1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cadence MACB/GEM Ethernet Controller driver 4 * 5 * Copyright (C) 2004-2006 Atmel Corporation 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/crc32.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/circ_buf.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/io.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/interrupt.h> 23 #include <linux/netdevice.h> 24 #include <linux/etherdevice.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/platform_device.h> 27 #include <linux/phylink.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 #include <linux/of_gpio.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/tcp.h> 36 #include <linux/iopoll.h> 37 #include <linux/phy/phy.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/reset.h> 40 #include "macb.h" 41 42 /* This structure is only used for MACB on SiFive FU540 devices */ 43 struct sifive_fu540_macb_mgmt { 44 void __iomem *reg; 45 unsigned long rate; 46 struct clk_hw hw; 47 }; 48 49 #define MACB_RX_BUFFER_SIZE 128 50 #define RX_BUFFER_MULTIPLE 64 /* bytes */ 51 52 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */ 53 #define MIN_RX_RING_SIZE 64 54 #define MAX_RX_RING_SIZE 8192 55 #define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 56 * (bp)->rx_ring_size) 57 58 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */ 59 #define MIN_TX_RING_SIZE 64 60 #define MAX_TX_RING_SIZE 4096 61 #define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 62 * (bp)->tx_ring_size) 63 64 /* level of occupied TX descriptors under which we wake up TX process */ 65 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4) 66 67 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR)) 68 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \ 69 | MACB_BIT(ISR_RLE) \ 70 | MACB_BIT(TXERR)) 71 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \ 72 | MACB_BIT(TXUBR)) 73 74 /* Max length of transmit frame must be a multiple of 8 bytes */ 75 #define MACB_TX_LEN_ALIGN 8 76 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1))) 77 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a 78 * false amba_error in TX path from the DMA assuming there is not enough 79 * space in the SRAM (16KB) even when there is. 80 */ 81 #define GEM_MAX_TX_LEN (unsigned int)(0x3FC0) 82 83 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU 84 #define MACB_NETIF_LSO NETIF_F_TSO 85 86 #define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0) 87 #define MACB_WOL_ENABLED (0x1 << 1) 88 89 #define HS_SPEED_10000M 4 90 #define MACB_SERDES_RATE_10G 1 91 92 /* Graceful stop timeouts in us. We should allow up to 93 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions) 94 */ 95 #define MACB_HALT_TIMEOUT 1230 96 97 #define MACB_PM_TIMEOUT 100 /* ms */ 98 99 #define MACB_MDIO_TIMEOUT 1000000 /* in usecs */ 100 101 /* DMA buffer descriptor might be different size 102 * depends on hardware configuration: 103 * 104 * 1. dma address width 32 bits: 105 * word 1: 32 bit address of Data Buffer 106 * word 2: control 107 * 108 * 2. dma address width 64 bits: 109 * word 1: 32 bit address of Data Buffer 110 * word 2: control 111 * word 3: upper 32 bit address of Data Buffer 112 * word 4: unused 113 * 114 * 3. dma address width 32 bits with hardware timestamping: 115 * word 1: 32 bit address of Data Buffer 116 * word 2: control 117 * word 3: timestamp word 1 118 * word 4: timestamp word 2 119 * 120 * 4. dma address width 64 bits with hardware timestamping: 121 * word 1: 32 bit address of Data Buffer 122 * word 2: control 123 * word 3: upper 32 bit address of Data Buffer 124 * word 4: unused 125 * word 5: timestamp word 1 126 * word 6: timestamp word 2 127 */ 128 static unsigned int macb_dma_desc_get_size(struct macb *bp) 129 { 130 #ifdef MACB_EXT_DESC 131 unsigned int desc_size; 132 133 switch (bp->hw_dma_cap) { 134 case HW_DMA_CAP_64B: 135 desc_size = sizeof(struct macb_dma_desc) 136 + sizeof(struct macb_dma_desc_64); 137 break; 138 case HW_DMA_CAP_PTP: 139 desc_size = sizeof(struct macb_dma_desc) 140 + sizeof(struct macb_dma_desc_ptp); 141 break; 142 case HW_DMA_CAP_64B_PTP: 143 desc_size = sizeof(struct macb_dma_desc) 144 + sizeof(struct macb_dma_desc_64) 145 + sizeof(struct macb_dma_desc_ptp); 146 break; 147 default: 148 desc_size = sizeof(struct macb_dma_desc); 149 } 150 return desc_size; 151 #endif 152 return sizeof(struct macb_dma_desc); 153 } 154 155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx) 156 { 157 #ifdef MACB_EXT_DESC 158 switch (bp->hw_dma_cap) { 159 case HW_DMA_CAP_64B: 160 case HW_DMA_CAP_PTP: 161 desc_idx <<= 1; 162 break; 163 case HW_DMA_CAP_64B_PTP: 164 desc_idx *= 3; 165 break; 166 default: 167 break; 168 } 169 #endif 170 return desc_idx; 171 } 172 173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc) 175 { 176 return (struct macb_dma_desc_64 *)((void *)desc 177 + sizeof(struct macb_dma_desc)); 178 } 179 #endif 180 181 /* Ring buffer accessors */ 182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index) 183 { 184 return index & (bp->tx_ring_size - 1); 185 } 186 187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue, 188 unsigned int index) 189 { 190 index = macb_tx_ring_wrap(queue->bp, index); 191 index = macb_adj_dma_desc_idx(queue->bp, index); 192 return &queue->tx_ring[index]; 193 } 194 195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue, 196 unsigned int index) 197 { 198 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)]; 199 } 200 201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index) 202 { 203 dma_addr_t offset; 204 205 offset = macb_tx_ring_wrap(queue->bp, index) * 206 macb_dma_desc_get_size(queue->bp); 207 208 return queue->tx_ring_dma + offset; 209 } 210 211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index) 212 { 213 return index & (bp->rx_ring_size - 1); 214 } 215 216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index) 217 { 218 index = macb_rx_ring_wrap(queue->bp, index); 219 index = macb_adj_dma_desc_idx(queue->bp, index); 220 return &queue->rx_ring[index]; 221 } 222 223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index) 224 { 225 return queue->rx_buffers + queue->bp->rx_buffer_size * 226 macb_rx_ring_wrap(queue->bp, index); 227 } 228 229 /* I/O accessors */ 230 static u32 hw_readl_native(struct macb *bp, int offset) 231 { 232 return __raw_readl(bp->regs + offset); 233 } 234 235 static void hw_writel_native(struct macb *bp, int offset, u32 value) 236 { 237 __raw_writel(value, bp->regs + offset); 238 } 239 240 static u32 hw_readl(struct macb *bp, int offset) 241 { 242 return readl_relaxed(bp->regs + offset); 243 } 244 245 static void hw_writel(struct macb *bp, int offset, u32 value) 246 { 247 writel_relaxed(value, bp->regs + offset); 248 } 249 250 /* Find the CPU endianness by using the loopback bit of NCR register. When the 251 * CPU is in big endian we need to program swapped mode for management 252 * descriptor access. 253 */ 254 static bool hw_is_native_io(void __iomem *addr) 255 { 256 u32 value = MACB_BIT(LLB); 257 258 __raw_writel(value, addr + MACB_NCR); 259 value = __raw_readl(addr + MACB_NCR); 260 261 /* Write 0 back to disable everything */ 262 __raw_writel(0, addr + MACB_NCR); 263 264 return value == MACB_BIT(LLB); 265 } 266 267 static bool hw_is_gem(void __iomem *addr, bool native_io) 268 { 269 u32 id; 270 271 if (native_io) 272 id = __raw_readl(addr + MACB_MID); 273 else 274 id = readl_relaxed(addr + MACB_MID); 275 276 return MACB_BFEXT(IDNUM, id) >= 0x2; 277 } 278 279 static void macb_set_hwaddr(struct macb *bp) 280 { 281 u32 bottom; 282 u16 top; 283 284 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr)); 285 macb_or_gem_writel(bp, SA1B, bottom); 286 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4))); 287 macb_or_gem_writel(bp, SA1T, top); 288 289 /* Clear unused address register sets */ 290 macb_or_gem_writel(bp, SA2B, 0); 291 macb_or_gem_writel(bp, SA2T, 0); 292 macb_or_gem_writel(bp, SA3B, 0); 293 macb_or_gem_writel(bp, SA3T, 0); 294 macb_or_gem_writel(bp, SA4B, 0); 295 macb_or_gem_writel(bp, SA4T, 0); 296 } 297 298 static void macb_get_hwaddr(struct macb *bp) 299 { 300 u32 bottom; 301 u16 top; 302 u8 addr[6]; 303 int i; 304 305 /* Check all 4 address register for valid address */ 306 for (i = 0; i < 4; i++) { 307 bottom = macb_or_gem_readl(bp, SA1B + i * 8); 308 top = macb_or_gem_readl(bp, SA1T + i * 8); 309 310 addr[0] = bottom & 0xff; 311 addr[1] = (bottom >> 8) & 0xff; 312 addr[2] = (bottom >> 16) & 0xff; 313 addr[3] = (bottom >> 24) & 0xff; 314 addr[4] = top & 0xff; 315 addr[5] = (top >> 8) & 0xff; 316 317 if (is_valid_ether_addr(addr)) { 318 eth_hw_addr_set(bp->dev, addr); 319 return; 320 } 321 } 322 323 dev_info(&bp->pdev->dev, "invalid hw address, using random\n"); 324 eth_hw_addr_random(bp->dev); 325 } 326 327 static int macb_mdio_wait_for_idle(struct macb *bp) 328 { 329 u32 val; 330 331 return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE), 332 1, MACB_MDIO_TIMEOUT); 333 } 334 335 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 336 { 337 struct macb *bp = bus->priv; 338 int status; 339 340 status = pm_runtime_get_sync(&bp->pdev->dev); 341 if (status < 0) { 342 pm_runtime_put_noidle(&bp->pdev->dev); 343 goto mdio_pm_exit; 344 } 345 346 status = macb_mdio_wait_for_idle(bp); 347 if (status < 0) 348 goto mdio_read_exit; 349 350 if (regnum & MII_ADDR_C45) { 351 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 352 | MACB_BF(RW, MACB_MAN_C45_ADDR) 353 | MACB_BF(PHYA, mii_id) 354 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 355 | MACB_BF(DATA, regnum & 0xFFFF) 356 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 357 358 status = macb_mdio_wait_for_idle(bp); 359 if (status < 0) 360 goto mdio_read_exit; 361 362 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 363 | MACB_BF(RW, MACB_MAN_C45_READ) 364 | MACB_BF(PHYA, mii_id) 365 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 366 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 367 } else { 368 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 369 | MACB_BF(RW, MACB_MAN_C22_READ) 370 | MACB_BF(PHYA, mii_id) 371 | MACB_BF(REGA, regnum) 372 | MACB_BF(CODE, MACB_MAN_C22_CODE))); 373 } 374 375 status = macb_mdio_wait_for_idle(bp); 376 if (status < 0) 377 goto mdio_read_exit; 378 379 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 380 381 mdio_read_exit: 382 pm_runtime_mark_last_busy(&bp->pdev->dev); 383 pm_runtime_put_autosuspend(&bp->pdev->dev); 384 mdio_pm_exit: 385 return status; 386 } 387 388 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 389 u16 value) 390 { 391 struct macb *bp = bus->priv; 392 int status; 393 394 status = pm_runtime_get_sync(&bp->pdev->dev); 395 if (status < 0) { 396 pm_runtime_put_noidle(&bp->pdev->dev); 397 goto mdio_pm_exit; 398 } 399 400 status = macb_mdio_wait_for_idle(bp); 401 if (status < 0) 402 goto mdio_write_exit; 403 404 if (regnum & MII_ADDR_C45) { 405 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 406 | MACB_BF(RW, MACB_MAN_C45_ADDR) 407 | MACB_BF(PHYA, mii_id) 408 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 409 | MACB_BF(DATA, regnum & 0xFFFF) 410 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 411 412 status = macb_mdio_wait_for_idle(bp); 413 if (status < 0) 414 goto mdio_write_exit; 415 416 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 417 | MACB_BF(RW, MACB_MAN_C45_WRITE) 418 | MACB_BF(PHYA, mii_id) 419 | MACB_BF(REGA, (regnum >> 16) & 0x1F) 420 | MACB_BF(CODE, MACB_MAN_C45_CODE) 421 | MACB_BF(DATA, value))); 422 } else { 423 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 424 | MACB_BF(RW, MACB_MAN_C22_WRITE) 425 | MACB_BF(PHYA, mii_id) 426 | MACB_BF(REGA, regnum) 427 | MACB_BF(CODE, MACB_MAN_C22_CODE) 428 | MACB_BF(DATA, value))); 429 } 430 431 status = macb_mdio_wait_for_idle(bp); 432 if (status < 0) 433 goto mdio_write_exit; 434 435 mdio_write_exit: 436 pm_runtime_mark_last_busy(&bp->pdev->dev); 437 pm_runtime_put_autosuspend(&bp->pdev->dev); 438 mdio_pm_exit: 439 return status; 440 } 441 442 static void macb_init_buffers(struct macb *bp) 443 { 444 struct macb_queue *queue; 445 unsigned int q; 446 447 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 448 queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma)); 449 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 450 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 451 queue_writel(queue, RBQPH, 452 upper_32_bits(queue->rx_ring_dma)); 453 #endif 454 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 455 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 456 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 457 queue_writel(queue, TBQPH, 458 upper_32_bits(queue->tx_ring_dma)); 459 #endif 460 } 461 } 462 463 /** 464 * macb_set_tx_clk() - Set a clock to a new frequency 465 * @bp: pointer to struct macb 466 * @speed: New frequency in Hz 467 */ 468 static void macb_set_tx_clk(struct macb *bp, int speed) 469 { 470 long ferr, rate, rate_rounded; 471 472 if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG)) 473 return; 474 475 /* In case of MII the PHY is the clock master */ 476 if (bp->phy_interface == PHY_INTERFACE_MODE_MII) 477 return; 478 479 switch (speed) { 480 case SPEED_10: 481 rate = 2500000; 482 break; 483 case SPEED_100: 484 rate = 25000000; 485 break; 486 case SPEED_1000: 487 rate = 125000000; 488 break; 489 default: 490 return; 491 } 492 493 rate_rounded = clk_round_rate(bp->tx_clk, rate); 494 if (rate_rounded < 0) 495 return; 496 497 /* RGMII allows 50 ppm frequency error. Test and warn if this limit 498 * is not satisfied. 499 */ 500 ferr = abs(rate_rounded - rate); 501 ferr = DIV_ROUND_UP(ferr, rate / 100000); 502 if (ferr > 5) 503 netdev_warn(bp->dev, 504 "unable to generate target frequency: %ld Hz\n", 505 rate); 506 507 if (clk_set_rate(bp->tx_clk, rate_rounded)) 508 netdev_err(bp->dev, "adjusting tx_clk failed.\n"); 509 } 510 511 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode, 512 phy_interface_t interface, int speed, 513 int duplex) 514 { 515 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 516 u32 config; 517 518 config = gem_readl(bp, USX_CONTROL); 519 config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config); 520 config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config); 521 config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS)); 522 config |= GEM_BIT(TX_EN); 523 gem_writel(bp, USX_CONTROL, config); 524 } 525 526 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs, 527 struct phylink_link_state *state) 528 { 529 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 530 u32 val; 531 532 state->speed = SPEED_10000; 533 state->duplex = 1; 534 state->an_complete = 1; 535 536 val = gem_readl(bp, USX_STATUS); 537 state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK)); 538 val = gem_readl(bp, NCFGR); 539 if (val & GEM_BIT(PAE)) 540 state->pause = MLO_PAUSE_RX; 541 } 542 543 static int macb_usx_pcs_config(struct phylink_pcs *pcs, 544 unsigned int mode, 545 phy_interface_t interface, 546 const unsigned long *advertising, 547 bool permit_pause_to_mac) 548 { 549 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 550 551 gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) | 552 GEM_BIT(SIGNAL_OK)); 553 554 return 0; 555 } 556 557 static void macb_pcs_get_state(struct phylink_pcs *pcs, 558 struct phylink_link_state *state) 559 { 560 state->link = 0; 561 } 562 563 static void macb_pcs_an_restart(struct phylink_pcs *pcs) 564 { 565 /* Not supported */ 566 } 567 568 static int macb_pcs_config(struct phylink_pcs *pcs, 569 unsigned int mode, 570 phy_interface_t interface, 571 const unsigned long *advertising, 572 bool permit_pause_to_mac) 573 { 574 return 0; 575 } 576 577 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = { 578 .pcs_get_state = macb_usx_pcs_get_state, 579 .pcs_config = macb_usx_pcs_config, 580 .pcs_link_up = macb_usx_pcs_link_up, 581 }; 582 583 static const struct phylink_pcs_ops macb_phylink_pcs_ops = { 584 .pcs_get_state = macb_pcs_get_state, 585 .pcs_an_restart = macb_pcs_an_restart, 586 .pcs_config = macb_pcs_config, 587 }; 588 589 static void macb_mac_config(struct phylink_config *config, unsigned int mode, 590 const struct phylink_link_state *state) 591 { 592 struct net_device *ndev = to_net_dev(config->dev); 593 struct macb *bp = netdev_priv(ndev); 594 unsigned long flags; 595 u32 old_ctrl, ctrl; 596 u32 old_ncr, ncr; 597 598 spin_lock_irqsave(&bp->lock, flags); 599 600 old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR); 601 old_ncr = ncr = macb_or_gem_readl(bp, NCR); 602 603 if (bp->caps & MACB_CAPS_MACB_IS_EMAC) { 604 if (state->interface == PHY_INTERFACE_MODE_RMII) 605 ctrl |= MACB_BIT(RM9200_RMII); 606 } else if (macb_is_gem(bp)) { 607 ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL)); 608 ncr &= ~GEM_BIT(ENABLE_HS_MAC); 609 610 if (state->interface == PHY_INTERFACE_MODE_SGMII) { 611 ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 612 } else if (state->interface == PHY_INTERFACE_MODE_10GBASER) { 613 ctrl |= GEM_BIT(PCSSEL); 614 ncr |= GEM_BIT(ENABLE_HS_MAC); 615 } else if (bp->caps & MACB_CAPS_MIIONRGMII && 616 bp->phy_interface == PHY_INTERFACE_MODE_MII) { 617 ncr |= MACB_BIT(MIIONRGMII); 618 } 619 } 620 621 /* Apply the new configuration, if any */ 622 if (old_ctrl ^ ctrl) 623 macb_or_gem_writel(bp, NCFGR, ctrl); 624 625 if (old_ncr ^ ncr) 626 macb_or_gem_writel(bp, NCR, ncr); 627 628 /* Disable AN for SGMII fixed link configuration, enable otherwise. 629 * Must be written after PCSSEL is set in NCFGR, 630 * otherwise writes will not take effect. 631 */ 632 if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) { 633 u32 pcsctrl, old_pcsctrl; 634 635 old_pcsctrl = gem_readl(bp, PCSCNTRL); 636 if (mode == MLO_AN_FIXED) 637 pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG); 638 else 639 pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG); 640 if (old_pcsctrl != pcsctrl) 641 gem_writel(bp, PCSCNTRL, pcsctrl); 642 } 643 644 spin_unlock_irqrestore(&bp->lock, flags); 645 } 646 647 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode, 648 phy_interface_t interface) 649 { 650 struct net_device *ndev = to_net_dev(config->dev); 651 struct macb *bp = netdev_priv(ndev); 652 struct macb_queue *queue; 653 unsigned int q; 654 u32 ctrl; 655 656 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) 657 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 658 queue_writel(queue, IDR, 659 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 660 661 /* Disable Rx and Tx */ 662 ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE)); 663 macb_writel(bp, NCR, ctrl); 664 665 netif_tx_stop_all_queues(ndev); 666 } 667 668 static void macb_mac_link_up(struct phylink_config *config, 669 struct phy_device *phy, 670 unsigned int mode, phy_interface_t interface, 671 int speed, int duplex, 672 bool tx_pause, bool rx_pause) 673 { 674 struct net_device *ndev = to_net_dev(config->dev); 675 struct macb *bp = netdev_priv(ndev); 676 struct macb_queue *queue; 677 unsigned long flags; 678 unsigned int q; 679 u32 ctrl; 680 681 spin_lock_irqsave(&bp->lock, flags); 682 683 ctrl = macb_or_gem_readl(bp, NCFGR); 684 685 ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); 686 687 if (speed == SPEED_100) 688 ctrl |= MACB_BIT(SPD); 689 690 if (duplex) 691 ctrl |= MACB_BIT(FD); 692 693 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) { 694 ctrl &= ~MACB_BIT(PAE); 695 if (macb_is_gem(bp)) { 696 ctrl &= ~GEM_BIT(GBE); 697 698 if (speed == SPEED_1000) 699 ctrl |= GEM_BIT(GBE); 700 } 701 702 if (rx_pause) 703 ctrl |= MACB_BIT(PAE); 704 705 macb_set_tx_clk(bp, speed); 706 707 /* Initialize rings & buffers as clearing MACB_BIT(TE) in link down 708 * cleared the pipeline and control registers. 709 */ 710 bp->macbgem_ops.mog_init_rings(bp); 711 macb_init_buffers(bp); 712 713 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 714 queue_writel(queue, IER, 715 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 716 } 717 718 macb_or_gem_writel(bp, NCFGR, ctrl); 719 720 if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER) 721 gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M, 722 gem_readl(bp, HS_MAC_CONFIG))); 723 724 spin_unlock_irqrestore(&bp->lock, flags); 725 726 /* Enable Rx and Tx */ 727 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE)); 728 729 netif_tx_wake_all_queues(ndev); 730 } 731 732 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config, 733 phy_interface_t interface) 734 { 735 struct net_device *ndev = to_net_dev(config->dev); 736 struct macb *bp = netdev_priv(ndev); 737 738 if (interface == PHY_INTERFACE_MODE_10GBASER) 739 return &bp->phylink_usx_pcs; 740 else if (interface == PHY_INTERFACE_MODE_SGMII) 741 return &bp->phylink_sgmii_pcs; 742 else 743 return NULL; 744 } 745 746 static const struct phylink_mac_ops macb_phylink_ops = { 747 .validate = phylink_generic_validate, 748 .mac_select_pcs = macb_mac_select_pcs, 749 .mac_config = macb_mac_config, 750 .mac_link_down = macb_mac_link_down, 751 .mac_link_up = macb_mac_link_up, 752 }; 753 754 static bool macb_phy_handle_exists(struct device_node *dn) 755 { 756 dn = of_parse_phandle(dn, "phy-handle", 0); 757 of_node_put(dn); 758 return dn != NULL; 759 } 760 761 static int macb_phylink_connect(struct macb *bp) 762 { 763 struct device_node *dn = bp->pdev->dev.of_node; 764 struct net_device *dev = bp->dev; 765 struct phy_device *phydev; 766 int ret; 767 768 if (dn) 769 ret = phylink_of_phy_connect(bp->phylink, dn, 0); 770 771 if (!dn || (ret && !macb_phy_handle_exists(dn))) { 772 phydev = phy_find_first(bp->mii_bus); 773 if (!phydev) { 774 netdev_err(dev, "no PHY found\n"); 775 return -ENXIO; 776 } 777 778 /* attach the mac to the phy */ 779 ret = phylink_connect_phy(bp->phylink, phydev); 780 } 781 782 if (ret) { 783 netdev_err(dev, "Could not attach PHY (%d)\n", ret); 784 return ret; 785 } 786 787 phylink_start(bp->phylink); 788 789 return 0; 790 } 791 792 static void macb_get_pcs_fixed_state(struct phylink_config *config, 793 struct phylink_link_state *state) 794 { 795 struct net_device *ndev = to_net_dev(config->dev); 796 struct macb *bp = netdev_priv(ndev); 797 798 state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0; 799 } 800 801 /* based on au1000_eth. c*/ 802 static int macb_mii_probe(struct net_device *dev) 803 { 804 struct macb *bp = netdev_priv(dev); 805 806 bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops; 807 bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops; 808 809 bp->phylink_config.dev = &dev->dev; 810 bp->phylink_config.type = PHYLINK_NETDEV; 811 812 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 813 bp->phylink_config.poll_fixed_state = true; 814 bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state; 815 } 816 817 bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | 818 MAC_10 | MAC_100; 819 820 __set_bit(PHY_INTERFACE_MODE_MII, 821 bp->phylink_config.supported_interfaces); 822 __set_bit(PHY_INTERFACE_MODE_RMII, 823 bp->phylink_config.supported_interfaces); 824 825 /* Determine what modes are supported */ 826 if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) { 827 bp->phylink_config.mac_capabilities |= MAC_1000FD; 828 if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF)) 829 bp->phylink_config.mac_capabilities |= MAC_1000HD; 830 831 __set_bit(PHY_INTERFACE_MODE_GMII, 832 bp->phylink_config.supported_interfaces); 833 phy_interface_set_rgmii(bp->phylink_config.supported_interfaces); 834 835 if (bp->caps & MACB_CAPS_PCS) 836 __set_bit(PHY_INTERFACE_MODE_SGMII, 837 bp->phylink_config.supported_interfaces); 838 839 if (bp->caps & MACB_CAPS_HIGH_SPEED) { 840 __set_bit(PHY_INTERFACE_MODE_10GBASER, 841 bp->phylink_config.supported_interfaces); 842 bp->phylink_config.mac_capabilities |= MAC_10000FD; 843 } 844 } 845 846 bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode, 847 bp->phy_interface, &macb_phylink_ops); 848 if (IS_ERR(bp->phylink)) { 849 netdev_err(dev, "Could not create a phylink instance (%ld)\n", 850 PTR_ERR(bp->phylink)); 851 return PTR_ERR(bp->phylink); 852 } 853 854 return 0; 855 } 856 857 static int macb_mdiobus_register(struct macb *bp) 858 { 859 struct device_node *child, *np = bp->pdev->dev.of_node; 860 861 /* If we have a child named mdio, probe it instead of looking for PHYs 862 * directly under the MAC node 863 */ 864 child = of_get_child_by_name(np, "mdio"); 865 if (child) { 866 int ret = of_mdiobus_register(bp->mii_bus, child); 867 868 of_node_put(child); 869 return ret; 870 } 871 872 if (of_phy_is_fixed_link(np)) 873 return mdiobus_register(bp->mii_bus); 874 875 /* Only create the PHY from the device tree if at least one PHY is 876 * described. Otherwise scan the entire MDIO bus. We do this to support 877 * old device tree that did not follow the best practices and did not 878 * describe their network PHYs. 879 */ 880 for_each_available_child_of_node(np, child) 881 if (of_mdiobus_child_is_phy(child)) { 882 /* The loop increments the child refcount, 883 * decrement it before returning. 884 */ 885 of_node_put(child); 886 887 return of_mdiobus_register(bp->mii_bus, np); 888 } 889 890 return mdiobus_register(bp->mii_bus); 891 } 892 893 static int macb_mii_init(struct macb *bp) 894 { 895 int err = -ENXIO; 896 897 /* Enable management port */ 898 macb_writel(bp, NCR, MACB_BIT(MPE)); 899 900 bp->mii_bus = mdiobus_alloc(); 901 if (!bp->mii_bus) { 902 err = -ENOMEM; 903 goto err_out; 904 } 905 906 bp->mii_bus->name = "MACB_mii_bus"; 907 bp->mii_bus->read = &macb_mdio_read; 908 bp->mii_bus->write = &macb_mdio_write; 909 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 910 bp->pdev->name, bp->pdev->id); 911 bp->mii_bus->priv = bp; 912 bp->mii_bus->parent = &bp->pdev->dev; 913 914 dev_set_drvdata(&bp->dev->dev, bp->mii_bus); 915 916 err = macb_mdiobus_register(bp); 917 if (err) 918 goto err_out_free_mdiobus; 919 920 err = macb_mii_probe(bp->dev); 921 if (err) 922 goto err_out_unregister_bus; 923 924 return 0; 925 926 err_out_unregister_bus: 927 mdiobus_unregister(bp->mii_bus); 928 err_out_free_mdiobus: 929 mdiobus_free(bp->mii_bus); 930 err_out: 931 return err; 932 } 933 934 static void macb_update_stats(struct macb *bp) 935 { 936 u32 *p = &bp->hw_stats.macb.rx_pause_frames; 937 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1; 938 int offset = MACB_PFR; 939 940 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4); 941 942 for (; p < end; p++, offset += 4) 943 *p += bp->macb_reg_readl(bp, offset); 944 } 945 946 static int macb_halt_tx(struct macb *bp) 947 { 948 unsigned long halt_time, timeout; 949 u32 status; 950 951 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT)); 952 953 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT); 954 do { 955 halt_time = jiffies; 956 status = macb_readl(bp, TSR); 957 if (!(status & MACB_BIT(TGO))) 958 return 0; 959 960 udelay(250); 961 } while (time_before(halt_time, timeout)); 962 963 return -ETIMEDOUT; 964 } 965 966 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb) 967 { 968 if (tx_skb->mapping) { 969 if (tx_skb->mapped_as_page) 970 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping, 971 tx_skb->size, DMA_TO_DEVICE); 972 else 973 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping, 974 tx_skb->size, DMA_TO_DEVICE); 975 tx_skb->mapping = 0; 976 } 977 978 if (tx_skb->skb) { 979 dev_kfree_skb_any(tx_skb->skb); 980 tx_skb->skb = NULL; 981 } 982 } 983 984 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr) 985 { 986 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 987 struct macb_dma_desc_64 *desc_64; 988 989 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 990 desc_64 = macb_64b_desc(bp, desc); 991 desc_64->addrh = upper_32_bits(addr); 992 /* The low bits of RX address contain the RX_USED bit, clearing 993 * of which allows packet RX. Make sure the high bits are also 994 * visible to HW at that point. 995 */ 996 dma_wmb(); 997 } 998 #endif 999 desc->addr = lower_32_bits(addr); 1000 } 1001 1002 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc) 1003 { 1004 dma_addr_t addr = 0; 1005 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1006 struct macb_dma_desc_64 *desc_64; 1007 1008 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1009 desc_64 = macb_64b_desc(bp, desc); 1010 addr = ((u64)(desc_64->addrh) << 32); 1011 } 1012 #endif 1013 addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr)); 1014 return addr; 1015 } 1016 1017 static void macb_tx_error_task(struct work_struct *work) 1018 { 1019 struct macb_queue *queue = container_of(work, struct macb_queue, 1020 tx_error_task); 1021 struct macb *bp = queue->bp; 1022 struct macb_tx_skb *tx_skb; 1023 struct macb_dma_desc *desc; 1024 struct sk_buff *skb; 1025 unsigned int tail; 1026 unsigned long flags; 1027 1028 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n", 1029 (unsigned int)(queue - bp->queues), 1030 queue->tx_tail, queue->tx_head); 1031 1032 /* Prevent the queue IRQ handlers from running: each of them may call 1033 * macb_tx_interrupt(), which in turn may call netif_wake_subqueue(). 1034 * As explained below, we have to halt the transmission before updating 1035 * TBQP registers so we call netif_tx_stop_all_queues() to notify the 1036 * network engine about the macb/gem being halted. 1037 */ 1038 spin_lock_irqsave(&bp->lock, flags); 1039 1040 /* Make sure nobody is trying to queue up new packets */ 1041 netif_tx_stop_all_queues(bp->dev); 1042 1043 /* Stop transmission now 1044 * (in case we have just queued new packets) 1045 * macb/gem must be halted to write TBQP register 1046 */ 1047 if (macb_halt_tx(bp)) 1048 /* Just complain for now, reinitializing TX path can be good */ 1049 netdev_err(bp->dev, "BUG: halt tx timed out\n"); 1050 1051 /* Treat frames in TX queue including the ones that caused the error. 1052 * Free transmit buffers in upper layer. 1053 */ 1054 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) { 1055 u32 ctrl; 1056 1057 desc = macb_tx_desc(queue, tail); 1058 ctrl = desc->ctrl; 1059 tx_skb = macb_tx_skb(queue, tail); 1060 skb = tx_skb->skb; 1061 1062 if (ctrl & MACB_BIT(TX_USED)) { 1063 /* skb is set for the last buffer of the frame */ 1064 while (!skb) { 1065 macb_tx_unmap(bp, tx_skb); 1066 tail++; 1067 tx_skb = macb_tx_skb(queue, tail); 1068 skb = tx_skb->skb; 1069 } 1070 1071 /* ctrl still refers to the first buffer descriptor 1072 * since it's the only one written back by the hardware 1073 */ 1074 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) { 1075 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n", 1076 macb_tx_ring_wrap(bp, tail), 1077 skb->data); 1078 bp->dev->stats.tx_packets++; 1079 queue->stats.tx_packets++; 1080 bp->dev->stats.tx_bytes += skb->len; 1081 queue->stats.tx_bytes += skb->len; 1082 } 1083 } else { 1084 /* "Buffers exhausted mid-frame" errors may only happen 1085 * if the driver is buggy, so complain loudly about 1086 * those. Statistics are updated by hardware. 1087 */ 1088 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED)) 1089 netdev_err(bp->dev, 1090 "BUG: TX buffers exhausted mid-frame\n"); 1091 1092 desc->ctrl = ctrl | MACB_BIT(TX_USED); 1093 } 1094 1095 macb_tx_unmap(bp, tx_skb); 1096 } 1097 1098 /* Set end of TX queue */ 1099 desc = macb_tx_desc(queue, 0); 1100 macb_set_addr(bp, desc, 0); 1101 desc->ctrl = MACB_BIT(TX_USED); 1102 1103 /* Make descriptor updates visible to hardware */ 1104 wmb(); 1105 1106 /* Reinitialize the TX desc queue */ 1107 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 1108 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1109 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 1110 queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma)); 1111 #endif 1112 /* Make TX ring reflect state of hardware */ 1113 queue->tx_head = 0; 1114 queue->tx_tail = 0; 1115 1116 /* Housework before enabling TX IRQ */ 1117 macb_writel(bp, TSR, macb_readl(bp, TSR)); 1118 queue_writel(queue, IER, MACB_TX_INT_FLAGS); 1119 1120 /* Now we are ready to start transmission again */ 1121 netif_tx_start_all_queues(bp->dev); 1122 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1123 1124 spin_unlock_irqrestore(&bp->lock, flags); 1125 } 1126 1127 static void macb_tx_interrupt(struct macb_queue *queue) 1128 { 1129 unsigned int tail; 1130 unsigned int head; 1131 u32 status; 1132 struct macb *bp = queue->bp; 1133 u16 queue_index = queue - bp->queues; 1134 1135 status = macb_readl(bp, TSR); 1136 macb_writel(bp, TSR, status); 1137 1138 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1139 queue_writel(queue, ISR, MACB_BIT(TCOMP)); 1140 1141 netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n", 1142 (unsigned long)status); 1143 1144 head = queue->tx_head; 1145 for (tail = queue->tx_tail; tail != head; tail++) { 1146 struct macb_tx_skb *tx_skb; 1147 struct sk_buff *skb; 1148 struct macb_dma_desc *desc; 1149 u32 ctrl; 1150 1151 desc = macb_tx_desc(queue, tail); 1152 1153 /* Make hw descriptor updates visible to CPU */ 1154 rmb(); 1155 1156 ctrl = desc->ctrl; 1157 1158 /* TX_USED bit is only set by hardware on the very first buffer 1159 * descriptor of the transmitted frame. 1160 */ 1161 if (!(ctrl & MACB_BIT(TX_USED))) 1162 break; 1163 1164 /* Process all buffers of the current transmitted frame */ 1165 for (;; tail++) { 1166 tx_skb = macb_tx_skb(queue, tail); 1167 skb = tx_skb->skb; 1168 1169 /* First, update TX stats if needed */ 1170 if (skb) { 1171 if (unlikely(skb_shinfo(skb)->tx_flags & 1172 SKBTX_HW_TSTAMP) && 1173 gem_ptp_do_txstamp(queue, skb, desc) == 0) { 1174 /* skb now belongs to timestamp buffer 1175 * and will be removed later 1176 */ 1177 tx_skb->skb = NULL; 1178 } 1179 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n", 1180 macb_tx_ring_wrap(bp, tail), 1181 skb->data); 1182 bp->dev->stats.tx_packets++; 1183 queue->stats.tx_packets++; 1184 bp->dev->stats.tx_bytes += skb->len; 1185 queue->stats.tx_bytes += skb->len; 1186 } 1187 1188 /* Now we can safely release resources */ 1189 macb_tx_unmap(bp, tx_skb); 1190 1191 /* skb is set only for the last buffer of the frame. 1192 * WARNING: at this point skb has been freed by 1193 * macb_tx_unmap(). 1194 */ 1195 if (skb) 1196 break; 1197 } 1198 } 1199 1200 queue->tx_tail = tail; 1201 if (__netif_subqueue_stopped(bp->dev, queue_index) && 1202 CIRC_CNT(queue->tx_head, queue->tx_tail, 1203 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp)) 1204 netif_wake_subqueue(bp->dev, queue_index); 1205 } 1206 1207 static void gem_rx_refill(struct macb_queue *queue) 1208 { 1209 unsigned int entry; 1210 struct sk_buff *skb; 1211 dma_addr_t paddr; 1212 struct macb *bp = queue->bp; 1213 struct macb_dma_desc *desc; 1214 1215 while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail, 1216 bp->rx_ring_size) > 0) { 1217 entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head); 1218 1219 /* Make hw descriptor updates visible to CPU */ 1220 rmb(); 1221 1222 queue->rx_prepared_head++; 1223 desc = macb_rx_desc(queue, entry); 1224 1225 if (!queue->rx_skbuff[entry]) { 1226 /* allocate sk_buff for this free entry in ring */ 1227 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size); 1228 if (unlikely(!skb)) { 1229 netdev_err(bp->dev, 1230 "Unable to allocate sk_buff\n"); 1231 break; 1232 } 1233 1234 /* now fill corresponding descriptor entry */ 1235 paddr = dma_map_single(&bp->pdev->dev, skb->data, 1236 bp->rx_buffer_size, 1237 DMA_FROM_DEVICE); 1238 if (dma_mapping_error(&bp->pdev->dev, paddr)) { 1239 dev_kfree_skb(skb); 1240 break; 1241 } 1242 1243 queue->rx_skbuff[entry] = skb; 1244 1245 if (entry == bp->rx_ring_size - 1) 1246 paddr |= MACB_BIT(RX_WRAP); 1247 desc->ctrl = 0; 1248 /* Setting addr clears RX_USED and allows reception, 1249 * make sure ctrl is cleared first to avoid a race. 1250 */ 1251 dma_wmb(); 1252 macb_set_addr(bp, desc, paddr); 1253 1254 /* properly align Ethernet header */ 1255 skb_reserve(skb, NET_IP_ALIGN); 1256 } else { 1257 desc->ctrl = 0; 1258 dma_wmb(); 1259 desc->addr &= ~MACB_BIT(RX_USED); 1260 } 1261 } 1262 1263 /* Make descriptor updates visible to hardware */ 1264 wmb(); 1265 1266 netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n", 1267 queue, queue->rx_prepared_head, queue->rx_tail); 1268 } 1269 1270 /* Mark DMA descriptors from begin up to and not including end as unused */ 1271 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin, 1272 unsigned int end) 1273 { 1274 unsigned int frag; 1275 1276 for (frag = begin; frag != end; frag++) { 1277 struct macb_dma_desc *desc = macb_rx_desc(queue, frag); 1278 1279 desc->addr &= ~MACB_BIT(RX_USED); 1280 } 1281 1282 /* Make descriptor updates visible to hardware */ 1283 wmb(); 1284 1285 /* When this happens, the hardware stats registers for 1286 * whatever caused this is updated, so we don't have to record 1287 * anything. 1288 */ 1289 } 1290 1291 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi, 1292 int budget) 1293 { 1294 struct macb *bp = queue->bp; 1295 unsigned int len; 1296 unsigned int entry; 1297 struct sk_buff *skb; 1298 struct macb_dma_desc *desc; 1299 int count = 0; 1300 1301 while (count < budget) { 1302 u32 ctrl; 1303 dma_addr_t addr; 1304 bool rxused; 1305 1306 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1307 desc = macb_rx_desc(queue, entry); 1308 1309 /* Make hw descriptor updates visible to CPU */ 1310 rmb(); 1311 1312 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false; 1313 addr = macb_get_addr(bp, desc); 1314 1315 if (!rxused) 1316 break; 1317 1318 /* Ensure ctrl is at least as up-to-date as rxused */ 1319 dma_rmb(); 1320 1321 ctrl = desc->ctrl; 1322 1323 queue->rx_tail++; 1324 count++; 1325 1326 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) { 1327 netdev_err(bp->dev, 1328 "not whole frame pointed by descriptor\n"); 1329 bp->dev->stats.rx_dropped++; 1330 queue->stats.rx_dropped++; 1331 break; 1332 } 1333 skb = queue->rx_skbuff[entry]; 1334 if (unlikely(!skb)) { 1335 netdev_err(bp->dev, 1336 "inconsistent Rx descriptor chain\n"); 1337 bp->dev->stats.rx_dropped++; 1338 queue->stats.rx_dropped++; 1339 break; 1340 } 1341 /* now everything is ready for receiving packet */ 1342 queue->rx_skbuff[entry] = NULL; 1343 len = ctrl & bp->rx_frm_len_mask; 1344 1345 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len); 1346 1347 skb_put(skb, len); 1348 dma_unmap_single(&bp->pdev->dev, addr, 1349 bp->rx_buffer_size, DMA_FROM_DEVICE); 1350 1351 skb->protocol = eth_type_trans(skb, bp->dev); 1352 skb_checksum_none_assert(skb); 1353 if (bp->dev->features & NETIF_F_RXCSUM && 1354 !(bp->dev->flags & IFF_PROMISC) && 1355 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK) 1356 skb->ip_summed = CHECKSUM_UNNECESSARY; 1357 1358 bp->dev->stats.rx_packets++; 1359 queue->stats.rx_packets++; 1360 bp->dev->stats.rx_bytes += skb->len; 1361 queue->stats.rx_bytes += skb->len; 1362 1363 gem_ptp_do_rxstamp(bp, skb, desc); 1364 1365 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 1366 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1367 skb->len, skb->csum); 1368 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1, 1369 skb_mac_header(skb), 16, true); 1370 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1, 1371 skb->data, 32, true); 1372 #endif 1373 1374 napi_gro_receive(napi, skb); 1375 } 1376 1377 gem_rx_refill(queue); 1378 1379 return count; 1380 } 1381 1382 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi, 1383 unsigned int first_frag, unsigned int last_frag) 1384 { 1385 unsigned int len; 1386 unsigned int frag; 1387 unsigned int offset; 1388 struct sk_buff *skb; 1389 struct macb_dma_desc *desc; 1390 struct macb *bp = queue->bp; 1391 1392 desc = macb_rx_desc(queue, last_frag); 1393 len = desc->ctrl & bp->rx_frm_len_mask; 1394 1395 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n", 1396 macb_rx_ring_wrap(bp, first_frag), 1397 macb_rx_ring_wrap(bp, last_frag), len); 1398 1399 /* The ethernet header starts NET_IP_ALIGN bytes into the 1400 * first buffer. Since the header is 14 bytes, this makes the 1401 * payload word-aligned. 1402 * 1403 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy 1404 * the two padding bytes into the skb so that we avoid hitting 1405 * the slowpath in memcpy(), and pull them off afterwards. 1406 */ 1407 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN); 1408 if (!skb) { 1409 bp->dev->stats.rx_dropped++; 1410 for (frag = first_frag; ; frag++) { 1411 desc = macb_rx_desc(queue, frag); 1412 desc->addr &= ~MACB_BIT(RX_USED); 1413 if (frag == last_frag) 1414 break; 1415 } 1416 1417 /* Make descriptor updates visible to hardware */ 1418 wmb(); 1419 1420 return 1; 1421 } 1422 1423 offset = 0; 1424 len += NET_IP_ALIGN; 1425 skb_checksum_none_assert(skb); 1426 skb_put(skb, len); 1427 1428 for (frag = first_frag; ; frag++) { 1429 unsigned int frag_len = bp->rx_buffer_size; 1430 1431 if (offset + frag_len > len) { 1432 if (unlikely(frag != last_frag)) { 1433 dev_kfree_skb_any(skb); 1434 return -1; 1435 } 1436 frag_len = len - offset; 1437 } 1438 skb_copy_to_linear_data_offset(skb, offset, 1439 macb_rx_buffer(queue, frag), 1440 frag_len); 1441 offset += bp->rx_buffer_size; 1442 desc = macb_rx_desc(queue, frag); 1443 desc->addr &= ~MACB_BIT(RX_USED); 1444 1445 if (frag == last_frag) 1446 break; 1447 } 1448 1449 /* Make descriptor updates visible to hardware */ 1450 wmb(); 1451 1452 __skb_pull(skb, NET_IP_ALIGN); 1453 skb->protocol = eth_type_trans(skb, bp->dev); 1454 1455 bp->dev->stats.rx_packets++; 1456 bp->dev->stats.rx_bytes += skb->len; 1457 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1458 skb->len, skb->csum); 1459 napi_gro_receive(napi, skb); 1460 1461 return 0; 1462 } 1463 1464 static inline void macb_init_rx_ring(struct macb_queue *queue) 1465 { 1466 struct macb *bp = queue->bp; 1467 dma_addr_t addr; 1468 struct macb_dma_desc *desc = NULL; 1469 int i; 1470 1471 addr = queue->rx_buffers_dma; 1472 for (i = 0; i < bp->rx_ring_size; i++) { 1473 desc = macb_rx_desc(queue, i); 1474 macb_set_addr(bp, desc, addr); 1475 desc->ctrl = 0; 1476 addr += bp->rx_buffer_size; 1477 } 1478 desc->addr |= MACB_BIT(RX_WRAP); 1479 queue->rx_tail = 0; 1480 } 1481 1482 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi, 1483 int budget) 1484 { 1485 struct macb *bp = queue->bp; 1486 bool reset_rx_queue = false; 1487 int received = 0; 1488 unsigned int tail; 1489 int first_frag = -1; 1490 1491 for (tail = queue->rx_tail; budget > 0; tail++) { 1492 struct macb_dma_desc *desc = macb_rx_desc(queue, tail); 1493 u32 ctrl; 1494 1495 /* Make hw descriptor updates visible to CPU */ 1496 rmb(); 1497 1498 if (!(desc->addr & MACB_BIT(RX_USED))) 1499 break; 1500 1501 /* Ensure ctrl is at least as up-to-date as addr */ 1502 dma_rmb(); 1503 1504 ctrl = desc->ctrl; 1505 1506 if (ctrl & MACB_BIT(RX_SOF)) { 1507 if (first_frag != -1) 1508 discard_partial_frame(queue, first_frag, tail); 1509 first_frag = tail; 1510 } 1511 1512 if (ctrl & MACB_BIT(RX_EOF)) { 1513 int dropped; 1514 1515 if (unlikely(first_frag == -1)) { 1516 reset_rx_queue = true; 1517 continue; 1518 } 1519 1520 dropped = macb_rx_frame(queue, napi, first_frag, tail); 1521 first_frag = -1; 1522 if (unlikely(dropped < 0)) { 1523 reset_rx_queue = true; 1524 continue; 1525 } 1526 if (!dropped) { 1527 received++; 1528 budget--; 1529 } 1530 } 1531 } 1532 1533 if (unlikely(reset_rx_queue)) { 1534 unsigned long flags; 1535 u32 ctrl; 1536 1537 netdev_err(bp->dev, "RX queue corruption: reset it\n"); 1538 1539 spin_lock_irqsave(&bp->lock, flags); 1540 1541 ctrl = macb_readl(bp, NCR); 1542 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1543 1544 macb_init_rx_ring(queue); 1545 queue_writel(queue, RBQP, queue->rx_ring_dma); 1546 1547 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1548 1549 spin_unlock_irqrestore(&bp->lock, flags); 1550 return received; 1551 } 1552 1553 if (first_frag != -1) 1554 queue->rx_tail = first_frag; 1555 else 1556 queue->rx_tail = tail; 1557 1558 return received; 1559 } 1560 1561 static int macb_poll(struct napi_struct *napi, int budget) 1562 { 1563 struct macb_queue *queue = container_of(napi, struct macb_queue, napi); 1564 struct macb *bp = queue->bp; 1565 int work_done; 1566 u32 status; 1567 1568 status = macb_readl(bp, RSR); 1569 macb_writel(bp, RSR, status); 1570 1571 netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n", 1572 (unsigned long)status, budget); 1573 1574 work_done = bp->macbgem_ops.mog_rx(queue, napi, budget); 1575 if (work_done < budget) { 1576 napi_complete_done(napi, work_done); 1577 1578 /* RSR bits only seem to propagate to raise interrupts when 1579 * interrupts are enabled at the time, so if bits are already 1580 * set due to packets received while interrupts were disabled, 1581 * they will not cause another interrupt to be generated when 1582 * interrupts are re-enabled. 1583 * Check for this case here. This has been seen to happen 1584 * around 30% of the time under heavy network load. 1585 */ 1586 status = macb_readl(bp, RSR); 1587 if (status) { 1588 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1589 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1590 napi_reschedule(napi); 1591 } else { 1592 queue_writel(queue, IER, bp->rx_intr_mask); 1593 1594 /* In rare cases, packets could have been received in 1595 * the window between the check above and re-enabling 1596 * interrupts. Therefore, a double-check is required 1597 * to avoid losing a wakeup. This can potentially race 1598 * with the interrupt handler doing the same actions 1599 * if an interrupt is raised just after enabling them, 1600 * but this should be harmless. 1601 */ 1602 status = macb_readl(bp, RSR); 1603 if (unlikely(status)) { 1604 queue_writel(queue, IDR, bp->rx_intr_mask); 1605 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1606 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1607 napi_schedule(napi); 1608 } 1609 } 1610 } 1611 1612 /* TODO: Handle errors */ 1613 1614 return work_done; 1615 } 1616 1617 static void macb_hresp_error_task(struct tasklet_struct *t) 1618 { 1619 struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet); 1620 struct net_device *dev = bp->dev; 1621 struct macb_queue *queue; 1622 unsigned int q; 1623 u32 ctrl; 1624 1625 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 1626 queue_writel(queue, IDR, bp->rx_intr_mask | 1627 MACB_TX_INT_FLAGS | 1628 MACB_BIT(HRESP)); 1629 } 1630 ctrl = macb_readl(bp, NCR); 1631 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 1632 macb_writel(bp, NCR, ctrl); 1633 1634 netif_tx_stop_all_queues(dev); 1635 netif_carrier_off(dev); 1636 1637 bp->macbgem_ops.mog_init_rings(bp); 1638 1639 /* Initialize TX and RX buffers */ 1640 macb_init_buffers(bp); 1641 1642 /* Enable interrupts */ 1643 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1644 queue_writel(queue, IER, 1645 bp->rx_intr_mask | 1646 MACB_TX_INT_FLAGS | 1647 MACB_BIT(HRESP)); 1648 1649 ctrl |= MACB_BIT(RE) | MACB_BIT(TE); 1650 macb_writel(bp, NCR, ctrl); 1651 1652 netif_carrier_on(dev); 1653 netif_tx_start_all_queues(dev); 1654 } 1655 1656 static void macb_tx_restart(struct macb_queue *queue) 1657 { 1658 unsigned int head = queue->tx_head; 1659 unsigned int tail = queue->tx_tail; 1660 struct macb *bp = queue->bp; 1661 1662 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1663 queue_writel(queue, ISR, MACB_BIT(TXUBR)); 1664 1665 if (head == tail) 1666 return; 1667 1668 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1669 } 1670 1671 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id) 1672 { 1673 struct macb_queue *queue = dev_id; 1674 struct macb *bp = queue->bp; 1675 u32 status; 1676 1677 status = queue_readl(queue, ISR); 1678 1679 if (unlikely(!status)) 1680 return IRQ_NONE; 1681 1682 spin_lock(&bp->lock); 1683 1684 if (status & MACB_BIT(WOL)) { 1685 queue_writel(queue, IDR, MACB_BIT(WOL)); 1686 macb_writel(bp, WOL, 0); 1687 netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n", 1688 (unsigned int)(queue - bp->queues), 1689 (unsigned long)status); 1690 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1691 queue_writel(queue, ISR, MACB_BIT(WOL)); 1692 pm_wakeup_event(&bp->pdev->dev, 0); 1693 } 1694 1695 spin_unlock(&bp->lock); 1696 1697 return IRQ_HANDLED; 1698 } 1699 1700 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id) 1701 { 1702 struct macb_queue *queue = dev_id; 1703 struct macb *bp = queue->bp; 1704 u32 status; 1705 1706 status = queue_readl(queue, ISR); 1707 1708 if (unlikely(!status)) 1709 return IRQ_NONE; 1710 1711 spin_lock(&bp->lock); 1712 1713 if (status & GEM_BIT(WOL)) { 1714 queue_writel(queue, IDR, GEM_BIT(WOL)); 1715 gem_writel(bp, WOL, 0); 1716 netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n", 1717 (unsigned int)(queue - bp->queues), 1718 (unsigned long)status); 1719 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1720 queue_writel(queue, ISR, GEM_BIT(WOL)); 1721 pm_wakeup_event(&bp->pdev->dev, 0); 1722 } 1723 1724 spin_unlock(&bp->lock); 1725 1726 return IRQ_HANDLED; 1727 } 1728 1729 static irqreturn_t macb_interrupt(int irq, void *dev_id) 1730 { 1731 struct macb_queue *queue = dev_id; 1732 struct macb *bp = queue->bp; 1733 struct net_device *dev = bp->dev; 1734 u32 status, ctrl; 1735 1736 status = queue_readl(queue, ISR); 1737 1738 if (unlikely(!status)) 1739 return IRQ_NONE; 1740 1741 spin_lock(&bp->lock); 1742 1743 while (status) { 1744 /* close possible race with dev_close */ 1745 if (unlikely(!netif_running(dev))) { 1746 queue_writel(queue, IDR, -1); 1747 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1748 queue_writel(queue, ISR, -1); 1749 break; 1750 } 1751 1752 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n", 1753 (unsigned int)(queue - bp->queues), 1754 (unsigned long)status); 1755 1756 if (status & bp->rx_intr_mask) { 1757 /* There's no point taking any more interrupts 1758 * until we have processed the buffers. The 1759 * scheduling call may fail if the poll routine 1760 * is already scheduled, so disable interrupts 1761 * now. 1762 */ 1763 queue_writel(queue, IDR, bp->rx_intr_mask); 1764 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1765 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1766 1767 if (napi_schedule_prep(&queue->napi)) { 1768 netdev_vdbg(bp->dev, "scheduling RX softirq\n"); 1769 __napi_schedule(&queue->napi); 1770 } 1771 } 1772 1773 if (unlikely(status & (MACB_TX_ERR_FLAGS))) { 1774 queue_writel(queue, IDR, MACB_TX_INT_FLAGS); 1775 schedule_work(&queue->tx_error_task); 1776 1777 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1778 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS); 1779 1780 break; 1781 } 1782 1783 if (status & MACB_BIT(TCOMP)) 1784 macb_tx_interrupt(queue); 1785 1786 if (status & MACB_BIT(TXUBR)) 1787 macb_tx_restart(queue); 1788 1789 /* Link change detection isn't possible with RMII, so we'll 1790 * add that if/when we get our hands on a full-blown MII PHY. 1791 */ 1792 1793 /* There is a hardware issue under heavy load where DMA can 1794 * stop, this causes endless "used buffer descriptor read" 1795 * interrupts but it can be cleared by re-enabling RX. See 1796 * the at91rm9200 manual, section 41.3.1 or the Zynq manual 1797 * section 16.7.4 for details. RXUBR is only enabled for 1798 * these two versions. 1799 */ 1800 if (status & MACB_BIT(RXUBR)) { 1801 ctrl = macb_readl(bp, NCR); 1802 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1803 wmb(); 1804 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1805 1806 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1807 queue_writel(queue, ISR, MACB_BIT(RXUBR)); 1808 } 1809 1810 if (status & MACB_BIT(ISR_ROVR)) { 1811 /* We missed at least one packet */ 1812 if (macb_is_gem(bp)) 1813 bp->hw_stats.gem.rx_overruns++; 1814 else 1815 bp->hw_stats.macb.rx_overruns++; 1816 1817 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1818 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR)); 1819 } 1820 1821 if (status & MACB_BIT(HRESP)) { 1822 tasklet_schedule(&bp->hresp_err_tasklet); 1823 netdev_err(dev, "DMA bus error: HRESP not OK\n"); 1824 1825 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1826 queue_writel(queue, ISR, MACB_BIT(HRESP)); 1827 } 1828 status = queue_readl(queue, ISR); 1829 } 1830 1831 spin_unlock(&bp->lock); 1832 1833 return IRQ_HANDLED; 1834 } 1835 1836 #ifdef CONFIG_NET_POLL_CONTROLLER 1837 /* Polling receive - used by netconsole and other diagnostic tools 1838 * to allow network i/o with interrupts disabled. 1839 */ 1840 static void macb_poll_controller(struct net_device *dev) 1841 { 1842 struct macb *bp = netdev_priv(dev); 1843 struct macb_queue *queue; 1844 unsigned long flags; 1845 unsigned int q; 1846 1847 local_irq_save(flags); 1848 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1849 macb_interrupt(dev->irq, queue); 1850 local_irq_restore(flags); 1851 } 1852 #endif 1853 1854 static unsigned int macb_tx_map(struct macb *bp, 1855 struct macb_queue *queue, 1856 struct sk_buff *skb, 1857 unsigned int hdrlen) 1858 { 1859 dma_addr_t mapping; 1860 unsigned int len, entry, i, tx_head = queue->tx_head; 1861 struct macb_tx_skb *tx_skb = NULL; 1862 struct macb_dma_desc *desc; 1863 unsigned int offset, size, count = 0; 1864 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags; 1865 unsigned int eof = 1, mss_mfs = 0; 1866 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0; 1867 1868 /* LSO */ 1869 if (skb_shinfo(skb)->gso_size != 0) { 1870 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 1871 /* UDP - UFO */ 1872 lso_ctrl = MACB_LSO_UFO_ENABLE; 1873 else 1874 /* TCP - TSO */ 1875 lso_ctrl = MACB_LSO_TSO_ENABLE; 1876 } 1877 1878 /* First, map non-paged data */ 1879 len = skb_headlen(skb); 1880 1881 /* first buffer length */ 1882 size = hdrlen; 1883 1884 offset = 0; 1885 while (len) { 1886 entry = macb_tx_ring_wrap(bp, tx_head); 1887 tx_skb = &queue->tx_skb[entry]; 1888 1889 mapping = dma_map_single(&bp->pdev->dev, 1890 skb->data + offset, 1891 size, DMA_TO_DEVICE); 1892 if (dma_mapping_error(&bp->pdev->dev, mapping)) 1893 goto dma_error; 1894 1895 /* Save info to properly release resources */ 1896 tx_skb->skb = NULL; 1897 tx_skb->mapping = mapping; 1898 tx_skb->size = size; 1899 tx_skb->mapped_as_page = false; 1900 1901 len -= size; 1902 offset += size; 1903 count++; 1904 tx_head++; 1905 1906 size = min(len, bp->max_tx_length); 1907 } 1908 1909 /* Then, map paged data from fragments */ 1910 for (f = 0; f < nr_frags; f++) { 1911 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 1912 1913 len = skb_frag_size(frag); 1914 offset = 0; 1915 while (len) { 1916 size = min(len, bp->max_tx_length); 1917 entry = macb_tx_ring_wrap(bp, tx_head); 1918 tx_skb = &queue->tx_skb[entry]; 1919 1920 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 1921 offset, size, DMA_TO_DEVICE); 1922 if (dma_mapping_error(&bp->pdev->dev, mapping)) 1923 goto dma_error; 1924 1925 /* Save info to properly release resources */ 1926 tx_skb->skb = NULL; 1927 tx_skb->mapping = mapping; 1928 tx_skb->size = size; 1929 tx_skb->mapped_as_page = true; 1930 1931 len -= size; 1932 offset += size; 1933 count++; 1934 tx_head++; 1935 } 1936 } 1937 1938 /* Should never happen */ 1939 if (unlikely(!tx_skb)) { 1940 netdev_err(bp->dev, "BUG! empty skb!\n"); 1941 return 0; 1942 } 1943 1944 /* This is the last buffer of the frame: save socket buffer */ 1945 tx_skb->skb = skb; 1946 1947 /* Update TX ring: update buffer descriptors in reverse order 1948 * to avoid race condition 1949 */ 1950 1951 /* Set 'TX_USED' bit in buffer descriptor at tx_head position 1952 * to set the end of TX queue 1953 */ 1954 i = tx_head; 1955 entry = macb_tx_ring_wrap(bp, i); 1956 ctrl = MACB_BIT(TX_USED); 1957 desc = macb_tx_desc(queue, entry); 1958 desc->ctrl = ctrl; 1959 1960 if (lso_ctrl) { 1961 if (lso_ctrl == MACB_LSO_UFO_ENABLE) 1962 /* include header and FCS in value given to h/w */ 1963 mss_mfs = skb_shinfo(skb)->gso_size + 1964 skb_transport_offset(skb) + 1965 ETH_FCS_LEN; 1966 else /* TSO */ { 1967 mss_mfs = skb_shinfo(skb)->gso_size; 1968 /* TCP Sequence Number Source Select 1969 * can be set only for TSO 1970 */ 1971 seq_ctrl = 0; 1972 } 1973 } 1974 1975 do { 1976 i--; 1977 entry = macb_tx_ring_wrap(bp, i); 1978 tx_skb = &queue->tx_skb[entry]; 1979 desc = macb_tx_desc(queue, entry); 1980 1981 ctrl = (u32)tx_skb->size; 1982 if (eof) { 1983 ctrl |= MACB_BIT(TX_LAST); 1984 eof = 0; 1985 } 1986 if (unlikely(entry == (bp->tx_ring_size - 1))) 1987 ctrl |= MACB_BIT(TX_WRAP); 1988 1989 /* First descriptor is header descriptor */ 1990 if (i == queue->tx_head) { 1991 ctrl |= MACB_BF(TX_LSO, lso_ctrl); 1992 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl); 1993 if ((bp->dev->features & NETIF_F_HW_CSUM) && 1994 skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl) 1995 ctrl |= MACB_BIT(TX_NOCRC); 1996 } else 1997 /* Only set MSS/MFS on payload descriptors 1998 * (second or later descriptor) 1999 */ 2000 ctrl |= MACB_BF(MSS_MFS, mss_mfs); 2001 2002 /* Set TX buffer descriptor */ 2003 macb_set_addr(bp, desc, tx_skb->mapping); 2004 /* desc->addr must be visible to hardware before clearing 2005 * 'TX_USED' bit in desc->ctrl. 2006 */ 2007 wmb(); 2008 desc->ctrl = ctrl; 2009 } while (i != queue->tx_head); 2010 2011 queue->tx_head = tx_head; 2012 2013 return count; 2014 2015 dma_error: 2016 netdev_err(bp->dev, "TX DMA map failed\n"); 2017 2018 for (i = queue->tx_head; i != tx_head; i++) { 2019 tx_skb = macb_tx_skb(queue, i); 2020 2021 macb_tx_unmap(bp, tx_skb); 2022 } 2023 2024 return 0; 2025 } 2026 2027 static netdev_features_t macb_features_check(struct sk_buff *skb, 2028 struct net_device *dev, 2029 netdev_features_t features) 2030 { 2031 unsigned int nr_frags, f; 2032 unsigned int hdrlen; 2033 2034 /* Validate LSO compatibility */ 2035 2036 /* there is only one buffer or protocol is not UDP */ 2037 if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP)) 2038 return features; 2039 2040 /* length of header */ 2041 hdrlen = skb_transport_offset(skb); 2042 2043 /* For UFO only: 2044 * When software supplies two or more payload buffers all payload buffers 2045 * apart from the last must be a multiple of 8 bytes in size. 2046 */ 2047 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN)) 2048 return features & ~MACB_NETIF_LSO; 2049 2050 nr_frags = skb_shinfo(skb)->nr_frags; 2051 /* No need to check last fragment */ 2052 nr_frags--; 2053 for (f = 0; f < nr_frags; f++) { 2054 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2055 2056 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN)) 2057 return features & ~MACB_NETIF_LSO; 2058 } 2059 return features; 2060 } 2061 2062 static inline int macb_clear_csum(struct sk_buff *skb) 2063 { 2064 /* no change for packets without checksum offloading */ 2065 if (skb->ip_summed != CHECKSUM_PARTIAL) 2066 return 0; 2067 2068 /* make sure we can modify the header */ 2069 if (unlikely(skb_cow_head(skb, 0))) 2070 return -1; 2071 2072 /* initialize checksum field 2073 * This is required - at least for Zynq, which otherwise calculates 2074 * wrong UDP header checksums for UDP packets with UDP data len <=2 2075 */ 2076 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0; 2077 return 0; 2078 } 2079 2080 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev) 2081 { 2082 bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) || 2083 skb_is_nonlinear(*skb); 2084 int padlen = ETH_ZLEN - (*skb)->len; 2085 int headroom = skb_headroom(*skb); 2086 int tailroom = skb_tailroom(*skb); 2087 struct sk_buff *nskb; 2088 u32 fcs; 2089 2090 if (!(ndev->features & NETIF_F_HW_CSUM) || 2091 !((*skb)->ip_summed != CHECKSUM_PARTIAL) || 2092 skb_shinfo(*skb)->gso_size) /* Not available for GSO */ 2093 return 0; 2094 2095 if (padlen <= 0) { 2096 /* FCS could be appeded to tailroom. */ 2097 if (tailroom >= ETH_FCS_LEN) 2098 goto add_fcs; 2099 /* FCS could be appeded by moving data to headroom. */ 2100 else if (!cloned && headroom + tailroom >= ETH_FCS_LEN) 2101 padlen = 0; 2102 /* No room for FCS, need to reallocate skb. */ 2103 else 2104 padlen = ETH_FCS_LEN; 2105 } else { 2106 /* Add room for FCS. */ 2107 padlen += ETH_FCS_LEN; 2108 } 2109 2110 if (!cloned && headroom + tailroom >= padlen) { 2111 (*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len); 2112 skb_set_tail_pointer(*skb, (*skb)->len); 2113 } else { 2114 nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC); 2115 if (!nskb) 2116 return -ENOMEM; 2117 2118 dev_consume_skb_any(*skb); 2119 *skb = nskb; 2120 } 2121 2122 if (padlen > ETH_FCS_LEN) 2123 skb_put_zero(*skb, padlen - ETH_FCS_LEN); 2124 2125 add_fcs: 2126 /* set FCS to packet */ 2127 fcs = crc32_le(~0, (*skb)->data, (*skb)->len); 2128 fcs = ~fcs; 2129 2130 skb_put_u8(*skb, fcs & 0xff); 2131 skb_put_u8(*skb, (fcs >> 8) & 0xff); 2132 skb_put_u8(*skb, (fcs >> 16) & 0xff); 2133 skb_put_u8(*skb, (fcs >> 24) & 0xff); 2134 2135 return 0; 2136 } 2137 2138 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev) 2139 { 2140 u16 queue_index = skb_get_queue_mapping(skb); 2141 struct macb *bp = netdev_priv(dev); 2142 struct macb_queue *queue = &bp->queues[queue_index]; 2143 unsigned long flags; 2144 unsigned int desc_cnt, nr_frags, frag_size, f; 2145 unsigned int hdrlen; 2146 bool is_lso; 2147 netdev_tx_t ret = NETDEV_TX_OK; 2148 2149 if (macb_clear_csum(skb)) { 2150 dev_kfree_skb_any(skb); 2151 return ret; 2152 } 2153 2154 if (macb_pad_and_fcs(&skb, dev)) { 2155 dev_kfree_skb_any(skb); 2156 return ret; 2157 } 2158 2159 is_lso = (skb_shinfo(skb)->gso_size != 0); 2160 2161 if (is_lso) { 2162 /* length of headers */ 2163 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2164 /* only queue eth + ip headers separately for UDP */ 2165 hdrlen = skb_transport_offset(skb); 2166 else 2167 hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); 2168 if (skb_headlen(skb) < hdrlen) { 2169 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n"); 2170 /* if this is required, would need to copy to single buffer */ 2171 return NETDEV_TX_BUSY; 2172 } 2173 } else 2174 hdrlen = min(skb_headlen(skb), bp->max_tx_length); 2175 2176 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 2177 netdev_vdbg(bp->dev, 2178 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n", 2179 queue_index, skb->len, skb->head, skb->data, 2180 skb_tail_pointer(skb), skb_end_pointer(skb)); 2181 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1, 2182 skb->data, 16, true); 2183 #endif 2184 2185 /* Count how many TX buffer descriptors are needed to send this 2186 * socket buffer: skb fragments of jumbo frames may need to be 2187 * split into many buffer descriptors. 2188 */ 2189 if (is_lso && (skb_headlen(skb) > hdrlen)) 2190 /* extra header descriptor if also payload in first buffer */ 2191 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1; 2192 else 2193 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length); 2194 nr_frags = skb_shinfo(skb)->nr_frags; 2195 for (f = 0; f < nr_frags; f++) { 2196 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2197 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length); 2198 } 2199 2200 spin_lock_irqsave(&bp->lock, flags); 2201 2202 /* This is a hard error, log it. */ 2203 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, 2204 bp->tx_ring_size) < desc_cnt) { 2205 netif_stop_subqueue(dev, queue_index); 2206 spin_unlock_irqrestore(&bp->lock, flags); 2207 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n", 2208 queue->tx_head, queue->tx_tail); 2209 return NETDEV_TX_BUSY; 2210 } 2211 2212 /* Map socket buffer for DMA transfer */ 2213 if (!macb_tx_map(bp, queue, skb, hdrlen)) { 2214 dev_kfree_skb_any(skb); 2215 goto unlock; 2216 } 2217 2218 /* Make newly initialized descriptor visible to hardware */ 2219 wmb(); 2220 skb_tx_timestamp(skb); 2221 2222 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 2223 2224 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1) 2225 netif_stop_subqueue(dev, queue_index); 2226 2227 unlock: 2228 spin_unlock_irqrestore(&bp->lock, flags); 2229 2230 return ret; 2231 } 2232 2233 static void macb_init_rx_buffer_size(struct macb *bp, size_t size) 2234 { 2235 if (!macb_is_gem(bp)) { 2236 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE; 2237 } else { 2238 bp->rx_buffer_size = size; 2239 2240 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) { 2241 netdev_dbg(bp->dev, 2242 "RX buffer must be multiple of %d bytes, expanding\n", 2243 RX_BUFFER_MULTIPLE); 2244 bp->rx_buffer_size = 2245 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE); 2246 } 2247 } 2248 2249 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n", 2250 bp->dev->mtu, bp->rx_buffer_size); 2251 } 2252 2253 static void gem_free_rx_buffers(struct macb *bp) 2254 { 2255 struct sk_buff *skb; 2256 struct macb_dma_desc *desc; 2257 struct macb_queue *queue; 2258 dma_addr_t addr; 2259 unsigned int q; 2260 int i; 2261 2262 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2263 if (!queue->rx_skbuff) 2264 continue; 2265 2266 for (i = 0; i < bp->rx_ring_size; i++) { 2267 skb = queue->rx_skbuff[i]; 2268 2269 if (!skb) 2270 continue; 2271 2272 desc = macb_rx_desc(queue, i); 2273 addr = macb_get_addr(bp, desc); 2274 2275 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size, 2276 DMA_FROM_DEVICE); 2277 dev_kfree_skb_any(skb); 2278 skb = NULL; 2279 } 2280 2281 kfree(queue->rx_skbuff); 2282 queue->rx_skbuff = NULL; 2283 } 2284 } 2285 2286 static void macb_free_rx_buffers(struct macb *bp) 2287 { 2288 struct macb_queue *queue = &bp->queues[0]; 2289 2290 if (queue->rx_buffers) { 2291 dma_free_coherent(&bp->pdev->dev, 2292 bp->rx_ring_size * bp->rx_buffer_size, 2293 queue->rx_buffers, queue->rx_buffers_dma); 2294 queue->rx_buffers = NULL; 2295 } 2296 } 2297 2298 static void macb_free_consistent(struct macb *bp) 2299 { 2300 struct macb_queue *queue; 2301 unsigned int q; 2302 int size; 2303 2304 bp->macbgem_ops.mog_free_rx_buffers(bp); 2305 2306 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2307 kfree(queue->tx_skb); 2308 queue->tx_skb = NULL; 2309 if (queue->tx_ring) { 2310 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2311 dma_free_coherent(&bp->pdev->dev, size, 2312 queue->tx_ring, queue->tx_ring_dma); 2313 queue->tx_ring = NULL; 2314 } 2315 if (queue->rx_ring) { 2316 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2317 dma_free_coherent(&bp->pdev->dev, size, 2318 queue->rx_ring, queue->rx_ring_dma); 2319 queue->rx_ring = NULL; 2320 } 2321 } 2322 } 2323 2324 static int gem_alloc_rx_buffers(struct macb *bp) 2325 { 2326 struct macb_queue *queue; 2327 unsigned int q; 2328 int size; 2329 2330 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2331 size = bp->rx_ring_size * sizeof(struct sk_buff *); 2332 queue->rx_skbuff = kzalloc(size, GFP_KERNEL); 2333 if (!queue->rx_skbuff) 2334 return -ENOMEM; 2335 else 2336 netdev_dbg(bp->dev, 2337 "Allocated %d RX struct sk_buff entries at %p\n", 2338 bp->rx_ring_size, queue->rx_skbuff); 2339 } 2340 return 0; 2341 } 2342 2343 static int macb_alloc_rx_buffers(struct macb *bp) 2344 { 2345 struct macb_queue *queue = &bp->queues[0]; 2346 int size; 2347 2348 size = bp->rx_ring_size * bp->rx_buffer_size; 2349 queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size, 2350 &queue->rx_buffers_dma, GFP_KERNEL); 2351 if (!queue->rx_buffers) 2352 return -ENOMEM; 2353 2354 netdev_dbg(bp->dev, 2355 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n", 2356 size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers); 2357 return 0; 2358 } 2359 2360 static int macb_alloc_consistent(struct macb *bp) 2361 { 2362 struct macb_queue *queue; 2363 unsigned int q; 2364 int size; 2365 2366 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2367 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2368 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2369 &queue->tx_ring_dma, 2370 GFP_KERNEL); 2371 if (!queue->tx_ring) 2372 goto out_err; 2373 netdev_dbg(bp->dev, 2374 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n", 2375 q, size, (unsigned long)queue->tx_ring_dma, 2376 queue->tx_ring); 2377 2378 size = bp->tx_ring_size * sizeof(struct macb_tx_skb); 2379 queue->tx_skb = kmalloc(size, GFP_KERNEL); 2380 if (!queue->tx_skb) 2381 goto out_err; 2382 2383 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2384 queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2385 &queue->rx_ring_dma, GFP_KERNEL); 2386 if (!queue->rx_ring) 2387 goto out_err; 2388 netdev_dbg(bp->dev, 2389 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n", 2390 size, (unsigned long)queue->rx_ring_dma, queue->rx_ring); 2391 } 2392 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp)) 2393 goto out_err; 2394 2395 return 0; 2396 2397 out_err: 2398 macb_free_consistent(bp); 2399 return -ENOMEM; 2400 } 2401 2402 static void gem_init_rings(struct macb *bp) 2403 { 2404 struct macb_queue *queue; 2405 struct macb_dma_desc *desc = NULL; 2406 unsigned int q; 2407 int i; 2408 2409 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2410 for (i = 0; i < bp->tx_ring_size; i++) { 2411 desc = macb_tx_desc(queue, i); 2412 macb_set_addr(bp, desc, 0); 2413 desc->ctrl = MACB_BIT(TX_USED); 2414 } 2415 desc->ctrl |= MACB_BIT(TX_WRAP); 2416 queue->tx_head = 0; 2417 queue->tx_tail = 0; 2418 2419 queue->rx_tail = 0; 2420 queue->rx_prepared_head = 0; 2421 2422 gem_rx_refill(queue); 2423 } 2424 2425 } 2426 2427 static void macb_init_rings(struct macb *bp) 2428 { 2429 int i; 2430 struct macb_dma_desc *desc = NULL; 2431 2432 macb_init_rx_ring(&bp->queues[0]); 2433 2434 for (i = 0; i < bp->tx_ring_size; i++) { 2435 desc = macb_tx_desc(&bp->queues[0], i); 2436 macb_set_addr(bp, desc, 0); 2437 desc->ctrl = MACB_BIT(TX_USED); 2438 } 2439 bp->queues[0].tx_head = 0; 2440 bp->queues[0].tx_tail = 0; 2441 desc->ctrl |= MACB_BIT(TX_WRAP); 2442 } 2443 2444 static void macb_reset_hw(struct macb *bp) 2445 { 2446 struct macb_queue *queue; 2447 unsigned int q; 2448 u32 ctrl = macb_readl(bp, NCR); 2449 2450 /* Disable RX and TX (XXX: Should we halt the transmission 2451 * more gracefully?) 2452 */ 2453 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 2454 2455 /* Clear the stats registers (XXX: Update stats first?) */ 2456 ctrl |= MACB_BIT(CLRSTAT); 2457 2458 macb_writel(bp, NCR, ctrl); 2459 2460 /* Clear all status flags */ 2461 macb_writel(bp, TSR, -1); 2462 macb_writel(bp, RSR, -1); 2463 2464 /* Disable all interrupts */ 2465 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2466 queue_writel(queue, IDR, -1); 2467 queue_readl(queue, ISR); 2468 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2469 queue_writel(queue, ISR, -1); 2470 } 2471 } 2472 2473 static u32 gem_mdc_clk_div(struct macb *bp) 2474 { 2475 u32 config; 2476 unsigned long pclk_hz = clk_get_rate(bp->pclk); 2477 2478 if (pclk_hz <= 20000000) 2479 config = GEM_BF(CLK, GEM_CLK_DIV8); 2480 else if (pclk_hz <= 40000000) 2481 config = GEM_BF(CLK, GEM_CLK_DIV16); 2482 else if (pclk_hz <= 80000000) 2483 config = GEM_BF(CLK, GEM_CLK_DIV32); 2484 else if (pclk_hz <= 120000000) 2485 config = GEM_BF(CLK, GEM_CLK_DIV48); 2486 else if (pclk_hz <= 160000000) 2487 config = GEM_BF(CLK, GEM_CLK_DIV64); 2488 else 2489 config = GEM_BF(CLK, GEM_CLK_DIV96); 2490 2491 return config; 2492 } 2493 2494 static u32 macb_mdc_clk_div(struct macb *bp) 2495 { 2496 u32 config; 2497 unsigned long pclk_hz; 2498 2499 if (macb_is_gem(bp)) 2500 return gem_mdc_clk_div(bp); 2501 2502 pclk_hz = clk_get_rate(bp->pclk); 2503 if (pclk_hz <= 20000000) 2504 config = MACB_BF(CLK, MACB_CLK_DIV8); 2505 else if (pclk_hz <= 40000000) 2506 config = MACB_BF(CLK, MACB_CLK_DIV16); 2507 else if (pclk_hz <= 80000000) 2508 config = MACB_BF(CLK, MACB_CLK_DIV32); 2509 else 2510 config = MACB_BF(CLK, MACB_CLK_DIV64); 2511 2512 return config; 2513 } 2514 2515 /* Get the DMA bus width field of the network configuration register that we 2516 * should program. We find the width from decoding the design configuration 2517 * register to find the maximum supported data bus width. 2518 */ 2519 static u32 macb_dbw(struct macb *bp) 2520 { 2521 if (!macb_is_gem(bp)) 2522 return 0; 2523 2524 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) { 2525 case 4: 2526 return GEM_BF(DBW, GEM_DBW128); 2527 case 2: 2528 return GEM_BF(DBW, GEM_DBW64); 2529 case 1: 2530 default: 2531 return GEM_BF(DBW, GEM_DBW32); 2532 } 2533 } 2534 2535 /* Configure the receive DMA engine 2536 * - use the correct receive buffer size 2537 * - set best burst length for DMA operations 2538 * (if not supported by FIFO, it will fallback to default) 2539 * - set both rx/tx packet buffers to full memory size 2540 * These are configurable parameters for GEM. 2541 */ 2542 static void macb_configure_dma(struct macb *bp) 2543 { 2544 struct macb_queue *queue; 2545 u32 buffer_size; 2546 unsigned int q; 2547 u32 dmacfg; 2548 2549 buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE; 2550 if (macb_is_gem(bp)) { 2551 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L); 2552 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2553 if (q) 2554 queue_writel(queue, RBQS, buffer_size); 2555 else 2556 dmacfg |= GEM_BF(RXBS, buffer_size); 2557 } 2558 if (bp->dma_burst_length) 2559 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg); 2560 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L); 2561 dmacfg &= ~GEM_BIT(ENDIA_PKT); 2562 2563 if (bp->native_io) 2564 dmacfg &= ~GEM_BIT(ENDIA_DESC); 2565 else 2566 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */ 2567 2568 if (bp->dev->features & NETIF_F_HW_CSUM) 2569 dmacfg |= GEM_BIT(TXCOEN); 2570 else 2571 dmacfg &= ~GEM_BIT(TXCOEN); 2572 2573 dmacfg &= ~GEM_BIT(ADDR64); 2574 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 2575 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 2576 dmacfg |= GEM_BIT(ADDR64); 2577 #endif 2578 #ifdef CONFIG_MACB_USE_HWSTAMP 2579 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 2580 dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT); 2581 #endif 2582 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n", 2583 dmacfg); 2584 gem_writel(bp, DMACFG, dmacfg); 2585 } 2586 } 2587 2588 static void macb_init_hw(struct macb *bp) 2589 { 2590 u32 config; 2591 2592 macb_reset_hw(bp); 2593 macb_set_hwaddr(bp); 2594 2595 config = macb_mdc_clk_div(bp); 2596 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */ 2597 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */ 2598 if (bp->caps & MACB_CAPS_JUMBO) 2599 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */ 2600 else 2601 config |= MACB_BIT(BIG); /* Receive oversized frames */ 2602 if (bp->dev->flags & IFF_PROMISC) 2603 config |= MACB_BIT(CAF); /* Copy All Frames */ 2604 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM) 2605 config |= GEM_BIT(RXCOEN); 2606 if (!(bp->dev->flags & IFF_BROADCAST)) 2607 config |= MACB_BIT(NBC); /* No BroadCast */ 2608 config |= macb_dbw(bp); 2609 macb_writel(bp, NCFGR, config); 2610 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 2611 gem_writel(bp, JML, bp->jumbo_max_len); 2612 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK; 2613 if (bp->caps & MACB_CAPS_JUMBO) 2614 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK; 2615 2616 macb_configure_dma(bp); 2617 } 2618 2619 /* The hash address register is 64 bits long and takes up two 2620 * locations in the memory map. The least significant bits are stored 2621 * in EMAC_HSL and the most significant bits in EMAC_HSH. 2622 * 2623 * The unicast hash enable and the multicast hash enable bits in the 2624 * network configuration register enable the reception of hash matched 2625 * frames. The destination address is reduced to a 6 bit index into 2626 * the 64 bit hash register using the following hash function. The 2627 * hash function is an exclusive or of every sixth bit of the 2628 * destination address. 2629 * 2630 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] 2631 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] 2632 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] 2633 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] 2634 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] 2635 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] 2636 * 2637 * da[0] represents the least significant bit of the first byte 2638 * received, that is, the multicast/unicast indicator, and da[47] 2639 * represents the most significant bit of the last byte received. If 2640 * the hash index, hi[n], points to a bit that is set in the hash 2641 * register then the frame will be matched according to whether the 2642 * frame is multicast or unicast. A multicast match will be signalled 2643 * if the multicast hash enable bit is set, da[0] is 1 and the hash 2644 * index points to a bit set in the hash register. A unicast match 2645 * will be signalled if the unicast hash enable bit is set, da[0] is 0 2646 * and the hash index points to a bit set in the hash register. To 2647 * receive all multicast frames, the hash register should be set with 2648 * all ones and the multicast hash enable bit should be set in the 2649 * network configuration register. 2650 */ 2651 2652 static inline int hash_bit_value(int bitnr, __u8 *addr) 2653 { 2654 if (addr[bitnr / 8] & (1 << (bitnr % 8))) 2655 return 1; 2656 return 0; 2657 } 2658 2659 /* Return the hash index value for the specified address. */ 2660 static int hash_get_index(__u8 *addr) 2661 { 2662 int i, j, bitval; 2663 int hash_index = 0; 2664 2665 for (j = 0; j < 6; j++) { 2666 for (i = 0, bitval = 0; i < 8; i++) 2667 bitval ^= hash_bit_value(i * 6 + j, addr); 2668 2669 hash_index |= (bitval << j); 2670 } 2671 2672 return hash_index; 2673 } 2674 2675 /* Add multicast addresses to the internal multicast-hash table. */ 2676 static void macb_sethashtable(struct net_device *dev) 2677 { 2678 struct netdev_hw_addr *ha; 2679 unsigned long mc_filter[2]; 2680 unsigned int bitnr; 2681 struct macb *bp = netdev_priv(dev); 2682 2683 mc_filter[0] = 0; 2684 mc_filter[1] = 0; 2685 2686 netdev_for_each_mc_addr(ha, dev) { 2687 bitnr = hash_get_index(ha->addr); 2688 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 2689 } 2690 2691 macb_or_gem_writel(bp, HRB, mc_filter[0]); 2692 macb_or_gem_writel(bp, HRT, mc_filter[1]); 2693 } 2694 2695 /* Enable/Disable promiscuous and multicast modes. */ 2696 static void macb_set_rx_mode(struct net_device *dev) 2697 { 2698 unsigned long cfg; 2699 struct macb *bp = netdev_priv(dev); 2700 2701 cfg = macb_readl(bp, NCFGR); 2702 2703 if (dev->flags & IFF_PROMISC) { 2704 /* Enable promiscuous mode */ 2705 cfg |= MACB_BIT(CAF); 2706 2707 /* Disable RX checksum offload */ 2708 if (macb_is_gem(bp)) 2709 cfg &= ~GEM_BIT(RXCOEN); 2710 } else { 2711 /* Disable promiscuous mode */ 2712 cfg &= ~MACB_BIT(CAF); 2713 2714 /* Enable RX checksum offload only if requested */ 2715 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM) 2716 cfg |= GEM_BIT(RXCOEN); 2717 } 2718 2719 if (dev->flags & IFF_ALLMULTI) { 2720 /* Enable all multicast mode */ 2721 macb_or_gem_writel(bp, HRB, -1); 2722 macb_or_gem_writel(bp, HRT, -1); 2723 cfg |= MACB_BIT(NCFGR_MTI); 2724 } else if (!netdev_mc_empty(dev)) { 2725 /* Enable specific multicasts */ 2726 macb_sethashtable(dev); 2727 cfg |= MACB_BIT(NCFGR_MTI); 2728 } else if (dev->flags & (~IFF_ALLMULTI)) { 2729 /* Disable all multicast mode */ 2730 macb_or_gem_writel(bp, HRB, 0); 2731 macb_or_gem_writel(bp, HRT, 0); 2732 cfg &= ~MACB_BIT(NCFGR_MTI); 2733 } 2734 2735 macb_writel(bp, NCFGR, cfg); 2736 } 2737 2738 static int macb_open(struct net_device *dev) 2739 { 2740 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN; 2741 struct macb *bp = netdev_priv(dev); 2742 struct macb_queue *queue; 2743 unsigned int q; 2744 int err; 2745 2746 netdev_dbg(bp->dev, "open\n"); 2747 2748 err = pm_runtime_get_sync(&bp->pdev->dev); 2749 if (err < 0) 2750 goto pm_exit; 2751 2752 /* RX buffers initialization */ 2753 macb_init_rx_buffer_size(bp, bufsz); 2754 2755 err = macb_alloc_consistent(bp); 2756 if (err) { 2757 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n", 2758 err); 2759 goto pm_exit; 2760 } 2761 2762 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2763 napi_enable(&queue->napi); 2764 2765 macb_init_hw(bp); 2766 2767 err = phy_power_on(bp->sgmii_phy); 2768 if (err) 2769 goto reset_hw; 2770 2771 err = macb_phylink_connect(bp); 2772 if (err) 2773 goto phy_off; 2774 2775 netif_tx_start_all_queues(dev); 2776 2777 if (bp->ptp_info) 2778 bp->ptp_info->ptp_init(dev); 2779 2780 return 0; 2781 2782 phy_off: 2783 phy_power_off(bp->sgmii_phy); 2784 2785 reset_hw: 2786 macb_reset_hw(bp); 2787 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2788 napi_disable(&queue->napi); 2789 macb_free_consistent(bp); 2790 pm_exit: 2791 pm_runtime_put_sync(&bp->pdev->dev); 2792 return err; 2793 } 2794 2795 static int macb_close(struct net_device *dev) 2796 { 2797 struct macb *bp = netdev_priv(dev); 2798 struct macb_queue *queue; 2799 unsigned long flags; 2800 unsigned int q; 2801 2802 netif_tx_stop_all_queues(dev); 2803 2804 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2805 napi_disable(&queue->napi); 2806 2807 phylink_stop(bp->phylink); 2808 phylink_disconnect_phy(bp->phylink); 2809 2810 phy_power_off(bp->sgmii_phy); 2811 2812 spin_lock_irqsave(&bp->lock, flags); 2813 macb_reset_hw(bp); 2814 netif_carrier_off(dev); 2815 spin_unlock_irqrestore(&bp->lock, flags); 2816 2817 macb_free_consistent(bp); 2818 2819 if (bp->ptp_info) 2820 bp->ptp_info->ptp_remove(dev); 2821 2822 pm_runtime_put(&bp->pdev->dev); 2823 2824 return 0; 2825 } 2826 2827 static int macb_change_mtu(struct net_device *dev, int new_mtu) 2828 { 2829 if (netif_running(dev)) 2830 return -EBUSY; 2831 2832 dev->mtu = new_mtu; 2833 2834 return 0; 2835 } 2836 2837 static void gem_update_stats(struct macb *bp) 2838 { 2839 struct macb_queue *queue; 2840 unsigned int i, q, idx; 2841 unsigned long *stat; 2842 2843 u32 *p = &bp->hw_stats.gem.tx_octets_31_0; 2844 2845 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) { 2846 u32 offset = gem_statistics[i].offset; 2847 u64 val = bp->macb_reg_readl(bp, offset); 2848 2849 bp->ethtool_stats[i] += val; 2850 *p += val; 2851 2852 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) { 2853 /* Add GEM_OCTTXH, GEM_OCTRXH */ 2854 val = bp->macb_reg_readl(bp, offset + 4); 2855 bp->ethtool_stats[i] += ((u64)val) << 32; 2856 *(++p) += val; 2857 } 2858 } 2859 2860 idx = GEM_STATS_LEN; 2861 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2862 for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat) 2863 bp->ethtool_stats[idx++] = *stat; 2864 } 2865 2866 static struct net_device_stats *gem_get_stats(struct macb *bp) 2867 { 2868 struct gem_stats *hwstat = &bp->hw_stats.gem; 2869 struct net_device_stats *nstat = &bp->dev->stats; 2870 2871 if (!netif_running(bp->dev)) 2872 return nstat; 2873 2874 gem_update_stats(bp); 2875 2876 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors + 2877 hwstat->rx_alignment_errors + 2878 hwstat->rx_resource_errors + 2879 hwstat->rx_overruns + 2880 hwstat->rx_oversize_frames + 2881 hwstat->rx_jabbers + 2882 hwstat->rx_undersized_frames + 2883 hwstat->rx_length_field_frame_errors); 2884 nstat->tx_errors = (hwstat->tx_late_collisions + 2885 hwstat->tx_excessive_collisions + 2886 hwstat->tx_underrun + 2887 hwstat->tx_carrier_sense_errors); 2888 nstat->multicast = hwstat->rx_multicast_frames; 2889 nstat->collisions = (hwstat->tx_single_collision_frames + 2890 hwstat->tx_multiple_collision_frames + 2891 hwstat->tx_excessive_collisions); 2892 nstat->rx_length_errors = (hwstat->rx_oversize_frames + 2893 hwstat->rx_jabbers + 2894 hwstat->rx_undersized_frames + 2895 hwstat->rx_length_field_frame_errors); 2896 nstat->rx_over_errors = hwstat->rx_resource_errors; 2897 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors; 2898 nstat->rx_frame_errors = hwstat->rx_alignment_errors; 2899 nstat->rx_fifo_errors = hwstat->rx_overruns; 2900 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions; 2901 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors; 2902 nstat->tx_fifo_errors = hwstat->tx_underrun; 2903 2904 return nstat; 2905 } 2906 2907 static void gem_get_ethtool_stats(struct net_device *dev, 2908 struct ethtool_stats *stats, u64 *data) 2909 { 2910 struct macb *bp; 2911 2912 bp = netdev_priv(dev); 2913 gem_update_stats(bp); 2914 memcpy(data, &bp->ethtool_stats, sizeof(u64) 2915 * (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES)); 2916 } 2917 2918 static int gem_get_sset_count(struct net_device *dev, int sset) 2919 { 2920 struct macb *bp = netdev_priv(dev); 2921 2922 switch (sset) { 2923 case ETH_SS_STATS: 2924 return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN; 2925 default: 2926 return -EOPNOTSUPP; 2927 } 2928 } 2929 2930 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p) 2931 { 2932 char stat_string[ETH_GSTRING_LEN]; 2933 struct macb *bp = netdev_priv(dev); 2934 struct macb_queue *queue; 2935 unsigned int i; 2936 unsigned int q; 2937 2938 switch (sset) { 2939 case ETH_SS_STATS: 2940 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN) 2941 memcpy(p, gem_statistics[i].stat_string, 2942 ETH_GSTRING_LEN); 2943 2944 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2945 for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) { 2946 snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s", 2947 q, queue_statistics[i].stat_string); 2948 memcpy(p, stat_string, ETH_GSTRING_LEN); 2949 } 2950 } 2951 break; 2952 } 2953 } 2954 2955 static struct net_device_stats *macb_get_stats(struct net_device *dev) 2956 { 2957 struct macb *bp = netdev_priv(dev); 2958 struct net_device_stats *nstat = &bp->dev->stats; 2959 struct macb_stats *hwstat = &bp->hw_stats.macb; 2960 2961 if (macb_is_gem(bp)) 2962 return gem_get_stats(bp); 2963 2964 /* read stats from hardware */ 2965 macb_update_stats(bp); 2966 2967 /* Convert HW stats into netdevice stats */ 2968 nstat->rx_errors = (hwstat->rx_fcs_errors + 2969 hwstat->rx_align_errors + 2970 hwstat->rx_resource_errors + 2971 hwstat->rx_overruns + 2972 hwstat->rx_oversize_pkts + 2973 hwstat->rx_jabbers + 2974 hwstat->rx_undersize_pkts + 2975 hwstat->rx_length_mismatch); 2976 nstat->tx_errors = (hwstat->tx_late_cols + 2977 hwstat->tx_excessive_cols + 2978 hwstat->tx_underruns + 2979 hwstat->tx_carrier_errors + 2980 hwstat->sqe_test_errors); 2981 nstat->collisions = (hwstat->tx_single_cols + 2982 hwstat->tx_multiple_cols + 2983 hwstat->tx_excessive_cols); 2984 nstat->rx_length_errors = (hwstat->rx_oversize_pkts + 2985 hwstat->rx_jabbers + 2986 hwstat->rx_undersize_pkts + 2987 hwstat->rx_length_mismatch); 2988 nstat->rx_over_errors = hwstat->rx_resource_errors + 2989 hwstat->rx_overruns; 2990 nstat->rx_crc_errors = hwstat->rx_fcs_errors; 2991 nstat->rx_frame_errors = hwstat->rx_align_errors; 2992 nstat->rx_fifo_errors = hwstat->rx_overruns; 2993 /* XXX: What does "missed" mean? */ 2994 nstat->tx_aborted_errors = hwstat->tx_excessive_cols; 2995 nstat->tx_carrier_errors = hwstat->tx_carrier_errors; 2996 nstat->tx_fifo_errors = hwstat->tx_underruns; 2997 /* Don't know about heartbeat or window errors... */ 2998 2999 return nstat; 3000 } 3001 3002 static int macb_get_regs_len(struct net_device *netdev) 3003 { 3004 return MACB_GREGS_NBR * sizeof(u32); 3005 } 3006 3007 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs, 3008 void *p) 3009 { 3010 struct macb *bp = netdev_priv(dev); 3011 unsigned int tail, head; 3012 u32 *regs_buff = p; 3013 3014 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1)) 3015 | MACB_GREGS_VERSION; 3016 3017 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail); 3018 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head); 3019 3020 regs_buff[0] = macb_readl(bp, NCR); 3021 regs_buff[1] = macb_or_gem_readl(bp, NCFGR); 3022 regs_buff[2] = macb_readl(bp, NSR); 3023 regs_buff[3] = macb_readl(bp, TSR); 3024 regs_buff[4] = macb_readl(bp, RBQP); 3025 regs_buff[5] = macb_readl(bp, TBQP); 3026 regs_buff[6] = macb_readl(bp, RSR); 3027 regs_buff[7] = macb_readl(bp, IMR); 3028 3029 regs_buff[8] = tail; 3030 regs_buff[9] = head; 3031 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail); 3032 regs_buff[11] = macb_tx_dma(&bp->queues[0], head); 3033 3034 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 3035 regs_buff[12] = macb_or_gem_readl(bp, USRIO); 3036 if (macb_is_gem(bp)) 3037 regs_buff[13] = gem_readl(bp, DMACFG); 3038 } 3039 3040 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3041 { 3042 struct macb *bp = netdev_priv(netdev); 3043 3044 if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) { 3045 phylink_ethtool_get_wol(bp->phylink, wol); 3046 wol->supported |= WAKE_MAGIC; 3047 3048 if (bp->wol & MACB_WOL_ENABLED) 3049 wol->wolopts |= WAKE_MAGIC; 3050 } 3051 } 3052 3053 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3054 { 3055 struct macb *bp = netdev_priv(netdev); 3056 int ret; 3057 3058 /* Pass the order to phylink layer */ 3059 ret = phylink_ethtool_set_wol(bp->phylink, wol); 3060 /* Don't manage WoL on MAC if handled by the PHY 3061 * or if there's a failure in talking to the PHY 3062 */ 3063 if (!ret || ret != -EOPNOTSUPP) 3064 return ret; 3065 3066 if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) || 3067 (wol->wolopts & ~WAKE_MAGIC)) 3068 return -EOPNOTSUPP; 3069 3070 if (wol->wolopts & WAKE_MAGIC) 3071 bp->wol |= MACB_WOL_ENABLED; 3072 else 3073 bp->wol &= ~MACB_WOL_ENABLED; 3074 3075 device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED); 3076 3077 return 0; 3078 } 3079 3080 static int macb_get_link_ksettings(struct net_device *netdev, 3081 struct ethtool_link_ksettings *kset) 3082 { 3083 struct macb *bp = netdev_priv(netdev); 3084 3085 return phylink_ethtool_ksettings_get(bp->phylink, kset); 3086 } 3087 3088 static int macb_set_link_ksettings(struct net_device *netdev, 3089 const struct ethtool_link_ksettings *kset) 3090 { 3091 struct macb *bp = netdev_priv(netdev); 3092 3093 return phylink_ethtool_ksettings_set(bp->phylink, kset); 3094 } 3095 3096 static void macb_get_ringparam(struct net_device *netdev, 3097 struct ethtool_ringparam *ring, 3098 struct kernel_ethtool_ringparam *kernel_ring, 3099 struct netlink_ext_ack *extack) 3100 { 3101 struct macb *bp = netdev_priv(netdev); 3102 3103 ring->rx_max_pending = MAX_RX_RING_SIZE; 3104 ring->tx_max_pending = MAX_TX_RING_SIZE; 3105 3106 ring->rx_pending = bp->rx_ring_size; 3107 ring->tx_pending = bp->tx_ring_size; 3108 } 3109 3110 static int macb_set_ringparam(struct net_device *netdev, 3111 struct ethtool_ringparam *ring, 3112 struct kernel_ethtool_ringparam *kernel_ring, 3113 struct netlink_ext_ack *extack) 3114 { 3115 struct macb *bp = netdev_priv(netdev); 3116 u32 new_rx_size, new_tx_size; 3117 unsigned int reset = 0; 3118 3119 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 3120 return -EINVAL; 3121 3122 new_rx_size = clamp_t(u32, ring->rx_pending, 3123 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE); 3124 new_rx_size = roundup_pow_of_two(new_rx_size); 3125 3126 new_tx_size = clamp_t(u32, ring->tx_pending, 3127 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE); 3128 new_tx_size = roundup_pow_of_two(new_tx_size); 3129 3130 if ((new_tx_size == bp->tx_ring_size) && 3131 (new_rx_size == bp->rx_ring_size)) { 3132 /* nothing to do */ 3133 return 0; 3134 } 3135 3136 if (netif_running(bp->dev)) { 3137 reset = 1; 3138 macb_close(bp->dev); 3139 } 3140 3141 bp->rx_ring_size = new_rx_size; 3142 bp->tx_ring_size = new_tx_size; 3143 3144 if (reset) 3145 macb_open(bp->dev); 3146 3147 return 0; 3148 } 3149 3150 #ifdef CONFIG_MACB_USE_HWSTAMP 3151 static unsigned int gem_get_tsu_rate(struct macb *bp) 3152 { 3153 struct clk *tsu_clk; 3154 unsigned int tsu_rate; 3155 3156 tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk"); 3157 if (!IS_ERR(tsu_clk)) 3158 tsu_rate = clk_get_rate(tsu_clk); 3159 /* try pclk instead */ 3160 else if (!IS_ERR(bp->pclk)) { 3161 tsu_clk = bp->pclk; 3162 tsu_rate = clk_get_rate(tsu_clk); 3163 } else 3164 return -ENOTSUPP; 3165 return tsu_rate; 3166 } 3167 3168 static s32 gem_get_ptp_max_adj(void) 3169 { 3170 return 64000000; 3171 } 3172 3173 static int gem_get_ts_info(struct net_device *dev, 3174 struct ethtool_ts_info *info) 3175 { 3176 struct macb *bp = netdev_priv(dev); 3177 3178 if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) { 3179 ethtool_op_get_ts_info(dev, info); 3180 return 0; 3181 } 3182 3183 info->so_timestamping = 3184 SOF_TIMESTAMPING_TX_SOFTWARE | 3185 SOF_TIMESTAMPING_RX_SOFTWARE | 3186 SOF_TIMESTAMPING_SOFTWARE | 3187 SOF_TIMESTAMPING_TX_HARDWARE | 3188 SOF_TIMESTAMPING_RX_HARDWARE | 3189 SOF_TIMESTAMPING_RAW_HARDWARE; 3190 info->tx_types = 3191 (1 << HWTSTAMP_TX_ONESTEP_SYNC) | 3192 (1 << HWTSTAMP_TX_OFF) | 3193 (1 << HWTSTAMP_TX_ON); 3194 info->rx_filters = 3195 (1 << HWTSTAMP_FILTER_NONE) | 3196 (1 << HWTSTAMP_FILTER_ALL); 3197 3198 info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1; 3199 3200 return 0; 3201 } 3202 3203 static struct macb_ptp_info gem_ptp_info = { 3204 .ptp_init = gem_ptp_init, 3205 .ptp_remove = gem_ptp_remove, 3206 .get_ptp_max_adj = gem_get_ptp_max_adj, 3207 .get_tsu_rate = gem_get_tsu_rate, 3208 .get_ts_info = gem_get_ts_info, 3209 .get_hwtst = gem_get_hwtst, 3210 .set_hwtst = gem_set_hwtst, 3211 }; 3212 #endif 3213 3214 static int macb_get_ts_info(struct net_device *netdev, 3215 struct ethtool_ts_info *info) 3216 { 3217 struct macb *bp = netdev_priv(netdev); 3218 3219 if (bp->ptp_info) 3220 return bp->ptp_info->get_ts_info(netdev, info); 3221 3222 return ethtool_op_get_ts_info(netdev, info); 3223 } 3224 3225 static void gem_enable_flow_filters(struct macb *bp, bool enable) 3226 { 3227 struct net_device *netdev = bp->dev; 3228 struct ethtool_rx_fs_item *item; 3229 u32 t2_scr; 3230 int num_t2_scr; 3231 3232 if (!(netdev->features & NETIF_F_NTUPLE)) 3233 return; 3234 3235 num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8)); 3236 3237 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3238 struct ethtool_rx_flow_spec *fs = &item->fs; 3239 struct ethtool_tcpip4_spec *tp4sp_m; 3240 3241 if (fs->location >= num_t2_scr) 3242 continue; 3243 3244 t2_scr = gem_readl_n(bp, SCRT2, fs->location); 3245 3246 /* enable/disable screener regs for the flow entry */ 3247 t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr); 3248 3249 /* only enable fields with no masking */ 3250 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3251 3252 if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF)) 3253 t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr); 3254 else 3255 t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr); 3256 3257 if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF)) 3258 t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr); 3259 else 3260 t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr); 3261 3262 if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF))) 3263 t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr); 3264 else 3265 t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr); 3266 3267 gem_writel_n(bp, SCRT2, fs->location, t2_scr); 3268 } 3269 } 3270 3271 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs) 3272 { 3273 struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m; 3274 uint16_t index = fs->location; 3275 u32 w0, w1, t2_scr; 3276 bool cmp_a = false; 3277 bool cmp_b = false; 3278 bool cmp_c = false; 3279 3280 if (!macb_is_gem(bp)) 3281 return; 3282 3283 tp4sp_v = &(fs->h_u.tcp_ip4_spec); 3284 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3285 3286 /* ignore field if any masking set */ 3287 if (tp4sp_m->ip4src == 0xFFFFFFFF) { 3288 /* 1st compare reg - IP source address */ 3289 w0 = 0; 3290 w1 = 0; 3291 w0 = tp4sp_v->ip4src; 3292 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3293 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3294 w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1); 3295 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0); 3296 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1); 3297 cmp_a = true; 3298 } 3299 3300 /* ignore field if any masking set */ 3301 if (tp4sp_m->ip4dst == 0xFFFFFFFF) { 3302 /* 2nd compare reg - IP destination address */ 3303 w0 = 0; 3304 w1 = 0; 3305 w0 = tp4sp_v->ip4dst; 3306 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3307 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3308 w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1); 3309 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0); 3310 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1); 3311 cmp_b = true; 3312 } 3313 3314 /* ignore both port fields if masking set in both */ 3315 if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) { 3316 /* 3rd compare reg - source port, destination port */ 3317 w0 = 0; 3318 w1 = 0; 3319 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1); 3320 if (tp4sp_m->psrc == tp4sp_m->pdst) { 3321 w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0); 3322 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3323 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3324 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3325 } else { 3326 /* only one port definition */ 3327 w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */ 3328 w0 = GEM_BFINS(T2MASK, 0xFFFF, w0); 3329 if (tp4sp_m->psrc == 0xFFFF) { /* src port */ 3330 w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0); 3331 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3332 } else { /* dst port */ 3333 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3334 w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1); 3335 } 3336 } 3337 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0); 3338 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1); 3339 cmp_c = true; 3340 } 3341 3342 t2_scr = 0; 3343 t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr); 3344 t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr); 3345 if (cmp_a) 3346 t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr); 3347 if (cmp_b) 3348 t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr); 3349 if (cmp_c) 3350 t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr); 3351 gem_writel_n(bp, SCRT2, index, t2_scr); 3352 } 3353 3354 static int gem_add_flow_filter(struct net_device *netdev, 3355 struct ethtool_rxnfc *cmd) 3356 { 3357 struct macb *bp = netdev_priv(netdev); 3358 struct ethtool_rx_flow_spec *fs = &cmd->fs; 3359 struct ethtool_rx_fs_item *item, *newfs; 3360 unsigned long flags; 3361 int ret = -EINVAL; 3362 bool added = false; 3363 3364 newfs = kmalloc(sizeof(*newfs), GFP_KERNEL); 3365 if (newfs == NULL) 3366 return -ENOMEM; 3367 memcpy(&newfs->fs, fs, sizeof(newfs->fs)); 3368 3369 netdev_dbg(netdev, 3370 "Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3371 fs->flow_type, (int)fs->ring_cookie, fs->location, 3372 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3373 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3374 htons(fs->h_u.tcp_ip4_spec.psrc), htons(fs->h_u.tcp_ip4_spec.pdst)); 3375 3376 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3377 3378 /* find correct place to add in list */ 3379 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3380 if (item->fs.location > newfs->fs.location) { 3381 list_add_tail(&newfs->list, &item->list); 3382 added = true; 3383 break; 3384 } else if (item->fs.location == fs->location) { 3385 netdev_err(netdev, "Rule not added: location %d not free!\n", 3386 fs->location); 3387 ret = -EBUSY; 3388 goto err; 3389 } 3390 } 3391 if (!added) 3392 list_add_tail(&newfs->list, &bp->rx_fs_list.list); 3393 3394 gem_prog_cmp_regs(bp, fs); 3395 bp->rx_fs_list.count++; 3396 /* enable filtering if NTUPLE on */ 3397 gem_enable_flow_filters(bp, 1); 3398 3399 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3400 return 0; 3401 3402 err: 3403 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3404 kfree(newfs); 3405 return ret; 3406 } 3407 3408 static int gem_del_flow_filter(struct net_device *netdev, 3409 struct ethtool_rxnfc *cmd) 3410 { 3411 struct macb *bp = netdev_priv(netdev); 3412 struct ethtool_rx_fs_item *item; 3413 struct ethtool_rx_flow_spec *fs; 3414 unsigned long flags; 3415 3416 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3417 3418 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3419 if (item->fs.location == cmd->fs.location) { 3420 /* disable screener regs for the flow entry */ 3421 fs = &(item->fs); 3422 netdev_dbg(netdev, 3423 "Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3424 fs->flow_type, (int)fs->ring_cookie, fs->location, 3425 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3426 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3427 htons(fs->h_u.tcp_ip4_spec.psrc), 3428 htons(fs->h_u.tcp_ip4_spec.pdst)); 3429 3430 gem_writel_n(bp, SCRT2, fs->location, 0); 3431 3432 list_del(&item->list); 3433 bp->rx_fs_list.count--; 3434 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3435 kfree(item); 3436 return 0; 3437 } 3438 } 3439 3440 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3441 return -EINVAL; 3442 } 3443 3444 static int gem_get_flow_entry(struct net_device *netdev, 3445 struct ethtool_rxnfc *cmd) 3446 { 3447 struct macb *bp = netdev_priv(netdev); 3448 struct ethtool_rx_fs_item *item; 3449 3450 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3451 if (item->fs.location == cmd->fs.location) { 3452 memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs)); 3453 return 0; 3454 } 3455 } 3456 return -EINVAL; 3457 } 3458 3459 static int gem_get_all_flow_entries(struct net_device *netdev, 3460 struct ethtool_rxnfc *cmd, u32 *rule_locs) 3461 { 3462 struct macb *bp = netdev_priv(netdev); 3463 struct ethtool_rx_fs_item *item; 3464 uint32_t cnt = 0; 3465 3466 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3467 if (cnt == cmd->rule_cnt) 3468 return -EMSGSIZE; 3469 rule_locs[cnt] = item->fs.location; 3470 cnt++; 3471 } 3472 cmd->data = bp->max_tuples; 3473 cmd->rule_cnt = cnt; 3474 3475 return 0; 3476 } 3477 3478 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3479 u32 *rule_locs) 3480 { 3481 struct macb *bp = netdev_priv(netdev); 3482 int ret = 0; 3483 3484 switch (cmd->cmd) { 3485 case ETHTOOL_GRXRINGS: 3486 cmd->data = bp->num_queues; 3487 break; 3488 case ETHTOOL_GRXCLSRLCNT: 3489 cmd->rule_cnt = bp->rx_fs_list.count; 3490 break; 3491 case ETHTOOL_GRXCLSRULE: 3492 ret = gem_get_flow_entry(netdev, cmd); 3493 break; 3494 case ETHTOOL_GRXCLSRLALL: 3495 ret = gem_get_all_flow_entries(netdev, cmd, rule_locs); 3496 break; 3497 default: 3498 netdev_err(netdev, 3499 "Command parameter %d is not supported\n", cmd->cmd); 3500 ret = -EOPNOTSUPP; 3501 } 3502 3503 return ret; 3504 } 3505 3506 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3507 { 3508 struct macb *bp = netdev_priv(netdev); 3509 int ret; 3510 3511 switch (cmd->cmd) { 3512 case ETHTOOL_SRXCLSRLINS: 3513 if ((cmd->fs.location >= bp->max_tuples) 3514 || (cmd->fs.ring_cookie >= bp->num_queues)) { 3515 ret = -EINVAL; 3516 break; 3517 } 3518 ret = gem_add_flow_filter(netdev, cmd); 3519 break; 3520 case ETHTOOL_SRXCLSRLDEL: 3521 ret = gem_del_flow_filter(netdev, cmd); 3522 break; 3523 default: 3524 netdev_err(netdev, 3525 "Command parameter %d is not supported\n", cmd->cmd); 3526 ret = -EOPNOTSUPP; 3527 } 3528 3529 return ret; 3530 } 3531 3532 static const struct ethtool_ops macb_ethtool_ops = { 3533 .get_regs_len = macb_get_regs_len, 3534 .get_regs = macb_get_regs, 3535 .get_link = ethtool_op_get_link, 3536 .get_ts_info = ethtool_op_get_ts_info, 3537 .get_wol = macb_get_wol, 3538 .set_wol = macb_set_wol, 3539 .get_link_ksettings = macb_get_link_ksettings, 3540 .set_link_ksettings = macb_set_link_ksettings, 3541 .get_ringparam = macb_get_ringparam, 3542 .set_ringparam = macb_set_ringparam, 3543 }; 3544 3545 static const struct ethtool_ops gem_ethtool_ops = { 3546 .get_regs_len = macb_get_regs_len, 3547 .get_regs = macb_get_regs, 3548 .get_wol = macb_get_wol, 3549 .set_wol = macb_set_wol, 3550 .get_link = ethtool_op_get_link, 3551 .get_ts_info = macb_get_ts_info, 3552 .get_ethtool_stats = gem_get_ethtool_stats, 3553 .get_strings = gem_get_ethtool_strings, 3554 .get_sset_count = gem_get_sset_count, 3555 .get_link_ksettings = macb_get_link_ksettings, 3556 .set_link_ksettings = macb_set_link_ksettings, 3557 .get_ringparam = macb_get_ringparam, 3558 .set_ringparam = macb_set_ringparam, 3559 .get_rxnfc = gem_get_rxnfc, 3560 .set_rxnfc = gem_set_rxnfc, 3561 }; 3562 3563 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3564 { 3565 struct macb *bp = netdev_priv(dev); 3566 3567 if (!netif_running(dev)) 3568 return -EINVAL; 3569 3570 if (bp->ptp_info) { 3571 switch (cmd) { 3572 case SIOCSHWTSTAMP: 3573 return bp->ptp_info->set_hwtst(dev, rq, cmd); 3574 case SIOCGHWTSTAMP: 3575 return bp->ptp_info->get_hwtst(dev, rq); 3576 } 3577 } 3578 3579 return phylink_mii_ioctl(bp->phylink, rq, cmd); 3580 } 3581 3582 static inline void macb_set_txcsum_feature(struct macb *bp, 3583 netdev_features_t features) 3584 { 3585 u32 val; 3586 3587 if (!macb_is_gem(bp)) 3588 return; 3589 3590 val = gem_readl(bp, DMACFG); 3591 if (features & NETIF_F_HW_CSUM) 3592 val |= GEM_BIT(TXCOEN); 3593 else 3594 val &= ~GEM_BIT(TXCOEN); 3595 3596 gem_writel(bp, DMACFG, val); 3597 } 3598 3599 static inline void macb_set_rxcsum_feature(struct macb *bp, 3600 netdev_features_t features) 3601 { 3602 struct net_device *netdev = bp->dev; 3603 u32 val; 3604 3605 if (!macb_is_gem(bp)) 3606 return; 3607 3608 val = gem_readl(bp, NCFGR); 3609 if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC)) 3610 val |= GEM_BIT(RXCOEN); 3611 else 3612 val &= ~GEM_BIT(RXCOEN); 3613 3614 gem_writel(bp, NCFGR, val); 3615 } 3616 3617 static inline void macb_set_rxflow_feature(struct macb *bp, 3618 netdev_features_t features) 3619 { 3620 if (!macb_is_gem(bp)) 3621 return; 3622 3623 gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE)); 3624 } 3625 3626 static int macb_set_features(struct net_device *netdev, 3627 netdev_features_t features) 3628 { 3629 struct macb *bp = netdev_priv(netdev); 3630 netdev_features_t changed = features ^ netdev->features; 3631 3632 /* TX checksum offload */ 3633 if (changed & NETIF_F_HW_CSUM) 3634 macb_set_txcsum_feature(bp, features); 3635 3636 /* RX checksum offload */ 3637 if (changed & NETIF_F_RXCSUM) 3638 macb_set_rxcsum_feature(bp, features); 3639 3640 /* RX Flow Filters */ 3641 if (changed & NETIF_F_NTUPLE) 3642 macb_set_rxflow_feature(bp, features); 3643 3644 return 0; 3645 } 3646 3647 static void macb_restore_features(struct macb *bp) 3648 { 3649 struct net_device *netdev = bp->dev; 3650 netdev_features_t features = netdev->features; 3651 struct ethtool_rx_fs_item *item; 3652 3653 /* TX checksum offload */ 3654 macb_set_txcsum_feature(bp, features); 3655 3656 /* RX checksum offload */ 3657 macb_set_rxcsum_feature(bp, features); 3658 3659 /* RX Flow Filters */ 3660 list_for_each_entry(item, &bp->rx_fs_list.list, list) 3661 gem_prog_cmp_regs(bp, &item->fs); 3662 3663 macb_set_rxflow_feature(bp, features); 3664 } 3665 3666 static const struct net_device_ops macb_netdev_ops = { 3667 .ndo_open = macb_open, 3668 .ndo_stop = macb_close, 3669 .ndo_start_xmit = macb_start_xmit, 3670 .ndo_set_rx_mode = macb_set_rx_mode, 3671 .ndo_get_stats = macb_get_stats, 3672 .ndo_eth_ioctl = macb_ioctl, 3673 .ndo_validate_addr = eth_validate_addr, 3674 .ndo_change_mtu = macb_change_mtu, 3675 .ndo_set_mac_address = eth_mac_addr, 3676 #ifdef CONFIG_NET_POLL_CONTROLLER 3677 .ndo_poll_controller = macb_poll_controller, 3678 #endif 3679 .ndo_set_features = macb_set_features, 3680 .ndo_features_check = macb_features_check, 3681 }; 3682 3683 /* Configure peripheral capabilities according to device tree 3684 * and integration options used 3685 */ 3686 static void macb_configure_caps(struct macb *bp, 3687 const struct macb_config *dt_conf) 3688 { 3689 u32 dcfg; 3690 3691 if (dt_conf) 3692 bp->caps = dt_conf->caps; 3693 3694 if (hw_is_gem(bp->regs, bp->native_io)) { 3695 bp->caps |= MACB_CAPS_MACB_IS_GEM; 3696 3697 dcfg = gem_readl(bp, DCFG1); 3698 if (GEM_BFEXT(IRQCOR, dcfg) == 0) 3699 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE; 3700 if (GEM_BFEXT(NO_PCS, dcfg) == 0) 3701 bp->caps |= MACB_CAPS_PCS; 3702 dcfg = gem_readl(bp, DCFG12); 3703 if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1) 3704 bp->caps |= MACB_CAPS_HIGH_SPEED; 3705 dcfg = gem_readl(bp, DCFG2); 3706 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0) 3707 bp->caps |= MACB_CAPS_FIFO_MODE; 3708 #ifdef CONFIG_MACB_USE_HWSTAMP 3709 if (gem_has_ptp(bp)) { 3710 if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5))) 3711 dev_err(&bp->pdev->dev, 3712 "GEM doesn't support hardware ptp.\n"); 3713 else { 3714 bp->hw_dma_cap |= HW_DMA_CAP_PTP; 3715 bp->ptp_info = &gem_ptp_info; 3716 } 3717 } 3718 #endif 3719 } 3720 3721 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps); 3722 } 3723 3724 static void macb_probe_queues(void __iomem *mem, 3725 bool native_io, 3726 unsigned int *queue_mask, 3727 unsigned int *num_queues) 3728 { 3729 *queue_mask = 0x1; 3730 *num_queues = 1; 3731 3732 /* is it macb or gem ? 3733 * 3734 * We need to read directly from the hardware here because 3735 * we are early in the probe process and don't have the 3736 * MACB_CAPS_MACB_IS_GEM flag positioned 3737 */ 3738 if (!hw_is_gem(mem, native_io)) 3739 return; 3740 3741 /* bit 0 is never set but queue 0 always exists */ 3742 *queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff; 3743 *num_queues = hweight32(*queue_mask); 3744 } 3745 3746 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk, 3747 struct clk *rx_clk, struct clk *tsu_clk) 3748 { 3749 struct clk_bulk_data clks[] = { 3750 { .clk = tsu_clk, }, 3751 { .clk = rx_clk, }, 3752 { .clk = pclk, }, 3753 { .clk = hclk, }, 3754 { .clk = tx_clk }, 3755 }; 3756 3757 clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks); 3758 } 3759 3760 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk, 3761 struct clk **hclk, struct clk **tx_clk, 3762 struct clk **rx_clk, struct clk **tsu_clk) 3763 { 3764 struct macb_platform_data *pdata; 3765 int err; 3766 3767 pdata = dev_get_platdata(&pdev->dev); 3768 if (pdata) { 3769 *pclk = pdata->pclk; 3770 *hclk = pdata->hclk; 3771 } else { 3772 *pclk = devm_clk_get(&pdev->dev, "pclk"); 3773 *hclk = devm_clk_get(&pdev->dev, "hclk"); 3774 } 3775 3776 if (IS_ERR_OR_NULL(*pclk)) 3777 return dev_err_probe(&pdev->dev, 3778 IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV, 3779 "failed to get pclk\n"); 3780 3781 if (IS_ERR_OR_NULL(*hclk)) 3782 return dev_err_probe(&pdev->dev, 3783 IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV, 3784 "failed to get hclk\n"); 3785 3786 *tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk"); 3787 if (IS_ERR(*tx_clk)) 3788 return PTR_ERR(*tx_clk); 3789 3790 *rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk"); 3791 if (IS_ERR(*rx_clk)) 3792 return PTR_ERR(*rx_clk); 3793 3794 *tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk"); 3795 if (IS_ERR(*tsu_clk)) 3796 return PTR_ERR(*tsu_clk); 3797 3798 err = clk_prepare_enable(*pclk); 3799 if (err) { 3800 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 3801 return err; 3802 } 3803 3804 err = clk_prepare_enable(*hclk); 3805 if (err) { 3806 dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err); 3807 goto err_disable_pclk; 3808 } 3809 3810 err = clk_prepare_enable(*tx_clk); 3811 if (err) { 3812 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 3813 goto err_disable_hclk; 3814 } 3815 3816 err = clk_prepare_enable(*rx_clk); 3817 if (err) { 3818 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 3819 goto err_disable_txclk; 3820 } 3821 3822 err = clk_prepare_enable(*tsu_clk); 3823 if (err) { 3824 dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err); 3825 goto err_disable_rxclk; 3826 } 3827 3828 return 0; 3829 3830 err_disable_rxclk: 3831 clk_disable_unprepare(*rx_clk); 3832 3833 err_disable_txclk: 3834 clk_disable_unprepare(*tx_clk); 3835 3836 err_disable_hclk: 3837 clk_disable_unprepare(*hclk); 3838 3839 err_disable_pclk: 3840 clk_disable_unprepare(*pclk); 3841 3842 return err; 3843 } 3844 3845 static int macb_init(struct platform_device *pdev) 3846 { 3847 struct net_device *dev = platform_get_drvdata(pdev); 3848 unsigned int hw_q, q; 3849 struct macb *bp = netdev_priv(dev); 3850 struct macb_queue *queue; 3851 int err; 3852 u32 val, reg; 3853 3854 bp->tx_ring_size = DEFAULT_TX_RING_SIZE; 3855 bp->rx_ring_size = DEFAULT_RX_RING_SIZE; 3856 3857 /* set the queue register mapping once for all: queue0 has a special 3858 * register mapping but we don't want to test the queue index then 3859 * compute the corresponding register offset at run time. 3860 */ 3861 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) { 3862 if (!(bp->queue_mask & (1 << hw_q))) 3863 continue; 3864 3865 queue = &bp->queues[q]; 3866 queue->bp = bp; 3867 netif_napi_add(dev, &queue->napi, macb_poll, NAPI_POLL_WEIGHT); 3868 if (hw_q) { 3869 queue->ISR = GEM_ISR(hw_q - 1); 3870 queue->IER = GEM_IER(hw_q - 1); 3871 queue->IDR = GEM_IDR(hw_q - 1); 3872 queue->IMR = GEM_IMR(hw_q - 1); 3873 queue->TBQP = GEM_TBQP(hw_q - 1); 3874 queue->RBQP = GEM_RBQP(hw_q - 1); 3875 queue->RBQS = GEM_RBQS(hw_q - 1); 3876 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 3877 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 3878 queue->TBQPH = GEM_TBQPH(hw_q - 1); 3879 queue->RBQPH = GEM_RBQPH(hw_q - 1); 3880 } 3881 #endif 3882 } else { 3883 /* queue0 uses legacy registers */ 3884 queue->ISR = MACB_ISR; 3885 queue->IER = MACB_IER; 3886 queue->IDR = MACB_IDR; 3887 queue->IMR = MACB_IMR; 3888 queue->TBQP = MACB_TBQP; 3889 queue->RBQP = MACB_RBQP; 3890 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 3891 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 3892 queue->TBQPH = MACB_TBQPH; 3893 queue->RBQPH = MACB_RBQPH; 3894 } 3895 #endif 3896 } 3897 3898 /* get irq: here we use the linux queue index, not the hardware 3899 * queue index. the queue irq definitions in the device tree 3900 * must remove the optional gaps that could exist in the 3901 * hardware queue mask. 3902 */ 3903 queue->irq = platform_get_irq(pdev, q); 3904 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt, 3905 IRQF_SHARED, dev->name, queue); 3906 if (err) { 3907 dev_err(&pdev->dev, 3908 "Unable to request IRQ %d (error %d)\n", 3909 queue->irq, err); 3910 return err; 3911 } 3912 3913 INIT_WORK(&queue->tx_error_task, macb_tx_error_task); 3914 q++; 3915 } 3916 3917 dev->netdev_ops = &macb_netdev_ops; 3918 3919 /* setup appropriated routines according to adapter type */ 3920 if (macb_is_gem(bp)) { 3921 bp->max_tx_length = GEM_MAX_TX_LEN; 3922 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers; 3923 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers; 3924 bp->macbgem_ops.mog_init_rings = gem_init_rings; 3925 bp->macbgem_ops.mog_rx = gem_rx; 3926 dev->ethtool_ops = &gem_ethtool_ops; 3927 } else { 3928 bp->max_tx_length = MACB_MAX_TX_LEN; 3929 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers; 3930 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers; 3931 bp->macbgem_ops.mog_init_rings = macb_init_rings; 3932 bp->macbgem_ops.mog_rx = macb_rx; 3933 dev->ethtool_ops = &macb_ethtool_ops; 3934 } 3935 3936 /* Set features */ 3937 dev->hw_features = NETIF_F_SG; 3938 3939 /* Check LSO capability */ 3940 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6))) 3941 dev->hw_features |= MACB_NETIF_LSO; 3942 3943 /* Checksum offload is only available on gem with packet buffer */ 3944 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE)) 3945 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 3946 if (bp->caps & MACB_CAPS_SG_DISABLED) 3947 dev->hw_features &= ~NETIF_F_SG; 3948 dev->features = dev->hw_features; 3949 3950 /* Check RX Flow Filters support. 3951 * Max Rx flows set by availability of screeners & compare regs: 3952 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs 3953 */ 3954 reg = gem_readl(bp, DCFG8); 3955 bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3), 3956 GEM_BFEXT(T2SCR, reg)); 3957 INIT_LIST_HEAD(&bp->rx_fs_list.list); 3958 if (bp->max_tuples > 0) { 3959 /* also needs one ethtype match to check IPv4 */ 3960 if (GEM_BFEXT(SCR2ETH, reg) > 0) { 3961 /* program this reg now */ 3962 reg = 0; 3963 reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg); 3964 gem_writel_n(bp, ETHT, SCRT2_ETHT, reg); 3965 /* Filtering is supported in hw but don't enable it in kernel now */ 3966 dev->hw_features |= NETIF_F_NTUPLE; 3967 /* init Rx flow definitions */ 3968 bp->rx_fs_list.count = 0; 3969 spin_lock_init(&bp->rx_fs_lock); 3970 } else 3971 bp->max_tuples = 0; 3972 } 3973 3974 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) { 3975 val = 0; 3976 if (phy_interface_mode_is_rgmii(bp->phy_interface)) 3977 val = bp->usrio->rgmii; 3978 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII && 3979 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 3980 val = bp->usrio->rmii; 3981 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 3982 val = bp->usrio->mii; 3983 3984 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN) 3985 val |= bp->usrio->refclk; 3986 3987 macb_or_gem_writel(bp, USRIO, val); 3988 } 3989 3990 /* Set MII management clock divider */ 3991 val = macb_mdc_clk_div(bp); 3992 val |= macb_dbw(bp); 3993 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) 3994 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 3995 macb_writel(bp, NCFGR, val); 3996 3997 return 0; 3998 } 3999 4000 static const struct macb_usrio_config macb_default_usrio = { 4001 .mii = MACB_BIT(MII), 4002 .rmii = MACB_BIT(RMII), 4003 .rgmii = GEM_BIT(RGMII), 4004 .refclk = MACB_BIT(CLKEN), 4005 }; 4006 4007 #if defined(CONFIG_OF) 4008 /* 1518 rounded up */ 4009 #define AT91ETHER_MAX_RBUFF_SZ 0x600 4010 /* max number of receive buffers */ 4011 #define AT91ETHER_MAX_RX_DESCR 9 4012 4013 static struct sifive_fu540_macb_mgmt *mgmt; 4014 4015 static int at91ether_alloc_coherent(struct macb *lp) 4016 { 4017 struct macb_queue *q = &lp->queues[0]; 4018 4019 q->rx_ring = dma_alloc_coherent(&lp->pdev->dev, 4020 (AT91ETHER_MAX_RX_DESCR * 4021 macb_dma_desc_get_size(lp)), 4022 &q->rx_ring_dma, GFP_KERNEL); 4023 if (!q->rx_ring) 4024 return -ENOMEM; 4025 4026 q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev, 4027 AT91ETHER_MAX_RX_DESCR * 4028 AT91ETHER_MAX_RBUFF_SZ, 4029 &q->rx_buffers_dma, GFP_KERNEL); 4030 if (!q->rx_buffers) { 4031 dma_free_coherent(&lp->pdev->dev, 4032 AT91ETHER_MAX_RX_DESCR * 4033 macb_dma_desc_get_size(lp), 4034 q->rx_ring, q->rx_ring_dma); 4035 q->rx_ring = NULL; 4036 return -ENOMEM; 4037 } 4038 4039 return 0; 4040 } 4041 4042 static void at91ether_free_coherent(struct macb *lp) 4043 { 4044 struct macb_queue *q = &lp->queues[0]; 4045 4046 if (q->rx_ring) { 4047 dma_free_coherent(&lp->pdev->dev, 4048 AT91ETHER_MAX_RX_DESCR * 4049 macb_dma_desc_get_size(lp), 4050 q->rx_ring, q->rx_ring_dma); 4051 q->rx_ring = NULL; 4052 } 4053 4054 if (q->rx_buffers) { 4055 dma_free_coherent(&lp->pdev->dev, 4056 AT91ETHER_MAX_RX_DESCR * 4057 AT91ETHER_MAX_RBUFF_SZ, 4058 q->rx_buffers, q->rx_buffers_dma); 4059 q->rx_buffers = NULL; 4060 } 4061 } 4062 4063 /* Initialize and start the Receiver and Transmit subsystems */ 4064 static int at91ether_start(struct macb *lp) 4065 { 4066 struct macb_queue *q = &lp->queues[0]; 4067 struct macb_dma_desc *desc; 4068 dma_addr_t addr; 4069 u32 ctl; 4070 int i, ret; 4071 4072 ret = at91ether_alloc_coherent(lp); 4073 if (ret) 4074 return ret; 4075 4076 addr = q->rx_buffers_dma; 4077 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) { 4078 desc = macb_rx_desc(q, i); 4079 macb_set_addr(lp, desc, addr); 4080 desc->ctrl = 0; 4081 addr += AT91ETHER_MAX_RBUFF_SZ; 4082 } 4083 4084 /* Set the Wrap bit on the last descriptor */ 4085 desc->addr |= MACB_BIT(RX_WRAP); 4086 4087 /* Reset buffer index */ 4088 q->rx_tail = 0; 4089 4090 /* Program address of descriptor list in Rx Buffer Queue register */ 4091 macb_writel(lp, RBQP, q->rx_ring_dma); 4092 4093 /* Enable Receive and Transmit */ 4094 ctl = macb_readl(lp, NCR); 4095 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE)); 4096 4097 /* Enable MAC interrupts */ 4098 macb_writel(lp, IER, MACB_BIT(RCOMP) | 4099 MACB_BIT(RXUBR) | 4100 MACB_BIT(ISR_TUND) | 4101 MACB_BIT(ISR_RLE) | 4102 MACB_BIT(TCOMP) | 4103 MACB_BIT(ISR_ROVR) | 4104 MACB_BIT(HRESP)); 4105 4106 return 0; 4107 } 4108 4109 static void at91ether_stop(struct macb *lp) 4110 { 4111 u32 ctl; 4112 4113 /* Disable MAC interrupts */ 4114 macb_writel(lp, IDR, MACB_BIT(RCOMP) | 4115 MACB_BIT(RXUBR) | 4116 MACB_BIT(ISR_TUND) | 4117 MACB_BIT(ISR_RLE) | 4118 MACB_BIT(TCOMP) | 4119 MACB_BIT(ISR_ROVR) | 4120 MACB_BIT(HRESP)); 4121 4122 /* Disable Receiver and Transmitter */ 4123 ctl = macb_readl(lp, NCR); 4124 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE))); 4125 4126 /* Free resources. */ 4127 at91ether_free_coherent(lp); 4128 } 4129 4130 /* Open the ethernet interface */ 4131 static int at91ether_open(struct net_device *dev) 4132 { 4133 struct macb *lp = netdev_priv(dev); 4134 u32 ctl; 4135 int ret; 4136 4137 ret = pm_runtime_get_sync(&lp->pdev->dev); 4138 if (ret < 0) { 4139 pm_runtime_put_noidle(&lp->pdev->dev); 4140 return ret; 4141 } 4142 4143 /* Clear internal statistics */ 4144 ctl = macb_readl(lp, NCR); 4145 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT)); 4146 4147 macb_set_hwaddr(lp); 4148 4149 ret = at91ether_start(lp); 4150 if (ret) 4151 goto pm_exit; 4152 4153 ret = macb_phylink_connect(lp); 4154 if (ret) 4155 goto stop; 4156 4157 netif_start_queue(dev); 4158 4159 return 0; 4160 4161 stop: 4162 at91ether_stop(lp); 4163 pm_exit: 4164 pm_runtime_put_sync(&lp->pdev->dev); 4165 return ret; 4166 } 4167 4168 /* Close the interface */ 4169 static int at91ether_close(struct net_device *dev) 4170 { 4171 struct macb *lp = netdev_priv(dev); 4172 4173 netif_stop_queue(dev); 4174 4175 phylink_stop(lp->phylink); 4176 phylink_disconnect_phy(lp->phylink); 4177 4178 at91ether_stop(lp); 4179 4180 return pm_runtime_put(&lp->pdev->dev); 4181 } 4182 4183 /* Transmit packet */ 4184 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb, 4185 struct net_device *dev) 4186 { 4187 struct macb *lp = netdev_priv(dev); 4188 4189 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) { 4190 int desc = 0; 4191 4192 netif_stop_queue(dev); 4193 4194 /* Store packet information (to free when Tx completed) */ 4195 lp->rm9200_txq[desc].skb = skb; 4196 lp->rm9200_txq[desc].size = skb->len; 4197 lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data, 4198 skb->len, DMA_TO_DEVICE); 4199 if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) { 4200 dev_kfree_skb_any(skb); 4201 dev->stats.tx_dropped++; 4202 netdev_err(dev, "%s: DMA mapping error\n", __func__); 4203 return NETDEV_TX_OK; 4204 } 4205 4206 /* Set address of the data in the Transmit Address register */ 4207 macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping); 4208 /* Set length of the packet in the Transmit Control register */ 4209 macb_writel(lp, TCR, skb->len); 4210 4211 } else { 4212 netdev_err(dev, "%s called, but device is busy!\n", __func__); 4213 return NETDEV_TX_BUSY; 4214 } 4215 4216 return NETDEV_TX_OK; 4217 } 4218 4219 /* Extract received frame from buffer descriptors and sent to upper layers. 4220 * (Called from interrupt context) 4221 */ 4222 static void at91ether_rx(struct net_device *dev) 4223 { 4224 struct macb *lp = netdev_priv(dev); 4225 struct macb_queue *q = &lp->queues[0]; 4226 struct macb_dma_desc *desc; 4227 unsigned char *p_recv; 4228 struct sk_buff *skb; 4229 unsigned int pktlen; 4230 4231 desc = macb_rx_desc(q, q->rx_tail); 4232 while (desc->addr & MACB_BIT(RX_USED)) { 4233 p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ; 4234 pktlen = MACB_BF(RX_FRMLEN, desc->ctrl); 4235 skb = netdev_alloc_skb(dev, pktlen + 2); 4236 if (skb) { 4237 skb_reserve(skb, 2); 4238 skb_put_data(skb, p_recv, pktlen); 4239 4240 skb->protocol = eth_type_trans(skb, dev); 4241 dev->stats.rx_packets++; 4242 dev->stats.rx_bytes += pktlen; 4243 netif_rx(skb); 4244 } else { 4245 dev->stats.rx_dropped++; 4246 } 4247 4248 if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH)) 4249 dev->stats.multicast++; 4250 4251 /* reset ownership bit */ 4252 desc->addr &= ~MACB_BIT(RX_USED); 4253 4254 /* wrap after last buffer */ 4255 if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1) 4256 q->rx_tail = 0; 4257 else 4258 q->rx_tail++; 4259 4260 desc = macb_rx_desc(q, q->rx_tail); 4261 } 4262 } 4263 4264 /* MAC interrupt handler */ 4265 static irqreturn_t at91ether_interrupt(int irq, void *dev_id) 4266 { 4267 struct net_device *dev = dev_id; 4268 struct macb *lp = netdev_priv(dev); 4269 u32 intstatus, ctl; 4270 unsigned int desc; 4271 4272 /* MAC Interrupt Status register indicates what interrupts are pending. 4273 * It is automatically cleared once read. 4274 */ 4275 intstatus = macb_readl(lp, ISR); 4276 4277 /* Receive complete */ 4278 if (intstatus & MACB_BIT(RCOMP)) 4279 at91ether_rx(dev); 4280 4281 /* Transmit complete */ 4282 if (intstatus & MACB_BIT(TCOMP)) { 4283 /* The TCOM bit is set even if the transmission failed */ 4284 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) 4285 dev->stats.tx_errors++; 4286 4287 desc = 0; 4288 if (lp->rm9200_txq[desc].skb) { 4289 dev_consume_skb_irq(lp->rm9200_txq[desc].skb); 4290 lp->rm9200_txq[desc].skb = NULL; 4291 dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping, 4292 lp->rm9200_txq[desc].size, DMA_TO_DEVICE); 4293 dev->stats.tx_packets++; 4294 dev->stats.tx_bytes += lp->rm9200_txq[desc].size; 4295 } 4296 netif_wake_queue(dev); 4297 } 4298 4299 /* Work-around for EMAC Errata section 41.3.1 */ 4300 if (intstatus & MACB_BIT(RXUBR)) { 4301 ctl = macb_readl(lp, NCR); 4302 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE)); 4303 wmb(); 4304 macb_writel(lp, NCR, ctl | MACB_BIT(RE)); 4305 } 4306 4307 if (intstatus & MACB_BIT(ISR_ROVR)) 4308 netdev_err(dev, "ROVR error\n"); 4309 4310 return IRQ_HANDLED; 4311 } 4312 4313 #ifdef CONFIG_NET_POLL_CONTROLLER 4314 static void at91ether_poll_controller(struct net_device *dev) 4315 { 4316 unsigned long flags; 4317 4318 local_irq_save(flags); 4319 at91ether_interrupt(dev->irq, dev); 4320 local_irq_restore(flags); 4321 } 4322 #endif 4323 4324 static const struct net_device_ops at91ether_netdev_ops = { 4325 .ndo_open = at91ether_open, 4326 .ndo_stop = at91ether_close, 4327 .ndo_start_xmit = at91ether_start_xmit, 4328 .ndo_get_stats = macb_get_stats, 4329 .ndo_set_rx_mode = macb_set_rx_mode, 4330 .ndo_set_mac_address = eth_mac_addr, 4331 .ndo_eth_ioctl = macb_ioctl, 4332 .ndo_validate_addr = eth_validate_addr, 4333 #ifdef CONFIG_NET_POLL_CONTROLLER 4334 .ndo_poll_controller = at91ether_poll_controller, 4335 #endif 4336 }; 4337 4338 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk, 4339 struct clk **hclk, struct clk **tx_clk, 4340 struct clk **rx_clk, struct clk **tsu_clk) 4341 { 4342 int err; 4343 4344 *hclk = NULL; 4345 *tx_clk = NULL; 4346 *rx_clk = NULL; 4347 *tsu_clk = NULL; 4348 4349 *pclk = devm_clk_get(&pdev->dev, "ether_clk"); 4350 if (IS_ERR(*pclk)) 4351 return PTR_ERR(*pclk); 4352 4353 err = clk_prepare_enable(*pclk); 4354 if (err) { 4355 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4356 return err; 4357 } 4358 4359 return 0; 4360 } 4361 4362 static int at91ether_init(struct platform_device *pdev) 4363 { 4364 struct net_device *dev = platform_get_drvdata(pdev); 4365 struct macb *bp = netdev_priv(dev); 4366 int err; 4367 4368 bp->queues[0].bp = bp; 4369 4370 dev->netdev_ops = &at91ether_netdev_ops; 4371 dev->ethtool_ops = &macb_ethtool_ops; 4372 4373 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt, 4374 0, dev->name, dev); 4375 if (err) 4376 return err; 4377 4378 macb_writel(bp, NCR, 0); 4379 4380 macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG)); 4381 4382 return 0; 4383 } 4384 4385 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw, 4386 unsigned long parent_rate) 4387 { 4388 return mgmt->rate; 4389 } 4390 4391 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate, 4392 unsigned long *parent_rate) 4393 { 4394 if (WARN_ON(rate < 2500000)) 4395 return 2500000; 4396 else if (rate == 2500000) 4397 return 2500000; 4398 else if (WARN_ON(rate < 13750000)) 4399 return 2500000; 4400 else if (WARN_ON(rate < 25000000)) 4401 return 25000000; 4402 else if (rate == 25000000) 4403 return 25000000; 4404 else if (WARN_ON(rate < 75000000)) 4405 return 25000000; 4406 else if (WARN_ON(rate < 125000000)) 4407 return 125000000; 4408 else if (rate == 125000000) 4409 return 125000000; 4410 4411 WARN_ON(rate > 125000000); 4412 4413 return 125000000; 4414 } 4415 4416 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate, 4417 unsigned long parent_rate) 4418 { 4419 rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate); 4420 if (rate != 125000000) 4421 iowrite32(1, mgmt->reg); 4422 else 4423 iowrite32(0, mgmt->reg); 4424 mgmt->rate = rate; 4425 4426 return 0; 4427 } 4428 4429 static const struct clk_ops fu540_c000_ops = { 4430 .recalc_rate = fu540_macb_tx_recalc_rate, 4431 .round_rate = fu540_macb_tx_round_rate, 4432 .set_rate = fu540_macb_tx_set_rate, 4433 }; 4434 4435 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk, 4436 struct clk **hclk, struct clk **tx_clk, 4437 struct clk **rx_clk, struct clk **tsu_clk) 4438 { 4439 struct clk_init_data init; 4440 int err = 0; 4441 4442 err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk); 4443 if (err) 4444 return err; 4445 4446 mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL); 4447 if (!mgmt) { 4448 err = -ENOMEM; 4449 goto err_disable_clks; 4450 } 4451 4452 init.name = "sifive-gemgxl-mgmt"; 4453 init.ops = &fu540_c000_ops; 4454 init.flags = 0; 4455 init.num_parents = 0; 4456 4457 mgmt->rate = 0; 4458 mgmt->hw.init = &init; 4459 4460 *tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw); 4461 if (IS_ERR(*tx_clk)) { 4462 err = PTR_ERR(*tx_clk); 4463 goto err_disable_clks; 4464 } 4465 4466 err = clk_prepare_enable(*tx_clk); 4467 if (err) { 4468 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err); 4469 *tx_clk = NULL; 4470 goto err_disable_clks; 4471 } else { 4472 dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name); 4473 } 4474 4475 return 0; 4476 4477 err_disable_clks: 4478 macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk); 4479 4480 return err; 4481 } 4482 4483 static int fu540_c000_init(struct platform_device *pdev) 4484 { 4485 mgmt->reg = devm_platform_ioremap_resource(pdev, 1); 4486 if (IS_ERR(mgmt->reg)) 4487 return PTR_ERR(mgmt->reg); 4488 4489 return macb_init(pdev); 4490 } 4491 4492 static const struct macb_usrio_config sama7g5_usrio = { 4493 .mii = 0, 4494 .rmii = 1, 4495 .rgmii = 2, 4496 .refclk = BIT(2), 4497 .hdfctlen = BIT(6), 4498 }; 4499 4500 static const struct macb_config fu540_c000_config = { 4501 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4502 MACB_CAPS_GEM_HAS_PTP, 4503 .dma_burst_length = 16, 4504 .clk_init = fu540_c000_clk_init, 4505 .init = fu540_c000_init, 4506 .jumbo_max_len = 10240, 4507 .usrio = &macb_default_usrio, 4508 }; 4509 4510 static const struct macb_config at91sam9260_config = { 4511 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4512 .clk_init = macb_clk_init, 4513 .init = macb_init, 4514 .usrio = &macb_default_usrio, 4515 }; 4516 4517 static const struct macb_config sama5d3macb_config = { 4518 .caps = MACB_CAPS_SG_DISABLED 4519 | MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4520 .clk_init = macb_clk_init, 4521 .init = macb_init, 4522 .usrio = &macb_default_usrio, 4523 }; 4524 4525 static const struct macb_config pc302gem_config = { 4526 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE, 4527 .dma_burst_length = 16, 4528 .clk_init = macb_clk_init, 4529 .init = macb_init, 4530 .usrio = &macb_default_usrio, 4531 }; 4532 4533 static const struct macb_config sama5d2_config = { 4534 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4535 .dma_burst_length = 16, 4536 .clk_init = macb_clk_init, 4537 .init = macb_init, 4538 .usrio = &macb_default_usrio, 4539 }; 4540 4541 static const struct macb_config sama5d29_config = { 4542 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP, 4543 .dma_burst_length = 16, 4544 .clk_init = macb_clk_init, 4545 .init = macb_init, 4546 .usrio = &macb_default_usrio, 4547 }; 4548 4549 static const struct macb_config sama5d3_config = { 4550 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE 4551 | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO, 4552 .dma_burst_length = 16, 4553 .clk_init = macb_clk_init, 4554 .init = macb_init, 4555 .jumbo_max_len = 10240, 4556 .usrio = &macb_default_usrio, 4557 }; 4558 4559 static const struct macb_config sama5d4_config = { 4560 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4561 .dma_burst_length = 4, 4562 .clk_init = macb_clk_init, 4563 .init = macb_init, 4564 .usrio = &macb_default_usrio, 4565 }; 4566 4567 static const struct macb_config emac_config = { 4568 .caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC, 4569 .clk_init = at91ether_clk_init, 4570 .init = at91ether_init, 4571 .usrio = &macb_default_usrio, 4572 }; 4573 4574 static const struct macb_config np4_config = { 4575 .caps = MACB_CAPS_USRIO_DISABLED, 4576 .clk_init = macb_clk_init, 4577 .init = macb_init, 4578 .usrio = &macb_default_usrio, 4579 }; 4580 4581 static int zynqmp_init(struct platform_device *pdev) 4582 { 4583 struct net_device *dev = platform_get_drvdata(pdev); 4584 struct macb *bp = netdev_priv(dev); 4585 int ret; 4586 4587 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 4588 /* Ensure PS-GTR PHY device used in SGMII mode is ready */ 4589 bp->sgmii_phy = devm_phy_get(&pdev->dev, "sgmii-phy"); 4590 4591 if (IS_ERR(bp->sgmii_phy)) { 4592 ret = PTR_ERR(bp->sgmii_phy); 4593 dev_err_probe(&pdev->dev, ret, 4594 "failed to get PS-GTR PHY\n"); 4595 return ret; 4596 } 4597 4598 ret = phy_init(bp->sgmii_phy); 4599 if (ret) { 4600 dev_err(&pdev->dev, "failed to init PS-GTR PHY: %d\n", 4601 ret); 4602 return ret; 4603 } 4604 } 4605 4606 /* Fully reset GEM controller at hardware level using zynqmp-reset driver, 4607 * if mapped in device tree. 4608 */ 4609 ret = device_reset_optional(&pdev->dev); 4610 if (ret) { 4611 dev_err_probe(&pdev->dev, ret, "failed to reset controller"); 4612 phy_exit(bp->sgmii_phy); 4613 return ret; 4614 } 4615 4616 ret = macb_init(pdev); 4617 if (ret) 4618 phy_exit(bp->sgmii_phy); 4619 4620 return ret; 4621 } 4622 4623 static const struct macb_config zynqmp_config = { 4624 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4625 MACB_CAPS_JUMBO | 4626 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH, 4627 .dma_burst_length = 16, 4628 .clk_init = macb_clk_init, 4629 .init = zynqmp_init, 4630 .jumbo_max_len = 10240, 4631 .usrio = &macb_default_usrio, 4632 }; 4633 4634 static const struct macb_config zynq_config = { 4635 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF | 4636 MACB_CAPS_NEEDS_RSTONUBR, 4637 .dma_burst_length = 16, 4638 .clk_init = macb_clk_init, 4639 .init = macb_init, 4640 .usrio = &macb_default_usrio, 4641 }; 4642 4643 static const struct macb_config sama7g5_gem_config = { 4644 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG | 4645 MACB_CAPS_MIIONRGMII, 4646 .dma_burst_length = 16, 4647 .clk_init = macb_clk_init, 4648 .init = macb_init, 4649 .usrio = &sama7g5_usrio, 4650 }; 4651 4652 static const struct macb_config sama7g5_emac_config = { 4653 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | 4654 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII, 4655 .dma_burst_length = 16, 4656 .clk_init = macb_clk_init, 4657 .init = macb_init, 4658 .usrio = &sama7g5_usrio, 4659 }; 4660 4661 static const struct of_device_id macb_dt_ids[] = { 4662 { .compatible = "cdns,at32ap7000-macb" }, 4663 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config }, 4664 { .compatible = "cdns,macb" }, 4665 { .compatible = "cdns,np4-macb", .data = &np4_config }, 4666 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config }, 4667 { .compatible = "cdns,gem", .data = &pc302gem_config }, 4668 { .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config }, 4669 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config }, 4670 { .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config }, 4671 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config }, 4672 { .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config }, 4673 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config }, 4674 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config }, 4675 { .compatible = "cdns,emac", .data = &emac_config }, 4676 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, 4677 { .compatible = "cdns,zynq-gem", .data = &zynq_config }, 4678 { .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config }, 4679 { .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config }, 4680 { .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config }, 4681 { /* sentinel */ } 4682 }; 4683 MODULE_DEVICE_TABLE(of, macb_dt_ids); 4684 #endif /* CONFIG_OF */ 4685 4686 static const struct macb_config default_gem_config = { 4687 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4688 MACB_CAPS_JUMBO | 4689 MACB_CAPS_GEM_HAS_PTP, 4690 .dma_burst_length = 16, 4691 .clk_init = macb_clk_init, 4692 .init = macb_init, 4693 .usrio = &macb_default_usrio, 4694 .jumbo_max_len = 10240, 4695 }; 4696 4697 static int macb_probe(struct platform_device *pdev) 4698 { 4699 const struct macb_config *macb_config = &default_gem_config; 4700 int (*clk_init)(struct platform_device *, struct clk **, 4701 struct clk **, struct clk **, struct clk **, 4702 struct clk **) = macb_config->clk_init; 4703 int (*init)(struct platform_device *) = macb_config->init; 4704 struct device_node *np = pdev->dev.of_node; 4705 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL; 4706 struct clk *tsu_clk = NULL; 4707 unsigned int queue_mask, num_queues; 4708 bool native_io; 4709 phy_interface_t interface; 4710 struct net_device *dev; 4711 struct resource *regs; 4712 void __iomem *mem; 4713 struct macb *bp; 4714 int err, val; 4715 4716 mem = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 4717 if (IS_ERR(mem)) 4718 return PTR_ERR(mem); 4719 4720 if (np) { 4721 const struct of_device_id *match; 4722 4723 match = of_match_node(macb_dt_ids, np); 4724 if (match && match->data) { 4725 macb_config = match->data; 4726 clk_init = macb_config->clk_init; 4727 init = macb_config->init; 4728 } 4729 } 4730 4731 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk); 4732 if (err) 4733 return err; 4734 4735 pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT); 4736 pm_runtime_use_autosuspend(&pdev->dev); 4737 pm_runtime_get_noresume(&pdev->dev); 4738 pm_runtime_set_active(&pdev->dev); 4739 pm_runtime_enable(&pdev->dev); 4740 native_io = hw_is_native_io(mem); 4741 4742 macb_probe_queues(mem, native_io, &queue_mask, &num_queues); 4743 dev = alloc_etherdev_mq(sizeof(*bp), num_queues); 4744 if (!dev) { 4745 err = -ENOMEM; 4746 goto err_disable_clocks; 4747 } 4748 4749 dev->base_addr = regs->start; 4750 4751 SET_NETDEV_DEV(dev, &pdev->dev); 4752 4753 bp = netdev_priv(dev); 4754 bp->pdev = pdev; 4755 bp->dev = dev; 4756 bp->regs = mem; 4757 bp->native_io = native_io; 4758 if (native_io) { 4759 bp->macb_reg_readl = hw_readl_native; 4760 bp->macb_reg_writel = hw_writel_native; 4761 } else { 4762 bp->macb_reg_readl = hw_readl; 4763 bp->macb_reg_writel = hw_writel; 4764 } 4765 bp->num_queues = num_queues; 4766 bp->queue_mask = queue_mask; 4767 if (macb_config) 4768 bp->dma_burst_length = macb_config->dma_burst_length; 4769 bp->pclk = pclk; 4770 bp->hclk = hclk; 4771 bp->tx_clk = tx_clk; 4772 bp->rx_clk = rx_clk; 4773 bp->tsu_clk = tsu_clk; 4774 if (macb_config) 4775 bp->jumbo_max_len = macb_config->jumbo_max_len; 4776 4777 bp->wol = 0; 4778 if (of_get_property(np, "magic-packet", NULL)) 4779 bp->wol |= MACB_WOL_HAS_MAGIC_PACKET; 4780 device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET); 4781 4782 bp->usrio = macb_config->usrio; 4783 4784 spin_lock_init(&bp->lock); 4785 4786 /* setup capabilities */ 4787 macb_configure_caps(bp, macb_config); 4788 4789 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4790 if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) { 4791 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); 4792 bp->hw_dma_cap |= HW_DMA_CAP_64B; 4793 } 4794 #endif 4795 platform_set_drvdata(pdev, dev); 4796 4797 dev->irq = platform_get_irq(pdev, 0); 4798 if (dev->irq < 0) { 4799 err = dev->irq; 4800 goto err_out_free_netdev; 4801 } 4802 4803 /* MTU range: 68 - 1500 or 10240 */ 4804 dev->min_mtu = GEM_MTU_MIN_SIZE; 4805 if (bp->caps & MACB_CAPS_JUMBO) 4806 dev->max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN; 4807 else 4808 dev->max_mtu = ETH_DATA_LEN; 4809 4810 if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) { 4811 val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10)); 4812 if (val) 4813 bp->rx_bd_rd_prefetch = (2 << (val - 1)) * 4814 macb_dma_desc_get_size(bp); 4815 4816 val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10)); 4817 if (val) 4818 bp->tx_bd_rd_prefetch = (2 << (val - 1)) * 4819 macb_dma_desc_get_size(bp); 4820 } 4821 4822 bp->rx_intr_mask = MACB_RX_INT_FLAGS; 4823 if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR) 4824 bp->rx_intr_mask |= MACB_BIT(RXUBR); 4825 4826 err = of_get_ethdev_address(np, bp->dev); 4827 if (err == -EPROBE_DEFER) 4828 goto err_out_free_netdev; 4829 else if (err) 4830 macb_get_hwaddr(bp); 4831 4832 err = of_get_phy_mode(np, &interface); 4833 if (err) 4834 /* not found in DT, MII by default */ 4835 bp->phy_interface = PHY_INTERFACE_MODE_MII; 4836 else 4837 bp->phy_interface = interface; 4838 4839 /* IP specific init */ 4840 err = init(pdev); 4841 if (err) 4842 goto err_out_free_netdev; 4843 4844 err = macb_mii_init(bp); 4845 if (err) 4846 goto err_out_phy_exit; 4847 4848 netif_carrier_off(dev); 4849 4850 err = register_netdev(dev); 4851 if (err) { 4852 dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); 4853 goto err_out_unregister_mdio; 4854 } 4855 4856 tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task); 4857 4858 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n", 4859 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID), 4860 dev->base_addr, dev->irq, dev->dev_addr); 4861 4862 pm_runtime_mark_last_busy(&bp->pdev->dev); 4863 pm_runtime_put_autosuspend(&bp->pdev->dev); 4864 4865 return 0; 4866 4867 err_out_unregister_mdio: 4868 mdiobus_unregister(bp->mii_bus); 4869 mdiobus_free(bp->mii_bus); 4870 4871 err_out_phy_exit: 4872 phy_exit(bp->sgmii_phy); 4873 4874 err_out_free_netdev: 4875 free_netdev(dev); 4876 4877 err_disable_clocks: 4878 macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk); 4879 pm_runtime_disable(&pdev->dev); 4880 pm_runtime_set_suspended(&pdev->dev); 4881 pm_runtime_dont_use_autosuspend(&pdev->dev); 4882 4883 return err; 4884 } 4885 4886 static int macb_remove(struct platform_device *pdev) 4887 { 4888 struct net_device *dev; 4889 struct macb *bp; 4890 4891 dev = platform_get_drvdata(pdev); 4892 4893 if (dev) { 4894 bp = netdev_priv(dev); 4895 phy_exit(bp->sgmii_phy); 4896 mdiobus_unregister(bp->mii_bus); 4897 mdiobus_free(bp->mii_bus); 4898 4899 unregister_netdev(dev); 4900 tasklet_kill(&bp->hresp_err_tasklet); 4901 pm_runtime_disable(&pdev->dev); 4902 pm_runtime_dont_use_autosuspend(&pdev->dev); 4903 if (!pm_runtime_suspended(&pdev->dev)) { 4904 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, 4905 bp->rx_clk, bp->tsu_clk); 4906 pm_runtime_set_suspended(&pdev->dev); 4907 } 4908 phylink_destroy(bp->phylink); 4909 free_netdev(dev); 4910 } 4911 4912 return 0; 4913 } 4914 4915 static int __maybe_unused macb_suspend(struct device *dev) 4916 { 4917 struct net_device *netdev = dev_get_drvdata(dev); 4918 struct macb *bp = netdev_priv(netdev); 4919 struct macb_queue *queue; 4920 unsigned long flags; 4921 unsigned int q; 4922 int err; 4923 4924 if (!netif_running(netdev)) 4925 return 0; 4926 4927 if (bp->wol & MACB_WOL_ENABLED) { 4928 spin_lock_irqsave(&bp->lock, flags); 4929 /* Flush all status bits */ 4930 macb_writel(bp, TSR, -1); 4931 macb_writel(bp, RSR, -1); 4932 for (q = 0, queue = bp->queues; q < bp->num_queues; 4933 ++q, ++queue) { 4934 /* Disable all interrupts */ 4935 queue_writel(queue, IDR, -1); 4936 queue_readl(queue, ISR); 4937 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 4938 queue_writel(queue, ISR, -1); 4939 } 4940 /* Change interrupt handler and 4941 * Enable WoL IRQ on queue 0 4942 */ 4943 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 4944 if (macb_is_gem(bp)) { 4945 err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt, 4946 IRQF_SHARED, netdev->name, bp->queues); 4947 if (err) { 4948 dev_err(dev, 4949 "Unable to request IRQ %d (error %d)\n", 4950 bp->queues[0].irq, err); 4951 spin_unlock_irqrestore(&bp->lock, flags); 4952 return err; 4953 } 4954 queue_writel(bp->queues, IER, GEM_BIT(WOL)); 4955 gem_writel(bp, WOL, MACB_BIT(MAG)); 4956 } else { 4957 err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt, 4958 IRQF_SHARED, netdev->name, bp->queues); 4959 if (err) { 4960 dev_err(dev, 4961 "Unable to request IRQ %d (error %d)\n", 4962 bp->queues[0].irq, err); 4963 spin_unlock_irqrestore(&bp->lock, flags); 4964 return err; 4965 } 4966 queue_writel(bp->queues, IER, MACB_BIT(WOL)); 4967 macb_writel(bp, WOL, MACB_BIT(MAG)); 4968 } 4969 spin_unlock_irqrestore(&bp->lock, flags); 4970 4971 enable_irq_wake(bp->queues[0].irq); 4972 } 4973 4974 netif_device_detach(netdev); 4975 for (q = 0, queue = bp->queues; q < bp->num_queues; 4976 ++q, ++queue) 4977 napi_disable(&queue->napi); 4978 4979 if (!(bp->wol & MACB_WOL_ENABLED)) { 4980 rtnl_lock(); 4981 phylink_stop(bp->phylink); 4982 rtnl_unlock(); 4983 spin_lock_irqsave(&bp->lock, flags); 4984 macb_reset_hw(bp); 4985 spin_unlock_irqrestore(&bp->lock, flags); 4986 } 4987 4988 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 4989 bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO); 4990 4991 if (netdev->hw_features & NETIF_F_NTUPLE) 4992 bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT); 4993 4994 if (bp->ptp_info) 4995 bp->ptp_info->ptp_remove(netdev); 4996 if (!device_may_wakeup(dev)) 4997 pm_runtime_force_suspend(dev); 4998 4999 return 0; 5000 } 5001 5002 static int __maybe_unused macb_resume(struct device *dev) 5003 { 5004 struct net_device *netdev = dev_get_drvdata(dev); 5005 struct macb *bp = netdev_priv(netdev); 5006 struct macb_queue *queue; 5007 unsigned long flags; 5008 unsigned int q; 5009 int err; 5010 5011 if (!netif_running(netdev)) 5012 return 0; 5013 5014 if (!device_may_wakeup(dev)) 5015 pm_runtime_force_resume(dev); 5016 5017 if (bp->wol & MACB_WOL_ENABLED) { 5018 spin_lock_irqsave(&bp->lock, flags); 5019 /* Disable WoL */ 5020 if (macb_is_gem(bp)) { 5021 queue_writel(bp->queues, IDR, GEM_BIT(WOL)); 5022 gem_writel(bp, WOL, 0); 5023 } else { 5024 queue_writel(bp->queues, IDR, MACB_BIT(WOL)); 5025 macb_writel(bp, WOL, 0); 5026 } 5027 /* Clear ISR on queue 0 */ 5028 queue_readl(bp->queues, ISR); 5029 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5030 queue_writel(bp->queues, ISR, -1); 5031 /* Replace interrupt handler on queue 0 */ 5032 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5033 err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt, 5034 IRQF_SHARED, netdev->name, bp->queues); 5035 if (err) { 5036 dev_err(dev, 5037 "Unable to request IRQ %d (error %d)\n", 5038 bp->queues[0].irq, err); 5039 spin_unlock_irqrestore(&bp->lock, flags); 5040 return err; 5041 } 5042 spin_unlock_irqrestore(&bp->lock, flags); 5043 5044 disable_irq_wake(bp->queues[0].irq); 5045 5046 /* Now make sure we disable phy before moving 5047 * to common restore path 5048 */ 5049 rtnl_lock(); 5050 phylink_stop(bp->phylink); 5051 rtnl_unlock(); 5052 } 5053 5054 for (q = 0, queue = bp->queues; q < bp->num_queues; 5055 ++q, ++queue) 5056 napi_enable(&queue->napi); 5057 5058 if (netdev->hw_features & NETIF_F_NTUPLE) 5059 gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2); 5060 5061 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5062 macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio); 5063 5064 macb_writel(bp, NCR, MACB_BIT(MPE)); 5065 macb_init_hw(bp); 5066 macb_set_rx_mode(netdev); 5067 macb_restore_features(bp); 5068 rtnl_lock(); 5069 phylink_start(bp->phylink); 5070 rtnl_unlock(); 5071 5072 netif_device_attach(netdev); 5073 if (bp->ptp_info) 5074 bp->ptp_info->ptp_init(netdev); 5075 5076 return 0; 5077 } 5078 5079 static int __maybe_unused macb_runtime_suspend(struct device *dev) 5080 { 5081 struct net_device *netdev = dev_get_drvdata(dev); 5082 struct macb *bp = netdev_priv(netdev); 5083 5084 if (!(device_may_wakeup(dev))) 5085 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk); 5086 else 5087 macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk); 5088 5089 return 0; 5090 } 5091 5092 static int __maybe_unused macb_runtime_resume(struct device *dev) 5093 { 5094 struct net_device *netdev = dev_get_drvdata(dev); 5095 struct macb *bp = netdev_priv(netdev); 5096 5097 if (!(device_may_wakeup(dev))) { 5098 clk_prepare_enable(bp->pclk); 5099 clk_prepare_enable(bp->hclk); 5100 clk_prepare_enable(bp->tx_clk); 5101 clk_prepare_enable(bp->rx_clk); 5102 } 5103 clk_prepare_enable(bp->tsu_clk); 5104 5105 return 0; 5106 } 5107 5108 static const struct dev_pm_ops macb_pm_ops = { 5109 SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume) 5110 SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL) 5111 }; 5112 5113 static struct platform_driver macb_driver = { 5114 .probe = macb_probe, 5115 .remove = macb_remove, 5116 .driver = { 5117 .name = "macb", 5118 .of_match_table = of_match_ptr(macb_dt_ids), 5119 .pm = &macb_pm_ops, 5120 }, 5121 }; 5122 5123 module_platform_driver(macb_driver); 5124 5125 MODULE_LICENSE("GPL"); 5126 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver"); 5127 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 5128 MODULE_ALIAS("platform:macb"); 5129