1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cadence MACB/GEM Ethernet Controller driver 4 * 5 * Copyright (C) 2004-2006 Atmel Corporation 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/crc32.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/circ_buf.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/io.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/interrupt.h> 23 #include <linux/netdevice.h> 24 #include <linux/etherdevice.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/platform_device.h> 27 #include <linux/phylink.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 #include <linux/of_gpio.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/tcp.h> 36 #include <linux/iopoll.h> 37 #include <linux/phy/phy.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/ptp_classify.h> 40 #include <linux/reset.h> 41 #include <linux/firmware/xlnx-zynqmp.h> 42 #include "macb.h" 43 44 /* This structure is only used for MACB on SiFive FU540 devices */ 45 struct sifive_fu540_macb_mgmt { 46 void __iomem *reg; 47 unsigned long rate; 48 struct clk_hw hw; 49 }; 50 51 #define MACB_RX_BUFFER_SIZE 128 52 #define RX_BUFFER_MULTIPLE 64 /* bytes */ 53 54 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */ 55 #define MIN_RX_RING_SIZE 64 56 #define MAX_RX_RING_SIZE 8192 57 #define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 58 * (bp)->rx_ring_size) 59 60 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */ 61 #define MIN_TX_RING_SIZE 64 62 #define MAX_TX_RING_SIZE 4096 63 #define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 64 * (bp)->tx_ring_size) 65 66 /* level of occupied TX descriptors under which we wake up TX process */ 67 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4) 68 69 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR)) 70 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \ 71 | MACB_BIT(ISR_RLE) \ 72 | MACB_BIT(TXERR)) 73 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \ 74 | MACB_BIT(TXUBR)) 75 76 /* Max length of transmit frame must be a multiple of 8 bytes */ 77 #define MACB_TX_LEN_ALIGN 8 78 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1))) 79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a 80 * false amba_error in TX path from the DMA assuming there is not enough 81 * space in the SRAM (16KB) even when there is. 82 */ 83 #define GEM_MAX_TX_LEN (unsigned int)(0x3FC0) 84 85 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU 86 #define MACB_NETIF_LSO NETIF_F_TSO 87 88 #define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0) 89 #define MACB_WOL_ENABLED (0x1 << 1) 90 91 #define HS_SPEED_10000M 4 92 #define MACB_SERDES_RATE_10G 1 93 94 /* Graceful stop timeouts in us. We should allow up to 95 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions) 96 */ 97 #define MACB_HALT_TIMEOUT 1230 98 99 #define MACB_PM_TIMEOUT 100 /* ms */ 100 101 #define MACB_MDIO_TIMEOUT 1000000 /* in usecs */ 102 103 /* DMA buffer descriptor might be different size 104 * depends on hardware configuration: 105 * 106 * 1. dma address width 32 bits: 107 * word 1: 32 bit address of Data Buffer 108 * word 2: control 109 * 110 * 2. dma address width 64 bits: 111 * word 1: 32 bit address of Data Buffer 112 * word 2: control 113 * word 3: upper 32 bit address of Data Buffer 114 * word 4: unused 115 * 116 * 3. dma address width 32 bits with hardware timestamping: 117 * word 1: 32 bit address of Data Buffer 118 * word 2: control 119 * word 3: timestamp word 1 120 * word 4: timestamp word 2 121 * 122 * 4. dma address width 64 bits with hardware timestamping: 123 * word 1: 32 bit address of Data Buffer 124 * word 2: control 125 * word 3: upper 32 bit address of Data Buffer 126 * word 4: unused 127 * word 5: timestamp word 1 128 * word 6: timestamp word 2 129 */ 130 static unsigned int macb_dma_desc_get_size(struct macb *bp) 131 { 132 #ifdef MACB_EXT_DESC 133 unsigned int desc_size; 134 135 switch (bp->hw_dma_cap) { 136 case HW_DMA_CAP_64B: 137 desc_size = sizeof(struct macb_dma_desc) 138 + sizeof(struct macb_dma_desc_64); 139 break; 140 case HW_DMA_CAP_PTP: 141 desc_size = sizeof(struct macb_dma_desc) 142 + sizeof(struct macb_dma_desc_ptp); 143 break; 144 case HW_DMA_CAP_64B_PTP: 145 desc_size = sizeof(struct macb_dma_desc) 146 + sizeof(struct macb_dma_desc_64) 147 + sizeof(struct macb_dma_desc_ptp); 148 break; 149 default: 150 desc_size = sizeof(struct macb_dma_desc); 151 } 152 return desc_size; 153 #endif 154 return sizeof(struct macb_dma_desc); 155 } 156 157 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx) 158 { 159 #ifdef MACB_EXT_DESC 160 switch (bp->hw_dma_cap) { 161 case HW_DMA_CAP_64B: 162 case HW_DMA_CAP_PTP: 163 desc_idx <<= 1; 164 break; 165 case HW_DMA_CAP_64B_PTP: 166 desc_idx *= 3; 167 break; 168 default: 169 break; 170 } 171 #endif 172 return desc_idx; 173 } 174 175 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 176 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc) 177 { 178 return (struct macb_dma_desc_64 *)((void *)desc 179 + sizeof(struct macb_dma_desc)); 180 } 181 #endif 182 183 /* Ring buffer accessors */ 184 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index) 185 { 186 return index & (bp->tx_ring_size - 1); 187 } 188 189 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue, 190 unsigned int index) 191 { 192 index = macb_tx_ring_wrap(queue->bp, index); 193 index = macb_adj_dma_desc_idx(queue->bp, index); 194 return &queue->tx_ring[index]; 195 } 196 197 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue, 198 unsigned int index) 199 { 200 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)]; 201 } 202 203 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index) 204 { 205 dma_addr_t offset; 206 207 offset = macb_tx_ring_wrap(queue->bp, index) * 208 macb_dma_desc_get_size(queue->bp); 209 210 return queue->tx_ring_dma + offset; 211 } 212 213 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index) 214 { 215 return index & (bp->rx_ring_size - 1); 216 } 217 218 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index) 219 { 220 index = macb_rx_ring_wrap(queue->bp, index); 221 index = macb_adj_dma_desc_idx(queue->bp, index); 222 return &queue->rx_ring[index]; 223 } 224 225 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index) 226 { 227 return queue->rx_buffers + queue->bp->rx_buffer_size * 228 macb_rx_ring_wrap(queue->bp, index); 229 } 230 231 /* I/O accessors */ 232 static u32 hw_readl_native(struct macb *bp, int offset) 233 { 234 return __raw_readl(bp->regs + offset); 235 } 236 237 static void hw_writel_native(struct macb *bp, int offset, u32 value) 238 { 239 __raw_writel(value, bp->regs + offset); 240 } 241 242 static u32 hw_readl(struct macb *bp, int offset) 243 { 244 return readl_relaxed(bp->regs + offset); 245 } 246 247 static void hw_writel(struct macb *bp, int offset, u32 value) 248 { 249 writel_relaxed(value, bp->regs + offset); 250 } 251 252 /* Find the CPU endianness by using the loopback bit of NCR register. When the 253 * CPU is in big endian we need to program swapped mode for management 254 * descriptor access. 255 */ 256 static bool hw_is_native_io(void __iomem *addr) 257 { 258 u32 value = MACB_BIT(LLB); 259 260 __raw_writel(value, addr + MACB_NCR); 261 value = __raw_readl(addr + MACB_NCR); 262 263 /* Write 0 back to disable everything */ 264 __raw_writel(0, addr + MACB_NCR); 265 266 return value == MACB_BIT(LLB); 267 } 268 269 static bool hw_is_gem(void __iomem *addr, bool native_io) 270 { 271 u32 id; 272 273 if (native_io) 274 id = __raw_readl(addr + MACB_MID); 275 else 276 id = readl_relaxed(addr + MACB_MID); 277 278 return MACB_BFEXT(IDNUM, id) >= 0x2; 279 } 280 281 static void macb_set_hwaddr(struct macb *bp) 282 { 283 u32 bottom; 284 u16 top; 285 286 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr)); 287 macb_or_gem_writel(bp, SA1B, bottom); 288 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4))); 289 macb_or_gem_writel(bp, SA1T, top); 290 291 /* Clear unused address register sets */ 292 macb_or_gem_writel(bp, SA2B, 0); 293 macb_or_gem_writel(bp, SA2T, 0); 294 macb_or_gem_writel(bp, SA3B, 0); 295 macb_or_gem_writel(bp, SA3T, 0); 296 macb_or_gem_writel(bp, SA4B, 0); 297 macb_or_gem_writel(bp, SA4T, 0); 298 } 299 300 static void macb_get_hwaddr(struct macb *bp) 301 { 302 u32 bottom; 303 u16 top; 304 u8 addr[6]; 305 int i; 306 307 /* Check all 4 address register for valid address */ 308 for (i = 0; i < 4; i++) { 309 bottom = macb_or_gem_readl(bp, SA1B + i * 8); 310 top = macb_or_gem_readl(bp, SA1T + i * 8); 311 312 addr[0] = bottom & 0xff; 313 addr[1] = (bottom >> 8) & 0xff; 314 addr[2] = (bottom >> 16) & 0xff; 315 addr[3] = (bottom >> 24) & 0xff; 316 addr[4] = top & 0xff; 317 addr[5] = (top >> 8) & 0xff; 318 319 if (is_valid_ether_addr(addr)) { 320 eth_hw_addr_set(bp->dev, addr); 321 return; 322 } 323 } 324 325 dev_info(&bp->pdev->dev, "invalid hw address, using random\n"); 326 eth_hw_addr_random(bp->dev); 327 } 328 329 static int macb_mdio_wait_for_idle(struct macb *bp) 330 { 331 u32 val; 332 333 return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE), 334 1, MACB_MDIO_TIMEOUT); 335 } 336 337 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 338 { 339 struct macb *bp = bus->priv; 340 int status; 341 342 status = pm_runtime_resume_and_get(&bp->pdev->dev); 343 if (status < 0) 344 goto mdio_pm_exit; 345 346 status = macb_mdio_wait_for_idle(bp); 347 if (status < 0) 348 goto mdio_read_exit; 349 350 if (regnum & MII_ADDR_C45) { 351 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 352 | MACB_BF(RW, MACB_MAN_C45_ADDR) 353 | MACB_BF(PHYA, mii_id) 354 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 355 | MACB_BF(DATA, regnum & 0xFFFF) 356 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 357 358 status = macb_mdio_wait_for_idle(bp); 359 if (status < 0) 360 goto mdio_read_exit; 361 362 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 363 | MACB_BF(RW, MACB_MAN_C45_READ) 364 | MACB_BF(PHYA, mii_id) 365 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 366 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 367 } else { 368 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 369 | MACB_BF(RW, MACB_MAN_C22_READ) 370 | MACB_BF(PHYA, mii_id) 371 | MACB_BF(REGA, regnum) 372 | MACB_BF(CODE, MACB_MAN_C22_CODE))); 373 } 374 375 status = macb_mdio_wait_for_idle(bp); 376 if (status < 0) 377 goto mdio_read_exit; 378 379 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 380 381 mdio_read_exit: 382 pm_runtime_mark_last_busy(&bp->pdev->dev); 383 pm_runtime_put_autosuspend(&bp->pdev->dev); 384 mdio_pm_exit: 385 return status; 386 } 387 388 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 389 u16 value) 390 { 391 struct macb *bp = bus->priv; 392 int status; 393 394 status = pm_runtime_resume_and_get(&bp->pdev->dev); 395 if (status < 0) 396 goto mdio_pm_exit; 397 398 status = macb_mdio_wait_for_idle(bp); 399 if (status < 0) 400 goto mdio_write_exit; 401 402 if (regnum & MII_ADDR_C45) { 403 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 404 | MACB_BF(RW, MACB_MAN_C45_ADDR) 405 | MACB_BF(PHYA, mii_id) 406 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 407 | MACB_BF(DATA, regnum & 0xFFFF) 408 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 409 410 status = macb_mdio_wait_for_idle(bp); 411 if (status < 0) 412 goto mdio_write_exit; 413 414 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 415 | MACB_BF(RW, MACB_MAN_C45_WRITE) 416 | MACB_BF(PHYA, mii_id) 417 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 418 | MACB_BF(CODE, MACB_MAN_C45_CODE) 419 | MACB_BF(DATA, value))); 420 } else { 421 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 422 | MACB_BF(RW, MACB_MAN_C22_WRITE) 423 | MACB_BF(PHYA, mii_id) 424 | MACB_BF(REGA, regnum) 425 | MACB_BF(CODE, MACB_MAN_C22_CODE) 426 | MACB_BF(DATA, value))); 427 } 428 429 status = macb_mdio_wait_for_idle(bp); 430 if (status < 0) 431 goto mdio_write_exit; 432 433 mdio_write_exit: 434 pm_runtime_mark_last_busy(&bp->pdev->dev); 435 pm_runtime_put_autosuspend(&bp->pdev->dev); 436 mdio_pm_exit: 437 return status; 438 } 439 440 static void macb_init_buffers(struct macb *bp) 441 { 442 struct macb_queue *queue; 443 unsigned int q; 444 445 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 446 queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma)); 447 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 448 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 449 queue_writel(queue, RBQPH, 450 upper_32_bits(queue->rx_ring_dma)); 451 #endif 452 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 453 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 454 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 455 queue_writel(queue, TBQPH, 456 upper_32_bits(queue->tx_ring_dma)); 457 #endif 458 } 459 } 460 461 /** 462 * macb_set_tx_clk() - Set a clock to a new frequency 463 * @bp: pointer to struct macb 464 * @speed: New frequency in Hz 465 */ 466 static void macb_set_tx_clk(struct macb *bp, int speed) 467 { 468 long ferr, rate, rate_rounded; 469 470 if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG)) 471 return; 472 473 /* In case of MII the PHY is the clock master */ 474 if (bp->phy_interface == PHY_INTERFACE_MODE_MII) 475 return; 476 477 switch (speed) { 478 case SPEED_10: 479 rate = 2500000; 480 break; 481 case SPEED_100: 482 rate = 25000000; 483 break; 484 case SPEED_1000: 485 rate = 125000000; 486 break; 487 default: 488 return; 489 } 490 491 rate_rounded = clk_round_rate(bp->tx_clk, rate); 492 if (rate_rounded < 0) 493 return; 494 495 /* RGMII allows 50 ppm frequency error. Test and warn if this limit 496 * is not satisfied. 497 */ 498 ferr = abs(rate_rounded - rate); 499 ferr = DIV_ROUND_UP(ferr, rate / 100000); 500 if (ferr > 5) 501 netdev_warn(bp->dev, 502 "unable to generate target frequency: %ld Hz\n", 503 rate); 504 505 if (clk_set_rate(bp->tx_clk, rate_rounded)) 506 netdev_err(bp->dev, "adjusting tx_clk failed.\n"); 507 } 508 509 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode, 510 phy_interface_t interface, int speed, 511 int duplex) 512 { 513 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 514 u32 config; 515 516 config = gem_readl(bp, USX_CONTROL); 517 config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config); 518 config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config); 519 config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS)); 520 config |= GEM_BIT(TX_EN); 521 gem_writel(bp, USX_CONTROL, config); 522 } 523 524 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs, 525 struct phylink_link_state *state) 526 { 527 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 528 u32 val; 529 530 state->speed = SPEED_10000; 531 state->duplex = 1; 532 state->an_complete = 1; 533 534 val = gem_readl(bp, USX_STATUS); 535 state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK)); 536 val = gem_readl(bp, NCFGR); 537 if (val & GEM_BIT(PAE)) 538 state->pause = MLO_PAUSE_RX; 539 } 540 541 static int macb_usx_pcs_config(struct phylink_pcs *pcs, 542 unsigned int mode, 543 phy_interface_t interface, 544 const unsigned long *advertising, 545 bool permit_pause_to_mac) 546 { 547 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 548 549 gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) | 550 GEM_BIT(SIGNAL_OK)); 551 552 return 0; 553 } 554 555 static void macb_pcs_get_state(struct phylink_pcs *pcs, 556 struct phylink_link_state *state) 557 { 558 state->link = 0; 559 } 560 561 static void macb_pcs_an_restart(struct phylink_pcs *pcs) 562 { 563 /* Not supported */ 564 } 565 566 static int macb_pcs_config(struct phylink_pcs *pcs, 567 unsigned int mode, 568 phy_interface_t interface, 569 const unsigned long *advertising, 570 bool permit_pause_to_mac) 571 { 572 return 0; 573 } 574 575 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = { 576 .pcs_get_state = macb_usx_pcs_get_state, 577 .pcs_config = macb_usx_pcs_config, 578 .pcs_link_up = macb_usx_pcs_link_up, 579 }; 580 581 static const struct phylink_pcs_ops macb_phylink_pcs_ops = { 582 .pcs_get_state = macb_pcs_get_state, 583 .pcs_an_restart = macb_pcs_an_restart, 584 .pcs_config = macb_pcs_config, 585 }; 586 587 static void macb_mac_config(struct phylink_config *config, unsigned int mode, 588 const struct phylink_link_state *state) 589 { 590 struct net_device *ndev = to_net_dev(config->dev); 591 struct macb *bp = netdev_priv(ndev); 592 unsigned long flags; 593 u32 old_ctrl, ctrl; 594 u32 old_ncr, ncr; 595 596 spin_lock_irqsave(&bp->lock, flags); 597 598 old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR); 599 old_ncr = ncr = macb_or_gem_readl(bp, NCR); 600 601 if (bp->caps & MACB_CAPS_MACB_IS_EMAC) { 602 if (state->interface == PHY_INTERFACE_MODE_RMII) 603 ctrl |= MACB_BIT(RM9200_RMII); 604 } else if (macb_is_gem(bp)) { 605 ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL)); 606 ncr &= ~GEM_BIT(ENABLE_HS_MAC); 607 608 if (state->interface == PHY_INTERFACE_MODE_SGMII) { 609 ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 610 } else if (state->interface == PHY_INTERFACE_MODE_10GBASER) { 611 ctrl |= GEM_BIT(PCSSEL); 612 ncr |= GEM_BIT(ENABLE_HS_MAC); 613 } else if (bp->caps & MACB_CAPS_MIIONRGMII && 614 bp->phy_interface == PHY_INTERFACE_MODE_MII) { 615 ncr |= MACB_BIT(MIIONRGMII); 616 } 617 } 618 619 /* Apply the new configuration, if any */ 620 if (old_ctrl ^ ctrl) 621 macb_or_gem_writel(bp, NCFGR, ctrl); 622 623 if (old_ncr ^ ncr) 624 macb_or_gem_writel(bp, NCR, ncr); 625 626 /* Disable AN for SGMII fixed link configuration, enable otherwise. 627 * Must be written after PCSSEL is set in NCFGR, 628 * otherwise writes will not take effect. 629 */ 630 if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) { 631 u32 pcsctrl, old_pcsctrl; 632 633 old_pcsctrl = gem_readl(bp, PCSCNTRL); 634 if (mode == MLO_AN_FIXED) 635 pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG); 636 else 637 pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG); 638 if (old_pcsctrl != pcsctrl) 639 gem_writel(bp, PCSCNTRL, pcsctrl); 640 } 641 642 spin_unlock_irqrestore(&bp->lock, flags); 643 } 644 645 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode, 646 phy_interface_t interface) 647 { 648 struct net_device *ndev = to_net_dev(config->dev); 649 struct macb *bp = netdev_priv(ndev); 650 struct macb_queue *queue; 651 unsigned int q; 652 u32 ctrl; 653 654 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) 655 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 656 queue_writel(queue, IDR, 657 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 658 659 /* Disable Rx and Tx */ 660 ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE)); 661 macb_writel(bp, NCR, ctrl); 662 663 netif_tx_stop_all_queues(ndev); 664 } 665 666 static void macb_mac_link_up(struct phylink_config *config, 667 struct phy_device *phy, 668 unsigned int mode, phy_interface_t interface, 669 int speed, int duplex, 670 bool tx_pause, bool rx_pause) 671 { 672 struct net_device *ndev = to_net_dev(config->dev); 673 struct macb *bp = netdev_priv(ndev); 674 struct macb_queue *queue; 675 unsigned long flags; 676 unsigned int q; 677 u32 ctrl; 678 679 spin_lock_irqsave(&bp->lock, flags); 680 681 ctrl = macb_or_gem_readl(bp, NCFGR); 682 683 ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); 684 685 if (speed == SPEED_100) 686 ctrl |= MACB_BIT(SPD); 687 688 if (duplex) 689 ctrl |= MACB_BIT(FD); 690 691 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) { 692 ctrl &= ~MACB_BIT(PAE); 693 if (macb_is_gem(bp)) { 694 ctrl &= ~GEM_BIT(GBE); 695 696 if (speed == SPEED_1000) 697 ctrl |= GEM_BIT(GBE); 698 } 699 700 if (rx_pause) 701 ctrl |= MACB_BIT(PAE); 702 703 macb_set_tx_clk(bp, speed); 704 705 /* Initialize rings & buffers as clearing MACB_BIT(TE) in link down 706 * cleared the pipeline and control registers. 707 */ 708 bp->macbgem_ops.mog_init_rings(bp); 709 macb_init_buffers(bp); 710 711 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 712 queue_writel(queue, IER, 713 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 714 } 715 716 macb_or_gem_writel(bp, NCFGR, ctrl); 717 718 if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER) 719 gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M, 720 gem_readl(bp, HS_MAC_CONFIG))); 721 722 spin_unlock_irqrestore(&bp->lock, flags); 723 724 /* Enable Rx and Tx */ 725 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE)); 726 727 netif_tx_wake_all_queues(ndev); 728 } 729 730 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config, 731 phy_interface_t interface) 732 { 733 struct net_device *ndev = to_net_dev(config->dev); 734 struct macb *bp = netdev_priv(ndev); 735 736 if (interface == PHY_INTERFACE_MODE_10GBASER) 737 return &bp->phylink_usx_pcs; 738 else if (interface == PHY_INTERFACE_MODE_SGMII) 739 return &bp->phylink_sgmii_pcs; 740 else 741 return NULL; 742 } 743 744 static const struct phylink_mac_ops macb_phylink_ops = { 745 .validate = phylink_generic_validate, 746 .mac_select_pcs = macb_mac_select_pcs, 747 .mac_config = macb_mac_config, 748 .mac_link_down = macb_mac_link_down, 749 .mac_link_up = macb_mac_link_up, 750 }; 751 752 static bool macb_phy_handle_exists(struct device_node *dn) 753 { 754 dn = of_parse_phandle(dn, "phy-handle", 0); 755 of_node_put(dn); 756 return dn != NULL; 757 } 758 759 static int macb_phylink_connect(struct macb *bp) 760 { 761 struct device_node *dn = bp->pdev->dev.of_node; 762 struct net_device *dev = bp->dev; 763 struct phy_device *phydev; 764 int ret; 765 766 if (dn) 767 ret = phylink_of_phy_connect(bp->phylink, dn, 0); 768 769 if (!dn || (ret && !macb_phy_handle_exists(dn))) { 770 phydev = phy_find_first(bp->mii_bus); 771 if (!phydev) { 772 netdev_err(dev, "no PHY found\n"); 773 return -ENXIO; 774 } 775 776 /* attach the mac to the phy */ 777 ret = phylink_connect_phy(bp->phylink, phydev); 778 } 779 780 if (ret) { 781 netdev_err(dev, "Could not attach PHY (%d)\n", ret); 782 return ret; 783 } 784 785 phylink_start(bp->phylink); 786 787 return 0; 788 } 789 790 static void macb_get_pcs_fixed_state(struct phylink_config *config, 791 struct phylink_link_state *state) 792 { 793 struct net_device *ndev = to_net_dev(config->dev); 794 struct macb *bp = netdev_priv(ndev); 795 796 state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0; 797 } 798 799 /* based on au1000_eth. c*/ 800 static int macb_mii_probe(struct net_device *dev) 801 { 802 struct macb *bp = netdev_priv(dev); 803 804 bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops; 805 bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops; 806 807 bp->phylink_config.dev = &dev->dev; 808 bp->phylink_config.type = PHYLINK_NETDEV; 809 bp->phylink_config.mac_managed_pm = true; 810 811 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 812 bp->phylink_config.poll_fixed_state = true; 813 bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state; 814 } 815 816 bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | 817 MAC_10 | MAC_100; 818 819 __set_bit(PHY_INTERFACE_MODE_MII, 820 bp->phylink_config.supported_interfaces); 821 __set_bit(PHY_INTERFACE_MODE_RMII, 822 bp->phylink_config.supported_interfaces); 823 824 /* Determine what modes are supported */ 825 if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) { 826 bp->phylink_config.mac_capabilities |= MAC_1000FD; 827 if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF)) 828 bp->phylink_config.mac_capabilities |= MAC_1000HD; 829 830 __set_bit(PHY_INTERFACE_MODE_GMII, 831 bp->phylink_config.supported_interfaces); 832 phy_interface_set_rgmii(bp->phylink_config.supported_interfaces); 833 834 if (bp->caps & MACB_CAPS_PCS) 835 __set_bit(PHY_INTERFACE_MODE_SGMII, 836 bp->phylink_config.supported_interfaces); 837 838 if (bp->caps & MACB_CAPS_HIGH_SPEED) { 839 __set_bit(PHY_INTERFACE_MODE_10GBASER, 840 bp->phylink_config.supported_interfaces); 841 bp->phylink_config.mac_capabilities |= MAC_10000FD; 842 } 843 } 844 845 bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode, 846 bp->phy_interface, &macb_phylink_ops); 847 if (IS_ERR(bp->phylink)) { 848 netdev_err(dev, "Could not create a phylink instance (%ld)\n", 849 PTR_ERR(bp->phylink)); 850 return PTR_ERR(bp->phylink); 851 } 852 853 return 0; 854 } 855 856 static int macb_mdiobus_register(struct macb *bp) 857 { 858 struct device_node *child, *np = bp->pdev->dev.of_node; 859 860 /* If we have a child named mdio, probe it instead of looking for PHYs 861 * directly under the MAC node 862 */ 863 child = of_get_child_by_name(np, "mdio"); 864 if (child) { 865 int ret = of_mdiobus_register(bp->mii_bus, child); 866 867 of_node_put(child); 868 return ret; 869 } 870 871 if (of_phy_is_fixed_link(np)) 872 return mdiobus_register(bp->mii_bus); 873 874 /* Only create the PHY from the device tree if at least one PHY is 875 * described. Otherwise scan the entire MDIO bus. We do this to support 876 * old device tree that did not follow the best practices and did not 877 * describe their network PHYs. 878 */ 879 for_each_available_child_of_node(np, child) 880 if (of_mdiobus_child_is_phy(child)) { 881 /* The loop increments the child refcount, 882 * decrement it before returning. 883 */ 884 of_node_put(child); 885 886 return of_mdiobus_register(bp->mii_bus, np); 887 } 888 889 return mdiobus_register(bp->mii_bus); 890 } 891 892 static int macb_mii_init(struct macb *bp) 893 { 894 int err = -ENXIO; 895 896 /* Enable management port */ 897 macb_writel(bp, NCR, MACB_BIT(MPE)); 898 899 bp->mii_bus = mdiobus_alloc(); 900 if (!bp->mii_bus) { 901 err = -ENOMEM; 902 goto err_out; 903 } 904 905 bp->mii_bus->name = "MACB_mii_bus"; 906 bp->mii_bus->read = &macb_mdio_read; 907 bp->mii_bus->write = &macb_mdio_write; 908 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 909 bp->pdev->name, bp->pdev->id); 910 bp->mii_bus->priv = bp; 911 bp->mii_bus->parent = &bp->pdev->dev; 912 913 dev_set_drvdata(&bp->dev->dev, bp->mii_bus); 914 915 err = macb_mdiobus_register(bp); 916 if (err) 917 goto err_out_free_mdiobus; 918 919 err = macb_mii_probe(bp->dev); 920 if (err) 921 goto err_out_unregister_bus; 922 923 return 0; 924 925 err_out_unregister_bus: 926 mdiobus_unregister(bp->mii_bus); 927 err_out_free_mdiobus: 928 mdiobus_free(bp->mii_bus); 929 err_out: 930 return err; 931 } 932 933 static void macb_update_stats(struct macb *bp) 934 { 935 u32 *p = &bp->hw_stats.macb.rx_pause_frames; 936 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1; 937 int offset = MACB_PFR; 938 939 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4); 940 941 for (; p < end; p++, offset += 4) 942 *p += bp->macb_reg_readl(bp, offset); 943 } 944 945 static int macb_halt_tx(struct macb *bp) 946 { 947 unsigned long halt_time, timeout; 948 u32 status; 949 950 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT)); 951 952 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT); 953 do { 954 halt_time = jiffies; 955 status = macb_readl(bp, TSR); 956 if (!(status & MACB_BIT(TGO))) 957 return 0; 958 959 udelay(250); 960 } while (time_before(halt_time, timeout)); 961 962 return -ETIMEDOUT; 963 } 964 965 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget) 966 { 967 if (tx_skb->mapping) { 968 if (tx_skb->mapped_as_page) 969 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping, 970 tx_skb->size, DMA_TO_DEVICE); 971 else 972 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping, 973 tx_skb->size, DMA_TO_DEVICE); 974 tx_skb->mapping = 0; 975 } 976 977 if (tx_skb->skb) { 978 napi_consume_skb(tx_skb->skb, budget); 979 tx_skb->skb = NULL; 980 } 981 } 982 983 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr) 984 { 985 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 986 struct macb_dma_desc_64 *desc_64; 987 988 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 989 desc_64 = macb_64b_desc(bp, desc); 990 desc_64->addrh = upper_32_bits(addr); 991 /* The low bits of RX address contain the RX_USED bit, clearing 992 * of which allows packet RX. Make sure the high bits are also 993 * visible to HW at that point. 994 */ 995 dma_wmb(); 996 } 997 #endif 998 desc->addr = lower_32_bits(addr); 999 } 1000 1001 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc) 1002 { 1003 dma_addr_t addr = 0; 1004 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1005 struct macb_dma_desc_64 *desc_64; 1006 1007 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1008 desc_64 = macb_64b_desc(bp, desc); 1009 addr = ((u64)(desc_64->addrh) << 32); 1010 } 1011 #endif 1012 addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr)); 1013 return addr; 1014 } 1015 1016 static void macb_tx_error_task(struct work_struct *work) 1017 { 1018 struct macb_queue *queue = container_of(work, struct macb_queue, 1019 tx_error_task); 1020 struct macb *bp = queue->bp; 1021 struct macb_tx_skb *tx_skb; 1022 struct macb_dma_desc *desc; 1023 struct sk_buff *skb; 1024 unsigned int tail; 1025 unsigned long flags; 1026 1027 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n", 1028 (unsigned int)(queue - bp->queues), 1029 queue->tx_tail, queue->tx_head); 1030 1031 /* Prevent the queue NAPI TX poll from running, as it calls 1032 * macb_tx_complete(), which in turn may call netif_wake_subqueue(). 1033 * As explained below, we have to halt the transmission before updating 1034 * TBQP registers so we call netif_tx_stop_all_queues() to notify the 1035 * network engine about the macb/gem being halted. 1036 */ 1037 napi_disable(&queue->napi_tx); 1038 spin_lock_irqsave(&bp->lock, flags); 1039 1040 /* Make sure nobody is trying to queue up new packets */ 1041 netif_tx_stop_all_queues(bp->dev); 1042 1043 /* Stop transmission now 1044 * (in case we have just queued new packets) 1045 * macb/gem must be halted to write TBQP register 1046 */ 1047 if (macb_halt_tx(bp)) 1048 /* Just complain for now, reinitializing TX path can be good */ 1049 netdev_err(bp->dev, "BUG: halt tx timed out\n"); 1050 1051 /* Treat frames in TX queue including the ones that caused the error. 1052 * Free transmit buffers in upper layer. 1053 */ 1054 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) { 1055 u32 ctrl; 1056 1057 desc = macb_tx_desc(queue, tail); 1058 ctrl = desc->ctrl; 1059 tx_skb = macb_tx_skb(queue, tail); 1060 skb = tx_skb->skb; 1061 1062 if (ctrl & MACB_BIT(TX_USED)) { 1063 /* skb is set for the last buffer of the frame */ 1064 while (!skb) { 1065 macb_tx_unmap(bp, tx_skb, 0); 1066 tail++; 1067 tx_skb = macb_tx_skb(queue, tail); 1068 skb = tx_skb->skb; 1069 } 1070 1071 /* ctrl still refers to the first buffer descriptor 1072 * since it's the only one written back by the hardware 1073 */ 1074 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) { 1075 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n", 1076 macb_tx_ring_wrap(bp, tail), 1077 skb->data); 1078 bp->dev->stats.tx_packets++; 1079 queue->stats.tx_packets++; 1080 bp->dev->stats.tx_bytes += skb->len; 1081 queue->stats.tx_bytes += skb->len; 1082 } 1083 } else { 1084 /* "Buffers exhausted mid-frame" errors may only happen 1085 * if the driver is buggy, so complain loudly about 1086 * those. Statistics are updated by hardware. 1087 */ 1088 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED)) 1089 netdev_err(bp->dev, 1090 "BUG: TX buffers exhausted mid-frame\n"); 1091 1092 desc->ctrl = ctrl | MACB_BIT(TX_USED); 1093 } 1094 1095 macb_tx_unmap(bp, tx_skb, 0); 1096 } 1097 1098 /* Set end of TX queue */ 1099 desc = macb_tx_desc(queue, 0); 1100 macb_set_addr(bp, desc, 0); 1101 desc->ctrl = MACB_BIT(TX_USED); 1102 1103 /* Make descriptor updates visible to hardware */ 1104 wmb(); 1105 1106 /* Reinitialize the TX desc queue */ 1107 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 1108 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1109 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 1110 queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma)); 1111 #endif 1112 /* Make TX ring reflect state of hardware */ 1113 queue->tx_head = 0; 1114 queue->tx_tail = 0; 1115 1116 /* Housework before enabling TX IRQ */ 1117 macb_writel(bp, TSR, macb_readl(bp, TSR)); 1118 queue_writel(queue, IER, MACB_TX_INT_FLAGS); 1119 1120 /* Now we are ready to start transmission again */ 1121 netif_tx_start_all_queues(bp->dev); 1122 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1123 1124 spin_unlock_irqrestore(&bp->lock, flags); 1125 napi_enable(&queue->napi_tx); 1126 } 1127 1128 static bool ptp_one_step_sync(struct sk_buff *skb) 1129 { 1130 struct ptp_header *hdr; 1131 unsigned int ptp_class; 1132 u8 msgtype; 1133 1134 /* No need to parse packet if PTP TS is not involved */ 1135 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 1136 goto not_oss; 1137 1138 /* Identify and return whether PTP one step sync is being processed */ 1139 ptp_class = ptp_classify_raw(skb); 1140 if (ptp_class == PTP_CLASS_NONE) 1141 goto not_oss; 1142 1143 hdr = ptp_parse_header(skb, ptp_class); 1144 if (!hdr) 1145 goto not_oss; 1146 1147 if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP) 1148 goto not_oss; 1149 1150 msgtype = ptp_get_msgtype(hdr, ptp_class); 1151 if (msgtype == PTP_MSGTYPE_SYNC) 1152 return true; 1153 1154 not_oss: 1155 return false; 1156 } 1157 1158 static int macb_tx_complete(struct macb_queue *queue, int budget) 1159 { 1160 struct macb *bp = queue->bp; 1161 u16 queue_index = queue - bp->queues; 1162 unsigned int tail; 1163 unsigned int head; 1164 int packets = 0; 1165 1166 spin_lock(&queue->tx_ptr_lock); 1167 head = queue->tx_head; 1168 for (tail = queue->tx_tail; tail != head && packets < budget; tail++) { 1169 struct macb_tx_skb *tx_skb; 1170 struct sk_buff *skb; 1171 struct macb_dma_desc *desc; 1172 u32 ctrl; 1173 1174 desc = macb_tx_desc(queue, tail); 1175 1176 /* Make hw descriptor updates visible to CPU */ 1177 rmb(); 1178 1179 ctrl = desc->ctrl; 1180 1181 /* TX_USED bit is only set by hardware on the very first buffer 1182 * descriptor of the transmitted frame. 1183 */ 1184 if (!(ctrl & MACB_BIT(TX_USED))) 1185 break; 1186 1187 /* Process all buffers of the current transmitted frame */ 1188 for (;; tail++) { 1189 tx_skb = macb_tx_skb(queue, tail); 1190 skb = tx_skb->skb; 1191 1192 /* First, update TX stats if needed */ 1193 if (skb) { 1194 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1195 !ptp_one_step_sync(skb) && 1196 gem_ptp_do_txstamp(queue, skb, desc) == 0) { 1197 /* skb now belongs to timestamp buffer 1198 * and will be removed later 1199 */ 1200 tx_skb->skb = NULL; 1201 } 1202 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n", 1203 macb_tx_ring_wrap(bp, tail), 1204 skb->data); 1205 bp->dev->stats.tx_packets++; 1206 queue->stats.tx_packets++; 1207 bp->dev->stats.tx_bytes += skb->len; 1208 queue->stats.tx_bytes += skb->len; 1209 packets++; 1210 } 1211 1212 /* Now we can safely release resources */ 1213 macb_tx_unmap(bp, tx_skb, budget); 1214 1215 /* skb is set only for the last buffer of the frame. 1216 * WARNING: at this point skb has been freed by 1217 * macb_tx_unmap(). 1218 */ 1219 if (skb) 1220 break; 1221 } 1222 } 1223 1224 queue->tx_tail = tail; 1225 if (__netif_subqueue_stopped(bp->dev, queue_index) && 1226 CIRC_CNT(queue->tx_head, queue->tx_tail, 1227 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp)) 1228 netif_wake_subqueue(bp->dev, queue_index); 1229 spin_unlock(&queue->tx_ptr_lock); 1230 1231 return packets; 1232 } 1233 1234 static void gem_rx_refill(struct macb_queue *queue) 1235 { 1236 unsigned int entry; 1237 struct sk_buff *skb; 1238 dma_addr_t paddr; 1239 struct macb *bp = queue->bp; 1240 struct macb_dma_desc *desc; 1241 1242 while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail, 1243 bp->rx_ring_size) > 0) { 1244 entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head); 1245 1246 /* Make hw descriptor updates visible to CPU */ 1247 rmb(); 1248 1249 desc = macb_rx_desc(queue, entry); 1250 1251 if (!queue->rx_skbuff[entry]) { 1252 /* allocate sk_buff for this free entry in ring */ 1253 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size); 1254 if (unlikely(!skb)) { 1255 netdev_err(bp->dev, 1256 "Unable to allocate sk_buff\n"); 1257 break; 1258 } 1259 1260 /* now fill corresponding descriptor entry */ 1261 paddr = dma_map_single(&bp->pdev->dev, skb->data, 1262 bp->rx_buffer_size, 1263 DMA_FROM_DEVICE); 1264 if (dma_mapping_error(&bp->pdev->dev, paddr)) { 1265 dev_kfree_skb(skb); 1266 break; 1267 } 1268 1269 queue->rx_skbuff[entry] = skb; 1270 1271 if (entry == bp->rx_ring_size - 1) 1272 paddr |= MACB_BIT(RX_WRAP); 1273 desc->ctrl = 0; 1274 /* Setting addr clears RX_USED and allows reception, 1275 * make sure ctrl is cleared first to avoid a race. 1276 */ 1277 dma_wmb(); 1278 macb_set_addr(bp, desc, paddr); 1279 1280 /* properly align Ethernet header */ 1281 skb_reserve(skb, NET_IP_ALIGN); 1282 } else { 1283 desc->ctrl = 0; 1284 dma_wmb(); 1285 desc->addr &= ~MACB_BIT(RX_USED); 1286 } 1287 queue->rx_prepared_head++; 1288 } 1289 1290 /* Make descriptor updates visible to hardware */ 1291 wmb(); 1292 1293 netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n", 1294 queue, queue->rx_prepared_head, queue->rx_tail); 1295 } 1296 1297 /* Mark DMA descriptors from begin up to and not including end as unused */ 1298 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin, 1299 unsigned int end) 1300 { 1301 unsigned int frag; 1302 1303 for (frag = begin; frag != end; frag++) { 1304 struct macb_dma_desc *desc = macb_rx_desc(queue, frag); 1305 1306 desc->addr &= ~MACB_BIT(RX_USED); 1307 } 1308 1309 /* Make descriptor updates visible to hardware */ 1310 wmb(); 1311 1312 /* When this happens, the hardware stats registers for 1313 * whatever caused this is updated, so we don't have to record 1314 * anything. 1315 */ 1316 } 1317 1318 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi, 1319 int budget) 1320 { 1321 struct macb *bp = queue->bp; 1322 unsigned int len; 1323 unsigned int entry; 1324 struct sk_buff *skb; 1325 struct macb_dma_desc *desc; 1326 int count = 0; 1327 1328 while (count < budget) { 1329 u32 ctrl; 1330 dma_addr_t addr; 1331 bool rxused; 1332 1333 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1334 desc = macb_rx_desc(queue, entry); 1335 1336 /* Make hw descriptor updates visible to CPU */ 1337 rmb(); 1338 1339 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false; 1340 addr = macb_get_addr(bp, desc); 1341 1342 if (!rxused) 1343 break; 1344 1345 /* Ensure ctrl is at least as up-to-date as rxused */ 1346 dma_rmb(); 1347 1348 ctrl = desc->ctrl; 1349 1350 queue->rx_tail++; 1351 count++; 1352 1353 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) { 1354 netdev_err(bp->dev, 1355 "not whole frame pointed by descriptor\n"); 1356 bp->dev->stats.rx_dropped++; 1357 queue->stats.rx_dropped++; 1358 break; 1359 } 1360 skb = queue->rx_skbuff[entry]; 1361 if (unlikely(!skb)) { 1362 netdev_err(bp->dev, 1363 "inconsistent Rx descriptor chain\n"); 1364 bp->dev->stats.rx_dropped++; 1365 queue->stats.rx_dropped++; 1366 break; 1367 } 1368 /* now everything is ready for receiving packet */ 1369 queue->rx_skbuff[entry] = NULL; 1370 len = ctrl & bp->rx_frm_len_mask; 1371 1372 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len); 1373 1374 skb_put(skb, len); 1375 dma_unmap_single(&bp->pdev->dev, addr, 1376 bp->rx_buffer_size, DMA_FROM_DEVICE); 1377 1378 skb->protocol = eth_type_trans(skb, bp->dev); 1379 skb_checksum_none_assert(skb); 1380 if (bp->dev->features & NETIF_F_RXCSUM && 1381 !(bp->dev->flags & IFF_PROMISC) && 1382 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK) 1383 skb->ip_summed = CHECKSUM_UNNECESSARY; 1384 1385 bp->dev->stats.rx_packets++; 1386 queue->stats.rx_packets++; 1387 bp->dev->stats.rx_bytes += skb->len; 1388 queue->stats.rx_bytes += skb->len; 1389 1390 gem_ptp_do_rxstamp(bp, skb, desc); 1391 1392 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 1393 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1394 skb->len, skb->csum); 1395 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1, 1396 skb_mac_header(skb), 16, true); 1397 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1, 1398 skb->data, 32, true); 1399 #endif 1400 1401 napi_gro_receive(napi, skb); 1402 } 1403 1404 gem_rx_refill(queue); 1405 1406 return count; 1407 } 1408 1409 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi, 1410 unsigned int first_frag, unsigned int last_frag) 1411 { 1412 unsigned int len; 1413 unsigned int frag; 1414 unsigned int offset; 1415 struct sk_buff *skb; 1416 struct macb_dma_desc *desc; 1417 struct macb *bp = queue->bp; 1418 1419 desc = macb_rx_desc(queue, last_frag); 1420 len = desc->ctrl & bp->rx_frm_len_mask; 1421 1422 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n", 1423 macb_rx_ring_wrap(bp, first_frag), 1424 macb_rx_ring_wrap(bp, last_frag), len); 1425 1426 /* The ethernet header starts NET_IP_ALIGN bytes into the 1427 * first buffer. Since the header is 14 bytes, this makes the 1428 * payload word-aligned. 1429 * 1430 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy 1431 * the two padding bytes into the skb so that we avoid hitting 1432 * the slowpath in memcpy(), and pull them off afterwards. 1433 */ 1434 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN); 1435 if (!skb) { 1436 bp->dev->stats.rx_dropped++; 1437 for (frag = first_frag; ; frag++) { 1438 desc = macb_rx_desc(queue, frag); 1439 desc->addr &= ~MACB_BIT(RX_USED); 1440 if (frag == last_frag) 1441 break; 1442 } 1443 1444 /* Make descriptor updates visible to hardware */ 1445 wmb(); 1446 1447 return 1; 1448 } 1449 1450 offset = 0; 1451 len += NET_IP_ALIGN; 1452 skb_checksum_none_assert(skb); 1453 skb_put(skb, len); 1454 1455 for (frag = first_frag; ; frag++) { 1456 unsigned int frag_len = bp->rx_buffer_size; 1457 1458 if (offset + frag_len > len) { 1459 if (unlikely(frag != last_frag)) { 1460 dev_kfree_skb_any(skb); 1461 return -1; 1462 } 1463 frag_len = len - offset; 1464 } 1465 skb_copy_to_linear_data_offset(skb, offset, 1466 macb_rx_buffer(queue, frag), 1467 frag_len); 1468 offset += bp->rx_buffer_size; 1469 desc = macb_rx_desc(queue, frag); 1470 desc->addr &= ~MACB_BIT(RX_USED); 1471 1472 if (frag == last_frag) 1473 break; 1474 } 1475 1476 /* Make descriptor updates visible to hardware */ 1477 wmb(); 1478 1479 __skb_pull(skb, NET_IP_ALIGN); 1480 skb->protocol = eth_type_trans(skb, bp->dev); 1481 1482 bp->dev->stats.rx_packets++; 1483 bp->dev->stats.rx_bytes += skb->len; 1484 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1485 skb->len, skb->csum); 1486 napi_gro_receive(napi, skb); 1487 1488 return 0; 1489 } 1490 1491 static inline void macb_init_rx_ring(struct macb_queue *queue) 1492 { 1493 struct macb *bp = queue->bp; 1494 dma_addr_t addr; 1495 struct macb_dma_desc *desc = NULL; 1496 int i; 1497 1498 addr = queue->rx_buffers_dma; 1499 for (i = 0; i < bp->rx_ring_size; i++) { 1500 desc = macb_rx_desc(queue, i); 1501 macb_set_addr(bp, desc, addr); 1502 desc->ctrl = 0; 1503 addr += bp->rx_buffer_size; 1504 } 1505 desc->addr |= MACB_BIT(RX_WRAP); 1506 queue->rx_tail = 0; 1507 } 1508 1509 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi, 1510 int budget) 1511 { 1512 struct macb *bp = queue->bp; 1513 bool reset_rx_queue = false; 1514 int received = 0; 1515 unsigned int tail; 1516 int first_frag = -1; 1517 1518 for (tail = queue->rx_tail; budget > 0; tail++) { 1519 struct macb_dma_desc *desc = macb_rx_desc(queue, tail); 1520 u32 ctrl; 1521 1522 /* Make hw descriptor updates visible to CPU */ 1523 rmb(); 1524 1525 if (!(desc->addr & MACB_BIT(RX_USED))) 1526 break; 1527 1528 /* Ensure ctrl is at least as up-to-date as addr */ 1529 dma_rmb(); 1530 1531 ctrl = desc->ctrl; 1532 1533 if (ctrl & MACB_BIT(RX_SOF)) { 1534 if (first_frag != -1) 1535 discard_partial_frame(queue, first_frag, tail); 1536 first_frag = tail; 1537 } 1538 1539 if (ctrl & MACB_BIT(RX_EOF)) { 1540 int dropped; 1541 1542 if (unlikely(first_frag == -1)) { 1543 reset_rx_queue = true; 1544 continue; 1545 } 1546 1547 dropped = macb_rx_frame(queue, napi, first_frag, tail); 1548 first_frag = -1; 1549 if (unlikely(dropped < 0)) { 1550 reset_rx_queue = true; 1551 continue; 1552 } 1553 if (!dropped) { 1554 received++; 1555 budget--; 1556 } 1557 } 1558 } 1559 1560 if (unlikely(reset_rx_queue)) { 1561 unsigned long flags; 1562 u32 ctrl; 1563 1564 netdev_err(bp->dev, "RX queue corruption: reset it\n"); 1565 1566 spin_lock_irqsave(&bp->lock, flags); 1567 1568 ctrl = macb_readl(bp, NCR); 1569 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1570 1571 macb_init_rx_ring(queue); 1572 queue_writel(queue, RBQP, queue->rx_ring_dma); 1573 1574 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1575 1576 spin_unlock_irqrestore(&bp->lock, flags); 1577 return received; 1578 } 1579 1580 if (first_frag != -1) 1581 queue->rx_tail = first_frag; 1582 else 1583 queue->rx_tail = tail; 1584 1585 return received; 1586 } 1587 1588 static bool macb_rx_pending(struct macb_queue *queue) 1589 { 1590 struct macb *bp = queue->bp; 1591 unsigned int entry; 1592 struct macb_dma_desc *desc; 1593 1594 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1595 desc = macb_rx_desc(queue, entry); 1596 1597 /* Make hw descriptor updates visible to CPU */ 1598 rmb(); 1599 1600 return (desc->addr & MACB_BIT(RX_USED)) != 0; 1601 } 1602 1603 static int macb_rx_poll(struct napi_struct *napi, int budget) 1604 { 1605 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx); 1606 struct macb *bp = queue->bp; 1607 int work_done; 1608 1609 work_done = bp->macbgem_ops.mog_rx(queue, napi, budget); 1610 1611 netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n", 1612 (unsigned int)(queue - bp->queues), work_done, budget); 1613 1614 if (work_done < budget && napi_complete_done(napi, work_done)) { 1615 queue_writel(queue, IER, bp->rx_intr_mask); 1616 1617 /* Packet completions only seem to propagate to raise 1618 * interrupts when interrupts are enabled at the time, so if 1619 * packets were received while interrupts were disabled, 1620 * they will not cause another interrupt to be generated when 1621 * interrupts are re-enabled. 1622 * Check for this case here to avoid losing a wakeup. This can 1623 * potentially race with the interrupt handler doing the same 1624 * actions if an interrupt is raised just after enabling them, 1625 * but this should be harmless. 1626 */ 1627 if (macb_rx_pending(queue)) { 1628 queue_writel(queue, IDR, bp->rx_intr_mask); 1629 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1630 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1631 netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n"); 1632 napi_schedule(napi); 1633 } 1634 } 1635 1636 /* TODO: Handle errors */ 1637 1638 return work_done; 1639 } 1640 1641 static void macb_tx_restart(struct macb_queue *queue) 1642 { 1643 struct macb *bp = queue->bp; 1644 unsigned int head_idx, tbqp; 1645 1646 spin_lock(&queue->tx_ptr_lock); 1647 1648 if (queue->tx_head == queue->tx_tail) 1649 goto out_tx_ptr_unlock; 1650 1651 tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp); 1652 tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp)); 1653 head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head)); 1654 1655 if (tbqp == head_idx) 1656 goto out_tx_ptr_unlock; 1657 1658 spin_lock_irq(&bp->lock); 1659 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1660 spin_unlock_irq(&bp->lock); 1661 1662 out_tx_ptr_unlock: 1663 spin_unlock(&queue->tx_ptr_lock); 1664 } 1665 1666 static bool macb_tx_complete_pending(struct macb_queue *queue) 1667 { 1668 bool retval = false; 1669 1670 spin_lock(&queue->tx_ptr_lock); 1671 if (queue->tx_head != queue->tx_tail) { 1672 /* Make hw descriptor updates visible to CPU */ 1673 rmb(); 1674 1675 if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED)) 1676 retval = true; 1677 } 1678 spin_unlock(&queue->tx_ptr_lock); 1679 return retval; 1680 } 1681 1682 static int macb_tx_poll(struct napi_struct *napi, int budget) 1683 { 1684 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx); 1685 struct macb *bp = queue->bp; 1686 int work_done; 1687 1688 work_done = macb_tx_complete(queue, budget); 1689 1690 rmb(); // ensure txubr_pending is up to date 1691 if (queue->txubr_pending) { 1692 queue->txubr_pending = false; 1693 netdev_vdbg(bp->dev, "poll: tx restart\n"); 1694 macb_tx_restart(queue); 1695 } 1696 1697 netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n", 1698 (unsigned int)(queue - bp->queues), work_done, budget); 1699 1700 if (work_done < budget && napi_complete_done(napi, work_done)) { 1701 queue_writel(queue, IER, MACB_BIT(TCOMP)); 1702 1703 /* Packet completions only seem to propagate to raise 1704 * interrupts when interrupts are enabled at the time, so if 1705 * packets were sent while interrupts were disabled, 1706 * they will not cause another interrupt to be generated when 1707 * interrupts are re-enabled. 1708 * Check for this case here to avoid losing a wakeup. This can 1709 * potentially race with the interrupt handler doing the same 1710 * actions if an interrupt is raised just after enabling them, 1711 * but this should be harmless. 1712 */ 1713 if (macb_tx_complete_pending(queue)) { 1714 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1715 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1716 queue_writel(queue, ISR, MACB_BIT(TCOMP)); 1717 netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n"); 1718 napi_schedule(napi); 1719 } 1720 } 1721 1722 return work_done; 1723 } 1724 1725 static void macb_hresp_error_task(struct tasklet_struct *t) 1726 { 1727 struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet); 1728 struct net_device *dev = bp->dev; 1729 struct macb_queue *queue; 1730 unsigned int q; 1731 u32 ctrl; 1732 1733 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 1734 queue_writel(queue, IDR, bp->rx_intr_mask | 1735 MACB_TX_INT_FLAGS | 1736 MACB_BIT(HRESP)); 1737 } 1738 ctrl = macb_readl(bp, NCR); 1739 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 1740 macb_writel(bp, NCR, ctrl); 1741 1742 netif_tx_stop_all_queues(dev); 1743 netif_carrier_off(dev); 1744 1745 bp->macbgem_ops.mog_init_rings(bp); 1746 1747 /* Initialize TX and RX buffers */ 1748 macb_init_buffers(bp); 1749 1750 /* Enable interrupts */ 1751 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1752 queue_writel(queue, IER, 1753 bp->rx_intr_mask | 1754 MACB_TX_INT_FLAGS | 1755 MACB_BIT(HRESP)); 1756 1757 ctrl |= MACB_BIT(RE) | MACB_BIT(TE); 1758 macb_writel(bp, NCR, ctrl); 1759 1760 netif_carrier_on(dev); 1761 netif_tx_start_all_queues(dev); 1762 } 1763 1764 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id) 1765 { 1766 struct macb_queue *queue = dev_id; 1767 struct macb *bp = queue->bp; 1768 u32 status; 1769 1770 status = queue_readl(queue, ISR); 1771 1772 if (unlikely(!status)) 1773 return IRQ_NONE; 1774 1775 spin_lock(&bp->lock); 1776 1777 if (status & MACB_BIT(WOL)) { 1778 queue_writel(queue, IDR, MACB_BIT(WOL)); 1779 macb_writel(bp, WOL, 0); 1780 netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n", 1781 (unsigned int)(queue - bp->queues), 1782 (unsigned long)status); 1783 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1784 queue_writel(queue, ISR, MACB_BIT(WOL)); 1785 pm_wakeup_event(&bp->pdev->dev, 0); 1786 } 1787 1788 spin_unlock(&bp->lock); 1789 1790 return IRQ_HANDLED; 1791 } 1792 1793 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id) 1794 { 1795 struct macb_queue *queue = dev_id; 1796 struct macb *bp = queue->bp; 1797 u32 status; 1798 1799 status = queue_readl(queue, ISR); 1800 1801 if (unlikely(!status)) 1802 return IRQ_NONE; 1803 1804 spin_lock(&bp->lock); 1805 1806 if (status & GEM_BIT(WOL)) { 1807 queue_writel(queue, IDR, GEM_BIT(WOL)); 1808 gem_writel(bp, WOL, 0); 1809 netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n", 1810 (unsigned int)(queue - bp->queues), 1811 (unsigned long)status); 1812 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1813 queue_writel(queue, ISR, GEM_BIT(WOL)); 1814 pm_wakeup_event(&bp->pdev->dev, 0); 1815 } 1816 1817 spin_unlock(&bp->lock); 1818 1819 return IRQ_HANDLED; 1820 } 1821 1822 static irqreturn_t macb_interrupt(int irq, void *dev_id) 1823 { 1824 struct macb_queue *queue = dev_id; 1825 struct macb *bp = queue->bp; 1826 struct net_device *dev = bp->dev; 1827 u32 status, ctrl; 1828 1829 status = queue_readl(queue, ISR); 1830 1831 if (unlikely(!status)) 1832 return IRQ_NONE; 1833 1834 spin_lock(&bp->lock); 1835 1836 while (status) { 1837 /* close possible race with dev_close */ 1838 if (unlikely(!netif_running(dev))) { 1839 queue_writel(queue, IDR, -1); 1840 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1841 queue_writel(queue, ISR, -1); 1842 break; 1843 } 1844 1845 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n", 1846 (unsigned int)(queue - bp->queues), 1847 (unsigned long)status); 1848 1849 if (status & bp->rx_intr_mask) { 1850 /* There's no point taking any more interrupts 1851 * until we have processed the buffers. The 1852 * scheduling call may fail if the poll routine 1853 * is already scheduled, so disable interrupts 1854 * now. 1855 */ 1856 queue_writel(queue, IDR, bp->rx_intr_mask); 1857 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1858 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1859 1860 if (napi_schedule_prep(&queue->napi_rx)) { 1861 netdev_vdbg(bp->dev, "scheduling RX softirq\n"); 1862 __napi_schedule(&queue->napi_rx); 1863 } 1864 } 1865 1866 if (status & (MACB_BIT(TCOMP) | 1867 MACB_BIT(TXUBR))) { 1868 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1869 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1870 queue_writel(queue, ISR, MACB_BIT(TCOMP) | 1871 MACB_BIT(TXUBR)); 1872 1873 if (status & MACB_BIT(TXUBR)) { 1874 queue->txubr_pending = true; 1875 wmb(); // ensure softirq can see update 1876 } 1877 1878 if (napi_schedule_prep(&queue->napi_tx)) { 1879 netdev_vdbg(bp->dev, "scheduling TX softirq\n"); 1880 __napi_schedule(&queue->napi_tx); 1881 } 1882 } 1883 1884 if (unlikely(status & (MACB_TX_ERR_FLAGS))) { 1885 queue_writel(queue, IDR, MACB_TX_INT_FLAGS); 1886 schedule_work(&queue->tx_error_task); 1887 1888 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1889 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS); 1890 1891 break; 1892 } 1893 1894 /* Link change detection isn't possible with RMII, so we'll 1895 * add that if/when we get our hands on a full-blown MII PHY. 1896 */ 1897 1898 /* There is a hardware issue under heavy load where DMA can 1899 * stop, this causes endless "used buffer descriptor read" 1900 * interrupts but it can be cleared by re-enabling RX. See 1901 * the at91rm9200 manual, section 41.3.1 or the Zynq manual 1902 * section 16.7.4 for details. RXUBR is only enabled for 1903 * these two versions. 1904 */ 1905 if (status & MACB_BIT(RXUBR)) { 1906 ctrl = macb_readl(bp, NCR); 1907 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1908 wmb(); 1909 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1910 1911 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1912 queue_writel(queue, ISR, MACB_BIT(RXUBR)); 1913 } 1914 1915 if (status & MACB_BIT(ISR_ROVR)) { 1916 /* We missed at least one packet */ 1917 if (macb_is_gem(bp)) 1918 bp->hw_stats.gem.rx_overruns++; 1919 else 1920 bp->hw_stats.macb.rx_overruns++; 1921 1922 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1923 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR)); 1924 } 1925 1926 if (status & MACB_BIT(HRESP)) { 1927 tasklet_schedule(&bp->hresp_err_tasklet); 1928 netdev_err(dev, "DMA bus error: HRESP not OK\n"); 1929 1930 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1931 queue_writel(queue, ISR, MACB_BIT(HRESP)); 1932 } 1933 status = queue_readl(queue, ISR); 1934 } 1935 1936 spin_unlock(&bp->lock); 1937 1938 return IRQ_HANDLED; 1939 } 1940 1941 #ifdef CONFIG_NET_POLL_CONTROLLER 1942 /* Polling receive - used by netconsole and other diagnostic tools 1943 * to allow network i/o with interrupts disabled. 1944 */ 1945 static void macb_poll_controller(struct net_device *dev) 1946 { 1947 struct macb *bp = netdev_priv(dev); 1948 struct macb_queue *queue; 1949 unsigned long flags; 1950 unsigned int q; 1951 1952 local_irq_save(flags); 1953 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1954 macb_interrupt(dev->irq, queue); 1955 local_irq_restore(flags); 1956 } 1957 #endif 1958 1959 static unsigned int macb_tx_map(struct macb *bp, 1960 struct macb_queue *queue, 1961 struct sk_buff *skb, 1962 unsigned int hdrlen) 1963 { 1964 dma_addr_t mapping; 1965 unsigned int len, entry, i, tx_head = queue->tx_head; 1966 struct macb_tx_skb *tx_skb = NULL; 1967 struct macb_dma_desc *desc; 1968 unsigned int offset, size, count = 0; 1969 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags; 1970 unsigned int eof = 1, mss_mfs = 0; 1971 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0; 1972 1973 /* LSO */ 1974 if (skb_shinfo(skb)->gso_size != 0) { 1975 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 1976 /* UDP - UFO */ 1977 lso_ctrl = MACB_LSO_UFO_ENABLE; 1978 else 1979 /* TCP - TSO */ 1980 lso_ctrl = MACB_LSO_TSO_ENABLE; 1981 } 1982 1983 /* First, map non-paged data */ 1984 len = skb_headlen(skb); 1985 1986 /* first buffer length */ 1987 size = hdrlen; 1988 1989 offset = 0; 1990 while (len) { 1991 entry = macb_tx_ring_wrap(bp, tx_head); 1992 tx_skb = &queue->tx_skb[entry]; 1993 1994 mapping = dma_map_single(&bp->pdev->dev, 1995 skb->data + offset, 1996 size, DMA_TO_DEVICE); 1997 if (dma_mapping_error(&bp->pdev->dev, mapping)) 1998 goto dma_error; 1999 2000 /* Save info to properly release resources */ 2001 tx_skb->skb = NULL; 2002 tx_skb->mapping = mapping; 2003 tx_skb->size = size; 2004 tx_skb->mapped_as_page = false; 2005 2006 len -= size; 2007 offset += size; 2008 count++; 2009 tx_head++; 2010 2011 size = min(len, bp->max_tx_length); 2012 } 2013 2014 /* Then, map paged data from fragments */ 2015 for (f = 0; f < nr_frags; f++) { 2016 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2017 2018 len = skb_frag_size(frag); 2019 offset = 0; 2020 while (len) { 2021 size = min(len, bp->max_tx_length); 2022 entry = macb_tx_ring_wrap(bp, tx_head); 2023 tx_skb = &queue->tx_skb[entry]; 2024 2025 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 2026 offset, size, DMA_TO_DEVICE); 2027 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2028 goto dma_error; 2029 2030 /* Save info to properly release resources */ 2031 tx_skb->skb = NULL; 2032 tx_skb->mapping = mapping; 2033 tx_skb->size = size; 2034 tx_skb->mapped_as_page = true; 2035 2036 len -= size; 2037 offset += size; 2038 count++; 2039 tx_head++; 2040 } 2041 } 2042 2043 /* Should never happen */ 2044 if (unlikely(!tx_skb)) { 2045 netdev_err(bp->dev, "BUG! empty skb!\n"); 2046 return 0; 2047 } 2048 2049 /* This is the last buffer of the frame: save socket buffer */ 2050 tx_skb->skb = skb; 2051 2052 /* Update TX ring: update buffer descriptors in reverse order 2053 * to avoid race condition 2054 */ 2055 2056 /* Set 'TX_USED' bit in buffer descriptor at tx_head position 2057 * to set the end of TX queue 2058 */ 2059 i = tx_head; 2060 entry = macb_tx_ring_wrap(bp, i); 2061 ctrl = MACB_BIT(TX_USED); 2062 desc = macb_tx_desc(queue, entry); 2063 desc->ctrl = ctrl; 2064 2065 if (lso_ctrl) { 2066 if (lso_ctrl == MACB_LSO_UFO_ENABLE) 2067 /* include header and FCS in value given to h/w */ 2068 mss_mfs = skb_shinfo(skb)->gso_size + 2069 skb_transport_offset(skb) + 2070 ETH_FCS_LEN; 2071 else /* TSO */ { 2072 mss_mfs = skb_shinfo(skb)->gso_size; 2073 /* TCP Sequence Number Source Select 2074 * can be set only for TSO 2075 */ 2076 seq_ctrl = 0; 2077 } 2078 } 2079 2080 do { 2081 i--; 2082 entry = macb_tx_ring_wrap(bp, i); 2083 tx_skb = &queue->tx_skb[entry]; 2084 desc = macb_tx_desc(queue, entry); 2085 2086 ctrl = (u32)tx_skb->size; 2087 if (eof) { 2088 ctrl |= MACB_BIT(TX_LAST); 2089 eof = 0; 2090 } 2091 if (unlikely(entry == (bp->tx_ring_size - 1))) 2092 ctrl |= MACB_BIT(TX_WRAP); 2093 2094 /* First descriptor is header descriptor */ 2095 if (i == queue->tx_head) { 2096 ctrl |= MACB_BF(TX_LSO, lso_ctrl); 2097 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl); 2098 if ((bp->dev->features & NETIF_F_HW_CSUM) && 2099 skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl && 2100 !ptp_one_step_sync(skb)) 2101 ctrl |= MACB_BIT(TX_NOCRC); 2102 } else 2103 /* Only set MSS/MFS on payload descriptors 2104 * (second or later descriptor) 2105 */ 2106 ctrl |= MACB_BF(MSS_MFS, mss_mfs); 2107 2108 /* Set TX buffer descriptor */ 2109 macb_set_addr(bp, desc, tx_skb->mapping); 2110 /* desc->addr must be visible to hardware before clearing 2111 * 'TX_USED' bit in desc->ctrl. 2112 */ 2113 wmb(); 2114 desc->ctrl = ctrl; 2115 } while (i != queue->tx_head); 2116 2117 queue->tx_head = tx_head; 2118 2119 return count; 2120 2121 dma_error: 2122 netdev_err(bp->dev, "TX DMA map failed\n"); 2123 2124 for (i = queue->tx_head; i != tx_head; i++) { 2125 tx_skb = macb_tx_skb(queue, i); 2126 2127 macb_tx_unmap(bp, tx_skb, 0); 2128 } 2129 2130 return 0; 2131 } 2132 2133 static netdev_features_t macb_features_check(struct sk_buff *skb, 2134 struct net_device *dev, 2135 netdev_features_t features) 2136 { 2137 unsigned int nr_frags, f; 2138 unsigned int hdrlen; 2139 2140 /* Validate LSO compatibility */ 2141 2142 /* there is only one buffer or protocol is not UDP */ 2143 if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP)) 2144 return features; 2145 2146 /* length of header */ 2147 hdrlen = skb_transport_offset(skb); 2148 2149 /* For UFO only: 2150 * When software supplies two or more payload buffers all payload buffers 2151 * apart from the last must be a multiple of 8 bytes in size. 2152 */ 2153 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN)) 2154 return features & ~MACB_NETIF_LSO; 2155 2156 nr_frags = skb_shinfo(skb)->nr_frags; 2157 /* No need to check last fragment */ 2158 nr_frags--; 2159 for (f = 0; f < nr_frags; f++) { 2160 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2161 2162 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN)) 2163 return features & ~MACB_NETIF_LSO; 2164 } 2165 return features; 2166 } 2167 2168 static inline int macb_clear_csum(struct sk_buff *skb) 2169 { 2170 /* no change for packets without checksum offloading */ 2171 if (skb->ip_summed != CHECKSUM_PARTIAL) 2172 return 0; 2173 2174 /* make sure we can modify the header */ 2175 if (unlikely(skb_cow_head(skb, 0))) 2176 return -1; 2177 2178 /* initialize checksum field 2179 * This is required - at least for Zynq, which otherwise calculates 2180 * wrong UDP header checksums for UDP packets with UDP data len <=2 2181 */ 2182 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0; 2183 return 0; 2184 } 2185 2186 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev) 2187 { 2188 bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) || 2189 skb_is_nonlinear(*skb); 2190 int padlen = ETH_ZLEN - (*skb)->len; 2191 int headroom = skb_headroom(*skb); 2192 int tailroom = skb_tailroom(*skb); 2193 struct sk_buff *nskb; 2194 u32 fcs; 2195 2196 if (!(ndev->features & NETIF_F_HW_CSUM) || 2197 !((*skb)->ip_summed != CHECKSUM_PARTIAL) || 2198 skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb)) 2199 return 0; 2200 2201 if (padlen <= 0) { 2202 /* FCS could be appeded to tailroom. */ 2203 if (tailroom >= ETH_FCS_LEN) 2204 goto add_fcs; 2205 /* FCS could be appeded by moving data to headroom. */ 2206 else if (!cloned && headroom + tailroom >= ETH_FCS_LEN) 2207 padlen = 0; 2208 /* No room for FCS, need to reallocate skb. */ 2209 else 2210 padlen = ETH_FCS_LEN; 2211 } else { 2212 /* Add room for FCS. */ 2213 padlen += ETH_FCS_LEN; 2214 } 2215 2216 if (!cloned && headroom + tailroom >= padlen) { 2217 (*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len); 2218 skb_set_tail_pointer(*skb, (*skb)->len); 2219 } else { 2220 nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC); 2221 if (!nskb) 2222 return -ENOMEM; 2223 2224 dev_consume_skb_any(*skb); 2225 *skb = nskb; 2226 } 2227 2228 if (padlen > ETH_FCS_LEN) 2229 skb_put_zero(*skb, padlen - ETH_FCS_LEN); 2230 2231 add_fcs: 2232 /* set FCS to packet */ 2233 fcs = crc32_le(~0, (*skb)->data, (*skb)->len); 2234 fcs = ~fcs; 2235 2236 skb_put_u8(*skb, fcs & 0xff); 2237 skb_put_u8(*skb, (fcs >> 8) & 0xff); 2238 skb_put_u8(*skb, (fcs >> 16) & 0xff); 2239 skb_put_u8(*skb, (fcs >> 24) & 0xff); 2240 2241 return 0; 2242 } 2243 2244 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev) 2245 { 2246 u16 queue_index = skb_get_queue_mapping(skb); 2247 struct macb *bp = netdev_priv(dev); 2248 struct macb_queue *queue = &bp->queues[queue_index]; 2249 unsigned int desc_cnt, nr_frags, frag_size, f; 2250 unsigned int hdrlen; 2251 bool is_lso; 2252 netdev_tx_t ret = NETDEV_TX_OK; 2253 2254 if (macb_clear_csum(skb)) { 2255 dev_kfree_skb_any(skb); 2256 return ret; 2257 } 2258 2259 if (macb_pad_and_fcs(&skb, dev)) { 2260 dev_kfree_skb_any(skb); 2261 return ret; 2262 } 2263 2264 is_lso = (skb_shinfo(skb)->gso_size != 0); 2265 2266 if (is_lso) { 2267 /* length of headers */ 2268 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2269 /* only queue eth + ip headers separately for UDP */ 2270 hdrlen = skb_transport_offset(skb); 2271 else 2272 hdrlen = skb_tcp_all_headers(skb); 2273 if (skb_headlen(skb) < hdrlen) { 2274 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n"); 2275 /* if this is required, would need to copy to single buffer */ 2276 return NETDEV_TX_BUSY; 2277 } 2278 } else 2279 hdrlen = min(skb_headlen(skb), bp->max_tx_length); 2280 2281 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 2282 netdev_vdbg(bp->dev, 2283 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n", 2284 queue_index, skb->len, skb->head, skb->data, 2285 skb_tail_pointer(skb), skb_end_pointer(skb)); 2286 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1, 2287 skb->data, 16, true); 2288 #endif 2289 2290 /* Count how many TX buffer descriptors are needed to send this 2291 * socket buffer: skb fragments of jumbo frames may need to be 2292 * split into many buffer descriptors. 2293 */ 2294 if (is_lso && (skb_headlen(skb) > hdrlen)) 2295 /* extra header descriptor if also payload in first buffer */ 2296 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1; 2297 else 2298 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length); 2299 nr_frags = skb_shinfo(skb)->nr_frags; 2300 for (f = 0; f < nr_frags; f++) { 2301 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2302 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length); 2303 } 2304 2305 spin_lock_bh(&queue->tx_ptr_lock); 2306 2307 /* This is a hard error, log it. */ 2308 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, 2309 bp->tx_ring_size) < desc_cnt) { 2310 netif_stop_subqueue(dev, queue_index); 2311 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n", 2312 queue->tx_head, queue->tx_tail); 2313 ret = NETDEV_TX_BUSY; 2314 goto unlock; 2315 } 2316 2317 /* Map socket buffer for DMA transfer */ 2318 if (!macb_tx_map(bp, queue, skb, hdrlen)) { 2319 dev_kfree_skb_any(skb); 2320 goto unlock; 2321 } 2322 2323 /* Make newly initialized descriptor visible to hardware */ 2324 wmb(); 2325 skb_tx_timestamp(skb); 2326 2327 spin_lock_irq(&bp->lock); 2328 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 2329 spin_unlock_irq(&bp->lock); 2330 2331 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1) 2332 netif_stop_subqueue(dev, queue_index); 2333 2334 unlock: 2335 spin_unlock_bh(&queue->tx_ptr_lock); 2336 2337 return ret; 2338 } 2339 2340 static void macb_init_rx_buffer_size(struct macb *bp, size_t size) 2341 { 2342 if (!macb_is_gem(bp)) { 2343 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE; 2344 } else { 2345 bp->rx_buffer_size = size; 2346 2347 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) { 2348 netdev_dbg(bp->dev, 2349 "RX buffer must be multiple of %d bytes, expanding\n", 2350 RX_BUFFER_MULTIPLE); 2351 bp->rx_buffer_size = 2352 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE); 2353 } 2354 } 2355 2356 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n", 2357 bp->dev->mtu, bp->rx_buffer_size); 2358 } 2359 2360 static void gem_free_rx_buffers(struct macb *bp) 2361 { 2362 struct sk_buff *skb; 2363 struct macb_dma_desc *desc; 2364 struct macb_queue *queue; 2365 dma_addr_t addr; 2366 unsigned int q; 2367 int i; 2368 2369 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2370 if (!queue->rx_skbuff) 2371 continue; 2372 2373 for (i = 0; i < bp->rx_ring_size; i++) { 2374 skb = queue->rx_skbuff[i]; 2375 2376 if (!skb) 2377 continue; 2378 2379 desc = macb_rx_desc(queue, i); 2380 addr = macb_get_addr(bp, desc); 2381 2382 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size, 2383 DMA_FROM_DEVICE); 2384 dev_kfree_skb_any(skb); 2385 skb = NULL; 2386 } 2387 2388 kfree(queue->rx_skbuff); 2389 queue->rx_skbuff = NULL; 2390 } 2391 } 2392 2393 static void macb_free_rx_buffers(struct macb *bp) 2394 { 2395 struct macb_queue *queue = &bp->queues[0]; 2396 2397 if (queue->rx_buffers) { 2398 dma_free_coherent(&bp->pdev->dev, 2399 bp->rx_ring_size * bp->rx_buffer_size, 2400 queue->rx_buffers, queue->rx_buffers_dma); 2401 queue->rx_buffers = NULL; 2402 } 2403 } 2404 2405 static void macb_free_consistent(struct macb *bp) 2406 { 2407 struct macb_queue *queue; 2408 unsigned int q; 2409 int size; 2410 2411 bp->macbgem_ops.mog_free_rx_buffers(bp); 2412 2413 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2414 kfree(queue->tx_skb); 2415 queue->tx_skb = NULL; 2416 if (queue->tx_ring) { 2417 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2418 dma_free_coherent(&bp->pdev->dev, size, 2419 queue->tx_ring, queue->tx_ring_dma); 2420 queue->tx_ring = NULL; 2421 } 2422 if (queue->rx_ring) { 2423 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2424 dma_free_coherent(&bp->pdev->dev, size, 2425 queue->rx_ring, queue->rx_ring_dma); 2426 queue->rx_ring = NULL; 2427 } 2428 } 2429 } 2430 2431 static int gem_alloc_rx_buffers(struct macb *bp) 2432 { 2433 struct macb_queue *queue; 2434 unsigned int q; 2435 int size; 2436 2437 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2438 size = bp->rx_ring_size * sizeof(struct sk_buff *); 2439 queue->rx_skbuff = kzalloc(size, GFP_KERNEL); 2440 if (!queue->rx_skbuff) 2441 return -ENOMEM; 2442 else 2443 netdev_dbg(bp->dev, 2444 "Allocated %d RX struct sk_buff entries at %p\n", 2445 bp->rx_ring_size, queue->rx_skbuff); 2446 } 2447 return 0; 2448 } 2449 2450 static int macb_alloc_rx_buffers(struct macb *bp) 2451 { 2452 struct macb_queue *queue = &bp->queues[0]; 2453 int size; 2454 2455 size = bp->rx_ring_size * bp->rx_buffer_size; 2456 queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size, 2457 &queue->rx_buffers_dma, GFP_KERNEL); 2458 if (!queue->rx_buffers) 2459 return -ENOMEM; 2460 2461 netdev_dbg(bp->dev, 2462 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n", 2463 size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers); 2464 return 0; 2465 } 2466 2467 static int macb_alloc_consistent(struct macb *bp) 2468 { 2469 struct macb_queue *queue; 2470 unsigned int q; 2471 int size; 2472 2473 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2474 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2475 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2476 &queue->tx_ring_dma, 2477 GFP_KERNEL); 2478 if (!queue->tx_ring) 2479 goto out_err; 2480 netdev_dbg(bp->dev, 2481 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n", 2482 q, size, (unsigned long)queue->tx_ring_dma, 2483 queue->tx_ring); 2484 2485 size = bp->tx_ring_size * sizeof(struct macb_tx_skb); 2486 queue->tx_skb = kmalloc(size, GFP_KERNEL); 2487 if (!queue->tx_skb) 2488 goto out_err; 2489 2490 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2491 queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2492 &queue->rx_ring_dma, GFP_KERNEL); 2493 if (!queue->rx_ring) 2494 goto out_err; 2495 netdev_dbg(bp->dev, 2496 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n", 2497 size, (unsigned long)queue->rx_ring_dma, queue->rx_ring); 2498 } 2499 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp)) 2500 goto out_err; 2501 2502 return 0; 2503 2504 out_err: 2505 macb_free_consistent(bp); 2506 return -ENOMEM; 2507 } 2508 2509 static void gem_init_rings(struct macb *bp) 2510 { 2511 struct macb_queue *queue; 2512 struct macb_dma_desc *desc = NULL; 2513 unsigned int q; 2514 int i; 2515 2516 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2517 for (i = 0; i < bp->tx_ring_size; i++) { 2518 desc = macb_tx_desc(queue, i); 2519 macb_set_addr(bp, desc, 0); 2520 desc->ctrl = MACB_BIT(TX_USED); 2521 } 2522 desc->ctrl |= MACB_BIT(TX_WRAP); 2523 queue->tx_head = 0; 2524 queue->tx_tail = 0; 2525 2526 queue->rx_tail = 0; 2527 queue->rx_prepared_head = 0; 2528 2529 gem_rx_refill(queue); 2530 } 2531 2532 } 2533 2534 static void macb_init_rings(struct macb *bp) 2535 { 2536 int i; 2537 struct macb_dma_desc *desc = NULL; 2538 2539 macb_init_rx_ring(&bp->queues[0]); 2540 2541 for (i = 0; i < bp->tx_ring_size; i++) { 2542 desc = macb_tx_desc(&bp->queues[0], i); 2543 macb_set_addr(bp, desc, 0); 2544 desc->ctrl = MACB_BIT(TX_USED); 2545 } 2546 bp->queues[0].tx_head = 0; 2547 bp->queues[0].tx_tail = 0; 2548 desc->ctrl |= MACB_BIT(TX_WRAP); 2549 } 2550 2551 static void macb_reset_hw(struct macb *bp) 2552 { 2553 struct macb_queue *queue; 2554 unsigned int q; 2555 u32 ctrl = macb_readl(bp, NCR); 2556 2557 /* Disable RX and TX (XXX: Should we halt the transmission 2558 * more gracefully?) 2559 */ 2560 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 2561 2562 /* Clear the stats registers (XXX: Update stats first?) */ 2563 ctrl |= MACB_BIT(CLRSTAT); 2564 2565 macb_writel(bp, NCR, ctrl); 2566 2567 /* Clear all status flags */ 2568 macb_writel(bp, TSR, -1); 2569 macb_writel(bp, RSR, -1); 2570 2571 /* Disable all interrupts */ 2572 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2573 queue_writel(queue, IDR, -1); 2574 queue_readl(queue, ISR); 2575 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2576 queue_writel(queue, ISR, -1); 2577 } 2578 } 2579 2580 static u32 gem_mdc_clk_div(struct macb *bp) 2581 { 2582 u32 config; 2583 unsigned long pclk_hz = clk_get_rate(bp->pclk); 2584 2585 if (pclk_hz <= 20000000) 2586 config = GEM_BF(CLK, GEM_CLK_DIV8); 2587 else if (pclk_hz <= 40000000) 2588 config = GEM_BF(CLK, GEM_CLK_DIV16); 2589 else if (pclk_hz <= 80000000) 2590 config = GEM_BF(CLK, GEM_CLK_DIV32); 2591 else if (pclk_hz <= 120000000) 2592 config = GEM_BF(CLK, GEM_CLK_DIV48); 2593 else if (pclk_hz <= 160000000) 2594 config = GEM_BF(CLK, GEM_CLK_DIV64); 2595 else 2596 config = GEM_BF(CLK, GEM_CLK_DIV96); 2597 2598 return config; 2599 } 2600 2601 static u32 macb_mdc_clk_div(struct macb *bp) 2602 { 2603 u32 config; 2604 unsigned long pclk_hz; 2605 2606 if (macb_is_gem(bp)) 2607 return gem_mdc_clk_div(bp); 2608 2609 pclk_hz = clk_get_rate(bp->pclk); 2610 if (pclk_hz <= 20000000) 2611 config = MACB_BF(CLK, MACB_CLK_DIV8); 2612 else if (pclk_hz <= 40000000) 2613 config = MACB_BF(CLK, MACB_CLK_DIV16); 2614 else if (pclk_hz <= 80000000) 2615 config = MACB_BF(CLK, MACB_CLK_DIV32); 2616 else 2617 config = MACB_BF(CLK, MACB_CLK_DIV64); 2618 2619 return config; 2620 } 2621 2622 /* Get the DMA bus width field of the network configuration register that we 2623 * should program. We find the width from decoding the design configuration 2624 * register to find the maximum supported data bus width. 2625 */ 2626 static u32 macb_dbw(struct macb *bp) 2627 { 2628 if (!macb_is_gem(bp)) 2629 return 0; 2630 2631 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) { 2632 case 4: 2633 return GEM_BF(DBW, GEM_DBW128); 2634 case 2: 2635 return GEM_BF(DBW, GEM_DBW64); 2636 case 1: 2637 default: 2638 return GEM_BF(DBW, GEM_DBW32); 2639 } 2640 } 2641 2642 /* Configure the receive DMA engine 2643 * - use the correct receive buffer size 2644 * - set best burst length for DMA operations 2645 * (if not supported by FIFO, it will fallback to default) 2646 * - set both rx/tx packet buffers to full memory size 2647 * These are configurable parameters for GEM. 2648 */ 2649 static void macb_configure_dma(struct macb *bp) 2650 { 2651 struct macb_queue *queue; 2652 u32 buffer_size; 2653 unsigned int q; 2654 u32 dmacfg; 2655 2656 buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE; 2657 if (macb_is_gem(bp)) { 2658 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L); 2659 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2660 if (q) 2661 queue_writel(queue, RBQS, buffer_size); 2662 else 2663 dmacfg |= GEM_BF(RXBS, buffer_size); 2664 } 2665 if (bp->dma_burst_length) 2666 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg); 2667 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L); 2668 dmacfg &= ~GEM_BIT(ENDIA_PKT); 2669 2670 if (bp->native_io) 2671 dmacfg &= ~GEM_BIT(ENDIA_DESC); 2672 else 2673 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */ 2674 2675 if (bp->dev->features & NETIF_F_HW_CSUM) 2676 dmacfg |= GEM_BIT(TXCOEN); 2677 else 2678 dmacfg &= ~GEM_BIT(TXCOEN); 2679 2680 dmacfg &= ~GEM_BIT(ADDR64); 2681 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 2682 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 2683 dmacfg |= GEM_BIT(ADDR64); 2684 #endif 2685 #ifdef CONFIG_MACB_USE_HWSTAMP 2686 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 2687 dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT); 2688 #endif 2689 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n", 2690 dmacfg); 2691 gem_writel(bp, DMACFG, dmacfg); 2692 } 2693 } 2694 2695 static void macb_init_hw(struct macb *bp) 2696 { 2697 u32 config; 2698 2699 macb_reset_hw(bp); 2700 macb_set_hwaddr(bp); 2701 2702 config = macb_mdc_clk_div(bp); 2703 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */ 2704 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */ 2705 if (bp->caps & MACB_CAPS_JUMBO) 2706 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */ 2707 else 2708 config |= MACB_BIT(BIG); /* Receive oversized frames */ 2709 if (bp->dev->flags & IFF_PROMISC) 2710 config |= MACB_BIT(CAF); /* Copy All Frames */ 2711 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM) 2712 config |= GEM_BIT(RXCOEN); 2713 if (!(bp->dev->flags & IFF_BROADCAST)) 2714 config |= MACB_BIT(NBC); /* No BroadCast */ 2715 config |= macb_dbw(bp); 2716 macb_writel(bp, NCFGR, config); 2717 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 2718 gem_writel(bp, JML, bp->jumbo_max_len); 2719 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK; 2720 if (bp->caps & MACB_CAPS_JUMBO) 2721 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK; 2722 2723 macb_configure_dma(bp); 2724 } 2725 2726 /* The hash address register is 64 bits long and takes up two 2727 * locations in the memory map. The least significant bits are stored 2728 * in EMAC_HSL and the most significant bits in EMAC_HSH. 2729 * 2730 * The unicast hash enable and the multicast hash enable bits in the 2731 * network configuration register enable the reception of hash matched 2732 * frames. The destination address is reduced to a 6 bit index into 2733 * the 64 bit hash register using the following hash function. The 2734 * hash function is an exclusive or of every sixth bit of the 2735 * destination address. 2736 * 2737 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] 2738 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] 2739 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] 2740 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] 2741 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] 2742 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] 2743 * 2744 * da[0] represents the least significant bit of the first byte 2745 * received, that is, the multicast/unicast indicator, and da[47] 2746 * represents the most significant bit of the last byte received. If 2747 * the hash index, hi[n], points to a bit that is set in the hash 2748 * register then the frame will be matched according to whether the 2749 * frame is multicast or unicast. A multicast match will be signalled 2750 * if the multicast hash enable bit is set, da[0] is 1 and the hash 2751 * index points to a bit set in the hash register. A unicast match 2752 * will be signalled if the unicast hash enable bit is set, da[0] is 0 2753 * and the hash index points to a bit set in the hash register. To 2754 * receive all multicast frames, the hash register should be set with 2755 * all ones and the multicast hash enable bit should be set in the 2756 * network configuration register. 2757 */ 2758 2759 static inline int hash_bit_value(int bitnr, __u8 *addr) 2760 { 2761 if (addr[bitnr / 8] & (1 << (bitnr % 8))) 2762 return 1; 2763 return 0; 2764 } 2765 2766 /* Return the hash index value for the specified address. */ 2767 static int hash_get_index(__u8 *addr) 2768 { 2769 int i, j, bitval; 2770 int hash_index = 0; 2771 2772 for (j = 0; j < 6; j++) { 2773 for (i = 0, bitval = 0; i < 8; i++) 2774 bitval ^= hash_bit_value(i * 6 + j, addr); 2775 2776 hash_index |= (bitval << j); 2777 } 2778 2779 return hash_index; 2780 } 2781 2782 /* Add multicast addresses to the internal multicast-hash table. */ 2783 static void macb_sethashtable(struct net_device *dev) 2784 { 2785 struct netdev_hw_addr *ha; 2786 unsigned long mc_filter[2]; 2787 unsigned int bitnr; 2788 struct macb *bp = netdev_priv(dev); 2789 2790 mc_filter[0] = 0; 2791 mc_filter[1] = 0; 2792 2793 netdev_for_each_mc_addr(ha, dev) { 2794 bitnr = hash_get_index(ha->addr); 2795 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 2796 } 2797 2798 macb_or_gem_writel(bp, HRB, mc_filter[0]); 2799 macb_or_gem_writel(bp, HRT, mc_filter[1]); 2800 } 2801 2802 /* Enable/Disable promiscuous and multicast modes. */ 2803 static void macb_set_rx_mode(struct net_device *dev) 2804 { 2805 unsigned long cfg; 2806 struct macb *bp = netdev_priv(dev); 2807 2808 cfg = macb_readl(bp, NCFGR); 2809 2810 if (dev->flags & IFF_PROMISC) { 2811 /* Enable promiscuous mode */ 2812 cfg |= MACB_BIT(CAF); 2813 2814 /* Disable RX checksum offload */ 2815 if (macb_is_gem(bp)) 2816 cfg &= ~GEM_BIT(RXCOEN); 2817 } else { 2818 /* Disable promiscuous mode */ 2819 cfg &= ~MACB_BIT(CAF); 2820 2821 /* Enable RX checksum offload only if requested */ 2822 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM) 2823 cfg |= GEM_BIT(RXCOEN); 2824 } 2825 2826 if (dev->flags & IFF_ALLMULTI) { 2827 /* Enable all multicast mode */ 2828 macb_or_gem_writel(bp, HRB, -1); 2829 macb_or_gem_writel(bp, HRT, -1); 2830 cfg |= MACB_BIT(NCFGR_MTI); 2831 } else if (!netdev_mc_empty(dev)) { 2832 /* Enable specific multicasts */ 2833 macb_sethashtable(dev); 2834 cfg |= MACB_BIT(NCFGR_MTI); 2835 } else if (dev->flags & (~IFF_ALLMULTI)) { 2836 /* Disable all multicast mode */ 2837 macb_or_gem_writel(bp, HRB, 0); 2838 macb_or_gem_writel(bp, HRT, 0); 2839 cfg &= ~MACB_BIT(NCFGR_MTI); 2840 } 2841 2842 macb_writel(bp, NCFGR, cfg); 2843 } 2844 2845 static int macb_open(struct net_device *dev) 2846 { 2847 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN; 2848 struct macb *bp = netdev_priv(dev); 2849 struct macb_queue *queue; 2850 unsigned int q; 2851 int err; 2852 2853 netdev_dbg(bp->dev, "open\n"); 2854 2855 err = pm_runtime_resume_and_get(&bp->pdev->dev); 2856 if (err < 0) 2857 return err; 2858 2859 /* RX buffers initialization */ 2860 macb_init_rx_buffer_size(bp, bufsz); 2861 2862 err = macb_alloc_consistent(bp); 2863 if (err) { 2864 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n", 2865 err); 2866 goto pm_exit; 2867 } 2868 2869 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2870 napi_enable(&queue->napi_rx); 2871 napi_enable(&queue->napi_tx); 2872 } 2873 2874 macb_init_hw(bp); 2875 2876 err = phy_power_on(bp->sgmii_phy); 2877 if (err) 2878 goto reset_hw; 2879 2880 err = macb_phylink_connect(bp); 2881 if (err) 2882 goto phy_off; 2883 2884 netif_tx_start_all_queues(dev); 2885 2886 if (bp->ptp_info) 2887 bp->ptp_info->ptp_init(dev); 2888 2889 return 0; 2890 2891 phy_off: 2892 phy_power_off(bp->sgmii_phy); 2893 2894 reset_hw: 2895 macb_reset_hw(bp); 2896 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2897 napi_disable(&queue->napi_rx); 2898 napi_disable(&queue->napi_tx); 2899 } 2900 macb_free_consistent(bp); 2901 pm_exit: 2902 pm_runtime_put_sync(&bp->pdev->dev); 2903 return err; 2904 } 2905 2906 static int macb_close(struct net_device *dev) 2907 { 2908 struct macb *bp = netdev_priv(dev); 2909 struct macb_queue *queue; 2910 unsigned long flags; 2911 unsigned int q; 2912 2913 netif_tx_stop_all_queues(dev); 2914 2915 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2916 napi_disable(&queue->napi_rx); 2917 napi_disable(&queue->napi_tx); 2918 } 2919 2920 phylink_stop(bp->phylink); 2921 phylink_disconnect_phy(bp->phylink); 2922 2923 phy_power_off(bp->sgmii_phy); 2924 2925 spin_lock_irqsave(&bp->lock, flags); 2926 macb_reset_hw(bp); 2927 netif_carrier_off(dev); 2928 spin_unlock_irqrestore(&bp->lock, flags); 2929 2930 macb_free_consistent(bp); 2931 2932 if (bp->ptp_info) 2933 bp->ptp_info->ptp_remove(dev); 2934 2935 pm_runtime_put(&bp->pdev->dev); 2936 2937 return 0; 2938 } 2939 2940 static int macb_change_mtu(struct net_device *dev, int new_mtu) 2941 { 2942 if (netif_running(dev)) 2943 return -EBUSY; 2944 2945 dev->mtu = new_mtu; 2946 2947 return 0; 2948 } 2949 2950 static void gem_update_stats(struct macb *bp) 2951 { 2952 struct macb_queue *queue; 2953 unsigned int i, q, idx; 2954 unsigned long *stat; 2955 2956 u32 *p = &bp->hw_stats.gem.tx_octets_31_0; 2957 2958 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) { 2959 u32 offset = gem_statistics[i].offset; 2960 u64 val = bp->macb_reg_readl(bp, offset); 2961 2962 bp->ethtool_stats[i] += val; 2963 *p += val; 2964 2965 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) { 2966 /* Add GEM_OCTTXH, GEM_OCTRXH */ 2967 val = bp->macb_reg_readl(bp, offset + 4); 2968 bp->ethtool_stats[i] += ((u64)val) << 32; 2969 *(++p) += val; 2970 } 2971 } 2972 2973 idx = GEM_STATS_LEN; 2974 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2975 for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat) 2976 bp->ethtool_stats[idx++] = *stat; 2977 } 2978 2979 static struct net_device_stats *gem_get_stats(struct macb *bp) 2980 { 2981 struct gem_stats *hwstat = &bp->hw_stats.gem; 2982 struct net_device_stats *nstat = &bp->dev->stats; 2983 2984 if (!netif_running(bp->dev)) 2985 return nstat; 2986 2987 gem_update_stats(bp); 2988 2989 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors + 2990 hwstat->rx_alignment_errors + 2991 hwstat->rx_resource_errors + 2992 hwstat->rx_overruns + 2993 hwstat->rx_oversize_frames + 2994 hwstat->rx_jabbers + 2995 hwstat->rx_undersized_frames + 2996 hwstat->rx_length_field_frame_errors); 2997 nstat->tx_errors = (hwstat->tx_late_collisions + 2998 hwstat->tx_excessive_collisions + 2999 hwstat->tx_underrun + 3000 hwstat->tx_carrier_sense_errors); 3001 nstat->multicast = hwstat->rx_multicast_frames; 3002 nstat->collisions = (hwstat->tx_single_collision_frames + 3003 hwstat->tx_multiple_collision_frames + 3004 hwstat->tx_excessive_collisions); 3005 nstat->rx_length_errors = (hwstat->rx_oversize_frames + 3006 hwstat->rx_jabbers + 3007 hwstat->rx_undersized_frames + 3008 hwstat->rx_length_field_frame_errors); 3009 nstat->rx_over_errors = hwstat->rx_resource_errors; 3010 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors; 3011 nstat->rx_frame_errors = hwstat->rx_alignment_errors; 3012 nstat->rx_fifo_errors = hwstat->rx_overruns; 3013 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions; 3014 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors; 3015 nstat->tx_fifo_errors = hwstat->tx_underrun; 3016 3017 return nstat; 3018 } 3019 3020 static void gem_get_ethtool_stats(struct net_device *dev, 3021 struct ethtool_stats *stats, u64 *data) 3022 { 3023 struct macb *bp; 3024 3025 bp = netdev_priv(dev); 3026 gem_update_stats(bp); 3027 memcpy(data, &bp->ethtool_stats, sizeof(u64) 3028 * (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES)); 3029 } 3030 3031 static int gem_get_sset_count(struct net_device *dev, int sset) 3032 { 3033 struct macb *bp = netdev_priv(dev); 3034 3035 switch (sset) { 3036 case ETH_SS_STATS: 3037 return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN; 3038 default: 3039 return -EOPNOTSUPP; 3040 } 3041 } 3042 3043 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p) 3044 { 3045 char stat_string[ETH_GSTRING_LEN]; 3046 struct macb *bp = netdev_priv(dev); 3047 struct macb_queue *queue; 3048 unsigned int i; 3049 unsigned int q; 3050 3051 switch (sset) { 3052 case ETH_SS_STATS: 3053 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN) 3054 memcpy(p, gem_statistics[i].stat_string, 3055 ETH_GSTRING_LEN); 3056 3057 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 3058 for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) { 3059 snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s", 3060 q, queue_statistics[i].stat_string); 3061 memcpy(p, stat_string, ETH_GSTRING_LEN); 3062 } 3063 } 3064 break; 3065 } 3066 } 3067 3068 static struct net_device_stats *macb_get_stats(struct net_device *dev) 3069 { 3070 struct macb *bp = netdev_priv(dev); 3071 struct net_device_stats *nstat = &bp->dev->stats; 3072 struct macb_stats *hwstat = &bp->hw_stats.macb; 3073 3074 if (macb_is_gem(bp)) 3075 return gem_get_stats(bp); 3076 3077 /* read stats from hardware */ 3078 macb_update_stats(bp); 3079 3080 /* Convert HW stats into netdevice stats */ 3081 nstat->rx_errors = (hwstat->rx_fcs_errors + 3082 hwstat->rx_align_errors + 3083 hwstat->rx_resource_errors + 3084 hwstat->rx_overruns + 3085 hwstat->rx_oversize_pkts + 3086 hwstat->rx_jabbers + 3087 hwstat->rx_undersize_pkts + 3088 hwstat->rx_length_mismatch); 3089 nstat->tx_errors = (hwstat->tx_late_cols + 3090 hwstat->tx_excessive_cols + 3091 hwstat->tx_underruns + 3092 hwstat->tx_carrier_errors + 3093 hwstat->sqe_test_errors); 3094 nstat->collisions = (hwstat->tx_single_cols + 3095 hwstat->tx_multiple_cols + 3096 hwstat->tx_excessive_cols); 3097 nstat->rx_length_errors = (hwstat->rx_oversize_pkts + 3098 hwstat->rx_jabbers + 3099 hwstat->rx_undersize_pkts + 3100 hwstat->rx_length_mismatch); 3101 nstat->rx_over_errors = hwstat->rx_resource_errors + 3102 hwstat->rx_overruns; 3103 nstat->rx_crc_errors = hwstat->rx_fcs_errors; 3104 nstat->rx_frame_errors = hwstat->rx_align_errors; 3105 nstat->rx_fifo_errors = hwstat->rx_overruns; 3106 /* XXX: What does "missed" mean? */ 3107 nstat->tx_aborted_errors = hwstat->tx_excessive_cols; 3108 nstat->tx_carrier_errors = hwstat->tx_carrier_errors; 3109 nstat->tx_fifo_errors = hwstat->tx_underruns; 3110 /* Don't know about heartbeat or window errors... */ 3111 3112 return nstat; 3113 } 3114 3115 static int macb_get_regs_len(struct net_device *netdev) 3116 { 3117 return MACB_GREGS_NBR * sizeof(u32); 3118 } 3119 3120 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs, 3121 void *p) 3122 { 3123 struct macb *bp = netdev_priv(dev); 3124 unsigned int tail, head; 3125 u32 *regs_buff = p; 3126 3127 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1)) 3128 | MACB_GREGS_VERSION; 3129 3130 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail); 3131 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head); 3132 3133 regs_buff[0] = macb_readl(bp, NCR); 3134 regs_buff[1] = macb_or_gem_readl(bp, NCFGR); 3135 regs_buff[2] = macb_readl(bp, NSR); 3136 regs_buff[3] = macb_readl(bp, TSR); 3137 regs_buff[4] = macb_readl(bp, RBQP); 3138 regs_buff[5] = macb_readl(bp, TBQP); 3139 regs_buff[6] = macb_readl(bp, RSR); 3140 regs_buff[7] = macb_readl(bp, IMR); 3141 3142 regs_buff[8] = tail; 3143 regs_buff[9] = head; 3144 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail); 3145 regs_buff[11] = macb_tx_dma(&bp->queues[0], head); 3146 3147 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 3148 regs_buff[12] = macb_or_gem_readl(bp, USRIO); 3149 if (macb_is_gem(bp)) 3150 regs_buff[13] = gem_readl(bp, DMACFG); 3151 } 3152 3153 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3154 { 3155 struct macb *bp = netdev_priv(netdev); 3156 3157 if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) { 3158 phylink_ethtool_get_wol(bp->phylink, wol); 3159 wol->supported |= WAKE_MAGIC; 3160 3161 if (bp->wol & MACB_WOL_ENABLED) 3162 wol->wolopts |= WAKE_MAGIC; 3163 } 3164 } 3165 3166 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3167 { 3168 struct macb *bp = netdev_priv(netdev); 3169 int ret; 3170 3171 /* Pass the order to phylink layer */ 3172 ret = phylink_ethtool_set_wol(bp->phylink, wol); 3173 /* Don't manage WoL on MAC if handled by the PHY 3174 * or if there's a failure in talking to the PHY 3175 */ 3176 if (!ret || ret != -EOPNOTSUPP) 3177 return ret; 3178 3179 if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) || 3180 (wol->wolopts & ~WAKE_MAGIC)) 3181 return -EOPNOTSUPP; 3182 3183 if (wol->wolopts & WAKE_MAGIC) 3184 bp->wol |= MACB_WOL_ENABLED; 3185 else 3186 bp->wol &= ~MACB_WOL_ENABLED; 3187 3188 device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED); 3189 3190 return 0; 3191 } 3192 3193 static int macb_get_link_ksettings(struct net_device *netdev, 3194 struct ethtool_link_ksettings *kset) 3195 { 3196 struct macb *bp = netdev_priv(netdev); 3197 3198 return phylink_ethtool_ksettings_get(bp->phylink, kset); 3199 } 3200 3201 static int macb_set_link_ksettings(struct net_device *netdev, 3202 const struct ethtool_link_ksettings *kset) 3203 { 3204 struct macb *bp = netdev_priv(netdev); 3205 3206 return phylink_ethtool_ksettings_set(bp->phylink, kset); 3207 } 3208 3209 static void macb_get_ringparam(struct net_device *netdev, 3210 struct ethtool_ringparam *ring, 3211 struct kernel_ethtool_ringparam *kernel_ring, 3212 struct netlink_ext_ack *extack) 3213 { 3214 struct macb *bp = netdev_priv(netdev); 3215 3216 ring->rx_max_pending = MAX_RX_RING_SIZE; 3217 ring->tx_max_pending = MAX_TX_RING_SIZE; 3218 3219 ring->rx_pending = bp->rx_ring_size; 3220 ring->tx_pending = bp->tx_ring_size; 3221 } 3222 3223 static int macb_set_ringparam(struct net_device *netdev, 3224 struct ethtool_ringparam *ring, 3225 struct kernel_ethtool_ringparam *kernel_ring, 3226 struct netlink_ext_ack *extack) 3227 { 3228 struct macb *bp = netdev_priv(netdev); 3229 u32 new_rx_size, new_tx_size; 3230 unsigned int reset = 0; 3231 3232 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 3233 return -EINVAL; 3234 3235 new_rx_size = clamp_t(u32, ring->rx_pending, 3236 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE); 3237 new_rx_size = roundup_pow_of_two(new_rx_size); 3238 3239 new_tx_size = clamp_t(u32, ring->tx_pending, 3240 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE); 3241 new_tx_size = roundup_pow_of_two(new_tx_size); 3242 3243 if ((new_tx_size == bp->tx_ring_size) && 3244 (new_rx_size == bp->rx_ring_size)) { 3245 /* nothing to do */ 3246 return 0; 3247 } 3248 3249 if (netif_running(bp->dev)) { 3250 reset = 1; 3251 macb_close(bp->dev); 3252 } 3253 3254 bp->rx_ring_size = new_rx_size; 3255 bp->tx_ring_size = new_tx_size; 3256 3257 if (reset) 3258 macb_open(bp->dev); 3259 3260 return 0; 3261 } 3262 3263 #ifdef CONFIG_MACB_USE_HWSTAMP 3264 static unsigned int gem_get_tsu_rate(struct macb *bp) 3265 { 3266 struct clk *tsu_clk; 3267 unsigned int tsu_rate; 3268 3269 tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk"); 3270 if (!IS_ERR(tsu_clk)) 3271 tsu_rate = clk_get_rate(tsu_clk); 3272 /* try pclk instead */ 3273 else if (!IS_ERR(bp->pclk)) { 3274 tsu_clk = bp->pclk; 3275 tsu_rate = clk_get_rate(tsu_clk); 3276 } else 3277 return -ENOTSUPP; 3278 return tsu_rate; 3279 } 3280 3281 static s32 gem_get_ptp_max_adj(void) 3282 { 3283 return 64000000; 3284 } 3285 3286 static int gem_get_ts_info(struct net_device *dev, 3287 struct ethtool_ts_info *info) 3288 { 3289 struct macb *bp = netdev_priv(dev); 3290 3291 if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) { 3292 ethtool_op_get_ts_info(dev, info); 3293 return 0; 3294 } 3295 3296 info->so_timestamping = 3297 SOF_TIMESTAMPING_TX_SOFTWARE | 3298 SOF_TIMESTAMPING_RX_SOFTWARE | 3299 SOF_TIMESTAMPING_SOFTWARE | 3300 SOF_TIMESTAMPING_TX_HARDWARE | 3301 SOF_TIMESTAMPING_RX_HARDWARE | 3302 SOF_TIMESTAMPING_RAW_HARDWARE; 3303 info->tx_types = 3304 (1 << HWTSTAMP_TX_ONESTEP_SYNC) | 3305 (1 << HWTSTAMP_TX_OFF) | 3306 (1 << HWTSTAMP_TX_ON); 3307 info->rx_filters = 3308 (1 << HWTSTAMP_FILTER_NONE) | 3309 (1 << HWTSTAMP_FILTER_ALL); 3310 3311 info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1; 3312 3313 return 0; 3314 } 3315 3316 static struct macb_ptp_info gem_ptp_info = { 3317 .ptp_init = gem_ptp_init, 3318 .ptp_remove = gem_ptp_remove, 3319 .get_ptp_max_adj = gem_get_ptp_max_adj, 3320 .get_tsu_rate = gem_get_tsu_rate, 3321 .get_ts_info = gem_get_ts_info, 3322 .get_hwtst = gem_get_hwtst, 3323 .set_hwtst = gem_set_hwtst, 3324 }; 3325 #endif 3326 3327 static int macb_get_ts_info(struct net_device *netdev, 3328 struct ethtool_ts_info *info) 3329 { 3330 struct macb *bp = netdev_priv(netdev); 3331 3332 if (bp->ptp_info) 3333 return bp->ptp_info->get_ts_info(netdev, info); 3334 3335 return ethtool_op_get_ts_info(netdev, info); 3336 } 3337 3338 static void gem_enable_flow_filters(struct macb *bp, bool enable) 3339 { 3340 struct net_device *netdev = bp->dev; 3341 struct ethtool_rx_fs_item *item; 3342 u32 t2_scr; 3343 int num_t2_scr; 3344 3345 if (!(netdev->features & NETIF_F_NTUPLE)) 3346 return; 3347 3348 num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8)); 3349 3350 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3351 struct ethtool_rx_flow_spec *fs = &item->fs; 3352 struct ethtool_tcpip4_spec *tp4sp_m; 3353 3354 if (fs->location >= num_t2_scr) 3355 continue; 3356 3357 t2_scr = gem_readl_n(bp, SCRT2, fs->location); 3358 3359 /* enable/disable screener regs for the flow entry */ 3360 t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr); 3361 3362 /* only enable fields with no masking */ 3363 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3364 3365 if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF)) 3366 t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr); 3367 else 3368 t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr); 3369 3370 if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF)) 3371 t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr); 3372 else 3373 t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr); 3374 3375 if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF))) 3376 t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr); 3377 else 3378 t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr); 3379 3380 gem_writel_n(bp, SCRT2, fs->location, t2_scr); 3381 } 3382 } 3383 3384 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs) 3385 { 3386 struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m; 3387 uint16_t index = fs->location; 3388 u32 w0, w1, t2_scr; 3389 bool cmp_a = false; 3390 bool cmp_b = false; 3391 bool cmp_c = false; 3392 3393 if (!macb_is_gem(bp)) 3394 return; 3395 3396 tp4sp_v = &(fs->h_u.tcp_ip4_spec); 3397 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3398 3399 /* ignore field if any masking set */ 3400 if (tp4sp_m->ip4src == 0xFFFFFFFF) { 3401 /* 1st compare reg - IP source address */ 3402 w0 = 0; 3403 w1 = 0; 3404 w0 = tp4sp_v->ip4src; 3405 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3406 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3407 w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1); 3408 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0); 3409 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1); 3410 cmp_a = true; 3411 } 3412 3413 /* ignore field if any masking set */ 3414 if (tp4sp_m->ip4dst == 0xFFFFFFFF) { 3415 /* 2nd compare reg - IP destination address */ 3416 w0 = 0; 3417 w1 = 0; 3418 w0 = tp4sp_v->ip4dst; 3419 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3420 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3421 w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1); 3422 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0); 3423 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1); 3424 cmp_b = true; 3425 } 3426 3427 /* ignore both port fields if masking set in both */ 3428 if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) { 3429 /* 3rd compare reg - source port, destination port */ 3430 w0 = 0; 3431 w1 = 0; 3432 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1); 3433 if (tp4sp_m->psrc == tp4sp_m->pdst) { 3434 w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0); 3435 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3436 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3437 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3438 } else { 3439 /* only one port definition */ 3440 w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */ 3441 w0 = GEM_BFINS(T2MASK, 0xFFFF, w0); 3442 if (tp4sp_m->psrc == 0xFFFF) { /* src port */ 3443 w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0); 3444 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3445 } else { /* dst port */ 3446 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3447 w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1); 3448 } 3449 } 3450 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0); 3451 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1); 3452 cmp_c = true; 3453 } 3454 3455 t2_scr = 0; 3456 t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr); 3457 t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr); 3458 if (cmp_a) 3459 t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr); 3460 if (cmp_b) 3461 t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr); 3462 if (cmp_c) 3463 t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr); 3464 gem_writel_n(bp, SCRT2, index, t2_scr); 3465 } 3466 3467 static int gem_add_flow_filter(struct net_device *netdev, 3468 struct ethtool_rxnfc *cmd) 3469 { 3470 struct macb *bp = netdev_priv(netdev); 3471 struct ethtool_rx_flow_spec *fs = &cmd->fs; 3472 struct ethtool_rx_fs_item *item, *newfs; 3473 unsigned long flags; 3474 int ret = -EINVAL; 3475 bool added = false; 3476 3477 newfs = kmalloc(sizeof(*newfs), GFP_KERNEL); 3478 if (newfs == NULL) 3479 return -ENOMEM; 3480 memcpy(&newfs->fs, fs, sizeof(newfs->fs)); 3481 3482 netdev_dbg(netdev, 3483 "Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3484 fs->flow_type, (int)fs->ring_cookie, fs->location, 3485 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3486 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3487 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3488 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3489 3490 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3491 3492 /* find correct place to add in list */ 3493 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3494 if (item->fs.location > newfs->fs.location) { 3495 list_add_tail(&newfs->list, &item->list); 3496 added = true; 3497 break; 3498 } else if (item->fs.location == fs->location) { 3499 netdev_err(netdev, "Rule not added: location %d not free!\n", 3500 fs->location); 3501 ret = -EBUSY; 3502 goto err; 3503 } 3504 } 3505 if (!added) 3506 list_add_tail(&newfs->list, &bp->rx_fs_list.list); 3507 3508 gem_prog_cmp_regs(bp, fs); 3509 bp->rx_fs_list.count++; 3510 /* enable filtering if NTUPLE on */ 3511 gem_enable_flow_filters(bp, 1); 3512 3513 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3514 return 0; 3515 3516 err: 3517 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3518 kfree(newfs); 3519 return ret; 3520 } 3521 3522 static int gem_del_flow_filter(struct net_device *netdev, 3523 struct ethtool_rxnfc *cmd) 3524 { 3525 struct macb *bp = netdev_priv(netdev); 3526 struct ethtool_rx_fs_item *item; 3527 struct ethtool_rx_flow_spec *fs; 3528 unsigned long flags; 3529 3530 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3531 3532 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3533 if (item->fs.location == cmd->fs.location) { 3534 /* disable screener regs for the flow entry */ 3535 fs = &(item->fs); 3536 netdev_dbg(netdev, 3537 "Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3538 fs->flow_type, (int)fs->ring_cookie, fs->location, 3539 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3540 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3541 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3542 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3543 3544 gem_writel_n(bp, SCRT2, fs->location, 0); 3545 3546 list_del(&item->list); 3547 bp->rx_fs_list.count--; 3548 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3549 kfree(item); 3550 return 0; 3551 } 3552 } 3553 3554 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3555 return -EINVAL; 3556 } 3557 3558 static int gem_get_flow_entry(struct net_device *netdev, 3559 struct ethtool_rxnfc *cmd) 3560 { 3561 struct macb *bp = netdev_priv(netdev); 3562 struct ethtool_rx_fs_item *item; 3563 3564 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3565 if (item->fs.location == cmd->fs.location) { 3566 memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs)); 3567 return 0; 3568 } 3569 } 3570 return -EINVAL; 3571 } 3572 3573 static int gem_get_all_flow_entries(struct net_device *netdev, 3574 struct ethtool_rxnfc *cmd, u32 *rule_locs) 3575 { 3576 struct macb *bp = netdev_priv(netdev); 3577 struct ethtool_rx_fs_item *item; 3578 uint32_t cnt = 0; 3579 3580 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3581 if (cnt == cmd->rule_cnt) 3582 return -EMSGSIZE; 3583 rule_locs[cnt] = item->fs.location; 3584 cnt++; 3585 } 3586 cmd->data = bp->max_tuples; 3587 cmd->rule_cnt = cnt; 3588 3589 return 0; 3590 } 3591 3592 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3593 u32 *rule_locs) 3594 { 3595 struct macb *bp = netdev_priv(netdev); 3596 int ret = 0; 3597 3598 switch (cmd->cmd) { 3599 case ETHTOOL_GRXRINGS: 3600 cmd->data = bp->num_queues; 3601 break; 3602 case ETHTOOL_GRXCLSRLCNT: 3603 cmd->rule_cnt = bp->rx_fs_list.count; 3604 break; 3605 case ETHTOOL_GRXCLSRULE: 3606 ret = gem_get_flow_entry(netdev, cmd); 3607 break; 3608 case ETHTOOL_GRXCLSRLALL: 3609 ret = gem_get_all_flow_entries(netdev, cmd, rule_locs); 3610 break; 3611 default: 3612 netdev_err(netdev, 3613 "Command parameter %d is not supported\n", cmd->cmd); 3614 ret = -EOPNOTSUPP; 3615 } 3616 3617 return ret; 3618 } 3619 3620 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3621 { 3622 struct macb *bp = netdev_priv(netdev); 3623 int ret; 3624 3625 switch (cmd->cmd) { 3626 case ETHTOOL_SRXCLSRLINS: 3627 if ((cmd->fs.location >= bp->max_tuples) 3628 || (cmd->fs.ring_cookie >= bp->num_queues)) { 3629 ret = -EINVAL; 3630 break; 3631 } 3632 ret = gem_add_flow_filter(netdev, cmd); 3633 break; 3634 case ETHTOOL_SRXCLSRLDEL: 3635 ret = gem_del_flow_filter(netdev, cmd); 3636 break; 3637 default: 3638 netdev_err(netdev, 3639 "Command parameter %d is not supported\n", cmd->cmd); 3640 ret = -EOPNOTSUPP; 3641 } 3642 3643 return ret; 3644 } 3645 3646 static const struct ethtool_ops macb_ethtool_ops = { 3647 .get_regs_len = macb_get_regs_len, 3648 .get_regs = macb_get_regs, 3649 .get_link = ethtool_op_get_link, 3650 .get_ts_info = ethtool_op_get_ts_info, 3651 .get_wol = macb_get_wol, 3652 .set_wol = macb_set_wol, 3653 .get_link_ksettings = macb_get_link_ksettings, 3654 .set_link_ksettings = macb_set_link_ksettings, 3655 .get_ringparam = macb_get_ringparam, 3656 .set_ringparam = macb_set_ringparam, 3657 }; 3658 3659 static const struct ethtool_ops gem_ethtool_ops = { 3660 .get_regs_len = macb_get_regs_len, 3661 .get_regs = macb_get_regs, 3662 .get_wol = macb_get_wol, 3663 .set_wol = macb_set_wol, 3664 .get_link = ethtool_op_get_link, 3665 .get_ts_info = macb_get_ts_info, 3666 .get_ethtool_stats = gem_get_ethtool_stats, 3667 .get_strings = gem_get_ethtool_strings, 3668 .get_sset_count = gem_get_sset_count, 3669 .get_link_ksettings = macb_get_link_ksettings, 3670 .set_link_ksettings = macb_set_link_ksettings, 3671 .get_ringparam = macb_get_ringparam, 3672 .set_ringparam = macb_set_ringparam, 3673 .get_rxnfc = gem_get_rxnfc, 3674 .set_rxnfc = gem_set_rxnfc, 3675 }; 3676 3677 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3678 { 3679 struct macb *bp = netdev_priv(dev); 3680 3681 if (!netif_running(dev)) 3682 return -EINVAL; 3683 3684 if (bp->ptp_info) { 3685 switch (cmd) { 3686 case SIOCSHWTSTAMP: 3687 return bp->ptp_info->set_hwtst(dev, rq, cmd); 3688 case SIOCGHWTSTAMP: 3689 return bp->ptp_info->get_hwtst(dev, rq); 3690 } 3691 } 3692 3693 return phylink_mii_ioctl(bp->phylink, rq, cmd); 3694 } 3695 3696 static inline void macb_set_txcsum_feature(struct macb *bp, 3697 netdev_features_t features) 3698 { 3699 u32 val; 3700 3701 if (!macb_is_gem(bp)) 3702 return; 3703 3704 val = gem_readl(bp, DMACFG); 3705 if (features & NETIF_F_HW_CSUM) 3706 val |= GEM_BIT(TXCOEN); 3707 else 3708 val &= ~GEM_BIT(TXCOEN); 3709 3710 gem_writel(bp, DMACFG, val); 3711 } 3712 3713 static inline void macb_set_rxcsum_feature(struct macb *bp, 3714 netdev_features_t features) 3715 { 3716 struct net_device *netdev = bp->dev; 3717 u32 val; 3718 3719 if (!macb_is_gem(bp)) 3720 return; 3721 3722 val = gem_readl(bp, NCFGR); 3723 if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC)) 3724 val |= GEM_BIT(RXCOEN); 3725 else 3726 val &= ~GEM_BIT(RXCOEN); 3727 3728 gem_writel(bp, NCFGR, val); 3729 } 3730 3731 static inline void macb_set_rxflow_feature(struct macb *bp, 3732 netdev_features_t features) 3733 { 3734 if (!macb_is_gem(bp)) 3735 return; 3736 3737 gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE)); 3738 } 3739 3740 static int macb_set_features(struct net_device *netdev, 3741 netdev_features_t features) 3742 { 3743 struct macb *bp = netdev_priv(netdev); 3744 netdev_features_t changed = features ^ netdev->features; 3745 3746 /* TX checksum offload */ 3747 if (changed & NETIF_F_HW_CSUM) 3748 macb_set_txcsum_feature(bp, features); 3749 3750 /* RX checksum offload */ 3751 if (changed & NETIF_F_RXCSUM) 3752 macb_set_rxcsum_feature(bp, features); 3753 3754 /* RX Flow Filters */ 3755 if (changed & NETIF_F_NTUPLE) 3756 macb_set_rxflow_feature(bp, features); 3757 3758 return 0; 3759 } 3760 3761 static void macb_restore_features(struct macb *bp) 3762 { 3763 struct net_device *netdev = bp->dev; 3764 netdev_features_t features = netdev->features; 3765 struct ethtool_rx_fs_item *item; 3766 3767 /* TX checksum offload */ 3768 macb_set_txcsum_feature(bp, features); 3769 3770 /* RX checksum offload */ 3771 macb_set_rxcsum_feature(bp, features); 3772 3773 /* RX Flow Filters */ 3774 list_for_each_entry(item, &bp->rx_fs_list.list, list) 3775 gem_prog_cmp_regs(bp, &item->fs); 3776 3777 macb_set_rxflow_feature(bp, features); 3778 } 3779 3780 static const struct net_device_ops macb_netdev_ops = { 3781 .ndo_open = macb_open, 3782 .ndo_stop = macb_close, 3783 .ndo_start_xmit = macb_start_xmit, 3784 .ndo_set_rx_mode = macb_set_rx_mode, 3785 .ndo_get_stats = macb_get_stats, 3786 .ndo_eth_ioctl = macb_ioctl, 3787 .ndo_validate_addr = eth_validate_addr, 3788 .ndo_change_mtu = macb_change_mtu, 3789 .ndo_set_mac_address = eth_mac_addr, 3790 #ifdef CONFIG_NET_POLL_CONTROLLER 3791 .ndo_poll_controller = macb_poll_controller, 3792 #endif 3793 .ndo_set_features = macb_set_features, 3794 .ndo_features_check = macb_features_check, 3795 }; 3796 3797 /* Configure peripheral capabilities according to device tree 3798 * and integration options used 3799 */ 3800 static void macb_configure_caps(struct macb *bp, 3801 const struct macb_config *dt_conf) 3802 { 3803 u32 dcfg; 3804 3805 if (dt_conf) 3806 bp->caps = dt_conf->caps; 3807 3808 if (hw_is_gem(bp->regs, bp->native_io)) { 3809 bp->caps |= MACB_CAPS_MACB_IS_GEM; 3810 3811 dcfg = gem_readl(bp, DCFG1); 3812 if (GEM_BFEXT(IRQCOR, dcfg) == 0) 3813 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE; 3814 if (GEM_BFEXT(NO_PCS, dcfg) == 0) 3815 bp->caps |= MACB_CAPS_PCS; 3816 dcfg = gem_readl(bp, DCFG12); 3817 if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1) 3818 bp->caps |= MACB_CAPS_HIGH_SPEED; 3819 dcfg = gem_readl(bp, DCFG2); 3820 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0) 3821 bp->caps |= MACB_CAPS_FIFO_MODE; 3822 #ifdef CONFIG_MACB_USE_HWSTAMP 3823 if (gem_has_ptp(bp)) { 3824 if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5))) 3825 dev_err(&bp->pdev->dev, 3826 "GEM doesn't support hardware ptp.\n"); 3827 else { 3828 bp->hw_dma_cap |= HW_DMA_CAP_PTP; 3829 bp->ptp_info = &gem_ptp_info; 3830 } 3831 } 3832 #endif 3833 } 3834 3835 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps); 3836 } 3837 3838 static void macb_probe_queues(void __iomem *mem, 3839 bool native_io, 3840 unsigned int *queue_mask, 3841 unsigned int *num_queues) 3842 { 3843 *queue_mask = 0x1; 3844 *num_queues = 1; 3845 3846 /* is it macb or gem ? 3847 * 3848 * We need to read directly from the hardware here because 3849 * we are early in the probe process and don't have the 3850 * MACB_CAPS_MACB_IS_GEM flag positioned 3851 */ 3852 if (!hw_is_gem(mem, native_io)) 3853 return; 3854 3855 /* bit 0 is never set but queue 0 always exists */ 3856 *queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff; 3857 *num_queues = hweight32(*queue_mask); 3858 } 3859 3860 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk, 3861 struct clk *rx_clk, struct clk *tsu_clk) 3862 { 3863 struct clk_bulk_data clks[] = { 3864 { .clk = tsu_clk, }, 3865 { .clk = rx_clk, }, 3866 { .clk = pclk, }, 3867 { .clk = hclk, }, 3868 { .clk = tx_clk }, 3869 }; 3870 3871 clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks); 3872 } 3873 3874 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk, 3875 struct clk **hclk, struct clk **tx_clk, 3876 struct clk **rx_clk, struct clk **tsu_clk) 3877 { 3878 struct macb_platform_data *pdata; 3879 int err; 3880 3881 pdata = dev_get_platdata(&pdev->dev); 3882 if (pdata) { 3883 *pclk = pdata->pclk; 3884 *hclk = pdata->hclk; 3885 } else { 3886 *pclk = devm_clk_get(&pdev->dev, "pclk"); 3887 *hclk = devm_clk_get(&pdev->dev, "hclk"); 3888 } 3889 3890 if (IS_ERR_OR_NULL(*pclk)) 3891 return dev_err_probe(&pdev->dev, 3892 IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV, 3893 "failed to get pclk\n"); 3894 3895 if (IS_ERR_OR_NULL(*hclk)) 3896 return dev_err_probe(&pdev->dev, 3897 IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV, 3898 "failed to get hclk\n"); 3899 3900 *tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk"); 3901 if (IS_ERR(*tx_clk)) 3902 return PTR_ERR(*tx_clk); 3903 3904 *rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk"); 3905 if (IS_ERR(*rx_clk)) 3906 return PTR_ERR(*rx_clk); 3907 3908 *tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk"); 3909 if (IS_ERR(*tsu_clk)) 3910 return PTR_ERR(*tsu_clk); 3911 3912 err = clk_prepare_enable(*pclk); 3913 if (err) { 3914 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 3915 return err; 3916 } 3917 3918 err = clk_prepare_enable(*hclk); 3919 if (err) { 3920 dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err); 3921 goto err_disable_pclk; 3922 } 3923 3924 err = clk_prepare_enable(*tx_clk); 3925 if (err) { 3926 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 3927 goto err_disable_hclk; 3928 } 3929 3930 err = clk_prepare_enable(*rx_clk); 3931 if (err) { 3932 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 3933 goto err_disable_txclk; 3934 } 3935 3936 err = clk_prepare_enable(*tsu_clk); 3937 if (err) { 3938 dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err); 3939 goto err_disable_rxclk; 3940 } 3941 3942 return 0; 3943 3944 err_disable_rxclk: 3945 clk_disable_unprepare(*rx_clk); 3946 3947 err_disable_txclk: 3948 clk_disable_unprepare(*tx_clk); 3949 3950 err_disable_hclk: 3951 clk_disable_unprepare(*hclk); 3952 3953 err_disable_pclk: 3954 clk_disable_unprepare(*pclk); 3955 3956 return err; 3957 } 3958 3959 static int macb_init(struct platform_device *pdev) 3960 { 3961 struct net_device *dev = platform_get_drvdata(pdev); 3962 unsigned int hw_q, q; 3963 struct macb *bp = netdev_priv(dev); 3964 struct macb_queue *queue; 3965 int err; 3966 u32 val, reg; 3967 3968 bp->tx_ring_size = DEFAULT_TX_RING_SIZE; 3969 bp->rx_ring_size = DEFAULT_RX_RING_SIZE; 3970 3971 /* set the queue register mapping once for all: queue0 has a special 3972 * register mapping but we don't want to test the queue index then 3973 * compute the corresponding register offset at run time. 3974 */ 3975 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) { 3976 if (!(bp->queue_mask & (1 << hw_q))) 3977 continue; 3978 3979 queue = &bp->queues[q]; 3980 queue->bp = bp; 3981 spin_lock_init(&queue->tx_ptr_lock); 3982 netif_napi_add(dev, &queue->napi_rx, macb_rx_poll); 3983 netif_napi_add(dev, &queue->napi_tx, macb_tx_poll); 3984 if (hw_q) { 3985 queue->ISR = GEM_ISR(hw_q - 1); 3986 queue->IER = GEM_IER(hw_q - 1); 3987 queue->IDR = GEM_IDR(hw_q - 1); 3988 queue->IMR = GEM_IMR(hw_q - 1); 3989 queue->TBQP = GEM_TBQP(hw_q - 1); 3990 queue->RBQP = GEM_RBQP(hw_q - 1); 3991 queue->RBQS = GEM_RBQS(hw_q - 1); 3992 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 3993 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 3994 queue->TBQPH = GEM_TBQPH(hw_q - 1); 3995 queue->RBQPH = GEM_RBQPH(hw_q - 1); 3996 } 3997 #endif 3998 } else { 3999 /* queue0 uses legacy registers */ 4000 queue->ISR = MACB_ISR; 4001 queue->IER = MACB_IER; 4002 queue->IDR = MACB_IDR; 4003 queue->IMR = MACB_IMR; 4004 queue->TBQP = MACB_TBQP; 4005 queue->RBQP = MACB_RBQP; 4006 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4007 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4008 queue->TBQPH = MACB_TBQPH; 4009 queue->RBQPH = MACB_RBQPH; 4010 } 4011 #endif 4012 } 4013 4014 /* get irq: here we use the linux queue index, not the hardware 4015 * queue index. the queue irq definitions in the device tree 4016 * must remove the optional gaps that could exist in the 4017 * hardware queue mask. 4018 */ 4019 queue->irq = platform_get_irq(pdev, q); 4020 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt, 4021 IRQF_SHARED, dev->name, queue); 4022 if (err) { 4023 dev_err(&pdev->dev, 4024 "Unable to request IRQ %d (error %d)\n", 4025 queue->irq, err); 4026 return err; 4027 } 4028 4029 INIT_WORK(&queue->tx_error_task, macb_tx_error_task); 4030 q++; 4031 } 4032 4033 dev->netdev_ops = &macb_netdev_ops; 4034 4035 /* setup appropriated routines according to adapter type */ 4036 if (macb_is_gem(bp)) { 4037 bp->max_tx_length = GEM_MAX_TX_LEN; 4038 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers; 4039 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers; 4040 bp->macbgem_ops.mog_init_rings = gem_init_rings; 4041 bp->macbgem_ops.mog_rx = gem_rx; 4042 dev->ethtool_ops = &gem_ethtool_ops; 4043 } else { 4044 bp->max_tx_length = MACB_MAX_TX_LEN; 4045 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers; 4046 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers; 4047 bp->macbgem_ops.mog_init_rings = macb_init_rings; 4048 bp->macbgem_ops.mog_rx = macb_rx; 4049 dev->ethtool_ops = &macb_ethtool_ops; 4050 } 4051 4052 /* Set features */ 4053 dev->hw_features = NETIF_F_SG; 4054 4055 /* Check LSO capability */ 4056 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6))) 4057 dev->hw_features |= MACB_NETIF_LSO; 4058 4059 /* Checksum offload is only available on gem with packet buffer */ 4060 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE)) 4061 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 4062 if (bp->caps & MACB_CAPS_SG_DISABLED) 4063 dev->hw_features &= ~NETIF_F_SG; 4064 dev->features = dev->hw_features; 4065 4066 /* Check RX Flow Filters support. 4067 * Max Rx flows set by availability of screeners & compare regs: 4068 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs 4069 */ 4070 reg = gem_readl(bp, DCFG8); 4071 bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3), 4072 GEM_BFEXT(T2SCR, reg)); 4073 INIT_LIST_HEAD(&bp->rx_fs_list.list); 4074 if (bp->max_tuples > 0) { 4075 /* also needs one ethtype match to check IPv4 */ 4076 if (GEM_BFEXT(SCR2ETH, reg) > 0) { 4077 /* program this reg now */ 4078 reg = 0; 4079 reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg); 4080 gem_writel_n(bp, ETHT, SCRT2_ETHT, reg); 4081 /* Filtering is supported in hw but don't enable it in kernel now */ 4082 dev->hw_features |= NETIF_F_NTUPLE; 4083 /* init Rx flow definitions */ 4084 bp->rx_fs_list.count = 0; 4085 spin_lock_init(&bp->rx_fs_lock); 4086 } else 4087 bp->max_tuples = 0; 4088 } 4089 4090 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) { 4091 val = 0; 4092 if (phy_interface_mode_is_rgmii(bp->phy_interface)) 4093 val = bp->usrio->rgmii; 4094 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII && 4095 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4096 val = bp->usrio->rmii; 4097 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4098 val = bp->usrio->mii; 4099 4100 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN) 4101 val |= bp->usrio->refclk; 4102 4103 macb_or_gem_writel(bp, USRIO, val); 4104 } 4105 4106 /* Set MII management clock divider */ 4107 val = macb_mdc_clk_div(bp); 4108 val |= macb_dbw(bp); 4109 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) 4110 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 4111 macb_writel(bp, NCFGR, val); 4112 4113 return 0; 4114 } 4115 4116 static const struct macb_usrio_config macb_default_usrio = { 4117 .mii = MACB_BIT(MII), 4118 .rmii = MACB_BIT(RMII), 4119 .rgmii = GEM_BIT(RGMII), 4120 .refclk = MACB_BIT(CLKEN), 4121 }; 4122 4123 #if defined(CONFIG_OF) 4124 /* 1518 rounded up */ 4125 #define AT91ETHER_MAX_RBUFF_SZ 0x600 4126 /* max number of receive buffers */ 4127 #define AT91ETHER_MAX_RX_DESCR 9 4128 4129 static struct sifive_fu540_macb_mgmt *mgmt; 4130 4131 static int at91ether_alloc_coherent(struct macb *lp) 4132 { 4133 struct macb_queue *q = &lp->queues[0]; 4134 4135 q->rx_ring = dma_alloc_coherent(&lp->pdev->dev, 4136 (AT91ETHER_MAX_RX_DESCR * 4137 macb_dma_desc_get_size(lp)), 4138 &q->rx_ring_dma, GFP_KERNEL); 4139 if (!q->rx_ring) 4140 return -ENOMEM; 4141 4142 q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev, 4143 AT91ETHER_MAX_RX_DESCR * 4144 AT91ETHER_MAX_RBUFF_SZ, 4145 &q->rx_buffers_dma, GFP_KERNEL); 4146 if (!q->rx_buffers) { 4147 dma_free_coherent(&lp->pdev->dev, 4148 AT91ETHER_MAX_RX_DESCR * 4149 macb_dma_desc_get_size(lp), 4150 q->rx_ring, q->rx_ring_dma); 4151 q->rx_ring = NULL; 4152 return -ENOMEM; 4153 } 4154 4155 return 0; 4156 } 4157 4158 static void at91ether_free_coherent(struct macb *lp) 4159 { 4160 struct macb_queue *q = &lp->queues[0]; 4161 4162 if (q->rx_ring) { 4163 dma_free_coherent(&lp->pdev->dev, 4164 AT91ETHER_MAX_RX_DESCR * 4165 macb_dma_desc_get_size(lp), 4166 q->rx_ring, q->rx_ring_dma); 4167 q->rx_ring = NULL; 4168 } 4169 4170 if (q->rx_buffers) { 4171 dma_free_coherent(&lp->pdev->dev, 4172 AT91ETHER_MAX_RX_DESCR * 4173 AT91ETHER_MAX_RBUFF_SZ, 4174 q->rx_buffers, q->rx_buffers_dma); 4175 q->rx_buffers = NULL; 4176 } 4177 } 4178 4179 /* Initialize and start the Receiver and Transmit subsystems */ 4180 static int at91ether_start(struct macb *lp) 4181 { 4182 struct macb_queue *q = &lp->queues[0]; 4183 struct macb_dma_desc *desc; 4184 dma_addr_t addr; 4185 u32 ctl; 4186 int i, ret; 4187 4188 ret = at91ether_alloc_coherent(lp); 4189 if (ret) 4190 return ret; 4191 4192 addr = q->rx_buffers_dma; 4193 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) { 4194 desc = macb_rx_desc(q, i); 4195 macb_set_addr(lp, desc, addr); 4196 desc->ctrl = 0; 4197 addr += AT91ETHER_MAX_RBUFF_SZ; 4198 } 4199 4200 /* Set the Wrap bit on the last descriptor */ 4201 desc->addr |= MACB_BIT(RX_WRAP); 4202 4203 /* Reset buffer index */ 4204 q->rx_tail = 0; 4205 4206 /* Program address of descriptor list in Rx Buffer Queue register */ 4207 macb_writel(lp, RBQP, q->rx_ring_dma); 4208 4209 /* Enable Receive and Transmit */ 4210 ctl = macb_readl(lp, NCR); 4211 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE)); 4212 4213 /* Enable MAC interrupts */ 4214 macb_writel(lp, IER, MACB_BIT(RCOMP) | 4215 MACB_BIT(RXUBR) | 4216 MACB_BIT(ISR_TUND) | 4217 MACB_BIT(ISR_RLE) | 4218 MACB_BIT(TCOMP) | 4219 MACB_BIT(ISR_ROVR) | 4220 MACB_BIT(HRESP)); 4221 4222 return 0; 4223 } 4224 4225 static void at91ether_stop(struct macb *lp) 4226 { 4227 u32 ctl; 4228 4229 /* Disable MAC interrupts */ 4230 macb_writel(lp, IDR, MACB_BIT(RCOMP) | 4231 MACB_BIT(RXUBR) | 4232 MACB_BIT(ISR_TUND) | 4233 MACB_BIT(ISR_RLE) | 4234 MACB_BIT(TCOMP) | 4235 MACB_BIT(ISR_ROVR) | 4236 MACB_BIT(HRESP)); 4237 4238 /* Disable Receiver and Transmitter */ 4239 ctl = macb_readl(lp, NCR); 4240 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE))); 4241 4242 /* Free resources. */ 4243 at91ether_free_coherent(lp); 4244 } 4245 4246 /* Open the ethernet interface */ 4247 static int at91ether_open(struct net_device *dev) 4248 { 4249 struct macb *lp = netdev_priv(dev); 4250 u32 ctl; 4251 int ret; 4252 4253 ret = pm_runtime_resume_and_get(&lp->pdev->dev); 4254 if (ret < 0) 4255 return ret; 4256 4257 /* Clear internal statistics */ 4258 ctl = macb_readl(lp, NCR); 4259 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT)); 4260 4261 macb_set_hwaddr(lp); 4262 4263 ret = at91ether_start(lp); 4264 if (ret) 4265 goto pm_exit; 4266 4267 ret = macb_phylink_connect(lp); 4268 if (ret) 4269 goto stop; 4270 4271 netif_start_queue(dev); 4272 4273 return 0; 4274 4275 stop: 4276 at91ether_stop(lp); 4277 pm_exit: 4278 pm_runtime_put_sync(&lp->pdev->dev); 4279 return ret; 4280 } 4281 4282 /* Close the interface */ 4283 static int at91ether_close(struct net_device *dev) 4284 { 4285 struct macb *lp = netdev_priv(dev); 4286 4287 netif_stop_queue(dev); 4288 4289 phylink_stop(lp->phylink); 4290 phylink_disconnect_phy(lp->phylink); 4291 4292 at91ether_stop(lp); 4293 4294 return pm_runtime_put(&lp->pdev->dev); 4295 } 4296 4297 /* Transmit packet */ 4298 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb, 4299 struct net_device *dev) 4300 { 4301 struct macb *lp = netdev_priv(dev); 4302 4303 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) { 4304 int desc = 0; 4305 4306 netif_stop_queue(dev); 4307 4308 /* Store packet information (to free when Tx completed) */ 4309 lp->rm9200_txq[desc].skb = skb; 4310 lp->rm9200_txq[desc].size = skb->len; 4311 lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data, 4312 skb->len, DMA_TO_DEVICE); 4313 if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) { 4314 dev_kfree_skb_any(skb); 4315 dev->stats.tx_dropped++; 4316 netdev_err(dev, "%s: DMA mapping error\n", __func__); 4317 return NETDEV_TX_OK; 4318 } 4319 4320 /* Set address of the data in the Transmit Address register */ 4321 macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping); 4322 /* Set length of the packet in the Transmit Control register */ 4323 macb_writel(lp, TCR, skb->len); 4324 4325 } else { 4326 netdev_err(dev, "%s called, but device is busy!\n", __func__); 4327 return NETDEV_TX_BUSY; 4328 } 4329 4330 return NETDEV_TX_OK; 4331 } 4332 4333 /* Extract received frame from buffer descriptors and sent to upper layers. 4334 * (Called from interrupt context) 4335 */ 4336 static void at91ether_rx(struct net_device *dev) 4337 { 4338 struct macb *lp = netdev_priv(dev); 4339 struct macb_queue *q = &lp->queues[0]; 4340 struct macb_dma_desc *desc; 4341 unsigned char *p_recv; 4342 struct sk_buff *skb; 4343 unsigned int pktlen; 4344 4345 desc = macb_rx_desc(q, q->rx_tail); 4346 while (desc->addr & MACB_BIT(RX_USED)) { 4347 p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ; 4348 pktlen = MACB_BF(RX_FRMLEN, desc->ctrl); 4349 skb = netdev_alloc_skb(dev, pktlen + 2); 4350 if (skb) { 4351 skb_reserve(skb, 2); 4352 skb_put_data(skb, p_recv, pktlen); 4353 4354 skb->protocol = eth_type_trans(skb, dev); 4355 dev->stats.rx_packets++; 4356 dev->stats.rx_bytes += pktlen; 4357 netif_rx(skb); 4358 } else { 4359 dev->stats.rx_dropped++; 4360 } 4361 4362 if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH)) 4363 dev->stats.multicast++; 4364 4365 /* reset ownership bit */ 4366 desc->addr &= ~MACB_BIT(RX_USED); 4367 4368 /* wrap after last buffer */ 4369 if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1) 4370 q->rx_tail = 0; 4371 else 4372 q->rx_tail++; 4373 4374 desc = macb_rx_desc(q, q->rx_tail); 4375 } 4376 } 4377 4378 /* MAC interrupt handler */ 4379 static irqreturn_t at91ether_interrupt(int irq, void *dev_id) 4380 { 4381 struct net_device *dev = dev_id; 4382 struct macb *lp = netdev_priv(dev); 4383 u32 intstatus, ctl; 4384 unsigned int desc; 4385 4386 /* MAC Interrupt Status register indicates what interrupts are pending. 4387 * It is automatically cleared once read. 4388 */ 4389 intstatus = macb_readl(lp, ISR); 4390 4391 /* Receive complete */ 4392 if (intstatus & MACB_BIT(RCOMP)) 4393 at91ether_rx(dev); 4394 4395 /* Transmit complete */ 4396 if (intstatus & MACB_BIT(TCOMP)) { 4397 /* The TCOM bit is set even if the transmission failed */ 4398 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) 4399 dev->stats.tx_errors++; 4400 4401 desc = 0; 4402 if (lp->rm9200_txq[desc].skb) { 4403 dev_consume_skb_irq(lp->rm9200_txq[desc].skb); 4404 lp->rm9200_txq[desc].skb = NULL; 4405 dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping, 4406 lp->rm9200_txq[desc].size, DMA_TO_DEVICE); 4407 dev->stats.tx_packets++; 4408 dev->stats.tx_bytes += lp->rm9200_txq[desc].size; 4409 } 4410 netif_wake_queue(dev); 4411 } 4412 4413 /* Work-around for EMAC Errata section 41.3.1 */ 4414 if (intstatus & MACB_BIT(RXUBR)) { 4415 ctl = macb_readl(lp, NCR); 4416 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE)); 4417 wmb(); 4418 macb_writel(lp, NCR, ctl | MACB_BIT(RE)); 4419 } 4420 4421 if (intstatus & MACB_BIT(ISR_ROVR)) 4422 netdev_err(dev, "ROVR error\n"); 4423 4424 return IRQ_HANDLED; 4425 } 4426 4427 #ifdef CONFIG_NET_POLL_CONTROLLER 4428 static void at91ether_poll_controller(struct net_device *dev) 4429 { 4430 unsigned long flags; 4431 4432 local_irq_save(flags); 4433 at91ether_interrupt(dev->irq, dev); 4434 local_irq_restore(flags); 4435 } 4436 #endif 4437 4438 static const struct net_device_ops at91ether_netdev_ops = { 4439 .ndo_open = at91ether_open, 4440 .ndo_stop = at91ether_close, 4441 .ndo_start_xmit = at91ether_start_xmit, 4442 .ndo_get_stats = macb_get_stats, 4443 .ndo_set_rx_mode = macb_set_rx_mode, 4444 .ndo_set_mac_address = eth_mac_addr, 4445 .ndo_eth_ioctl = macb_ioctl, 4446 .ndo_validate_addr = eth_validate_addr, 4447 #ifdef CONFIG_NET_POLL_CONTROLLER 4448 .ndo_poll_controller = at91ether_poll_controller, 4449 #endif 4450 }; 4451 4452 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk, 4453 struct clk **hclk, struct clk **tx_clk, 4454 struct clk **rx_clk, struct clk **tsu_clk) 4455 { 4456 int err; 4457 4458 *hclk = NULL; 4459 *tx_clk = NULL; 4460 *rx_clk = NULL; 4461 *tsu_clk = NULL; 4462 4463 *pclk = devm_clk_get(&pdev->dev, "ether_clk"); 4464 if (IS_ERR(*pclk)) 4465 return PTR_ERR(*pclk); 4466 4467 err = clk_prepare_enable(*pclk); 4468 if (err) { 4469 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4470 return err; 4471 } 4472 4473 return 0; 4474 } 4475 4476 static int at91ether_init(struct platform_device *pdev) 4477 { 4478 struct net_device *dev = platform_get_drvdata(pdev); 4479 struct macb *bp = netdev_priv(dev); 4480 int err; 4481 4482 bp->queues[0].bp = bp; 4483 4484 dev->netdev_ops = &at91ether_netdev_ops; 4485 dev->ethtool_ops = &macb_ethtool_ops; 4486 4487 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt, 4488 0, dev->name, dev); 4489 if (err) 4490 return err; 4491 4492 macb_writel(bp, NCR, 0); 4493 4494 macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG)); 4495 4496 return 0; 4497 } 4498 4499 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw, 4500 unsigned long parent_rate) 4501 { 4502 return mgmt->rate; 4503 } 4504 4505 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate, 4506 unsigned long *parent_rate) 4507 { 4508 if (WARN_ON(rate < 2500000)) 4509 return 2500000; 4510 else if (rate == 2500000) 4511 return 2500000; 4512 else if (WARN_ON(rate < 13750000)) 4513 return 2500000; 4514 else if (WARN_ON(rate < 25000000)) 4515 return 25000000; 4516 else if (rate == 25000000) 4517 return 25000000; 4518 else if (WARN_ON(rate < 75000000)) 4519 return 25000000; 4520 else if (WARN_ON(rate < 125000000)) 4521 return 125000000; 4522 else if (rate == 125000000) 4523 return 125000000; 4524 4525 WARN_ON(rate > 125000000); 4526 4527 return 125000000; 4528 } 4529 4530 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate, 4531 unsigned long parent_rate) 4532 { 4533 rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate); 4534 if (rate != 125000000) 4535 iowrite32(1, mgmt->reg); 4536 else 4537 iowrite32(0, mgmt->reg); 4538 mgmt->rate = rate; 4539 4540 return 0; 4541 } 4542 4543 static const struct clk_ops fu540_c000_ops = { 4544 .recalc_rate = fu540_macb_tx_recalc_rate, 4545 .round_rate = fu540_macb_tx_round_rate, 4546 .set_rate = fu540_macb_tx_set_rate, 4547 }; 4548 4549 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk, 4550 struct clk **hclk, struct clk **tx_clk, 4551 struct clk **rx_clk, struct clk **tsu_clk) 4552 { 4553 struct clk_init_data init; 4554 int err = 0; 4555 4556 err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk); 4557 if (err) 4558 return err; 4559 4560 mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL); 4561 if (!mgmt) { 4562 err = -ENOMEM; 4563 goto err_disable_clks; 4564 } 4565 4566 init.name = "sifive-gemgxl-mgmt"; 4567 init.ops = &fu540_c000_ops; 4568 init.flags = 0; 4569 init.num_parents = 0; 4570 4571 mgmt->rate = 0; 4572 mgmt->hw.init = &init; 4573 4574 *tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw); 4575 if (IS_ERR(*tx_clk)) { 4576 err = PTR_ERR(*tx_clk); 4577 goto err_disable_clks; 4578 } 4579 4580 err = clk_prepare_enable(*tx_clk); 4581 if (err) { 4582 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err); 4583 *tx_clk = NULL; 4584 goto err_disable_clks; 4585 } else { 4586 dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name); 4587 } 4588 4589 return 0; 4590 4591 err_disable_clks: 4592 macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk); 4593 4594 return err; 4595 } 4596 4597 static int fu540_c000_init(struct platform_device *pdev) 4598 { 4599 mgmt->reg = devm_platform_ioremap_resource(pdev, 1); 4600 if (IS_ERR(mgmt->reg)) 4601 return PTR_ERR(mgmt->reg); 4602 4603 return macb_init(pdev); 4604 } 4605 4606 static int init_reset_optional(struct platform_device *pdev) 4607 { 4608 struct net_device *dev = platform_get_drvdata(pdev); 4609 struct macb *bp = netdev_priv(dev); 4610 int ret; 4611 4612 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 4613 /* Ensure PHY device used in SGMII mode is ready */ 4614 bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL); 4615 4616 if (IS_ERR(bp->sgmii_phy)) 4617 return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy), 4618 "failed to get SGMII PHY\n"); 4619 4620 ret = phy_init(bp->sgmii_phy); 4621 if (ret) 4622 return dev_err_probe(&pdev->dev, ret, 4623 "failed to init SGMII PHY\n"); 4624 } 4625 4626 ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG); 4627 if (!ret) { 4628 u32 pm_info[2]; 4629 4630 ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains", 4631 pm_info, ARRAY_SIZE(pm_info)); 4632 if (ret) { 4633 dev_err(&pdev->dev, "Failed to read power management information\n"); 4634 goto err_out_phy_exit; 4635 } 4636 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0); 4637 if (ret) 4638 goto err_out_phy_exit; 4639 4640 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1); 4641 if (ret) 4642 goto err_out_phy_exit; 4643 } 4644 4645 /* Fully reset controller at hardware level if mapped in device tree */ 4646 ret = device_reset_optional(&pdev->dev); 4647 if (ret) { 4648 phy_exit(bp->sgmii_phy); 4649 return dev_err_probe(&pdev->dev, ret, "failed to reset controller"); 4650 } 4651 4652 ret = macb_init(pdev); 4653 4654 err_out_phy_exit: 4655 if (ret) 4656 phy_exit(bp->sgmii_phy); 4657 4658 return ret; 4659 } 4660 4661 static const struct macb_usrio_config sama7g5_usrio = { 4662 .mii = 0, 4663 .rmii = 1, 4664 .rgmii = 2, 4665 .refclk = BIT(2), 4666 .hdfctlen = BIT(6), 4667 }; 4668 4669 static const struct macb_config fu540_c000_config = { 4670 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4671 MACB_CAPS_GEM_HAS_PTP, 4672 .dma_burst_length = 16, 4673 .clk_init = fu540_c000_clk_init, 4674 .init = fu540_c000_init, 4675 .jumbo_max_len = 10240, 4676 .usrio = &macb_default_usrio, 4677 }; 4678 4679 static const struct macb_config at91sam9260_config = { 4680 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4681 .clk_init = macb_clk_init, 4682 .init = macb_init, 4683 .usrio = &macb_default_usrio, 4684 }; 4685 4686 static const struct macb_config sama5d3macb_config = { 4687 .caps = MACB_CAPS_SG_DISABLED | 4688 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4689 .clk_init = macb_clk_init, 4690 .init = macb_init, 4691 .usrio = &macb_default_usrio, 4692 }; 4693 4694 static const struct macb_config pc302gem_config = { 4695 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE, 4696 .dma_burst_length = 16, 4697 .clk_init = macb_clk_init, 4698 .init = macb_init, 4699 .usrio = &macb_default_usrio, 4700 }; 4701 4702 static const struct macb_config sama5d2_config = { 4703 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4704 .dma_burst_length = 16, 4705 .clk_init = macb_clk_init, 4706 .init = macb_init, 4707 .usrio = &macb_default_usrio, 4708 }; 4709 4710 static const struct macb_config sama5d29_config = { 4711 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP, 4712 .dma_burst_length = 16, 4713 .clk_init = macb_clk_init, 4714 .init = macb_init, 4715 .usrio = &macb_default_usrio, 4716 }; 4717 4718 static const struct macb_config sama5d3_config = { 4719 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4720 MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO, 4721 .dma_burst_length = 16, 4722 .clk_init = macb_clk_init, 4723 .init = macb_init, 4724 .jumbo_max_len = 10240, 4725 .usrio = &macb_default_usrio, 4726 }; 4727 4728 static const struct macb_config sama5d4_config = { 4729 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4730 .dma_burst_length = 4, 4731 .clk_init = macb_clk_init, 4732 .init = macb_init, 4733 .usrio = &macb_default_usrio, 4734 }; 4735 4736 static const struct macb_config emac_config = { 4737 .caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC, 4738 .clk_init = at91ether_clk_init, 4739 .init = at91ether_init, 4740 .usrio = &macb_default_usrio, 4741 }; 4742 4743 static const struct macb_config np4_config = { 4744 .caps = MACB_CAPS_USRIO_DISABLED, 4745 .clk_init = macb_clk_init, 4746 .init = macb_init, 4747 .usrio = &macb_default_usrio, 4748 }; 4749 4750 static const struct macb_config zynqmp_config = { 4751 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4752 MACB_CAPS_JUMBO | 4753 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH, 4754 .dma_burst_length = 16, 4755 .clk_init = macb_clk_init, 4756 .init = init_reset_optional, 4757 .jumbo_max_len = 10240, 4758 .usrio = &macb_default_usrio, 4759 }; 4760 4761 static const struct macb_config zynq_config = { 4762 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF | 4763 MACB_CAPS_NEEDS_RSTONUBR, 4764 .dma_burst_length = 16, 4765 .clk_init = macb_clk_init, 4766 .init = macb_init, 4767 .usrio = &macb_default_usrio, 4768 }; 4769 4770 static const struct macb_config mpfs_config = { 4771 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4772 MACB_CAPS_JUMBO | 4773 MACB_CAPS_GEM_HAS_PTP, 4774 .dma_burst_length = 16, 4775 .clk_init = macb_clk_init, 4776 .init = init_reset_optional, 4777 .usrio = &macb_default_usrio, 4778 .jumbo_max_len = 10240, 4779 }; 4780 4781 static const struct macb_config sama7g5_gem_config = { 4782 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG | 4783 MACB_CAPS_MIIONRGMII, 4784 .dma_burst_length = 16, 4785 .clk_init = macb_clk_init, 4786 .init = macb_init, 4787 .usrio = &sama7g5_usrio, 4788 }; 4789 4790 static const struct macb_config sama7g5_emac_config = { 4791 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | 4792 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII, 4793 .dma_burst_length = 16, 4794 .clk_init = macb_clk_init, 4795 .init = macb_init, 4796 .usrio = &sama7g5_usrio, 4797 }; 4798 4799 static const struct macb_config versal_config = { 4800 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4801 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK, 4802 .dma_burst_length = 16, 4803 .clk_init = macb_clk_init, 4804 .init = init_reset_optional, 4805 .jumbo_max_len = 10240, 4806 .usrio = &macb_default_usrio, 4807 }; 4808 4809 static const struct of_device_id macb_dt_ids[] = { 4810 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config }, 4811 { .compatible = "cdns,macb" }, 4812 { .compatible = "cdns,np4-macb", .data = &np4_config }, 4813 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config }, 4814 { .compatible = "cdns,gem", .data = &pc302gem_config }, 4815 { .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config }, 4816 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config }, 4817 { .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config }, 4818 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config }, 4819 { .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config }, 4820 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config }, 4821 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config }, 4822 { .compatible = "cdns,emac", .data = &emac_config }, 4823 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */ 4824 { .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */ 4825 { .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config }, 4826 { .compatible = "microchip,mpfs-macb", .data = &mpfs_config }, 4827 { .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config }, 4828 { .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config }, 4829 { .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config}, 4830 { .compatible = "xlnx,zynq-gem", .data = &zynq_config }, 4831 { .compatible = "xlnx,versal-gem", .data = &versal_config}, 4832 { /* sentinel */ } 4833 }; 4834 MODULE_DEVICE_TABLE(of, macb_dt_ids); 4835 #endif /* CONFIG_OF */ 4836 4837 static const struct macb_config default_gem_config = { 4838 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4839 MACB_CAPS_JUMBO | 4840 MACB_CAPS_GEM_HAS_PTP, 4841 .dma_burst_length = 16, 4842 .clk_init = macb_clk_init, 4843 .init = macb_init, 4844 .usrio = &macb_default_usrio, 4845 .jumbo_max_len = 10240, 4846 }; 4847 4848 static int macb_probe(struct platform_device *pdev) 4849 { 4850 const struct macb_config *macb_config = &default_gem_config; 4851 int (*clk_init)(struct platform_device *, struct clk **, 4852 struct clk **, struct clk **, struct clk **, 4853 struct clk **) = macb_config->clk_init; 4854 int (*init)(struct platform_device *) = macb_config->init; 4855 struct device_node *np = pdev->dev.of_node; 4856 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL; 4857 struct clk *tsu_clk = NULL; 4858 unsigned int queue_mask, num_queues; 4859 bool native_io; 4860 phy_interface_t interface; 4861 struct net_device *dev; 4862 struct resource *regs; 4863 void __iomem *mem; 4864 struct macb *bp; 4865 int err, val; 4866 4867 mem = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 4868 if (IS_ERR(mem)) 4869 return PTR_ERR(mem); 4870 4871 if (np) { 4872 const struct of_device_id *match; 4873 4874 match = of_match_node(macb_dt_ids, np); 4875 if (match && match->data) { 4876 macb_config = match->data; 4877 clk_init = macb_config->clk_init; 4878 init = macb_config->init; 4879 } 4880 } 4881 4882 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk); 4883 if (err) 4884 return err; 4885 4886 pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT); 4887 pm_runtime_use_autosuspend(&pdev->dev); 4888 pm_runtime_get_noresume(&pdev->dev); 4889 pm_runtime_set_active(&pdev->dev); 4890 pm_runtime_enable(&pdev->dev); 4891 native_io = hw_is_native_io(mem); 4892 4893 macb_probe_queues(mem, native_io, &queue_mask, &num_queues); 4894 dev = alloc_etherdev_mq(sizeof(*bp), num_queues); 4895 if (!dev) { 4896 err = -ENOMEM; 4897 goto err_disable_clocks; 4898 } 4899 4900 dev->base_addr = regs->start; 4901 4902 SET_NETDEV_DEV(dev, &pdev->dev); 4903 4904 bp = netdev_priv(dev); 4905 bp->pdev = pdev; 4906 bp->dev = dev; 4907 bp->regs = mem; 4908 bp->native_io = native_io; 4909 if (native_io) { 4910 bp->macb_reg_readl = hw_readl_native; 4911 bp->macb_reg_writel = hw_writel_native; 4912 } else { 4913 bp->macb_reg_readl = hw_readl; 4914 bp->macb_reg_writel = hw_writel; 4915 } 4916 bp->num_queues = num_queues; 4917 bp->queue_mask = queue_mask; 4918 if (macb_config) 4919 bp->dma_burst_length = macb_config->dma_burst_length; 4920 bp->pclk = pclk; 4921 bp->hclk = hclk; 4922 bp->tx_clk = tx_clk; 4923 bp->rx_clk = rx_clk; 4924 bp->tsu_clk = tsu_clk; 4925 if (macb_config) 4926 bp->jumbo_max_len = macb_config->jumbo_max_len; 4927 4928 bp->wol = 0; 4929 if (of_get_property(np, "magic-packet", NULL)) 4930 bp->wol |= MACB_WOL_HAS_MAGIC_PACKET; 4931 device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET); 4932 4933 bp->usrio = macb_config->usrio; 4934 4935 spin_lock_init(&bp->lock); 4936 4937 /* setup capabilities */ 4938 macb_configure_caps(bp, macb_config); 4939 4940 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4941 if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) { 4942 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); 4943 bp->hw_dma_cap |= HW_DMA_CAP_64B; 4944 } 4945 #endif 4946 platform_set_drvdata(pdev, dev); 4947 4948 dev->irq = platform_get_irq(pdev, 0); 4949 if (dev->irq < 0) { 4950 err = dev->irq; 4951 goto err_out_free_netdev; 4952 } 4953 4954 /* MTU range: 68 - 1500 or 10240 */ 4955 dev->min_mtu = GEM_MTU_MIN_SIZE; 4956 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 4957 dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN; 4958 else 4959 dev->max_mtu = ETH_DATA_LEN; 4960 4961 if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) { 4962 val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10)); 4963 if (val) 4964 bp->rx_bd_rd_prefetch = (2 << (val - 1)) * 4965 macb_dma_desc_get_size(bp); 4966 4967 val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10)); 4968 if (val) 4969 bp->tx_bd_rd_prefetch = (2 << (val - 1)) * 4970 macb_dma_desc_get_size(bp); 4971 } 4972 4973 bp->rx_intr_mask = MACB_RX_INT_FLAGS; 4974 if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR) 4975 bp->rx_intr_mask |= MACB_BIT(RXUBR); 4976 4977 err = of_get_ethdev_address(np, bp->dev); 4978 if (err == -EPROBE_DEFER) 4979 goto err_out_free_netdev; 4980 else if (err) 4981 macb_get_hwaddr(bp); 4982 4983 err = of_get_phy_mode(np, &interface); 4984 if (err) 4985 /* not found in DT, MII by default */ 4986 bp->phy_interface = PHY_INTERFACE_MODE_MII; 4987 else 4988 bp->phy_interface = interface; 4989 4990 /* IP specific init */ 4991 err = init(pdev); 4992 if (err) 4993 goto err_out_free_netdev; 4994 4995 err = macb_mii_init(bp); 4996 if (err) 4997 goto err_out_phy_exit; 4998 4999 netif_carrier_off(dev); 5000 5001 err = register_netdev(dev); 5002 if (err) { 5003 dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); 5004 goto err_out_unregister_mdio; 5005 } 5006 5007 tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task); 5008 5009 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n", 5010 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID), 5011 dev->base_addr, dev->irq, dev->dev_addr); 5012 5013 pm_runtime_mark_last_busy(&bp->pdev->dev); 5014 pm_runtime_put_autosuspend(&bp->pdev->dev); 5015 5016 return 0; 5017 5018 err_out_unregister_mdio: 5019 mdiobus_unregister(bp->mii_bus); 5020 mdiobus_free(bp->mii_bus); 5021 5022 err_out_phy_exit: 5023 phy_exit(bp->sgmii_phy); 5024 5025 err_out_free_netdev: 5026 free_netdev(dev); 5027 5028 err_disable_clocks: 5029 macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk); 5030 pm_runtime_disable(&pdev->dev); 5031 pm_runtime_set_suspended(&pdev->dev); 5032 pm_runtime_dont_use_autosuspend(&pdev->dev); 5033 5034 return err; 5035 } 5036 5037 static int macb_remove(struct platform_device *pdev) 5038 { 5039 struct net_device *dev; 5040 struct macb *bp; 5041 5042 dev = platform_get_drvdata(pdev); 5043 5044 if (dev) { 5045 bp = netdev_priv(dev); 5046 phy_exit(bp->sgmii_phy); 5047 mdiobus_unregister(bp->mii_bus); 5048 mdiobus_free(bp->mii_bus); 5049 5050 unregister_netdev(dev); 5051 tasklet_kill(&bp->hresp_err_tasklet); 5052 pm_runtime_disable(&pdev->dev); 5053 pm_runtime_dont_use_autosuspend(&pdev->dev); 5054 if (!pm_runtime_suspended(&pdev->dev)) { 5055 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, 5056 bp->rx_clk, bp->tsu_clk); 5057 pm_runtime_set_suspended(&pdev->dev); 5058 } 5059 phylink_destroy(bp->phylink); 5060 free_netdev(dev); 5061 } 5062 5063 return 0; 5064 } 5065 5066 static int __maybe_unused macb_suspend(struct device *dev) 5067 { 5068 struct net_device *netdev = dev_get_drvdata(dev); 5069 struct macb *bp = netdev_priv(netdev); 5070 struct macb_queue *queue; 5071 unsigned long flags; 5072 unsigned int q; 5073 int err; 5074 5075 if (!netif_running(netdev)) 5076 return 0; 5077 5078 if (bp->wol & MACB_WOL_ENABLED) { 5079 spin_lock_irqsave(&bp->lock, flags); 5080 /* Flush all status bits */ 5081 macb_writel(bp, TSR, -1); 5082 macb_writel(bp, RSR, -1); 5083 for (q = 0, queue = bp->queues; q < bp->num_queues; 5084 ++q, ++queue) { 5085 /* Disable all interrupts */ 5086 queue_writel(queue, IDR, -1); 5087 queue_readl(queue, ISR); 5088 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5089 queue_writel(queue, ISR, -1); 5090 } 5091 /* Change interrupt handler and 5092 * Enable WoL IRQ on queue 0 5093 */ 5094 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5095 if (macb_is_gem(bp)) { 5096 err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt, 5097 IRQF_SHARED, netdev->name, bp->queues); 5098 if (err) { 5099 dev_err(dev, 5100 "Unable to request IRQ %d (error %d)\n", 5101 bp->queues[0].irq, err); 5102 spin_unlock_irqrestore(&bp->lock, flags); 5103 return err; 5104 } 5105 queue_writel(bp->queues, IER, GEM_BIT(WOL)); 5106 gem_writel(bp, WOL, MACB_BIT(MAG)); 5107 } else { 5108 err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt, 5109 IRQF_SHARED, netdev->name, bp->queues); 5110 if (err) { 5111 dev_err(dev, 5112 "Unable to request IRQ %d (error %d)\n", 5113 bp->queues[0].irq, err); 5114 spin_unlock_irqrestore(&bp->lock, flags); 5115 return err; 5116 } 5117 queue_writel(bp->queues, IER, MACB_BIT(WOL)); 5118 macb_writel(bp, WOL, MACB_BIT(MAG)); 5119 } 5120 spin_unlock_irqrestore(&bp->lock, flags); 5121 5122 enable_irq_wake(bp->queues[0].irq); 5123 } 5124 5125 netif_device_detach(netdev); 5126 for (q = 0, queue = bp->queues; q < bp->num_queues; 5127 ++q, ++queue) { 5128 napi_disable(&queue->napi_rx); 5129 napi_disable(&queue->napi_tx); 5130 } 5131 5132 if (!(bp->wol & MACB_WOL_ENABLED)) { 5133 rtnl_lock(); 5134 phylink_stop(bp->phylink); 5135 phy_exit(bp->sgmii_phy); 5136 rtnl_unlock(); 5137 spin_lock_irqsave(&bp->lock, flags); 5138 macb_reset_hw(bp); 5139 spin_unlock_irqrestore(&bp->lock, flags); 5140 } 5141 5142 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5143 bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO); 5144 5145 if (netdev->hw_features & NETIF_F_NTUPLE) 5146 bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT); 5147 5148 if (bp->ptp_info) 5149 bp->ptp_info->ptp_remove(netdev); 5150 if (!device_may_wakeup(dev)) 5151 pm_runtime_force_suspend(dev); 5152 5153 return 0; 5154 } 5155 5156 static int __maybe_unused macb_resume(struct device *dev) 5157 { 5158 struct net_device *netdev = dev_get_drvdata(dev); 5159 struct macb *bp = netdev_priv(netdev); 5160 struct macb_queue *queue; 5161 unsigned long flags; 5162 unsigned int q; 5163 int err; 5164 5165 if (!netif_running(netdev)) 5166 return 0; 5167 5168 if (!device_may_wakeup(dev)) 5169 pm_runtime_force_resume(dev); 5170 5171 if (bp->wol & MACB_WOL_ENABLED) { 5172 spin_lock_irqsave(&bp->lock, flags); 5173 /* Disable WoL */ 5174 if (macb_is_gem(bp)) { 5175 queue_writel(bp->queues, IDR, GEM_BIT(WOL)); 5176 gem_writel(bp, WOL, 0); 5177 } else { 5178 queue_writel(bp->queues, IDR, MACB_BIT(WOL)); 5179 macb_writel(bp, WOL, 0); 5180 } 5181 /* Clear ISR on queue 0 */ 5182 queue_readl(bp->queues, ISR); 5183 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5184 queue_writel(bp->queues, ISR, -1); 5185 /* Replace interrupt handler on queue 0 */ 5186 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5187 err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt, 5188 IRQF_SHARED, netdev->name, bp->queues); 5189 if (err) { 5190 dev_err(dev, 5191 "Unable to request IRQ %d (error %d)\n", 5192 bp->queues[0].irq, err); 5193 spin_unlock_irqrestore(&bp->lock, flags); 5194 return err; 5195 } 5196 spin_unlock_irqrestore(&bp->lock, flags); 5197 5198 disable_irq_wake(bp->queues[0].irq); 5199 5200 /* Now make sure we disable phy before moving 5201 * to common restore path 5202 */ 5203 rtnl_lock(); 5204 phylink_stop(bp->phylink); 5205 rtnl_unlock(); 5206 } 5207 5208 for (q = 0, queue = bp->queues; q < bp->num_queues; 5209 ++q, ++queue) { 5210 napi_enable(&queue->napi_rx); 5211 napi_enable(&queue->napi_tx); 5212 } 5213 5214 if (netdev->hw_features & NETIF_F_NTUPLE) 5215 gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2); 5216 5217 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5218 macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio); 5219 5220 macb_writel(bp, NCR, MACB_BIT(MPE)); 5221 macb_init_hw(bp); 5222 macb_set_rx_mode(netdev); 5223 macb_restore_features(bp); 5224 rtnl_lock(); 5225 if (!device_may_wakeup(&bp->dev->dev)) 5226 phy_init(bp->sgmii_phy); 5227 5228 phylink_start(bp->phylink); 5229 rtnl_unlock(); 5230 5231 netif_device_attach(netdev); 5232 if (bp->ptp_info) 5233 bp->ptp_info->ptp_init(netdev); 5234 5235 return 0; 5236 } 5237 5238 static int __maybe_unused macb_runtime_suspend(struct device *dev) 5239 { 5240 struct net_device *netdev = dev_get_drvdata(dev); 5241 struct macb *bp = netdev_priv(netdev); 5242 5243 if (!(device_may_wakeup(dev))) 5244 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk); 5245 else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) 5246 macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk); 5247 5248 return 0; 5249 } 5250 5251 static int __maybe_unused macb_runtime_resume(struct device *dev) 5252 { 5253 struct net_device *netdev = dev_get_drvdata(dev); 5254 struct macb *bp = netdev_priv(netdev); 5255 5256 if (!(device_may_wakeup(dev))) { 5257 clk_prepare_enable(bp->pclk); 5258 clk_prepare_enable(bp->hclk); 5259 clk_prepare_enable(bp->tx_clk); 5260 clk_prepare_enable(bp->rx_clk); 5261 clk_prepare_enable(bp->tsu_clk); 5262 } else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) { 5263 clk_prepare_enable(bp->tsu_clk); 5264 } 5265 5266 return 0; 5267 } 5268 5269 static const struct dev_pm_ops macb_pm_ops = { 5270 SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume) 5271 SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL) 5272 }; 5273 5274 static struct platform_driver macb_driver = { 5275 .probe = macb_probe, 5276 .remove = macb_remove, 5277 .driver = { 5278 .name = "macb", 5279 .of_match_table = of_match_ptr(macb_dt_ids), 5280 .pm = &macb_pm_ops, 5281 }, 5282 }; 5283 5284 module_platform_driver(macb_driver); 5285 5286 MODULE_LICENSE("GPL"); 5287 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver"); 5288 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 5289 MODULE_ALIAS("platform:macb"); 5290