEM_BIT(RXCOEN);
2809 	} else {
2810 		/* Disable promiscuous mode */
2811 		cfg &= ~MACB_BIT(CAF);
2812 
2813 		/* Enable RX checksum offload only if requested */
2814 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2815 			cfg |= GEM_BIT(RXCOEN);
2816 	}
2817 
2818 	if (dev->flags & IFF_ALLMULTI) {
2819 		/* Enable all multicast mode */
2820 		macb_or_gem_writel(bp, HRB, -1);
2821 		macb_or_gem_writel(bp, HRT, -1);
2822 		cfg |= MACB_BIT(NCFGR_MTI);
2823 	} else if (!netdev_mc_empty(dev)) {
2824 		/* Enable specific multicasts */
2825 		macb_sethashtable(dev);
2826 		cfg |= MACB_BIT(NCFGR_MTI);
2827 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2828 		/* Disable all multicast mode */
2829 		macb_or_gem_writel(bp, HRB, 0);
2830 		macb_or_gem_writel(bp, HRT, 0);
2831 		cfg &= ~MACB_BIT(NCFGR_MTI);
2832 	}
2833 
2834 	macb_writel(bp, NCFGR, cfg);
2835 }
2836 
2837 static int macb_open(struct net_device *dev)
2838 {
2839 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2840 	struct macb *bp = netdev_priv(dev);
2841 	struct macb_queue *queue;
2842 	unsigned int q;
2843 	int err;
2844 
2845 	netdev_dbg(bp->dev, "open\n");
2846 
2847 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2848 	if (err < 0)
2849 		return err;
2850 
2851 	/* RX buffers initialization */
2852 	macb_init_rx_buffer_size(bp, bufsz);
2853 
2854 	err = macb_alloc_consistent(bp);
2855 	if (err) {
2856 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2857 			   err);
2858 		goto pm_exit;
2859 	}
2860 
2861 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2862 		napi_enable(&queue->napi_rx);
2863 		napi_enable(&queue->napi_tx);
2864 	}
2865 
2866 	macb_init_hw(bp);
2867 
2868 	err = phy_power_on(bp->sgmii_phy);
2869 	if (err)
2870 		goto reset_hw;
2871 
2872 	err = macb_phylink_connect(bp);
2873 	if (err)
2874 		goto phy_off;
2875 
2876 	netif_tx_start_all_queues(dev);
2877 
2878 	if (bp->ptp_info)
2879 		bp->ptp_info->ptp_init(dev);
2880 
2881 	return 0;
2882 
2883 phy_off:
2884 	phy_power_off(bp->sgmii_phy);
2885 
2886 reset_hw:
2887 	macb_reset_hw(bp);
2888 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2889 		napi_disable(&queue->napi_rx);
2890 		napi_disable(&queue->napi_tx);
2891 	}
2892 	macb_free_consistent(bp);
2893 pm_exit:
2894 	pm_runtime_put_sync(&bp->pdev->dev);
2895 	return err;
2896 }
2897 
2898 static int macb_close(struct net_device *dev)
2899 {
2900 	struct macb *bp = netdev_priv(dev);
2901 	struct macb_queue *queue;
2902 	unsigned long flags;
2903 	unsigned int q;
2904 
2905 	netif_tx_stop_all_queues(dev);
2906 
2907 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2908 		napi_disable(&queue->napi_rx);
2909 		napi_disable(&queue->napi_tx);
2910 	}
2911 
2912 	phylink_stop(bp->phylink);
2913 	phylink_disconnect_phy(bp->phylink);
2914 
2915 	phy_power_off(bp->sgmii_phy);
2916 
2917 	spin_lock_irqsave(&bp->lock, flags);
2918 	macb_reset_hw(bp);
2919 	netif_carrier_off(dev);
2920 	spin_unlock_irqrestore(&bp->lock, flags);
2921 
2922 	macb_free_consistent(bp);
2923 
2924 	if (bp->ptp_info)
2925 		bp->ptp_info->ptp_remove(dev);
2926 
2927 	pm_runtime_put(&bp->pdev->dev);
2928 
2929 	return 0;
2930 }
2931 
2932 static int macb_change_mtu(struct net_device *dev, int new_mtu)
2933 {
2934 	if (netif_running(dev))
2935 		return -EBUSY;
2936 
2937 	dev->mtu = new_mtu;
2938 
2939 	return 0;
2940 }
2941 
2942 static int macb_set_mac_addr(struct net_device *dev, void *addr)
2943 {
2944 	int err;
2945 
2946 	err = eth_mac_addr(dev, addr);
2947 	if (err < 0)
2948 		return err;
2949 
2950 	macb_set_hwaddr(netdev_priv(dev));
2951 	return 0;
2952 }
2953 
2954 static void gem_update_stats(struct macb *bp)
2955 {
2956 	struct macb_queue *queue;
2957 	unsigned int i, q, idx;
2958 	unsigned long *stat;
2959 
2960 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2961 
2962 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2963 		u32 offset = gem_statistics[i].offset;
2964 		u64 val = bp->macb_reg_readl(bp, offset);
2965 
2966 		bp->ethtool_stats[i] += val;
2967 		*p += val;
2968 
2969 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2970 			/* Add GEM_OCTTXH, GEM_OCTRXH */
2971 			val = bp->macb_reg_readl(bp, offset + 4);
2972 			bp->ethtool_stats[i] += ((u64)val) << 32;
2973 			*(++p) += val;
2974 		}
2975 	}
2976 
2977 	idx = GEM_STATS_LEN;
2978 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2979 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
2980 			bp->ethtool_stats[idx++] = *stat;
2981 }
2982 
2983 static struct net_device_stats *gem_get_stats(struct macb *bp)
2984 {
2985 	struct gem_stats *hwstat = &bp->hw_stats.gem;
2986 	struct net_device_stats *nstat = &bp->dev->stats;
2987 
2988 	if (!netif_running(bp->dev))
2989 		return nstat;
2990 
2991 	gem_update_stats(bp);
2992 
2993 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2994 			    hwstat->rx_alignment_errors +
2995 			    hwstat->rx_resource_errors +
2996 			    hwstat->rx_overruns +
2997 			    hwstat->rx_oversize_frames +
2998 			    hwstat->rx_jabbers +
2999 			    hwstat->rx_undersized_frames +
3000 			    hwstat->rx_length_field_frame_errors);
3001 	nstat->tx_errors = (hwstat->tx_late_collisions +
3002 			    hwstat->tx_excessive_collisions +
3003 			    hwstat->tx_underrun +
3004 			    hwstat->tx_carrier_sense_errors);
3005 	nstat->multicast = hwstat->rx_multicast_frames;
3006 	nstat->collisions = (hwstat->tx_single_collision_frames +
3007 			     hwstat->tx_multiple_collision_frames +
3008 			     hwstat->tx_excessive_collisions);
3009 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3010 				   hwstat->rx_jabbers +
3011 				   hwstat->rx_undersized_frames +
3012 				   hwstat->rx_length_field_frame_errors);
3013 	nstat->rx_over_errors = hwstat->rx_resource_errors;
3014 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3015 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3016 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3017 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3018 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3019 	nstat->tx_fifo_errors = hwstat->tx_underrun;
3020 
3021 	return nstat;
3022 }
3023 
3024 static void gem_get_ethtool_stats(struct net_device *dev,
3025 				  struct ethtool_stats *stats, u64 *data)
3026 {
3027 	struct macb *bp;
3028 
3029 	bp = netdev_priv(dev);
3030 	gem_update_stats(bp);
3031 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
3032 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3033 }
3034 
3035 static int gem_get_sset_count(struct net_device *dev, int sset)
3036 {
3037 	struct macb *bp = netdev_priv(dev);
3038 
3039 	switch (sset) {
3040 	case ETH_SS_STATS:
3041 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3042 	default:
3043 		return -EOPNOTSUPP;
3044 	}
3045 }
3046 
3047 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3048 {
3049 	char stat_string[ETH_GSTRING_LEN];
3050 	struct macb *bp = netdev_priv(dev);
3051 	struct macb_queue *queue;
3052 	unsigned int i;
3053 	unsigned int q;
3054 
3055 	switch (sset) {
3056 	case ETH_SS_STATS:
3057 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3058 			memcpy(p, gem_statistics[i].stat_string,
3059 			       ETH_GSTRING_LEN);
3060 
3061 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3062 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3063 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3064 						q, queue_statistics[i].stat_string);
3065 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3066 			}
3067 		}
3068 		break;
3069 	}
3070 }
3071 
3072 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3073 {
3074 	struct macb *bp = netdev_priv(dev);
3075 	struct net_device_stats *nstat = &bp->dev->stats;
3076 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3077 
3078 	if (macb_is_gem(bp))
3079 		return gem_get_stats(bp);
3080 
3081 	/* read stats from hardware */
3082 	macb_update_stats(bp);
3083 
3084 	/* Convert HW stats into netdevice stats */
3085 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3086 			    hwstat->rx_align_errors +
3087 			    hwstat->rx_resource_errors +
3088 			    hwstat->rx_overruns +
3089 			    hwstat->rx_oversize_pkts +
3090 			    hwstat->rx_jabbers +
3091 			    hwstat->rx_undersize_pkts +
3092 			    hwstat->rx_length_mismatch);
3093 	nstat->tx_errors = (hwstat->tx_late_cols +
3094 			    hwstat->tx_excessive_cols +
3095 			    hwstat->tx_underruns +
3096 			    hwstat->tx_carrier_errors +
3097 			    hwstat->sqe_test_errors);
3098 	nstat->collisions = (hwstat->tx_single_cols +
3099 			     hwstat->tx_multiple_cols +
3100 			     hwstat->tx_excessive_cols);
3101 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3102 				   hwstat->rx_jabbers +
3103 				   hwstat->rx_undersize_pkts +
3104 				   hwstat->rx_length_mismatch);
3105 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3106 				   hwstat->rx_overruns;
3107 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3108 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3109 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3110 	/* XXX: What does "missed" mean? */
3111 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3112 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3113 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3114 	/* Don't know about heartbeat or window errors... */
3115 
3116 	return nstat;
3117 }
3118 
3119 static int macb_get_regs_len(struct net_device *netdev)
3120 {
3121 	return MACB_GREGS_NBR * sizeof(u32);
3122 }
3123 
3124 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3125 			  void *p)
3126 {
3127 	struct macb *bp = netdev_priv(dev);
3128 	unsigned int tail, head;
3129 	u32 *regs_buff = p;
3130 
3131 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3132 			| MACB_GREGS_VERSION;
3133 
3134 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3135 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3136 
3137 	regs_buff[0]  = macb_readl(bp, NCR);
3138 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3139 	regs_buff[2]  = macb_readl(bp, NSR);
3140 	regs_buff[3]  = macb_readl(bp, TSR);
3141 	regs_buff[4]  = macb_readl(bp, RBQP);
3142 	regs_buff[5]  = macb_readl(bp, TBQP);
3143 	regs_buff[6]  = macb_readl(bp, RSR);
3144 	regs_buff[7]  = macb_readl(bp, IMR);
3145 
3146 	regs_buff[8]  = tail;
3147 	regs_buff[9]  = head;
3148 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3149 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3150 
3151 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3152 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3153 	if (macb_is_gem(bp))
3154 		regs_buff[13] = gem_readl(bp, DMACFG);
3155 }
3156 
3157 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3158 {
3159 	struct macb *bp = netdev_priv(netdev);
3160 
3161 	if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
3162 		phylink_ethtool_get_wol(bp->phylink, wol);
3163 		wol->supported |= WAKE_MAGIC;
3164 
3165 		if (bp->wol & MACB_WOL_ENABLED)
3166 			wol->wolopts |= WAKE_MAGIC;
3167 	}
3168 }
3169 
3170 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3171 {
3172 	struct macb *bp = netdev_priv(netdev);
3173 	int ret;
3174 
3175 	/* Pass the order to phylink layer */
3176 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3177 	/* Don't manage WoL on MAC if handled by the PHY
3178 	 * or if there's a failure in talking to the PHY
3179 	 */
3180 	if (!ret || ret != -EOPNOTSUPP)
3181 		return ret;
3182 
3183 	if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
3184 	    (wol->wolopts & ~WAKE_MAGIC))
3185 		return -EOPNOTSUPP;
3186 
3187 	if (wol->wolopts & WAKE_MAGIC)
3188 		bp->wol |= MACB_WOL_ENABLED;
3189 	else
3190 		bp->wol &= ~MACB_WOL_ENABLED;
3191 
3192 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
3193 
3194 	return 0;
3195 }
3196 
3197 static int macb_get_link_ksettings(struct net_device *netdev,
3198 				   struct ethtool_link_ksettings *kset)
3199 {
3200 	struct macb *bp = netdev_priv(netdev);
3201 
3202 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3203 }
3204 
3205 static int macb_set_link_ksettings(struct net_device *netdev,
3206 				   const struct ethtool_link_ksettings *kset)
3207 {
3208 	struct macb *bp = netdev_priv(netdev);
3209 
3210 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3211 }
3212 
3213 static void macb_get_ringparam(struct net_device *netdev,
3214 			       struct ethtool_ringparam *ring,
3215 			       struct kernel_ethtool_ringparam *kernel_ring,
3216 			       struct netlink_ext_ack *extack)
3217 {
3218 	struct macb *bp = netdev_priv(netdev);
3219 
3220 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3221 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3222 
3223 	ring->rx_pending = bp->rx_ring_size;
3224 	ring->tx_pending = bp->tx_ring_size;
3225 }
3226 
3227 static int macb_set_ringparam(struct net_device *netdev,
3228 			      struct ethtool_ringparam *ring,
3229 			      struct kernel_ethtool_ringparam *kernel_ring,
3230 			      struct netlink_ext_ack *extack)
3231 {
3232 	struct macb *bp = netdev_priv(netdev);
3233 	u32 new_rx_size, new_tx_size;
3234 	unsigned int reset = 0;
3235 
3236 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3237 		return -EINVAL;
3238 
3239 	new_rx_size = clamp_t(u32, ring->rx_pending,
3240 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3241 	new_rx_size = roundup_pow_of_two(new_rx_size);
3242 
3243 	new_tx_size = clamp_t(u32, ring->tx_pending,
3244 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3245 	new_tx_size = roundup_pow_of_two(new_tx_size);
3246 
3247 	if ((new_tx_size == bp->tx_ring_size) &&
3248 	    (new_rx_size == bp->rx_ring_size)) {
3249 		/* nothing to do */
3250 		return 0;
3251 	}
3252 
3253 	if (netif_running(bp->dev)) {
3254 		reset = 1;
3255 		macb_close(bp->dev);
3256 	}
3257 
3258 	bp->rx_ring_size = new_rx_size;
3259 	bp->tx_ring_size = new_tx_size;
3260 
3261 	if (reset)
3262 		macb_open(bp->dev);
3263 
3264 	return 0;
3265 }
3266 
3267 #ifdef CONFIG_MACB_USE_HWSTAMP
3268 static unsigned int gem_get_tsu_rate(struct macb *bp)
3269 {
3270 	struct clk *tsu_clk;
3271 	unsigned int tsu_rate;
3272 
3273 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3274 	if (!IS_ERR(tsu_clk))
3275 		tsu_rate = clk_get_rate(tsu_clk);
3276 	/* try pclk instead */
3277 	else if (!IS_ERR(bp->pclk)) {
3278 		tsu_clk = bp->pclk;
3279 		tsu_rate = clk_get_rate(tsu_clk);
3280 	} else
3281 		return -ENOTSUPP;
3282 	return tsu_rate;
3283 }
3284 
3285 static s32 gem_get_ptp_max_adj(void)
3286 {
3287 	return 64000000;
3288 }
3289 
3290 static int gem_get_ts_info(struct net_device *dev,
3291 			   struct ethtool_ts_info *info)
3292 {
3293 	struct macb *bp = netdev_priv(dev);
3294 
3295 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3296 		ethtool_op_get_ts_info(dev, info);
3297 		return 0;
3298 	}
3299 
3300 	info->so_timestamping =
3301 		SOF_TIMESTAMPING_TX_SOFTWARE |
3302 		SOF_TIMESTAMPING_RX_SOFTWARE |
3303 		SOF_TIMESTAMPING_SOFTWARE |
3304 		SOF_TIMESTAMPING_TX_HARDWARE |
3305 		SOF_TIMESTAMPING_RX_HARDWARE |
3306 		SOF_TIMESTAMPING_RAW_HARDWARE;
3307 	info->tx_types =
3308 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3309 		(1 << HWTSTAMP_TX_OFF) |
3310 		(1 << HWTSTAMP_TX_ON);
3311 	info->rx_filters =
3312 		(1 << HWTSTAMP_FILTER_NONE) |
3313 		(1 << HWTSTAMP_FILTER_ALL);
3314 
3315 	info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
3316 
3317 	return 0;
3318 }
3319 
3320 static struct macb_ptp_info gem_ptp_info = {
3321 	.ptp_init	 = gem_ptp_init,
3322 	.ptp_remove	 = gem_ptp_remove,
3323 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3324 	.get_tsu_rate	 = gem_get_tsu_rate,
3325 	.get_ts_info	 = gem_get_ts_info,
3326 	.get_hwtst	 = gem_get_hwtst,
3327 	.set_hwtst	 = gem_set_hwtst,
3328 };
3329 #endif
3330 
3331 static int macb_get_ts_info(struct net_device *netdev,
3332 			    struct ethtool_ts_info *info)
3333 {
3334 	struct macb *bp = netdev_priv(netdev);
3335 
3336 	if (bp->ptp_info)
3337 		return bp->ptp_info->get_ts_info(netdev, info);
3338 
3339 	return ethtool_op_get_ts_info(netdev, info);
3340 }
3341 
3342 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3343 {
3344 	struct net_device *netdev = bp->dev;
3345 	struct ethtool_rx_fs_item *item;
3346 	u32 t2_scr;
3347 	int num_t2_scr;
3348 
3349 	if (!(netdev->features & NETIF_F_NTUPLE))
3350 		return;
3351 
3352 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3353 
3354 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3355 		struct ethtool_rx_flow_spec *fs = &item->fs;
3356 		struct ethtool_tcpip4_spec *tp4sp_m;
3357 
3358 		if (fs->location >= num_t2_scr)
3359 			continue;
3360 
3361 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3362 
3363 		/* enable/disable screener regs for the flow entry */
3364 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3365 
3366 		/* only enable fields with no masking */
3367 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3368 
3369 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3370 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3371 		else
3372 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3373 
3374 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3375 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3376 		else
3377 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3378 
3379 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3380 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3381 		else
3382 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3383 
3384 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3385 	}
3386 }
3387 
3388 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3389 {
3390 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3391 	uint16_t index = fs->location;
3392 	u32 w0, w1, t2_scr;
3393 	bool cmp_a = false;
3394 	bool cmp_b = false;
3395 	bool cmp_c = false;
3396 
3397 	if (!macb_is_gem(bp))
3398 		return;
3399 
3400 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3401 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3402 
3403 	/* ignore field if any masking set */
3404 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3405 		/* 1st compare reg - IP source address */
3406 		w0 = 0;
3407 		w1 = 0;
3408 		w0 = tp4sp_v->ip4src;
3409 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3410 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3411 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3412 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3413 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3414 		cmp_a = true;
3415 	}
3416 
3417 	/* ignore field if any masking set */
3418 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3419 		/* 2nd compare reg - IP destination address */
3420 		w0 = 0;
3421 		w1 = 0;
3422 		w0 = tp4sp_v->ip4dst;
3423 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3424 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3425 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3426 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3427 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3428 		cmp_b = true;
3429 	}
3430 
3431 	/* ignore both port fields if masking set in both */
3432 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3433 		/* 3rd compare reg - source port, destination port */
3434 		w0 = 0;
3435 		w1 = 0;
3436 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3437 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3438 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3439 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3440 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3441 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3442 		} else {
3443 			/* only one port definition */
3444 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3445 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3446 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3447 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3448 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3449 			} else { /* dst port */
3450 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3451 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3452 			}
3453 		}
3454 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3455 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3456 		cmp_c = true;
3457 	}
3458 
3459 	t2_scr = 0;
3460 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3461 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3462 	if (cmp_a)
3463 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3464 	if (cmp_b)
3465 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3466 	if (cmp_c)
3467 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3468 	gem_writel_n(bp, SCRT2, index, t2_scr);
3469 }
3470 
3471 static int gem_add_flow_filter(struct net_device *netdev,
3472 		struct ethtool_rxnfc *cmd)
3473 {
3474 	struct macb *bp = netdev_priv(netdev);
3475 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3476 	struct ethtool_rx_fs_item *item, *newfs;
3477 	unsigned long flags;
3478 	int ret = -EINVAL;
3479 	bool added = false;
3480 
3481 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3482 	if (newfs == NULL)
3483 		return -ENOMEM;
3484 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3485 
3486 	netdev_dbg(netdev,
3487 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3488 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3489 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3490 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3491 			be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3492 			be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3493 
3494 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3495 
3496 	/* find correct place to add in list */
3497 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3498 		if (item->fs.location > newfs->fs.location) {
3499 			list_add_tail(&newfs->list, &item->list);
3500 			added = true;
3501 			break;
3502 		} else if (item->fs.location == fs->location) {
3503 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3504 					fs->location);
3505 			ret = -EBUSY;
3506 			goto err;
3507 		}
3508 	}
3509 	if (!added)
3510 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3511 
3512 	gem_prog_cmp_regs(bp, fs);
3513 	bp->rx_fs_list.count++;
3514 	/* enable filtering if NTUPLE on */
3515 	gem_enable_flow_filters(bp, 1);
3516 
3517 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3518 	return 0;
3519 
3520 err:
3521 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3522 	kfree(newfs);
3523 	return ret;
3524 }
3525 
3526 static int gem_del_flow_filter(struct net_device *netdev,
3527 		struct ethtool_rxnfc *cmd)
3528 {
3529 	struct macb *bp = netdev_priv(netdev);
3530 	struct ethtool_rx_fs_item *item;
3531 	struct ethtool_rx_flow_spec *fs;
3532 	unsigned long flags;
3533 
3534 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3535 
3536 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3537 		if (item->fs.location == cmd->fs.location) {
3538 			/* disable screener regs for the flow entry */
3539 			fs = &(item->fs);
3540 			netdev_dbg(netdev,
3541 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3542 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3543 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3544 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3545 					be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3546 					be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3547 
3548 			gem_writel_n(bp, SCRT2, fs->location, 0);
3549 
3550 			list_del(&item->list);
3551 			bp->rx_fs_list.count--;
3552 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3553 			kfree(item);
3554 			return 0;
3555 		}
3556 	}
3557 
3558 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3559 	return -EINVAL;
3560 }
3561 
3562 static int gem_get_flow_entry(struct net_device *netdev,
3563 		struct ethtool_rxnfc *cmd)
3564 {
3565 	struct macb *bp = netdev_priv(netdev);
3566 	struct ethtool_rx_fs_item *item;
3567 
3568 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3569 		if (item->fs.location == cmd->fs.location) {
3570 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3571 			return 0;
3572 		}
3573 	}
3574 	return -EINVAL;
3575 }
3576 
3577 static int gem_get_all_flow_entries(struct net_device *netdev,
3578 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3579 {
3580 	struct macb *bp = netdev_priv(netdev);
3581 	struct ethtool_rx_fs_item *item;
3582 	uint32_t cnt = 0;
3583 
3584 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3585 		if (cnt == cmd->rule_cnt)
3586 			return -EMSGSIZE;
3587 		rule_locs[cnt] = item->fs.location;
3588 		cnt++;
3589 	}
3590 	cmd->data = bp->max_tuples;
3591 	cmd->rule_cnt = cnt;
3592 
3593 	return 0;
3594 }
3595 
3596 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3597 		u32 *rule_locs)
3598 {
3599 	struct macb *bp = netdev_priv(netdev);
3600 	int ret = 0;
3601 
3602 	switch (cmd->cmd) {
3603 	case ETHTOOL_GRXRINGS:
3604 		cmd->data = bp->num_queues;
3605 		break;
3606 	case ETHTOOL_GRXCLSRLCNT:
3607 		cmd->rule_cnt = bp->rx_fs_list.count;
3608 		break;
3609 	case ETHTOOL_GRXCLSRULE:
3610 		ret = gem_get_flow_entry(netdev, cmd);
3611 		break;
3612 	case ETHTOOL_GRXCLSRLALL:
3613 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3614 		break;
3615 	default:
3616 		netdev_err(netdev,
3617 			  "Command parameter %d is not supported\n", cmd->cmd);
3618 		ret = -EOPNOTSUPP;
3619 	}
3620 
3621 	return ret;
3622 }
3623 
3624 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3625 {
3626 	struct macb *bp = netdev_priv(netdev);
3627 	int ret;
3628 
3629 	switch (cmd->cmd) {
3630 	case ETHTOOL_SRXCLSRLINS:
3631 		if ((cmd->fs.location >= bp->max_tuples)
3632 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3633 			ret = -EINVAL;
3634 			break;
3635 		}
3636 		ret = gem_add_flow_filter(netdev, cmd);
3637 		break;
3638 	case ETHTOOL_SRXCLSRLDEL:
3639 		ret = gem_del_flow_filter(netdev, cmd);
3640 		break;
3641 	default:
3642 		netdev_err(netdev,
3643 			  "Command parameter %d is not supported\n", cmd->cmd);
3644 		ret = -EOPNOTSUPP;
3645 	}
3646 
3647 	return ret;
3648 }
3649 
3650 static const struct ethtool_ops macb_ethtool_ops = {
3651 	.get_regs_len		= macb_get_regs_len,
3652 	.get_regs		= macb_get_regs,
3653 	.get_link		= ethtool_op_get_link,
3654 	.get_ts_info		= ethtool_op_get_ts_info,
3655 	.get_wol		= macb_get_wol,
3656 	.set_wol		= macb_set_wol,
3657 	.get_link_ksettings     = macb_get_link_ksettings,
3658 	.set_link_ksettings     = macb_set_link_ksettings,
3659 	.get_ringparam		= macb_get_ringparam,
3660 	.set_ringparam		= macb_set_ringparam,
3661 };
3662 
3663 static const struct ethtool_ops gem_ethtool_ops = {
3664 	.get_regs_len		= macb_get_regs_len,
3665 	.get_regs		= macb_get_regs,
3666 	.get_wol		= macb_get_wol,
3667 	.set_wol		= macb_set_wol,
3668 	.get_link		= ethtool_op_get_link,
3669 	.get_ts_info		= macb_get_ts_info,
3670 	.get_ethtool_stats	= gem_get_ethtool_stats,
3671 	.get_strings		= gem_get_ethtool_strings,
3672 	.get_sset_count		= gem_get_sset_count,
3673 	.get_link_ksettings     = macb_get_link_ksettings,
3674 	.set_link_ksettings     = macb_set_link_ksettings,
3675 	.get_ringparam		= macb_get_ringparam,
3676 	.set_ringparam		= macb_set_ringparam,
3677 	.get_rxnfc			= gem_get_rxnfc,
3678 	.set_rxnfc			= gem_set_rxnfc,
3679 };
3680 
3681 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3682 {
3683 	struct macb *bp = netdev_priv(dev);
3684 
3685 	if (!netif_running(dev))
3686 		return -EINVAL;
3687 
3688 	if (bp->ptp_info) {
3689 		switch (cmd) {
3690 		case SIOCSHWTSTAMP:
3691 			return bp->ptp_info->set_hwtst(dev, rq, cmd);
3692 		case SIOCGHWTSTAMP:
3693 			return bp->ptp_info->get_hwtst(dev, rq);
3694 		}
3695 	}
3696 
3697 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3698 }
3699 
3700 static inline void macb_set_txcsum_feature(struct macb *bp,
3701 					   netdev_features_t features)
3702 {
3703 	u32 val;
3704 
3705 	if (!macb_is_gem(bp))
3706 		return;
3707 
3708 	val = gem_readl(bp, DMACFG);
3709 	if (features & NETIF_F_HW_CSUM)
3710 		val |= GEM_BIT(TXCOEN);
3711 	else
3712 		val &= ~GEM_BIT(TXCOEN);
3713 
3714 	gem_writel(bp, DMACFG, val);
3715 }
3716 
3717 static inline void macb_set_rxcsum_feature(struct macb *bp,
3718 					   netdev_features_t features)
3719 {
3720 	struct net_device *netdev = bp->dev;
3721 	u32 val;
3722 
3723 	if (!macb_is_gem(bp))
3724 		return;
3725 
3726 	val = gem_readl(bp, NCFGR);
3727 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3728 		val |= GEM_BIT(RXCOEN);
3729 	else
3730 		val &= ~GEM_BIT(RXCOEN);
3731 
3732 	gem_writel(bp, NCFGR, val);
3733 }
3734 
3735 static inline void macb_set_rxflow_feature(struct macb *bp,
3736 					   netdev_features_t features)
3737 {
3738 	if (!macb_is_gem(bp))
3739 		return;
3740 
3741 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3742 }
3743 
3744 static int macb_set_features(struct net_device *netdev,
3745 			     netdev_features_t features)
3746 {
3747 	struct macb *bp = netdev_priv(netdev);
3748 	netdev_features_t changed = features ^ netdev->features;
3749 
3750 	/* TX checksum offload */
3751 	if (changed & NETIF_F_HW_CSUM)
3752 		macb_set_txcsum_feature(bp, features);
3753 
3754 	/* RX checksum offload */
3755 	if (changed & NETIF_F_RXCSUM)
3756 		macb_set_rxcsum_feature(bp, features);
3757 
3758 	/* RX Flow Filters */
3759 	if (changed & NETIF_F_NTUPLE)
3760 		macb_set_rxflow_feature(bp, features);
3761 
3762 	return 0;
3763 }
3764 
3765 static void macb_restore_features(struct macb *bp)
3766 {
3767 	struct net_device *netdev = bp->dev;
3768 	netdev_features_t features = netdev->features;
3769 	struct ethtool_rx_fs_item *item;
3770 
3771 	/* TX checksum offload */
3772 	macb_set_txcsum_feature(bp, features);
3773 
3774 	/* RX checksum offload */
3775 	macb_set_rxcsum_feature(bp, features);
3776 
3777 	/* RX Flow Filters */
3778 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3779 		gem_prog_cmp_regs(bp, &item->fs);
3780 
3781 	macb_set_rxflow_feature(bp, features);
3782 }
3783 
3784 static const struct net_device_ops macb_netdev_ops = {
3785 	.ndo_open		= macb_open,
3786 	.ndo_stop		= macb_close,
3787 	.ndo_start_xmit		= macb_start_xmit,
3788 	.ndo_set_rx_mode	= macb_set_rx_mode,
3789 	.ndo_get_stats		= macb_get_stats,
3790 	.ndo_eth_ioctl		= macb_ioctl,
3791 	.ndo_validate_addr	= eth_validate_addr,
3792 	.ndo_change_mtu		= macb_change_mtu,
3793 	.ndo_set_mac_address	= macb_set_mac_addr,
3794 #ifdef CONFIG_NET_POLL_CONTROLLER
3795 	.ndo_poll_controller	= macb_poll_controller,
3796 #endif
3797 	.ndo_set_features	= macb_set_features,
3798 	.ndo_features_check	= macb_features_check,
3799 };
3800 
3801 /* Configure peripheral capabilities according to device tree
3802  * and integration options used
3803  */
3804 static void macb_configure_caps(struct macb *bp,
3805 				const struct macb_config *dt_conf)
3806 {
3807 	u32 dcfg;
3808 
3809 	if (dt_conf)
3810 		bp->caps = dt_conf->caps;
3811 
3812 	if (hw_is_gem(bp->regs, bp->native_io)) {
3813 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3814 
3815 		dcfg = gem_readl(bp, DCFG1);
3816 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3817 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3818 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3819 			bp->caps |= MACB_CAPS_PCS;
3820 		dcfg = gem_readl(bp, DCFG12);
3821 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3822 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3823 		dcfg = gem_readl(bp, DCFG2);
3824 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3825 			bp->caps |= MACB_CAPS_FIFO_MODE;
3826 #ifdef CONFIG_MACB_USE_HWSTAMP
3827 		if (gem_has_ptp(bp)) {
3828 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3829 				dev_err(&bp->pdev->dev,
3830 					"GEM doesn't support hardware ptp.\n");
3831 			else {
3832 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3833 				bp->ptp_info = &gem_ptp_info;
3834 			}
3835 		}
3836 #endif
3837 	}
3838 
3839 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3840 }
3841 
3842 static void macb_probe_queues(void __iomem *mem,
3843 			      bool native_io,
3844 			      unsigned int *queue_mask,
3845 			      unsigned int *num_queues)
3846 {
3847 	*queue_mask = 0x1;
3848 	*num_queues = 1;
3849 
3850 	/* is it macb or gem ?
3851 	 *
3852 	 * We need to read directly from the hardware here because
3853 	 * we are early in the probe process and don't have the
3854 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3855 	 */
3856 	if (!hw_is_gem(mem, native_io))
3857 		return;
3858 
3859 	/* bit 0 is never set but queue 0 always exists */
3860 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3861 	*num_queues = hweight32(*queue_mask);
3862 }
3863 
3864 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3865 			      struct clk *rx_clk, struct clk *tsu_clk)
3866 {
3867 	struct clk_bulk_data clks[] = {
3868 		{ .clk = tsu_clk, },
3869 		{ .clk = rx_clk, },
3870 		{ .clk = pclk, },
3871 		{ .clk = hclk, },
3872 		{ .clk = tx_clk },
3873 	};
3874 
3875 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
3876 }
3877 
3878 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
3879 			 struct clk **hclk, struct clk **tx_clk,
3880 			 struct clk **rx_clk, struct clk **tsu_clk)
3881 {
3882 	struct macb_platform_data *pdata;
3883 	int err;
3884 
3885 	pdata = dev_get_platdata(&pdev->dev);
3886 	if (pdata) {
3887 		*pclk = pdata->pclk;
3888 		*hclk = pdata->hclk;
3889 	} else {
3890 		*pclk = devm_clk_get(&pdev->dev, "pclk");
3891 		*hclk = devm_clk_get(&pdev->dev, "hclk");
3892 	}
3893 
3894 	if (IS_ERR_OR_NULL(*pclk))
3895 		return dev_err_probe(&pdev->dev,
3896 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
3897 				     "failed to get pclk\n");
3898 
3899 	if (IS_ERR_OR_NULL(*hclk))
3900 		return dev_err_probe(&pdev->dev,
3901 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
3902 				     "failed to get hclk\n");
3903 
3904 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
3905 	if (IS_ERR(*tx_clk))
3906 		return PTR_ERR(*tx_clk);
3907 
3908 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
3909 	if (IS_ERR(*rx_clk))
3910 		return PTR_ERR(*rx_clk);
3911 
3912 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
3913 	if (IS_ERR(*tsu_clk))
3914 		return PTR_ERR(*tsu_clk);
3915 
3916 	err = clk_prepare_enable(*pclk);
3917 	if (err) {
3918 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
3919 		return err;
3920 	}
3921 
3922 	err = clk_prepare_enable(*hclk);
3923 	if (err) {
3924 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
3925 		goto err_disable_pclk;
3926 	}
3927 
3928 	err = clk_prepare_enable(*tx_clk);
3929 	if (err) {
3930 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
3931 		goto err_disable_hclk;
3932 	}
3933 
3934 	err = clk_prepare_enable(*rx_clk);
3935 	if (err) {
3936 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
3937 		goto err_disable_txclk;
3938 	}
3939 
3940 	err = clk_prepare_enable(*tsu_clk);
3941 	if (err) {
3942 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
3943 		goto err_disable_rxclk;
3944 	}
3945 
3946 	return 0;
3947 
3948 err_disable_rxclk:
3949 	clk_disable_unprepare(*rx_clk);
3950 
3951 err_disable_txclk:
3952 	clk_disable_unprepare(*tx_clk);
3953 
3954 err_disable_hclk:
3955 	clk_disable_unprepare(*hclk);
3956 
3957 err_disable_pclk:
3958 	clk_disable_unprepare(*pclk);
3959 
3960 	return err;
3961 }
3962 
3963 static int macb_init(struct platform_device *pdev)
3964 {
3965 	struct net_device *dev = platform_get_drvdata(pdev);
3966 	unsigned int hw_q, q;
3967 	struct macb *bp = netdev_priv(dev);
3968 	struct macb_queue *queue;
3969 	int err;
3970 	u32 val, reg;
3971 
3972 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
3973 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
3974 
3975 	/* set the queue register mapping once for all: queue0 has a special
3976 	 * register mapping but we don't want to test the queue index then
3977 	 * compute the corresponding register offset at run time.
3978 	 */
3979 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
3980 		if (!(bp->queue_mask & (1 << hw_q)))
3981 			continue;
3982 
3983 		queue = &bp->queues[q];
3984 		queue->bp = bp;
3985 		spin_lock_init(&queue->tx_ptr_lock);
3986 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll);
3987 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll);
3988 		if (hw_q) {
3989 			queue->ISR  = GEM_ISR(hw_q - 1);
3990 			queue->IER  = GEM_IER(hw_q - 1);
3991 			queue->IDR  = GEM_IDR(hw_q - 1);
3992 			queue->IMR  = GEM_IMR(hw_q - 1);
3993 			queue->TBQP = GEM_TBQP(hw_q - 1);
3994 			queue->RBQP = GEM_RBQP(hw_q - 1);
3995 			queue->RBQS = GEM_RBQS(hw_q - 1);
3996 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3997 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
3998 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
3999 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
4000 			}
4001 #endif
4002 		} else {
4003 			/* queue0 uses legacy registers */
4004 			queue->ISR  = MACB_ISR;
4005 			queue->IER  = MACB_IER;
4006 			queue->IDR  = MACB_IDR;
4007 			queue->IMR  = MACB_IMR;
4008 			queue->TBQP = MACB_TBQP;
4009 			queue->RBQP = MACB_RBQP;
4010 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4011 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4012 				queue->TBQPH = MACB_TBQPH;
4013 				queue->RBQPH = MACB_RBQPH;
4014 			}
4015 #endif
4016 		}
4017 
4018 		/* get irq: here we use the linux queue index, not the hardware
4019 		 * queue index. the queue irq definitions in the device tree
4020 		 * must remove the optional gaps that could exist in the
4021 		 * hardware queue mask.
4022 		 */
4023 		queue->irq = platform_get_irq(pdev, q);
4024 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4025 				       IRQF_SHARED, dev->name, queue);
4026 		if (err) {
4027 			dev_err(&pdev->dev,
4028 				"Unable to request IRQ %d (error %d)\n",
4029 				queue->irq, err);
4030 			return err;
4031 		}
4032 
4033 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4034 		q++;
4035 	}
4036 
4037 	dev->netdev_ops = &macb_netdev_ops;
4038 
4039 	/* setup appropriated routines according to adapter type */
4040 	if (macb_is_gem(bp)) {
4041 		bp->max_tx_length = GEM_MAX_TX_LEN;
4042 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4043 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4044 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4045 		bp->macbgem_ops.mog_rx = gem_rx;
4046 		dev->ethtool_ops = &gem_ethtool_ops;
4047 	} else {
4048 		bp->max_tx_length = MACB_MAX_TX_LEN;
4049 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4050 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4051 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4052 		bp->macbgem_ops.mog_rx = macb_rx;
4053 		dev->ethtool_ops = &macb_ethtool_ops;
4054 	}
4055 
4056 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4057 
4058 	/* Set features */
4059 	dev->hw_features = NETIF_F_SG;
4060 
4061 	/* Check LSO capability */
4062 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4063 		dev->hw_features |= MACB_NETIF_LSO;
4064 
4065 	/* Checksum offload is only available on gem with packet buffer */
4066 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4067 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4068 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4069 		dev->hw_features &= ~NETIF_F_SG;
4070 	dev->features = dev->hw_features;
4071 
4072 	/* Check RX Flow Filters support.
4073 	 * Max Rx flows set by availability of screeners & compare regs:
4074 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4075 	 */
4076 	reg = gem_readl(bp, DCFG8);
4077 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4078 			GEM_BFEXT(T2SCR, reg));
4079 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4080 	if (bp->max_tuples > 0) {
4081 		/* also needs one ethtype match to check IPv4 */
4082 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4083 			/* program this reg now */
4084 			reg = 0;
4085 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4086 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4087 			/* Filtering is supported in hw but don't enable it in kernel now */
4088 			dev->hw_features |= NETIF_F_NTUPLE;
4089 			/* init Rx flow definitions */
4090 			bp->rx_fs_list.count = 0;
4091 			spin_lock_init(&bp->rx_fs_lock);
4092 		} else
4093 			bp->max_tuples = 0;
4094 	}
4095 
4096 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4097 		val = 0;
4098 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4099 			val = bp->usrio->rgmii;
4100 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4101 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4102 			val = bp->usrio->rmii;
4103 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4104 			val = bp->usrio->mii;
4105 
4106 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4107 			val |= bp->usrio->refclk;
4108 
4109 		macb_or_gem_writel(bp, USRIO, val);
4110 	}
4111 
4112 	/* Set MII management clock divider */
4113 	val = macb_mdc_clk_div(bp);
4114 	val |= macb_dbw(bp);
4115 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4116 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4117 	macb_writel(bp, NCFGR, val);
4118 
4119 	return 0;
4120 }
4121 
4122 static const struct macb_usrio_config macb_default_usrio = {
4123 	.mii = MACB_BIT(MII),
4124 	.rmii = MACB_BIT(RMII),
4125 	.rgmii = GEM_BIT(RGMII),
4126 	.refclk = MACB_BIT(CLKEN),
4127 };
4128 
4129 #if defined(CONFIG_OF)
4130 /* 1518 rounded up */
4131 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4132 /* max number of receive buffers */
4133 #define AT91ETHER_MAX_RX_DESCR	9
4134 
4135 static struct sifive_fu540_macb_mgmt *mgmt;
4136 
4137 static int at91ether_alloc_coherent(struct macb *lp)
4138 {
4139 	struct macb_queue *q = &lp->queues[0];
4140 
4141 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4142 					 (AT91ETHER_MAX_RX_DESCR *
4143 					  macb_dma_desc_get_size(lp)),
4144 					 &q->rx_ring_dma, GFP_KERNEL);
4145 	if (!q->rx_ring)
4146 		return -ENOMEM;
4147 
4148 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4149 					    AT91ETHER_MAX_RX_DESCR *
4150 					    AT91ETHER_MAX_RBUFF_SZ,
4151 					    &q->rx_buffers_dma, GFP_KERNEL);
4152 	if (!q->rx_buffers) {
4153 		dma_free_coherent(&lp->pdev->dev,
4154 				  AT91ETHER_MAX_RX_DESCR *
4155 				  macb_dma_desc_get_size(lp),
4156 				  q->rx_ring, q->rx_ring_dma);
4157 		q->rx_ring = NULL;
4158 		return -ENOMEM;
4159 	}
4160 
4161 	return 0;
4162 }
4163 
4164 static void at91ether_free_coherent(struct macb *lp)
4165 {
4166 	struct macb_queue *q = &lp->queues[0];
4167 
4168 	if (q->rx_ring) {
4169 		dma_free_coherent(&lp->pdev->dev,
4170 				  AT91ETHER_MAX_RX_DESCR *
4171 				  macb_dma_desc_get_size(lp),
4172 				  q->rx_ring, q->rx_ring_dma);
4173 		q->rx_ring = NULL;
4174 	}
4175 
4176 	if (q->rx_buffers) {
4177 		dma_free_coherent(&lp->pdev->dev,
4178 				  AT91ETHER_MAX_RX_DESCR *
4179 				  AT91ETHER_MAX_RBUFF_SZ,
4180 				  q->rx_buffers, q->rx_buffers_dma);
4181 		q->rx_buffers = NULL;
4182 	}
4183 }
4184 
4185 /* Initialize and start the Receiver and Transmit subsystems */
4186 static int at91ether_start(struct macb *lp)
4187 {
4188 	struct macb_queue *q = &lp->queues[0];
4189 	struct macb_dma_desc *desc;
4190 	dma_addr_t addr;
4191 	u32 ctl;
4192 	int i, ret;
4193 
4194 	ret = at91ether_alloc_coherent(lp);
4195 	if (ret)
4196 		return ret;
4197 
4198 	addr = q->rx_buffers_dma;
4199 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4200 		desc = macb_rx_desc(q, i);
4201 		macb_set_addr(lp, desc, addr);
4202 		desc->ctrl = 0;
4203 		addr += AT91ETHER_MAX_RBUFF_SZ;
4204 	}
4205 
4206 	/* Set the Wrap bit on the last descriptor */
4207 	desc->addr |= MACB_BIT(RX_WRAP);
4208 
4209 	/* Reset buffer index */
4210 	q->rx_tail = 0;
4211 
4212 	/* Program address of descriptor list in Rx Buffer Queue register */
4213 	macb_writel(lp, RBQP, q->rx_ring_dma);
4214 
4215 	/* Enable Receive and Transmit */
4216 	ctl = macb_readl(lp, NCR);
4217 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4218 
4219 	/* Enable MAC interrupts */
4220 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4221 			     MACB_BIT(RXUBR)	|
4222 			     MACB_BIT(ISR_TUND)	|
4223 			     MACB_BIT(ISR_RLE)	|
4224 			     MACB_BIT(TCOMP)	|
4225 			     MACB_BIT(ISR_ROVR)	|
4226 			     MACB_BIT(HRESP));
4227 
4228 	return 0;
4229 }
4230 
4231 static void at91ether_stop(struct macb *lp)
4232 {
4233 	u32 ctl;
4234 
4235 	/* Disable MAC interrupts */
4236 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4237 			     MACB_BIT(RXUBR)	|
4238 			     MACB_BIT(ISR_TUND)	|
4239 			     MACB_BIT(ISR_RLE)	|
4240 			     MACB_BIT(TCOMP)	|
4241 			     MACB_BIT(ISR_ROVR) |
4242 			     MACB_BIT(HRESP));
4243 
4244 	/* Disable Receiver and Transmitter */
4245 	ctl = macb_readl(lp, NCR);
4246 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4247 
4248 	/* Free resources. */
4249 	at91ether_free_coherent(lp);
4250 }
4251 
4252 /* Open the ethernet interface */
4253 static int at91ether_open(struct net_device *dev)
4254 {
4255 	struct macb *lp = netdev_priv(dev);
4256 	u32 ctl;
4257 	int ret;
4258 
4259 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4260 	if (ret < 0)
4261 		return ret;
4262 
4263 	/* Clear internal statistics */
4264 	ctl = macb_readl(lp, NCR);
4265 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4266 
4267 	macb_set_hwaddr(lp);
4268 
4269 	ret = at91ether_start(lp);
4270 	if (ret)
4271 		goto pm_exit;
4272 
4273 	ret = macb_phylink_connect(lp);
4274 	if (ret)
4275 		goto stop;
4276 
4277 	netif_start_queue(dev);
4278 
4279 	return 0;
4280 
4281 stop:
4282 	at91ether_stop(lp);
4283 pm_exit:
4284 	pm_runtime_put_sync(&lp->pdev->dev);
4285 	return ret;
4286 }
4287 
4288 /* Close the interface */
4289 static int at91ether_close(struct net_device *dev)
4290 {
4291 	struct macb *lp = netdev_priv(dev);
4292 
4293 	netif_stop_queue(dev);
4294 
4295 	phylink_stop(lp->phylink);
4296 	phylink_disconnect_phy(lp->phylink);
4297 
4298 	at91ether_stop(lp);
4299 
4300 	return pm_runtime_put(&lp->pdev->dev);
4301 }
4302 
4303 /* Transmit packet */
4304 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4305 					struct net_device *dev)
4306 {
4307 	struct macb *lp = netdev_priv(dev);
4308 
4309 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4310 		int desc = 0;
4311 
4312 		netif_stop_queue(dev);
4313 
4314 		/* Store packet information (to free when Tx completed) */
4315 		lp->rm9200_txq[desc].skb = skb;
4316 		lp->rm9200_txq[desc].size = skb->len;
4317 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4318 							      skb->len, DMA_TO_DEVICE);
4319 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4320 			dev_kfree_skb_any(skb);
4321 			dev->stats.tx_dropped++;
4322 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4323 			return NETDEV_TX_OK;
4324 		}
4325 
4326 		/* Set address of the data in the Transmit Address register */
4327 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4328 		/* Set length of the packet in the Transmit Control register */
4329 		macb_writel(lp, TCR, skb->len);
4330 
4331 	} else {
4332 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4333 		return NETDEV_TX_BUSY;
4334 	}
4335 
4336 	return NETDEV_TX_OK;
4337 }
4338 
4339 /* Extract received frame from buffer descriptors and sent to upper layers.
4340  * (Called from interrupt context)
4341  */
4342 static void at91ether_rx(struct net_device *dev)
4343 {
4344 	struct macb *lp = netdev_priv(dev);
4345 	struct macb_queue *q = &lp->queues[0];
4346 	struct macb_dma_desc *desc;
4347 	unsigned char *p_recv;
4348 	struct sk_buff *skb;
4349 	unsigned int pktlen;
4350 
4351 	desc = macb_rx_desc(q, q->rx_tail);
4352 	while (desc->addr & MACB_BIT(RX_USED)) {
4353 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4354 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4355 		skb = netdev_alloc_skb(dev, pktlen + 2);
4356 		if (skb) {
4357 			skb_reserve(skb, 2);
4358 			skb_put_data(skb, p_recv, pktlen);
4359 
4360 			skb->protocol = eth_type_trans(skb, dev);
4361 			dev->stats.rx_packets++;
4362 			dev->stats.rx_bytes += pktlen;
4363 			netif_rx(skb);
4364 		} else {
4365 			dev->stats.rx_dropped++;
4366 		}
4367 
4368 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4369 			dev->stats.multicast++;
4370 
4371 		/* reset ownership bit */
4372 		desc->addr &= ~MACB_BIT(RX_USED);
4373 
4374 		/* wrap after last buffer */
4375 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4376 			q->rx_tail = 0;
4377 		else
4378 			q->rx_tail++;
4379 
4380 		desc = macb_rx_desc(q, q->rx_tail);
4381 	}
4382 }
4383 
4384 /* MAC interrupt handler */
4385 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4386 {
4387 	struct net_device *dev = dev_id;
4388 	struct macb *lp = netdev_priv(dev);
4389 	u32 intstatus, ctl;
4390 	unsigned int desc;
4391 
4392 	/* MAC Interrupt Status register indicates what interrupts are pending.
4393 	 * It is automatically cleared once read.
4394 	 */
4395 	intstatus = macb_readl(lp, ISR);
4396 
4397 	/* Receive complete */
4398 	if (intstatus & MACB_BIT(RCOMP))
4399 		at91ether_rx(dev);
4400 
4401 	/* Transmit complete */
4402 	if (intstatus & MACB_BIT(TCOMP)) {
4403 		/* The TCOM bit is set even if the transmission failed */
4404 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4405 			dev->stats.tx_errors++;
4406 
4407 		desc = 0;
4408 		if (lp->rm9200_txq[desc].skb) {
4409 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4410 			lp->rm9200_txq[desc].skb = NULL;
4411 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4412 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4413 			dev->stats.tx_packets++;
4414 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4415 		}
4416 		netif_wake_queue(dev);
4417 	}
4418 
4419 	/* Work-around for EMAC Errata section 41.3.1 */
4420 	if (intstatus & MACB_BIT(RXUBR)) {
4421 		ctl = macb_readl(lp, NCR);
4422 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4423 		wmb();
4424 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4425 	}
4426 
4427 	if (intstatus & MACB_BIT(ISR_ROVR))
4428 		netdev_err(dev, "ROVR error\n");
4429 
4430 	return IRQ_HANDLED;
4431 }
4432 
4433 #ifdef CONFIG_NET_POLL_CONTROLLER
4434 static void at91ether_poll_controller(struct net_device *dev)
4435 {
4436 	unsigned long flags;
4437 
4438 	local_irq_save(flags);
4439 	at91ether_interrupt(dev->irq, dev);
4440 	local_irq_restore(flags);
4441 }
4442 #endif
4443 
4444 static const struct net_device_ops at91ether_netdev_ops = {
4445 	.ndo_open		= at91ether_open,
4446 	.ndo_stop		= at91ether_close,
4447 	.ndo_start_xmit		= at91ether_start_xmit,
4448 	.ndo_get_stats		= macb_get_stats,
4449 	.ndo_set_rx_mode	= macb_set_rx_mode,
4450 	.ndo_set_mac_address	= eth_mac_addr,
4451 	.ndo_eth_ioctl		= macb_ioctl,
4452 	.ndo_validate_addr	= eth_validate_addr,
4453 #ifdef CONFIG_NET_POLL_CONTROLLER
4454 	.ndo_poll_controller	= at91ether_poll_controller,
4455 #endif
4456 };
4457 
4458 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4459 			      struct clk **hclk, struct clk **tx_clk,
4460 			      struct clk **rx_clk, struct clk **tsu_clk)
4461 {
4462 	int err;
4463 
4464 	*hclk = NULL;
4465 	*tx_clk = NULL;
4466 	*rx_clk = NULL;
4467 	*tsu_clk = NULL;
4468 
4469 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4470 	if (IS_ERR(*pclk))
4471 		return PTR_ERR(*pclk);
4472 
4473 	err = clk_prepare_enable(*pclk);
4474 	if (err) {
4475 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4476 		return err;
4477 	}
4478 
4479 	return 0;
4480 }
4481 
4482 static int at91ether_init(struct platform_device *pdev)
4483 {
4484 	struct net_device *dev = platform_get_drvdata(pdev);
4485 	struct macb *bp = netdev_priv(dev);
4486 	int err;
4487 
4488 	bp->queues[0].bp = bp;
4489 
4490 	dev->netdev_ops = &at91ether_netdev_ops;
4491 	dev->ethtool_ops = &macb_ethtool_ops;
4492 
4493 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4494 			       0, dev->name, dev);
4495 	if (err)
4496 		return err;
4497 
4498 	macb_writel(bp, NCR, 0);
4499 
4500 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4501 
4502 	return 0;
4503 }
4504 
4505 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4506 					       unsigned long parent_rate)
4507 {
4508 	return mgmt->rate;
4509 }
4510 
4511 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4512 				     unsigned long *parent_rate)
4513 {
4514 	if (WARN_ON(rate < 2500000))
4515 		return 2500000;
4516 	else if (rate == 2500000)
4517 		return 2500000;
4518 	else if (WARN_ON(rate < 13750000))
4519 		return 2500000;
4520 	else if (WARN_ON(rate < 25000000))
4521 		return 25000000;
4522 	else if (rate == 25000000)
4523 		return 25000000;
4524 	else if (WARN_ON(rate < 75000000))
4525 		return 25000000;
4526 	else if (WARN_ON(rate < 125000000))
4527 		return 125000000;
4528 	else if (rate == 125000000)
4529 		return 125000000;
4530 
4531 	WARN_ON(rate > 125000000);
4532 
4533 	return 125000000;
4534 }
4535 
4536 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4537 				  unsigned long parent_rate)
4538 {
4539 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4540 	if (rate != 125000000)
4541 		iowrite32(1, mgmt->reg);
4542 	else
4543 		iowrite32(0, mgmt->reg);
4544 	mgmt->rate = rate;
4545 
4546 	return 0;
4547 }
4548 
4549 static const struct clk_ops fu540_c000_ops = {
4550 	.recalc_rate = fu540_macb_tx_recalc_rate,
4551 	.round_rate = fu540_macb_tx_round_rate,
4552 	.set_rate = fu540_macb_tx_set_rate,
4553 };
4554 
4555 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4556 			       struct clk **hclk, struct clk **tx_clk,
4557 			       struct clk **rx_clk, struct clk **tsu_clk)
4558 {
4559 	struct clk_init_data init;
4560 	int err = 0;
4561 
4562 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4563 	if (err)
4564 		return err;
4565 
4566 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4567 	if (!mgmt) {
4568 		err = -ENOMEM;
4569 		goto err_disable_clks;
4570 	}
4571 
4572 	init.name = "sifive-gemgxl-mgmt";
4573 	init.ops = &fu540_c000_ops;
4574 	init.flags = 0;
4575 	init.num_parents = 0;
4576 
4577 	mgmt->rate = 0;
4578 	mgmt->hw.init = &init;
4579 
4580 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4581 	if (IS_ERR(*tx_clk)) {
4582 		err = PTR_ERR(*tx_clk);
4583 		goto err_disable_clks;
4584 	}
4585 
4586 	err = clk_prepare_enable(*tx_clk);
4587 	if (err) {
4588 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4589 		*tx_clk = NULL;
4590 		goto err_disable_clks;
4591 	} else {
4592 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4593 	}
4594 
4595 	return 0;
4596 
4597 err_disable_clks:
4598 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4599 
4600 	return err;
4601 }
4602 
4603 static int fu540_c000_init(struct platform_device *pdev)
4604 {
4605 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4606 	if (IS_ERR(mgmt->reg))
4607 		return PTR_ERR(mgmt->reg);
4608 
4609 	return macb_init(pdev);
4610 }
4611 
4612 static int init_reset_optional(struct platform_device *pdev)
4613 {
4614 	struct net_device *dev = platform_get_drvdata(pdev);
4615 	struct macb *bp = netdev_priv(dev);
4616 	int ret;
4617 
4618 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4619 		/* Ensure PHY device used in SGMII mode is ready */
4620 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4621 
4622 		if (IS_ERR(bp->sgmii_phy))
4623 			return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4624 					     "failed to get SGMII PHY\n");
4625 
4626 		ret = phy_init(bp->sgmii_phy);
4627 		if (ret)
4628 			return dev_err_probe(&pdev->dev, ret,
4629 					     "failed to init SGMII PHY\n");
4630 	}
4631 
4632 	ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG);
4633 	if (!ret) {
4634 		u32 pm_info[2];
4635 
4636 		ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains",
4637 						 pm_info, ARRAY_SIZE(pm_info));
4638 		if (ret) {
4639 			dev_err(&pdev->dev, "Failed to read power management information\n");
4640 			goto err_out_phy_exit;
4641 		}
4642 		ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0);
4643 		if (ret)
4644 			goto err_out_phy_exit;
4645 
4646 		ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1);
4647 		if (ret)
4648 			goto err_out_phy_exit;
4649 	}
4650 
4651 	/* Fully reset controller at hardware level if mapped in device tree */
4652 	ret = device_reset_optional(&pdev->dev);
4653 	if (ret) {
4654 		phy_exit(bp->sgmii_phy);
4655 		return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4656 	}
4657 
4658 	ret = macb_init(pdev);
4659 
4660 err_out_phy_exit:
4661 	if (ret)
4662 		phy_exit(bp->sgmii_phy);
4663 
4664 	return ret;
4665 }
4666 
4667 static const struct macb_usrio_config sama7g5_usrio = {
4668 	.mii = 0,
4669 	.rmii = 1,
4670 	.rgmii = 2,
4671 	.refclk = BIT(2),
4672 	.hdfctlen = BIT(6),
4673 };
4674 
4675 static const struct macb_config fu540_c000_config = {
4676 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4677 		MACB_CAPS_GEM_HAS_PTP,
4678 	.dma_burst_length = 16,
4679 	.clk_init = fu540_c000_clk_init,
4680 	.init = fu540_c000_init,
4681 	.jumbo_max_len = 10240,
4682 	.usrio = &macb_default_usrio,
4683 };
4684 
4685 static const struct macb_config at91sam9260_config = {
4686 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4687 	.clk_init = macb_clk_init,
4688 	.init = macb_init,
4689 	.usrio = &macb_default_usrio,
4690 };
4691 
4692 static const struct macb_config sama5d3macb_config = {
4693 	.caps = MACB_CAPS_SG_DISABLED |
4694 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4695 	.clk_init = macb_clk_init,
4696 	.init = macb_init,
4697 	.usrio = &macb_default_usrio,
4698 };
4699 
4700 static const struct macb_config pc302gem_config = {
4701 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4702 	.dma_burst_length = 16,
4703 	.clk_init = macb_clk_init,
4704 	.init = macb_init,
4705 	.usrio = &macb_default_usrio,
4706 };
4707 
4708 static const struct macb_config sama5d2_config = {
4709 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4710 	.dma_burst_length = 16,
4711 	.clk_init = macb_clk_init,
4712 	.init = macb_init,
4713 	.usrio = &macb_default_usrio,
4714 };
4715 
4716 static const struct macb_config sama5d29_config = {
4717 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4718 	.dma_burst_length = 16,
4719 	.clk_init = macb_clk_init,
4720 	.init = macb_init,
4721 	.usrio = &macb_default_usrio,
4722 };
4723 
4724 static const struct macb_config sama5d3_config = {
4725 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4726 		MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4727 	.dma_burst_length = 16,
4728 	.clk_init = macb_clk_init,
4729 	.init = macb_init,
4730 	.jumbo_max_len = 10240,
4731 	.usrio = &macb_default_usrio,
4732 };
4733 
4734 static const struct macb_config sama5d4_config = {
4735 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4736 	.dma_burst_length = 4,
4737 	.clk_init = macb_clk_init,
4738 	.init = macb_init,
4739 	.usrio = &macb_default_usrio,
4740 };
4741 
4742 static const struct macb_config emac_config = {
4743 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4744 	.clk_init = at91ether_clk_init,
4745 	.init = at91ether_init,
4746 	.usrio = &macb_default_usrio,
4747 };
4748 
4749 static const struct macb_config np4_config = {
4750 	.caps = MACB_CAPS_USRIO_DISABLED,
4751 	.clk_init = macb_clk_init,
4752 	.init = macb_init,
4753 	.usrio = &macb_default_usrio,
4754 };
4755 
4756 static const struct macb_config zynqmp_config = {
4757 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4758 		MACB_CAPS_JUMBO |
4759 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4760 	.dma_burst_length = 16,
4761 	.clk_init = macb_clk_init,
4762 	.init = init_reset_optional,
4763 	.jumbo_max_len = 10240,
4764 	.usrio = &macb_default_usrio,
4765 };
4766 
4767 static const struct macb_config zynq_config = {
4768 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4769 		MACB_CAPS_NEEDS_RSTONUBR,
4770 	.dma_burst_length = 16,
4771 	.clk_init = macb_clk_init,
4772 	.init = macb_init,
4773 	.usrio = &macb_default_usrio,
4774 };
4775 
4776 static const struct macb_config mpfs_config = {
4777 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4778 		MACB_CAPS_JUMBO |
4779 		MACB_CAPS_GEM_HAS_PTP,
4780 	.dma_burst_length = 16,
4781 	.clk_init = macb_clk_init,
4782 	.init = init_reset_optional,
4783 	.usrio = &macb_default_usrio,
4784 	.jumbo_max_len = 10240,
4785 };
4786 
4787 static const struct macb_config sama7g5_gem_config = {
4788 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4789 		MACB_CAPS_MIIONRGMII,
4790 	.dma_burst_length = 16,
4791 	.clk_init = macb_clk_init,
4792 	.init = macb_init,
4793 	.usrio = &sama7g5_usrio,
4794 };
4795 
4796 static const struct macb_config sama7g5_emac_config = {
4797 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4798 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII,
4799 	.dma_burst_length = 16,
4800 	.clk_init = macb_clk_init,
4801 	.init = macb_init,
4802 	.usrio = &sama7g5_usrio,
4803 };
4804 
4805 static const struct macb_config versal_config = {
4806 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4807 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK,
4808 	.dma_burst_length = 16,
4809 	.clk_init = macb_clk_init,
4810 	.init = init_reset_optional,
4811 	.jumbo_max_len = 10240,
4812 	.usrio = &macb_default_usrio,
4813 };
4814 
4815 static const struct of_device_id macb_dt_ids[] = {
4816 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4817 	{ .compatible = "cdns,macb" },
4818 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4819 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4820 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4821 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4822 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4823 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4824 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4825 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4826 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4827 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4828 	{ .compatible = "cdns,emac", .data = &emac_config },
4829 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */
4830 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */
4831 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4832 	{ .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4833 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4834 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4835 	{ .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config},
4836 	{ .compatible = "xlnx,zynq-gem", .data = &zynq_config },
4837 	{ .compatible = "xlnx,versal-gem", .data = &versal_config},
4838 	{ /* sentinel */ }
4839 };
4840 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4841 #endif /* CONFIG_OF */
4842 
4843 static const struct macb_config default_gem_config = {
4844 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4845 		MACB_CAPS_JUMBO |
4846 		MACB_CAPS_GEM_HAS_PTP,
4847 	.dma_burst_length = 16,
4848 	.clk_init = macb_clk_init,
4849 	.init = macb_init,
4850 	.usrio = &macb_default_usrio,
4851 	.jumbo_max_len = 10240,
4852 };
4853 
4854 static int macb_probe(struct platform_device *pdev)
4855 {
4856 	const struct macb_config *macb_config = &default_gem_config;
4857 	int (*clk_init)(struct platform_device *, struct clk **,
4858 			struct clk **, struct clk **,  struct clk **,
4859 			struct clk **) = macb_config->clk_init;
4860 	int (*init)(struct platform_device *) = macb_config->init;
4861 	struct device_node *np = pdev->dev.of_node;
4862 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
4863 	struct clk *tsu_clk = NULL;
4864 	unsigned int queue_mask, num_queues;
4865 	bool native_io;
4866 	phy_interface_t interface;
4867 	struct net_device *dev;
4868 	struct resource *regs;
4869 	void __iomem *mem;
4870 	struct macb *bp;
4871 	int err, val;
4872 
4873 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
4874 	if (IS_ERR(mem))
4875 		return PTR_ERR(mem);
4876 
4877 	if (np) {
4878 		const struct of_device_id *match;
4879 
4880 		match = of_match_node(macb_dt_ids, np);
4881 		if (match && match->data) {
4882 			macb_config = match->data;
4883 			clk_init = macb_config->clk_init;
4884 			init = macb_config->init;
4885 		}
4886 	}
4887 
4888 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
4889 	if (err)
4890 		return err;
4891 
4892 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
4893 	pm_runtime_use_autosuspend(&pdev->dev);
4894 	pm_runtime_get_noresume(&pdev->dev);
4895 	pm_runtime_set_active(&pdev->dev);
4896 	pm_runtime_enable(&pdev->dev);
4897 	native_io = hw_is_native_io(mem);
4898 
4899 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
4900 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
4901 	if (!dev) {
4902 		err = -ENOMEM;
4903 		goto err_disable_clocks;
4904 	}
4905 
4906 	dev->base_addr = regs->start;
4907 
4908 	SET_NETDEV_DEV(dev, &pdev->dev);
4909 
4910 	bp = netdev_priv(dev);
4911 	bp->pdev = pdev;
4912 	bp->dev = dev;
4913 	bp->regs = mem;
4914 	bp->native_io = native_io;
4915 	if (native_io) {
4916 		bp->macb_reg_readl = hw_readl_native;
4917 		bp->macb_reg_writel = hw_writel_native;
4918 	} else {
4919 		bp->macb_reg_readl = hw_readl;
4920 		bp->macb_reg_writel = hw_writel;
4921 	}
4922 	bp->num_queues = num_queues;
4923 	bp->queue_mask = queue_mask;
4924 	if (macb_config)
4925 		bp->dma_burst_length = macb_config->dma_burst_length;
4926 	bp->pclk = pclk;
4927 	bp->hclk = hclk;
4928 	bp->tx_clk = tx_clk;
4929 	bp->rx_clk = rx_clk;
4930 	bp->tsu_clk = tsu_clk;
4931 	if (macb_config)
4932 		bp->jumbo_max_len = macb_config->jumbo_max_len;
4933 
4934 	bp->wol = 0;
4935 	if (of_get_property(np, "magic-packet", NULL))
4936 		bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
4937 	device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
4938 
4939 	bp->usrio = macb_config->usrio;
4940 
4941 	spin_lock_init(&bp->lock);
4942 
4943 	/* setup capabilities */
4944 	macb_configure_caps(bp, macb_config);
4945 
4946 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4947 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
4948 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
4949 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
4950 	}
4951 #endif
4952 	platform_set_drvdata(pdev, dev);
4953 
4954 	dev->irq = platform_get_irq(pdev, 0);
4955 	if (dev->irq < 0) {
4956 		err = dev->irq;
4957 		goto err_out_free_netdev;
4958 	}
4959 
4960 	/* MTU range: 68 - 1500 or 10240 */
4961 	dev->min_mtu = GEM_MTU_MIN_SIZE;
4962 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
4963 		dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
4964 	else
4965 		dev->max_mtu = ETH_DATA_LEN;
4966 
4967 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
4968 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
4969 		if (val)
4970 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
4971 						macb_dma_desc_get_size(bp);
4972 
4973 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
4974 		if (val)
4975 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
4976 						macb_dma_desc_get_size(bp);
4977 	}
4978 
4979 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
4980 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
4981 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
4982 
4983 	err = of_get_ethdev_address(np, bp->dev);
4984 	if (err == -EPROBE_DEFER)
4985 		goto err_out_free_netdev;
4986 	else if (err)
4987 		macb_get_hwaddr(bp);
4988 
4989 	err = of_get_phy_mode(np, &interface);
4990 	if (err)
4991 		/* not found in DT, MII by default */
4992 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
4993 	else
4994 		bp->phy_interface = interface;
4995 
4996 	/* IP specific init */
4997 	err = init(pdev);
4998 	if (err)
4999 		goto err_out_free_netdev;
5000 
5001 	err = macb_mii_init(bp);
5002 	if (err)
5003 		goto err_out_phy_exit;
5004 
5005 	netif_carrier_off(dev);
5006 
5007 	err = register_netdev(dev);
5008 	if (err) {
5009 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5010 		goto err_out_unregister_mdio;
5011 	}
5012 
5013 	tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task);
5014 
5015 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
5016 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
5017 		    dev->base_addr, dev->irq, dev->dev_addr);
5018 
5019 	pm_runtime_mark_last_busy(&bp->pdev->dev);
5020 	pm_runtime_put_autosuspend(&bp->pdev->dev);
5021 
5022 	return 0;
5023 
5024 err_out_unregister_mdio:
5025 	mdiobus_unregister(bp->mii_bus);
5026 	mdiobus_free(bp->mii_bus);
5027 
5028 err_out_phy_exit:
5029 	phy_exit(bp->sgmii_phy);
5030 
5031 err_out_free_netdev:
5032 	free_netdev(dev);
5033 
5034 err_disable_clocks:
5035 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
5036 	pm_runtime_disable(&pdev->dev);
5037 	pm_runtime_set_suspended(&pdev->dev);
5038 	pm_runtime_dont_use_autosuspend(&pdev->dev);
5039 
5040 	return err;
5041 }
5042 
5043 static int macb_remove(struct platform_device *pdev)
5044 {
5045 	struct net_device *dev;
5046 	struct macb *bp;
5047 
5048 	dev = platform_get_drvdata(pdev);
5049 
5050 	if (dev) {
5051 		bp = netdev_priv(dev);
5052 		phy_exit(bp->sgmii_phy);
5053 		mdiobus_unregister(bp->mii_bus);
5054 		mdiobus_free(bp->mii_bus);
5055 
5056 		unregister_netdev(dev);
5057 		tasklet_kill(&bp->hresp_err_tasklet);
5058 		pm_runtime_disable(&pdev->dev);
5059 		pm_runtime_dont_use_autosuspend(&pdev->dev);
5060 		if (!pm_runtime_suspended(&pdev->dev)) {
5061 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5062 					  bp->rx_clk, bp->tsu_clk);
5063 			pm_runtime_set_suspended(&pdev->dev);
5064 		}
5065 		phylink_destroy(bp->phylink);
5066 		free_netdev(dev);
5067 	}
5068 
5069 	return 0;
5070 }
5071 
5072 static int __maybe_unused macb_suspend(struct device *dev)
5073 {
5074 	struct net_device *netdev = dev_get_drvdata(dev);
5075 	struct macb *bp = netdev_priv(netdev);
5076 	struct macb_queue *queue;
5077 	unsigned long flags;
5078 	unsigned int q;
5079 	int err;
5080 
5081 	if (!netif_running(netdev))
5082 		return 0;
5083 
5084 	if (bp->wol & MACB_WOL_ENABLED) {
5085 		spin_lock_irqsave(&bp->lock, flags);
5086 		/* Flush all status bits */
5087 		macb_writel(bp, TSR, -1);
5088 		macb_writel(bp, RSR, -1);
5089 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5090 		     ++q, ++queue) {
5091 			/* Disable all interrupts */
5092 			queue_writel(queue, IDR, -1);
5093 			queue_readl(queue, ISR);
5094 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5095 				queue_writel(queue, ISR, -1);
5096 		}
5097 		/* Change interrupt handler and
5098 		 * Enable WoL IRQ on queue 0
5099 		 */
5100 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5101 		if (macb_is_gem(bp)) {
5102 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5103 					       IRQF_SHARED, netdev->name, bp->queues);
5104 			if (err) {
5105 				dev_err(dev,
5106 					"Unable to request IRQ %d (error %d)\n",
5107 					bp->queues[0].irq, err);
5108 				spin_unlock_irqrestore(&bp->lock, flags);
5109 				return err;
5110 			}
5111 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5112 			gem_writel(bp, WOL, MACB_BIT(MAG));
5113 		} else {
5114 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5115 					       IRQF_SHARED, netdev->name, bp->queues);
5116 			if (err) {
5117 				dev_err(dev,
5118 					"Unable to request IRQ %d (error %d)\n",
5119 					bp->queues[0].irq, err);
5120 				spin_unlock_irqrestore(&bp->lock, flags);
5121 				return err;
5122 			}
5123 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5124 			macb_writel(bp, WOL, MACB_BIT(MAG));
5125 		}
5126 		spin_unlock_irqrestore(&bp->lock, flags);
5127 
5128 		enable_irq_wake(bp->queues[0].irq);
5129 	}
5130 
5131 	netif_device_detach(netdev);
5132 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5133 	     ++q, ++queue) {
5134 		napi_disable(&queue->napi_rx);
5135 		napi_disable(&queue->napi_tx);
5136 	}
5137 
5138 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5139 		rtnl_lock();
5140 		phylink_stop(bp->phylink);
5141 		phy_exit(bp->sgmii_phy);
5142 		rtnl_unlock();
5143 		spin_lock_irqsave(&bp->lock, flags);
5144 		macb_reset_hw(bp);
5145 		spin_unlock_irqrestore(&bp->lock, flags);
5146 	}
5147 
5148 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5149 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5150 
5151 	if (netdev->hw_features & NETIF_F_NTUPLE)
5152 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5153 
5154 	if (bp->ptp_info)
5155 		bp->ptp_info->ptp_remove(netdev);
5156 	if (!device_may_wakeup(dev))
5157 		pm_runtime_force_suspend(dev);
5158 
5159 	return 0;
5160 }
5161 
5162 static int __maybe_unused macb_resume(struct device *dev)
5163 {
5164 	struct net_device *netdev = dev_get_drvdata(dev);
5165 	struct macb *bp = netdev_priv(netdev);
5166 	struct macb_queue *queue;
5167 	unsigned long flags;
5168 	unsigned int q;
5169 	int err;
5170 
5171 	if (!netif_running(netdev))
5172 		return 0;
5173 
5174 	if (!device_may_wakeup(dev))
5175 		pm_runtime_force_resume(dev);
5176 
5177 	if (bp->wol & MACB_WOL_ENABLED) {
5178 		spin_lock_irqsave(&bp->lock, flags);
5179 		/* Disable WoL */
5180 		if (macb_is_gem(bp)) {
5181 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5182 			gem_writel(bp, WOL, 0);
5183 		} else {
5184 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5185 			macb_writel(bp, WOL, 0);
5186 		}
5187 		/* Clear ISR on queue 0 */
5188 		queue_readl(bp->queues, ISR);
5189 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5190 			queue_writel(bp->queues, ISR, -1);
5191 		/* Replace interrupt handler on queue 0 */
5192 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5193 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5194 				       IRQF_SHARED, netdev->name, bp->queues);
5195 		if (err) {
5196 			dev_err(dev,
5197 				"Unable to request IRQ %d (error %d)\n",
5198 				bp->queues[0].irq, err);
5199 			spin_unlock_irqrestore(&bp->lock, flags);
5200 			return err;
5201 		}
5202 		spin_unlock_irqrestore(&bp->lock, flags);
5203 
5204 		disable_irq_wake(bp->queues[0].irq);
5205 
5206 		/* Now make sure we disable phy before moving
5207 		 * to common restore path
5208 		 */
5209 		rtnl_lock();
5210 		phylink_stop(bp->phylink);
5211 		rtnl_unlock();
5212 	}
5213 
5214 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5215 	     ++q, ++queue) {
5216 		napi_enable(&queue->napi_rx);
5217 		napi_enable(&queue->napi_tx);
5218 	}
5219 
5220 	if (netdev->hw_features & NETIF_F_NTUPLE)
5221 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5222 
5223 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5224 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5225 
5226 	macb_writel(bp, NCR, MACB_BIT(MPE));
5227 	macb_init_hw(bp);
5228 	macb_set_rx_mode(netdev);
5229 	macb_restore_features(bp);
5230 	rtnl_lock();
5231 	if (!device_may_wakeup(&bp->dev->dev))
5232 		phy_init(bp->sgmii_phy);
5233 
5234 	phylink_start(bp->phylink);
5235 	rtnl_unlock();
5236 
5237 	netif_device_attach(netdev);
5238 	if (bp->ptp_info)
5239 		bp->ptp_info->ptp_init(netdev);
5240 
5241 	return 0;
5242 }
5243 
5244 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5245 {
5246 	struct net_device *netdev = dev_get_drvdata(dev);
5247 	struct macb *bp = netdev_priv(netdev);
5248 
5249 	if (!(device_may_wakeup(dev)))
5250 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5251 	else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK))
5252 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5253 
5254 	return 0;
5255 }
5256 
5257 static int __maybe_unused macb_runtime_resume(struct device *dev)
5258 {
5259 	struct net_device *netdev = dev_get_drvdata(dev);
5260 	struct macb *bp = netdev_priv(netdev);
5261 
5262 	if (!(device_may_wakeup(dev))) {
5263 		clk_prepare_enable(bp->pclk);
5264 		clk_prepare_enable(bp->hclk);
5265 		clk_prepare_enable(bp->tx_clk);
5266 		clk_prepare_enable(bp->rx_clk);
5267 		clk_prepare_enable(bp->tsu_clk);
5268 	} else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) {
5269 		clk_prepare_enable(bp->tsu_clk);
5270 	}
5271 
5272 	return 0;
5273 }
5274 
5275 static const struct dev_pm_ops macb_pm_ops = {
5276 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5277 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5278 };
5279 
5280 static struct platform_driver macb_driver = {
5281 	.probe		= macb_probe,
5282 	.remove		= macb_remove,
5283 	.driver		= {
5284 		.name		= "macb",
5285 		.of_match_table	= of_match_ptr(macb_dt_ids),
5286 		.pm	= &macb_pm_ops,
5287 	},
5288 };
5289 
5290 module_platform_driver(macb_driver);
5291 
5292 MODULE_LICENSE("GPL");
5293 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5294 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5295 MODULE_ALIAS("platform:macb");
5296