1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cadence MACB/GEM Ethernet Controller driver 4 * 5 * Copyright (C) 2004-2006 Atmel Corporation 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/crc32.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/circ_buf.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/io.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/interrupt.h> 23 #include <linux/netdevice.h> 24 #include <linux/etherdevice.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/platform_device.h> 27 #include <linux/phylink.h> 28 #include <linux/of.h> 29 #include <linux/of_gpio.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/ip.h> 33 #include <linux/udp.h> 34 #include <linux/tcp.h> 35 #include <linux/iopoll.h> 36 #include <linux/phy/phy.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/ptp_classify.h> 39 #include <linux/reset.h> 40 #include <linux/firmware/xlnx-zynqmp.h> 41 #include "macb.h" 42 43 /* This structure is only used for MACB on SiFive FU540 devices */ 44 struct sifive_fu540_macb_mgmt { 45 void __iomem *reg; 46 unsigned long rate; 47 struct clk_hw hw; 48 }; 49 50 #define MACB_RX_BUFFER_SIZE 128 51 #define RX_BUFFER_MULTIPLE 64 /* bytes */ 52 53 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */ 54 #define MIN_RX_RING_SIZE 64 55 #define MAX_RX_RING_SIZE 8192 56 #define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 57 * (bp)->rx_ring_size) 58 59 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */ 60 #define MIN_TX_RING_SIZE 64 61 #define MAX_TX_RING_SIZE 4096 62 #define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 63 * (bp)->tx_ring_size) 64 65 /* level of occupied TX descriptors under which we wake up TX process */ 66 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4) 67 68 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR)) 69 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \ 70 | MACB_BIT(ISR_RLE) \ 71 | MACB_BIT(TXERR)) 72 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \ 73 | MACB_BIT(TXUBR)) 74 75 /* Max length of transmit frame must be a multiple of 8 bytes */ 76 #define MACB_TX_LEN_ALIGN 8 77 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1))) 78 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a 79 * false amba_error in TX path from the DMA assuming there is not enough 80 * space in the SRAM (16KB) even when there is. 81 */ 82 #define GEM_MAX_TX_LEN (unsigned int)(0x3FC0) 83 84 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU 85 #define MACB_NETIF_LSO NETIF_F_TSO 86 87 #define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0) 88 #define MACB_WOL_ENABLED (0x1 << 1) 89 90 #define HS_SPEED_10000M 4 91 #define MACB_SERDES_RATE_10G 1 92 93 /* Graceful stop timeouts in us. We should allow up to 94 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions) 95 */ 96 #define MACB_HALT_TIMEOUT 14000 97 #define MACB_PM_TIMEOUT 100 /* ms */ 98 99 #define MACB_MDIO_TIMEOUT 1000000 /* in usecs */ 100 101 /* DMA buffer descriptor might be different size 102 * depends on hardware configuration: 103 * 104 * 1. dma address width 32 bits: 105 * word 1: 32 bit address of Data Buffer 106 * word 2: control 107 * 108 * 2. dma address width 64 bits: 109 * word 1: 32 bit address of Data Buffer 110 * word 2: control 111 * word 3: upper 32 bit address of Data Buffer 112 * word 4: unused 113 * 114 * 3. dma address width 32 bits with hardware timestamping: 115 * word 1: 32 bit address of Data Buffer 116 * word 2: control 117 * word 3: timestamp word 1 118 * word 4: timestamp word 2 119 * 120 * 4. dma address width 64 bits with hardware timestamping: 121 * word 1: 32 bit address of Data Buffer 122 * word 2: control 123 * word 3: upper 32 bit address of Data Buffer 124 * word 4: unused 125 * word 5: timestamp word 1 126 * word 6: timestamp word 2 127 */ 128 static unsigned int macb_dma_desc_get_size(struct macb *bp) 129 { 130 #ifdef MACB_EXT_DESC 131 unsigned int desc_size; 132 133 switch (bp->hw_dma_cap) { 134 case HW_DMA_CAP_64B: 135 desc_size = sizeof(struct macb_dma_desc) 136 + sizeof(struct macb_dma_desc_64); 137 break; 138 case HW_DMA_CAP_PTP: 139 desc_size = sizeof(struct macb_dma_desc) 140 + sizeof(struct macb_dma_desc_ptp); 141 break; 142 case HW_DMA_CAP_64B_PTP: 143 desc_size = sizeof(struct macb_dma_desc) 144 + sizeof(struct macb_dma_desc_64) 145 + sizeof(struct macb_dma_desc_ptp); 146 break; 147 default: 148 desc_size = sizeof(struct macb_dma_desc); 149 } 150 return desc_size; 151 #endif 152 return sizeof(struct macb_dma_desc); 153 } 154 155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx) 156 { 157 #ifdef MACB_EXT_DESC 158 switch (bp->hw_dma_cap) { 159 case HW_DMA_CAP_64B: 160 case HW_DMA_CAP_PTP: 161 desc_idx <<= 1; 162 break; 163 case HW_DMA_CAP_64B_PTP: 164 desc_idx *= 3; 165 break; 166 default: 167 break; 168 } 169 #endif 170 return desc_idx; 171 } 172 173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc) 175 { 176 return (struct macb_dma_desc_64 *)((void *)desc 177 + sizeof(struct macb_dma_desc)); 178 } 179 #endif 180 181 /* Ring buffer accessors */ 182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index) 183 { 184 return index & (bp->tx_ring_size - 1); 185 } 186 187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue, 188 unsigned int index) 189 { 190 index = macb_tx_ring_wrap(queue->bp, index); 191 index = macb_adj_dma_desc_idx(queue->bp, index); 192 return &queue->tx_ring[index]; 193 } 194 195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue, 196 unsigned int index) 197 { 198 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)]; 199 } 200 201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index) 202 { 203 dma_addr_t offset; 204 205 offset = macb_tx_ring_wrap(queue->bp, index) * 206 macb_dma_desc_get_size(queue->bp); 207 208 return queue->tx_ring_dma + offset; 209 } 210 211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index) 212 { 213 return index & (bp->rx_ring_size - 1); 214 } 215 216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index) 217 { 218 index = macb_rx_ring_wrap(queue->bp, index); 219 index = macb_adj_dma_desc_idx(queue->bp, index); 220 return &queue->rx_ring[index]; 221 } 222 223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index) 224 { 225 return queue->rx_buffers + queue->bp->rx_buffer_size * 226 macb_rx_ring_wrap(queue->bp, index); 227 } 228 229 /* I/O accessors */ 230 static u32 hw_readl_native(struct macb *bp, int offset) 231 { 232 return __raw_readl(bp->regs + offset); 233 } 234 235 static void hw_writel_native(struct macb *bp, int offset, u32 value) 236 { 237 __raw_writel(value, bp->regs + offset); 238 } 239 240 static u32 hw_readl(struct macb *bp, int offset) 241 { 242 return readl_relaxed(bp->regs + offset); 243 } 244 245 static void hw_writel(struct macb *bp, int offset, u32 value) 246 { 247 writel_relaxed(value, bp->regs + offset); 248 } 249 250 /* Find the CPU endianness by using the loopback bit of NCR register. When the 251 * CPU is in big endian we need to program swapped mode for management 252 * descriptor access. 253 */ 254 static bool hw_is_native_io(void __iomem *addr) 255 { 256 u32 value = MACB_BIT(LLB); 257 258 __raw_writel(value, addr + MACB_NCR); 259 value = __raw_readl(addr + MACB_NCR); 260 261 /* Write 0 back to disable everything */ 262 __raw_writel(0, addr + MACB_NCR); 263 264 return value == MACB_BIT(LLB); 265 } 266 267 static bool hw_is_gem(void __iomem *addr, bool native_io) 268 { 269 u32 id; 270 271 if (native_io) 272 id = __raw_readl(addr + MACB_MID); 273 else 274 id = readl_relaxed(addr + MACB_MID); 275 276 return MACB_BFEXT(IDNUM, id) >= 0x2; 277 } 278 279 static void macb_set_hwaddr(struct macb *bp) 280 { 281 u32 bottom; 282 u16 top; 283 284 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr)); 285 macb_or_gem_writel(bp, SA1B, bottom); 286 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4))); 287 macb_or_gem_writel(bp, SA1T, top); 288 289 if (gem_has_ptp(bp)) { 290 gem_writel(bp, RXPTPUNI, bottom); 291 gem_writel(bp, TXPTPUNI, bottom); 292 } 293 294 /* Clear unused address register sets */ 295 macb_or_gem_writel(bp, SA2B, 0); 296 macb_or_gem_writel(bp, SA2T, 0); 297 macb_or_gem_writel(bp, SA3B, 0); 298 macb_or_gem_writel(bp, SA3T, 0); 299 macb_or_gem_writel(bp, SA4B, 0); 300 macb_or_gem_writel(bp, SA4T, 0); 301 } 302 303 static void macb_get_hwaddr(struct macb *bp) 304 { 305 u32 bottom; 306 u16 top; 307 u8 addr[6]; 308 int i; 309 310 /* Check all 4 address register for valid address */ 311 for (i = 0; i < 4; i++) { 312 bottom = macb_or_gem_readl(bp, SA1B + i * 8); 313 top = macb_or_gem_readl(bp, SA1T + i * 8); 314 315 addr[0] = bottom & 0xff; 316 addr[1] = (bottom >> 8) & 0xff; 317 addr[2] = (bottom >> 16) & 0xff; 318 addr[3] = (bottom >> 24) & 0xff; 319 addr[4] = top & 0xff; 320 addr[5] = (top >> 8) & 0xff; 321 322 if (is_valid_ether_addr(addr)) { 323 eth_hw_addr_set(bp->dev, addr); 324 return; 325 } 326 } 327 328 dev_info(&bp->pdev->dev, "invalid hw address, using random\n"); 329 eth_hw_addr_random(bp->dev); 330 } 331 332 static int macb_mdio_wait_for_idle(struct macb *bp) 333 { 334 u32 val; 335 336 return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE), 337 1, MACB_MDIO_TIMEOUT); 338 } 339 340 static int macb_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 341 { 342 struct macb *bp = bus->priv; 343 int status; 344 345 status = pm_runtime_resume_and_get(&bp->pdev->dev); 346 if (status < 0) 347 goto mdio_pm_exit; 348 349 status = macb_mdio_wait_for_idle(bp); 350 if (status < 0) 351 goto mdio_read_exit; 352 353 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 354 | MACB_BF(RW, MACB_MAN_C22_READ) 355 | MACB_BF(PHYA, mii_id) 356 | MACB_BF(REGA, regnum) 357 | MACB_BF(CODE, MACB_MAN_C22_CODE))); 358 359 status = macb_mdio_wait_for_idle(bp); 360 if (status < 0) 361 goto mdio_read_exit; 362 363 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 364 365 mdio_read_exit: 366 pm_runtime_mark_last_busy(&bp->pdev->dev); 367 pm_runtime_put_autosuspend(&bp->pdev->dev); 368 mdio_pm_exit: 369 return status; 370 } 371 372 static int macb_mdio_read_c45(struct mii_bus *bus, int mii_id, int devad, 373 int regnum) 374 { 375 struct macb *bp = bus->priv; 376 int status; 377 378 status = pm_runtime_get_sync(&bp->pdev->dev); 379 if (status < 0) { 380 pm_runtime_put_noidle(&bp->pdev->dev); 381 goto mdio_pm_exit; 382 } 383 384 status = macb_mdio_wait_for_idle(bp); 385 if (status < 0) 386 goto mdio_read_exit; 387 388 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 389 | MACB_BF(RW, MACB_MAN_C45_ADDR) 390 | MACB_BF(PHYA, mii_id) 391 | MACB_BF(REGA, devad & 0x1F) 392 | MACB_BF(DATA, regnum & 0xFFFF) 393 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 394 395 status = macb_mdio_wait_for_idle(bp); 396 if (status < 0) 397 goto mdio_read_exit; 398 399 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 400 | MACB_BF(RW, MACB_MAN_C45_READ) 401 | MACB_BF(PHYA, mii_id) 402 | MACB_BF(REGA, devad & 0x1F) 403 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 404 405 status = macb_mdio_wait_for_idle(bp); 406 if (status < 0) 407 goto mdio_read_exit; 408 409 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 410 411 mdio_read_exit: 412 pm_runtime_mark_last_busy(&bp->pdev->dev); 413 pm_runtime_put_autosuspend(&bp->pdev->dev); 414 mdio_pm_exit: 415 return status; 416 } 417 418 static int macb_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 419 u16 value) 420 { 421 struct macb *bp = bus->priv; 422 int status; 423 424 status = pm_runtime_resume_and_get(&bp->pdev->dev); 425 if (status < 0) 426 goto mdio_pm_exit; 427 428 status = macb_mdio_wait_for_idle(bp); 429 if (status < 0) 430 goto mdio_write_exit; 431 432 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 433 | MACB_BF(RW, MACB_MAN_C22_WRITE) 434 | MACB_BF(PHYA, mii_id) 435 | MACB_BF(REGA, regnum) 436 | MACB_BF(CODE, MACB_MAN_C22_CODE) 437 | MACB_BF(DATA, value))); 438 439 status = macb_mdio_wait_for_idle(bp); 440 if (status < 0) 441 goto mdio_write_exit; 442 443 mdio_write_exit: 444 pm_runtime_mark_last_busy(&bp->pdev->dev); 445 pm_runtime_put_autosuspend(&bp->pdev->dev); 446 mdio_pm_exit: 447 return status; 448 } 449 450 static int macb_mdio_write_c45(struct mii_bus *bus, int mii_id, 451 int devad, int regnum, 452 u16 value) 453 { 454 struct macb *bp = bus->priv; 455 int status; 456 457 status = pm_runtime_get_sync(&bp->pdev->dev); 458 if (status < 0) { 459 pm_runtime_put_noidle(&bp->pdev->dev); 460 goto mdio_pm_exit; 461 } 462 463 status = macb_mdio_wait_for_idle(bp); 464 if (status < 0) 465 goto mdio_write_exit; 466 467 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 468 | MACB_BF(RW, MACB_MAN_C45_ADDR) 469 | MACB_BF(PHYA, mii_id) 470 | MACB_BF(REGA, devad & 0x1F) 471 | MACB_BF(DATA, regnum & 0xFFFF) 472 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 473 474 status = macb_mdio_wait_for_idle(bp); 475 if (status < 0) 476 goto mdio_write_exit; 477 478 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 479 | MACB_BF(RW, MACB_MAN_C45_WRITE) 480 | MACB_BF(PHYA, mii_id) 481 | MACB_BF(REGA, devad & 0x1F) 482 | MACB_BF(CODE, MACB_MAN_C45_CODE) 483 | MACB_BF(DATA, value))); 484 485 status = macb_mdio_wait_for_idle(bp); 486 if (status < 0) 487 goto mdio_write_exit; 488 489 mdio_write_exit: 490 pm_runtime_mark_last_busy(&bp->pdev->dev); 491 pm_runtime_put_autosuspend(&bp->pdev->dev); 492 mdio_pm_exit: 493 return status; 494 } 495 496 static void macb_init_buffers(struct macb *bp) 497 { 498 struct macb_queue *queue; 499 unsigned int q; 500 501 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 502 queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma)); 503 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 504 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 505 queue_writel(queue, RBQPH, 506 upper_32_bits(queue->rx_ring_dma)); 507 #endif 508 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 509 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 510 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 511 queue_writel(queue, TBQPH, 512 upper_32_bits(queue->tx_ring_dma)); 513 #endif 514 } 515 } 516 517 /** 518 * macb_set_tx_clk() - Set a clock to a new frequency 519 * @bp: pointer to struct macb 520 * @speed: New frequency in Hz 521 */ 522 static void macb_set_tx_clk(struct macb *bp, int speed) 523 { 524 long ferr, rate, rate_rounded; 525 526 if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG)) 527 return; 528 529 /* In case of MII the PHY is the clock master */ 530 if (bp->phy_interface == PHY_INTERFACE_MODE_MII) 531 return; 532 533 switch (speed) { 534 case SPEED_10: 535 rate = 2500000; 536 break; 537 case SPEED_100: 538 rate = 25000000; 539 break; 540 case SPEED_1000: 541 rate = 125000000; 542 break; 543 default: 544 return; 545 } 546 547 rate_rounded = clk_round_rate(bp->tx_clk, rate); 548 if (rate_rounded < 0) 549 return; 550 551 /* RGMII allows 50 ppm frequency error. Test and warn if this limit 552 * is not satisfied. 553 */ 554 ferr = abs(rate_rounded - rate); 555 ferr = DIV_ROUND_UP(ferr, rate / 100000); 556 if (ferr > 5) 557 netdev_warn(bp->dev, 558 "unable to generate target frequency: %ld Hz\n", 559 rate); 560 561 if (clk_set_rate(bp->tx_clk, rate_rounded)) 562 netdev_err(bp->dev, "adjusting tx_clk failed.\n"); 563 } 564 565 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int neg_mode, 566 phy_interface_t interface, int speed, 567 int duplex) 568 { 569 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 570 u32 config; 571 572 config = gem_readl(bp, USX_CONTROL); 573 config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config); 574 config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config); 575 config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS)); 576 config |= GEM_BIT(TX_EN); 577 gem_writel(bp, USX_CONTROL, config); 578 } 579 580 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs, 581 struct phylink_link_state *state) 582 { 583 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 584 u32 val; 585 586 state->speed = SPEED_10000; 587 state->duplex = 1; 588 state->an_complete = 1; 589 590 val = gem_readl(bp, USX_STATUS); 591 state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK)); 592 val = gem_readl(bp, NCFGR); 593 if (val & GEM_BIT(PAE)) 594 state->pause = MLO_PAUSE_RX; 595 } 596 597 static int macb_usx_pcs_config(struct phylink_pcs *pcs, 598 unsigned int neg_mode, 599 phy_interface_t interface, 600 const unsigned long *advertising, 601 bool permit_pause_to_mac) 602 { 603 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 604 605 gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) | 606 GEM_BIT(SIGNAL_OK)); 607 608 return 0; 609 } 610 611 static void macb_pcs_get_state(struct phylink_pcs *pcs, 612 struct phylink_link_state *state) 613 { 614 state->link = 0; 615 } 616 617 static void macb_pcs_an_restart(struct phylink_pcs *pcs) 618 { 619 /* Not supported */ 620 } 621 622 static int macb_pcs_config(struct phylink_pcs *pcs, 623 unsigned int neg_mode, 624 phy_interface_t interface, 625 const unsigned long *advertising, 626 bool permit_pause_to_mac) 627 { 628 return 0; 629 } 630 631 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = { 632 .pcs_get_state = macb_usx_pcs_get_state, 633 .pcs_config = macb_usx_pcs_config, 634 .pcs_link_up = macb_usx_pcs_link_up, 635 }; 636 637 static const struct phylink_pcs_ops macb_phylink_pcs_ops = { 638 .pcs_get_state = macb_pcs_get_state, 639 .pcs_an_restart = macb_pcs_an_restart, 640 .pcs_config = macb_pcs_config, 641 }; 642 643 static void macb_mac_config(struct phylink_config *config, unsigned int mode, 644 const struct phylink_link_state *state) 645 { 646 struct net_device *ndev = to_net_dev(config->dev); 647 struct macb *bp = netdev_priv(ndev); 648 unsigned long flags; 649 u32 old_ctrl, ctrl; 650 u32 old_ncr, ncr; 651 652 spin_lock_irqsave(&bp->lock, flags); 653 654 old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR); 655 old_ncr = ncr = macb_or_gem_readl(bp, NCR); 656 657 if (bp->caps & MACB_CAPS_MACB_IS_EMAC) { 658 if (state->interface == PHY_INTERFACE_MODE_RMII) 659 ctrl |= MACB_BIT(RM9200_RMII); 660 } else if (macb_is_gem(bp)) { 661 ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL)); 662 ncr &= ~GEM_BIT(ENABLE_HS_MAC); 663 664 if (state->interface == PHY_INTERFACE_MODE_SGMII) { 665 ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 666 } else if (state->interface == PHY_INTERFACE_MODE_10GBASER) { 667 ctrl |= GEM_BIT(PCSSEL); 668 ncr |= GEM_BIT(ENABLE_HS_MAC); 669 } else if (bp->caps & MACB_CAPS_MIIONRGMII && 670 bp->phy_interface == PHY_INTERFACE_MODE_MII) { 671 ncr |= MACB_BIT(MIIONRGMII); 672 } 673 } 674 675 /* Apply the new configuration, if any */ 676 if (old_ctrl ^ ctrl) 677 macb_or_gem_writel(bp, NCFGR, ctrl); 678 679 if (old_ncr ^ ncr) 680 macb_or_gem_writel(bp, NCR, ncr); 681 682 /* Disable AN for SGMII fixed link configuration, enable otherwise. 683 * Must be written after PCSSEL is set in NCFGR, 684 * otherwise writes will not take effect. 685 */ 686 if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) { 687 u32 pcsctrl, old_pcsctrl; 688 689 old_pcsctrl = gem_readl(bp, PCSCNTRL); 690 if (mode == MLO_AN_FIXED) 691 pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG); 692 else 693 pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG); 694 if (old_pcsctrl != pcsctrl) 695 gem_writel(bp, PCSCNTRL, pcsctrl); 696 } 697 698 spin_unlock_irqrestore(&bp->lock, flags); 699 } 700 701 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode, 702 phy_interface_t interface) 703 { 704 struct net_device *ndev = to_net_dev(config->dev); 705 struct macb *bp = netdev_priv(ndev); 706 struct macb_queue *queue; 707 unsigned int q; 708 u32 ctrl; 709 710 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) 711 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 712 queue_writel(queue, IDR, 713 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 714 715 /* Disable Rx and Tx */ 716 ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE)); 717 macb_writel(bp, NCR, ctrl); 718 719 netif_tx_stop_all_queues(ndev); 720 } 721 722 static void macb_mac_link_up(struct phylink_config *config, 723 struct phy_device *phy, 724 unsigned int mode, phy_interface_t interface, 725 int speed, int duplex, 726 bool tx_pause, bool rx_pause) 727 { 728 struct net_device *ndev = to_net_dev(config->dev); 729 struct macb *bp = netdev_priv(ndev); 730 struct macb_queue *queue; 731 unsigned long flags; 732 unsigned int q; 733 u32 ctrl; 734 735 spin_lock_irqsave(&bp->lock, flags); 736 737 ctrl = macb_or_gem_readl(bp, NCFGR); 738 739 ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); 740 741 if (speed == SPEED_100) 742 ctrl |= MACB_BIT(SPD); 743 744 if (duplex) 745 ctrl |= MACB_BIT(FD); 746 747 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) { 748 ctrl &= ~MACB_BIT(PAE); 749 if (macb_is_gem(bp)) { 750 ctrl &= ~GEM_BIT(GBE); 751 752 if (speed == SPEED_1000) 753 ctrl |= GEM_BIT(GBE); 754 } 755 756 if (rx_pause) 757 ctrl |= MACB_BIT(PAE); 758 759 macb_set_tx_clk(bp, speed); 760 761 /* Initialize rings & buffers as clearing MACB_BIT(TE) in link down 762 * cleared the pipeline and control registers. 763 */ 764 bp->macbgem_ops.mog_init_rings(bp); 765 macb_init_buffers(bp); 766 767 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 768 queue_writel(queue, IER, 769 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 770 } 771 772 macb_or_gem_writel(bp, NCFGR, ctrl); 773 774 if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER) 775 gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M, 776 gem_readl(bp, HS_MAC_CONFIG))); 777 778 spin_unlock_irqrestore(&bp->lock, flags); 779 780 /* Enable Rx and Tx; Enable PTP unicast */ 781 ctrl = macb_readl(bp, NCR); 782 if (gem_has_ptp(bp)) 783 ctrl |= MACB_BIT(PTPUNI); 784 785 macb_writel(bp, NCR, ctrl | MACB_BIT(RE) | MACB_BIT(TE)); 786 787 netif_tx_wake_all_queues(ndev); 788 } 789 790 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config, 791 phy_interface_t interface) 792 { 793 struct net_device *ndev = to_net_dev(config->dev); 794 struct macb *bp = netdev_priv(ndev); 795 796 if (interface == PHY_INTERFACE_MODE_10GBASER) 797 return &bp->phylink_usx_pcs; 798 else if (interface == PHY_INTERFACE_MODE_SGMII) 799 return &bp->phylink_sgmii_pcs; 800 else 801 return NULL; 802 } 803 804 static const struct phylink_mac_ops macb_phylink_ops = { 805 .mac_select_pcs = macb_mac_select_pcs, 806 .mac_config = macb_mac_config, 807 .mac_link_down = macb_mac_link_down, 808 .mac_link_up = macb_mac_link_up, 809 }; 810 811 static bool macb_phy_handle_exists(struct device_node *dn) 812 { 813 dn = of_parse_phandle(dn, "phy-handle", 0); 814 of_node_put(dn); 815 return dn != NULL; 816 } 817 818 static int macb_phylink_connect(struct macb *bp) 819 { 820 struct device_node *dn = bp->pdev->dev.of_node; 821 struct net_device *dev = bp->dev; 822 struct phy_device *phydev; 823 int ret; 824 825 if (dn) 826 ret = phylink_of_phy_connect(bp->phylink, dn, 0); 827 828 if (!dn || (ret && !macb_phy_handle_exists(dn))) { 829 phydev = phy_find_first(bp->mii_bus); 830 if (!phydev) { 831 netdev_err(dev, "no PHY found\n"); 832 return -ENXIO; 833 } 834 835 /* attach the mac to the phy */ 836 ret = phylink_connect_phy(bp->phylink, phydev); 837 } 838 839 if (ret) { 840 netdev_err(dev, "Could not attach PHY (%d)\n", ret); 841 return ret; 842 } 843 844 phylink_start(bp->phylink); 845 846 return 0; 847 } 848 849 static void macb_get_pcs_fixed_state(struct phylink_config *config, 850 struct phylink_link_state *state) 851 { 852 struct net_device *ndev = to_net_dev(config->dev); 853 struct macb *bp = netdev_priv(ndev); 854 855 state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0; 856 } 857 858 /* based on au1000_eth. c*/ 859 static int macb_mii_probe(struct net_device *dev) 860 { 861 struct macb *bp = netdev_priv(dev); 862 863 bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops; 864 bp->phylink_sgmii_pcs.neg_mode = true; 865 bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops; 866 bp->phylink_usx_pcs.neg_mode = true; 867 868 bp->phylink_config.dev = &dev->dev; 869 bp->phylink_config.type = PHYLINK_NETDEV; 870 bp->phylink_config.mac_managed_pm = true; 871 872 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 873 bp->phylink_config.poll_fixed_state = true; 874 bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state; 875 } 876 877 bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | 878 MAC_10 | MAC_100; 879 880 __set_bit(PHY_INTERFACE_MODE_MII, 881 bp->phylink_config.supported_interfaces); 882 __set_bit(PHY_INTERFACE_MODE_RMII, 883 bp->phylink_config.supported_interfaces); 884 885 /* Determine what modes are supported */ 886 if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) { 887 bp->phylink_config.mac_capabilities |= MAC_1000FD; 888 if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF)) 889 bp->phylink_config.mac_capabilities |= MAC_1000HD; 890 891 __set_bit(PHY_INTERFACE_MODE_GMII, 892 bp->phylink_config.supported_interfaces); 893 phy_interface_set_rgmii(bp->phylink_config.supported_interfaces); 894 895 if (bp->caps & MACB_CAPS_PCS) 896 __set_bit(PHY_INTERFACE_MODE_SGMII, 897 bp->phylink_config.supported_interfaces); 898 899 if (bp->caps & MACB_CAPS_HIGH_SPEED) { 900 __set_bit(PHY_INTERFACE_MODE_10GBASER, 901 bp->phylink_config.supported_interfaces); 902 bp->phylink_config.mac_capabilities |= MAC_10000FD; 903 } 904 } 905 906 bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode, 907 bp->phy_interface, &macb_phylink_ops); 908 if (IS_ERR(bp->phylink)) { 909 netdev_err(dev, "Could not create a phylink instance (%ld)\n", 910 PTR_ERR(bp->phylink)); 911 return PTR_ERR(bp->phylink); 912 } 913 914 return 0; 915 } 916 917 static int macb_mdiobus_register(struct macb *bp) 918 { 919 struct device_node *child, *np = bp->pdev->dev.of_node; 920 921 /* If we have a child named mdio, probe it instead of looking for PHYs 922 * directly under the MAC node 923 */ 924 child = of_get_child_by_name(np, "mdio"); 925 if (child) { 926 int ret = of_mdiobus_register(bp->mii_bus, child); 927 928 of_node_put(child); 929 return ret; 930 } 931 932 if (of_phy_is_fixed_link(np)) 933 return mdiobus_register(bp->mii_bus); 934 935 /* Only create the PHY from the device tree if at least one PHY is 936 * described. Otherwise scan the entire MDIO bus. We do this to support 937 * old device tree that did not follow the best practices and did not 938 * describe their network PHYs. 939 */ 940 for_each_available_child_of_node(np, child) 941 if (of_mdiobus_child_is_phy(child)) { 942 /* The loop increments the child refcount, 943 * decrement it before returning. 944 */ 945 of_node_put(child); 946 947 return of_mdiobus_register(bp->mii_bus, np); 948 } 949 950 return mdiobus_register(bp->mii_bus); 951 } 952 953 static int macb_mii_init(struct macb *bp) 954 { 955 int err = -ENXIO; 956 957 /* Enable management port */ 958 macb_writel(bp, NCR, MACB_BIT(MPE)); 959 960 bp->mii_bus = mdiobus_alloc(); 961 if (!bp->mii_bus) { 962 err = -ENOMEM; 963 goto err_out; 964 } 965 966 bp->mii_bus->name = "MACB_mii_bus"; 967 bp->mii_bus->read = &macb_mdio_read_c22; 968 bp->mii_bus->write = &macb_mdio_write_c22; 969 bp->mii_bus->read_c45 = &macb_mdio_read_c45; 970 bp->mii_bus->write_c45 = &macb_mdio_write_c45; 971 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 972 bp->pdev->name, bp->pdev->id); 973 bp->mii_bus->priv = bp; 974 bp->mii_bus->parent = &bp->pdev->dev; 975 976 dev_set_drvdata(&bp->dev->dev, bp->mii_bus); 977 978 err = macb_mdiobus_register(bp); 979 if (err) 980 goto err_out_free_mdiobus; 981 982 err = macb_mii_probe(bp->dev); 983 if (err) 984 goto err_out_unregister_bus; 985 986 return 0; 987 988 err_out_unregister_bus: 989 mdiobus_unregister(bp->mii_bus); 990 err_out_free_mdiobus: 991 mdiobus_free(bp->mii_bus); 992 err_out: 993 return err; 994 } 995 996 static void macb_update_stats(struct macb *bp) 997 { 998 u32 *p = &bp->hw_stats.macb.rx_pause_frames; 999 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1; 1000 int offset = MACB_PFR; 1001 1002 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4); 1003 1004 for (; p < end; p++, offset += 4) 1005 *p += bp->macb_reg_readl(bp, offset); 1006 } 1007 1008 static int macb_halt_tx(struct macb *bp) 1009 { 1010 unsigned long halt_time, timeout; 1011 u32 status; 1012 1013 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT)); 1014 1015 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT); 1016 do { 1017 halt_time = jiffies; 1018 status = macb_readl(bp, TSR); 1019 if (!(status & MACB_BIT(TGO))) 1020 return 0; 1021 1022 udelay(250); 1023 } while (time_before(halt_time, timeout)); 1024 1025 return -ETIMEDOUT; 1026 } 1027 1028 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget) 1029 { 1030 if (tx_skb->mapping) { 1031 if (tx_skb->mapped_as_page) 1032 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping, 1033 tx_skb->size, DMA_TO_DEVICE); 1034 else 1035 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping, 1036 tx_skb->size, DMA_TO_DEVICE); 1037 tx_skb->mapping = 0; 1038 } 1039 1040 if (tx_skb->skb) { 1041 napi_consume_skb(tx_skb->skb, budget); 1042 tx_skb->skb = NULL; 1043 } 1044 } 1045 1046 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr) 1047 { 1048 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1049 struct macb_dma_desc_64 *desc_64; 1050 1051 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1052 desc_64 = macb_64b_desc(bp, desc); 1053 desc_64->addrh = upper_32_bits(addr); 1054 /* The low bits of RX address contain the RX_USED bit, clearing 1055 * of which allows packet RX. Make sure the high bits are also 1056 * visible to HW at that point. 1057 */ 1058 dma_wmb(); 1059 } 1060 #endif 1061 desc->addr = lower_32_bits(addr); 1062 } 1063 1064 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc) 1065 { 1066 dma_addr_t addr = 0; 1067 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1068 struct macb_dma_desc_64 *desc_64; 1069 1070 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1071 desc_64 = macb_64b_desc(bp, desc); 1072 addr = ((u64)(desc_64->addrh) << 32); 1073 } 1074 #endif 1075 addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr)); 1076 #ifdef CONFIG_MACB_USE_HWSTAMP 1077 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 1078 addr &= ~GEM_BIT(DMA_RXVALID); 1079 #endif 1080 return addr; 1081 } 1082 1083 static void macb_tx_error_task(struct work_struct *work) 1084 { 1085 struct macb_queue *queue = container_of(work, struct macb_queue, 1086 tx_error_task); 1087 bool halt_timeout = false; 1088 struct macb *bp = queue->bp; 1089 struct macb_tx_skb *tx_skb; 1090 struct macb_dma_desc *desc; 1091 struct sk_buff *skb; 1092 unsigned int tail; 1093 unsigned long flags; 1094 1095 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n", 1096 (unsigned int)(queue - bp->queues), 1097 queue->tx_tail, queue->tx_head); 1098 1099 /* Prevent the queue NAPI TX poll from running, as it calls 1100 * macb_tx_complete(), which in turn may call netif_wake_subqueue(). 1101 * As explained below, we have to halt the transmission before updating 1102 * TBQP registers so we call netif_tx_stop_all_queues() to notify the 1103 * network engine about the macb/gem being halted. 1104 */ 1105 napi_disable(&queue->napi_tx); 1106 spin_lock_irqsave(&bp->lock, flags); 1107 1108 /* Make sure nobody is trying to queue up new packets */ 1109 netif_tx_stop_all_queues(bp->dev); 1110 1111 /* Stop transmission now 1112 * (in case we have just queued new packets) 1113 * macb/gem must be halted to write TBQP register 1114 */ 1115 if (macb_halt_tx(bp)) { 1116 netdev_err(bp->dev, "BUG: halt tx timed out\n"); 1117 macb_writel(bp, NCR, macb_readl(bp, NCR) & (~MACB_BIT(TE))); 1118 halt_timeout = true; 1119 } 1120 1121 /* Treat frames in TX queue including the ones that caused the error. 1122 * Free transmit buffers in upper layer. 1123 */ 1124 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) { 1125 u32 ctrl; 1126 1127 desc = macb_tx_desc(queue, tail); 1128 ctrl = desc->ctrl; 1129 tx_skb = macb_tx_skb(queue, tail); 1130 skb = tx_skb->skb; 1131 1132 if (ctrl & MACB_BIT(TX_USED)) { 1133 /* skb is set for the last buffer of the frame */ 1134 while (!skb) { 1135 macb_tx_unmap(bp, tx_skb, 0); 1136 tail++; 1137 tx_skb = macb_tx_skb(queue, tail); 1138 skb = tx_skb->skb; 1139 } 1140 1141 /* ctrl still refers to the first buffer descriptor 1142 * since it's the only one written back by the hardware 1143 */ 1144 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) { 1145 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n", 1146 macb_tx_ring_wrap(bp, tail), 1147 skb->data); 1148 bp->dev->stats.tx_packets++; 1149 queue->stats.tx_packets++; 1150 bp->dev->stats.tx_bytes += skb->len; 1151 queue->stats.tx_bytes += skb->len; 1152 } 1153 } else { 1154 /* "Buffers exhausted mid-frame" errors may only happen 1155 * if the driver is buggy, so complain loudly about 1156 * those. Statistics are updated by hardware. 1157 */ 1158 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED)) 1159 netdev_err(bp->dev, 1160 "BUG: TX buffers exhausted mid-frame\n"); 1161 1162 desc->ctrl = ctrl | MACB_BIT(TX_USED); 1163 } 1164 1165 macb_tx_unmap(bp, tx_skb, 0); 1166 } 1167 1168 /* Set end of TX queue */ 1169 desc = macb_tx_desc(queue, 0); 1170 macb_set_addr(bp, desc, 0); 1171 desc->ctrl = MACB_BIT(TX_USED); 1172 1173 /* Make descriptor updates visible to hardware */ 1174 wmb(); 1175 1176 /* Reinitialize the TX desc queue */ 1177 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 1178 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1179 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 1180 queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma)); 1181 #endif 1182 /* Make TX ring reflect state of hardware */ 1183 queue->tx_head = 0; 1184 queue->tx_tail = 0; 1185 1186 /* Housework before enabling TX IRQ */ 1187 macb_writel(bp, TSR, macb_readl(bp, TSR)); 1188 queue_writel(queue, IER, MACB_TX_INT_FLAGS); 1189 1190 if (halt_timeout) 1191 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE)); 1192 1193 /* Now we are ready to start transmission again */ 1194 netif_tx_start_all_queues(bp->dev); 1195 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1196 1197 spin_unlock_irqrestore(&bp->lock, flags); 1198 napi_enable(&queue->napi_tx); 1199 } 1200 1201 static bool ptp_one_step_sync(struct sk_buff *skb) 1202 { 1203 struct ptp_header *hdr; 1204 unsigned int ptp_class; 1205 u8 msgtype; 1206 1207 /* No need to parse packet if PTP TS is not involved */ 1208 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 1209 goto not_oss; 1210 1211 /* Identify and return whether PTP one step sync is being processed */ 1212 ptp_class = ptp_classify_raw(skb); 1213 if (ptp_class == PTP_CLASS_NONE) 1214 goto not_oss; 1215 1216 hdr = ptp_parse_header(skb, ptp_class); 1217 if (!hdr) 1218 goto not_oss; 1219 1220 if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP) 1221 goto not_oss; 1222 1223 msgtype = ptp_get_msgtype(hdr, ptp_class); 1224 if (msgtype == PTP_MSGTYPE_SYNC) 1225 return true; 1226 1227 not_oss: 1228 return false; 1229 } 1230 1231 static int macb_tx_complete(struct macb_queue *queue, int budget) 1232 { 1233 struct macb *bp = queue->bp; 1234 u16 queue_index = queue - bp->queues; 1235 unsigned int tail; 1236 unsigned int head; 1237 int packets = 0; 1238 1239 spin_lock(&queue->tx_ptr_lock); 1240 head = queue->tx_head; 1241 for (tail = queue->tx_tail; tail != head && packets < budget; tail++) { 1242 struct macb_tx_skb *tx_skb; 1243 struct sk_buff *skb; 1244 struct macb_dma_desc *desc; 1245 u32 ctrl; 1246 1247 desc = macb_tx_desc(queue, tail); 1248 1249 /* Make hw descriptor updates visible to CPU */ 1250 rmb(); 1251 1252 ctrl = desc->ctrl; 1253 1254 /* TX_USED bit is only set by hardware on the very first buffer 1255 * descriptor of the transmitted frame. 1256 */ 1257 if (!(ctrl & MACB_BIT(TX_USED))) 1258 break; 1259 1260 /* Process all buffers of the current transmitted frame */ 1261 for (;; tail++) { 1262 tx_skb = macb_tx_skb(queue, tail); 1263 skb = tx_skb->skb; 1264 1265 /* First, update TX stats if needed */ 1266 if (skb) { 1267 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1268 !ptp_one_step_sync(skb)) 1269 gem_ptp_do_txstamp(bp, skb, desc); 1270 1271 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n", 1272 macb_tx_ring_wrap(bp, tail), 1273 skb->data); 1274 bp->dev->stats.tx_packets++; 1275 queue->stats.tx_packets++; 1276 bp->dev->stats.tx_bytes += skb->len; 1277 queue->stats.tx_bytes += skb->len; 1278 packets++; 1279 } 1280 1281 /* Now we can safely release resources */ 1282 macb_tx_unmap(bp, tx_skb, budget); 1283 1284 /* skb is set only for the last buffer of the frame. 1285 * WARNING: at this point skb has been freed by 1286 * macb_tx_unmap(). 1287 */ 1288 if (skb) 1289 break; 1290 } 1291 } 1292 1293 queue->tx_tail = tail; 1294 if (__netif_subqueue_stopped(bp->dev, queue_index) && 1295 CIRC_CNT(queue->tx_head, queue->tx_tail, 1296 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp)) 1297 netif_wake_subqueue(bp->dev, queue_index); 1298 spin_unlock(&queue->tx_ptr_lock); 1299 1300 return packets; 1301 } 1302 1303 static void gem_rx_refill(struct macb_queue *queue) 1304 { 1305 unsigned int entry; 1306 struct sk_buff *skb; 1307 dma_addr_t paddr; 1308 struct macb *bp = queue->bp; 1309 struct macb_dma_desc *desc; 1310 1311 while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail, 1312 bp->rx_ring_size) > 0) { 1313 entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head); 1314 1315 /* Make hw descriptor updates visible to CPU */ 1316 rmb(); 1317 1318 desc = macb_rx_desc(queue, entry); 1319 1320 if (!queue->rx_skbuff[entry]) { 1321 /* allocate sk_buff for this free entry in ring */ 1322 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size); 1323 if (unlikely(!skb)) { 1324 netdev_err(bp->dev, 1325 "Unable to allocate sk_buff\n"); 1326 break; 1327 } 1328 1329 /* now fill corresponding descriptor entry */ 1330 paddr = dma_map_single(&bp->pdev->dev, skb->data, 1331 bp->rx_buffer_size, 1332 DMA_FROM_DEVICE); 1333 if (dma_mapping_error(&bp->pdev->dev, paddr)) { 1334 dev_kfree_skb(skb); 1335 break; 1336 } 1337 1338 queue->rx_skbuff[entry] = skb; 1339 1340 if (entry == bp->rx_ring_size - 1) 1341 paddr |= MACB_BIT(RX_WRAP); 1342 desc->ctrl = 0; 1343 /* Setting addr clears RX_USED and allows reception, 1344 * make sure ctrl is cleared first to avoid a race. 1345 */ 1346 dma_wmb(); 1347 macb_set_addr(bp, desc, paddr); 1348 1349 /* properly align Ethernet header */ 1350 skb_reserve(skb, NET_IP_ALIGN); 1351 } else { 1352 desc->ctrl = 0; 1353 dma_wmb(); 1354 desc->addr &= ~MACB_BIT(RX_USED); 1355 } 1356 queue->rx_prepared_head++; 1357 } 1358 1359 /* Make descriptor updates visible to hardware */ 1360 wmb(); 1361 1362 netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n", 1363 queue, queue->rx_prepared_head, queue->rx_tail); 1364 } 1365 1366 /* Mark DMA descriptors from begin up to and not including end as unused */ 1367 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin, 1368 unsigned int end) 1369 { 1370 unsigned int frag; 1371 1372 for (frag = begin; frag != end; frag++) { 1373 struct macb_dma_desc *desc = macb_rx_desc(queue, frag); 1374 1375 desc->addr &= ~MACB_BIT(RX_USED); 1376 } 1377 1378 /* Make descriptor updates visible to hardware */ 1379 wmb(); 1380 1381 /* When this happens, the hardware stats registers for 1382 * whatever caused this is updated, so we don't have to record 1383 * anything. 1384 */ 1385 } 1386 1387 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi, 1388 int budget) 1389 { 1390 struct macb *bp = queue->bp; 1391 unsigned int len; 1392 unsigned int entry; 1393 struct sk_buff *skb; 1394 struct macb_dma_desc *desc; 1395 int count = 0; 1396 1397 while (count < budget) { 1398 u32 ctrl; 1399 dma_addr_t addr; 1400 bool rxused; 1401 1402 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1403 desc = macb_rx_desc(queue, entry); 1404 1405 /* Make hw descriptor updates visible to CPU */ 1406 rmb(); 1407 1408 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false; 1409 addr = macb_get_addr(bp, desc); 1410 1411 if (!rxused) 1412 break; 1413 1414 /* Ensure ctrl is at least as up-to-date as rxused */ 1415 dma_rmb(); 1416 1417 ctrl = desc->ctrl; 1418 1419 queue->rx_tail++; 1420 count++; 1421 1422 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) { 1423 netdev_err(bp->dev, 1424 "not whole frame pointed by descriptor\n"); 1425 bp->dev->stats.rx_dropped++; 1426 queue->stats.rx_dropped++; 1427 break; 1428 } 1429 skb = queue->rx_skbuff[entry]; 1430 if (unlikely(!skb)) { 1431 netdev_err(bp->dev, 1432 "inconsistent Rx descriptor chain\n"); 1433 bp->dev->stats.rx_dropped++; 1434 queue->stats.rx_dropped++; 1435 break; 1436 } 1437 /* now everything is ready for receiving packet */ 1438 queue->rx_skbuff[entry] = NULL; 1439 len = ctrl & bp->rx_frm_len_mask; 1440 1441 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len); 1442 1443 skb_put(skb, len); 1444 dma_unmap_single(&bp->pdev->dev, addr, 1445 bp->rx_buffer_size, DMA_FROM_DEVICE); 1446 1447 skb->protocol = eth_type_trans(skb, bp->dev); 1448 skb_checksum_none_assert(skb); 1449 if (bp->dev->features & NETIF_F_RXCSUM && 1450 !(bp->dev->flags & IFF_PROMISC) && 1451 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK) 1452 skb->ip_summed = CHECKSUM_UNNECESSARY; 1453 1454 bp->dev->stats.rx_packets++; 1455 queue->stats.rx_packets++; 1456 bp->dev->stats.rx_bytes += skb->len; 1457 queue->stats.rx_bytes += skb->len; 1458 1459 gem_ptp_do_rxstamp(bp, skb, desc); 1460 1461 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 1462 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1463 skb->len, skb->csum); 1464 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1, 1465 skb_mac_header(skb), 16, true); 1466 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1, 1467 skb->data, 32, true); 1468 #endif 1469 1470 napi_gro_receive(napi, skb); 1471 } 1472 1473 gem_rx_refill(queue); 1474 1475 return count; 1476 } 1477 1478 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi, 1479 unsigned int first_frag, unsigned int last_frag) 1480 { 1481 unsigned int len; 1482 unsigned int frag; 1483 unsigned int offset; 1484 struct sk_buff *skb; 1485 struct macb_dma_desc *desc; 1486 struct macb *bp = queue->bp; 1487 1488 desc = macb_rx_desc(queue, last_frag); 1489 len = desc->ctrl & bp->rx_frm_len_mask; 1490 1491 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n", 1492 macb_rx_ring_wrap(bp, first_frag), 1493 macb_rx_ring_wrap(bp, last_frag), len); 1494 1495 /* The ethernet header starts NET_IP_ALIGN bytes into the 1496 * first buffer. Since the header is 14 bytes, this makes the 1497 * payload word-aligned. 1498 * 1499 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy 1500 * the two padding bytes into the skb so that we avoid hitting 1501 * the slowpath in memcpy(), and pull them off afterwards. 1502 */ 1503 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN); 1504 if (!skb) { 1505 bp->dev->stats.rx_dropped++; 1506 for (frag = first_frag; ; frag++) { 1507 desc = macb_rx_desc(queue, frag); 1508 desc->addr &= ~MACB_BIT(RX_USED); 1509 if (frag == last_frag) 1510 break; 1511 } 1512 1513 /* Make descriptor updates visible to hardware */ 1514 wmb(); 1515 1516 return 1; 1517 } 1518 1519 offset = 0; 1520 len += NET_IP_ALIGN; 1521 skb_checksum_none_assert(skb); 1522 skb_put(skb, len); 1523 1524 for (frag = first_frag; ; frag++) { 1525 unsigned int frag_len = bp->rx_buffer_size; 1526 1527 if (offset + frag_len > len) { 1528 if (unlikely(frag != last_frag)) { 1529 dev_kfree_skb_any(skb); 1530 return -1; 1531 } 1532 frag_len = len - offset; 1533 } 1534 skb_copy_to_linear_data_offset(skb, offset, 1535 macb_rx_buffer(queue, frag), 1536 frag_len); 1537 offset += bp->rx_buffer_size; 1538 desc = macb_rx_desc(queue, frag); 1539 desc->addr &= ~MACB_BIT(RX_USED); 1540 1541 if (frag == last_frag) 1542 break; 1543 } 1544 1545 /* Make descriptor updates visible to hardware */ 1546 wmb(); 1547 1548 __skb_pull(skb, NET_IP_ALIGN); 1549 skb->protocol = eth_type_trans(skb, bp->dev); 1550 1551 bp->dev->stats.rx_packets++; 1552 bp->dev->stats.rx_bytes += skb->len; 1553 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1554 skb->len, skb->csum); 1555 napi_gro_receive(napi, skb); 1556 1557 return 0; 1558 } 1559 1560 static inline void macb_init_rx_ring(struct macb_queue *queue) 1561 { 1562 struct macb *bp = queue->bp; 1563 dma_addr_t addr; 1564 struct macb_dma_desc *desc = NULL; 1565 int i; 1566 1567 addr = queue->rx_buffers_dma; 1568 for (i = 0; i < bp->rx_ring_size; i++) { 1569 desc = macb_rx_desc(queue, i); 1570 macb_set_addr(bp, desc, addr); 1571 desc->ctrl = 0; 1572 addr += bp->rx_buffer_size; 1573 } 1574 desc->addr |= MACB_BIT(RX_WRAP); 1575 queue->rx_tail = 0; 1576 } 1577 1578 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi, 1579 int budget) 1580 { 1581 struct macb *bp = queue->bp; 1582 bool reset_rx_queue = false; 1583 int received = 0; 1584 unsigned int tail; 1585 int first_frag = -1; 1586 1587 for (tail = queue->rx_tail; budget > 0; tail++) { 1588 struct macb_dma_desc *desc = macb_rx_desc(queue, tail); 1589 u32 ctrl; 1590 1591 /* Make hw descriptor updates visible to CPU */ 1592 rmb(); 1593 1594 if (!(desc->addr & MACB_BIT(RX_USED))) 1595 break; 1596 1597 /* Ensure ctrl is at least as up-to-date as addr */ 1598 dma_rmb(); 1599 1600 ctrl = desc->ctrl; 1601 1602 if (ctrl & MACB_BIT(RX_SOF)) { 1603 if (first_frag != -1) 1604 discard_partial_frame(queue, first_frag, tail); 1605 first_frag = tail; 1606 } 1607 1608 if (ctrl & MACB_BIT(RX_EOF)) { 1609 int dropped; 1610 1611 if (unlikely(first_frag == -1)) { 1612 reset_rx_queue = true; 1613 continue; 1614 } 1615 1616 dropped = macb_rx_frame(queue, napi, first_frag, tail); 1617 first_frag = -1; 1618 if (unlikely(dropped < 0)) { 1619 reset_rx_queue = true; 1620 continue; 1621 } 1622 if (!dropped) { 1623 received++; 1624 budget--; 1625 } 1626 } 1627 } 1628 1629 if (unlikely(reset_rx_queue)) { 1630 unsigned long flags; 1631 u32 ctrl; 1632 1633 netdev_err(bp->dev, "RX queue corruption: reset it\n"); 1634 1635 spin_lock_irqsave(&bp->lock, flags); 1636 1637 ctrl = macb_readl(bp, NCR); 1638 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1639 1640 macb_init_rx_ring(queue); 1641 queue_writel(queue, RBQP, queue->rx_ring_dma); 1642 1643 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1644 1645 spin_unlock_irqrestore(&bp->lock, flags); 1646 return received; 1647 } 1648 1649 if (first_frag != -1) 1650 queue->rx_tail = first_frag; 1651 else 1652 queue->rx_tail = tail; 1653 1654 return received; 1655 } 1656 1657 static bool macb_rx_pending(struct macb_queue *queue) 1658 { 1659 struct macb *bp = queue->bp; 1660 unsigned int entry; 1661 struct macb_dma_desc *desc; 1662 1663 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1664 desc = macb_rx_desc(queue, entry); 1665 1666 /* Make hw descriptor updates visible to CPU */ 1667 rmb(); 1668 1669 return (desc->addr & MACB_BIT(RX_USED)) != 0; 1670 } 1671 1672 static int macb_rx_poll(struct napi_struct *napi, int budget) 1673 { 1674 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx); 1675 struct macb *bp = queue->bp; 1676 int work_done; 1677 1678 work_done = bp->macbgem_ops.mog_rx(queue, napi, budget); 1679 1680 netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n", 1681 (unsigned int)(queue - bp->queues), work_done, budget); 1682 1683 if (work_done < budget && napi_complete_done(napi, work_done)) { 1684 queue_writel(queue, IER, bp->rx_intr_mask); 1685 1686 /* Packet completions only seem to propagate to raise 1687 * interrupts when interrupts are enabled at the time, so if 1688 * packets were received while interrupts were disabled, 1689 * they will not cause another interrupt to be generated when 1690 * interrupts are re-enabled. 1691 * Check for this case here to avoid losing a wakeup. This can 1692 * potentially race with the interrupt handler doing the same 1693 * actions if an interrupt is raised just after enabling them, 1694 * but this should be harmless. 1695 */ 1696 if (macb_rx_pending(queue)) { 1697 queue_writel(queue, IDR, bp->rx_intr_mask); 1698 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1699 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1700 netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n"); 1701 napi_schedule(napi); 1702 } 1703 } 1704 1705 /* TODO: Handle errors */ 1706 1707 return work_done; 1708 } 1709 1710 static void macb_tx_restart(struct macb_queue *queue) 1711 { 1712 struct macb *bp = queue->bp; 1713 unsigned int head_idx, tbqp; 1714 1715 spin_lock(&queue->tx_ptr_lock); 1716 1717 if (queue->tx_head == queue->tx_tail) 1718 goto out_tx_ptr_unlock; 1719 1720 tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp); 1721 tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp)); 1722 head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head)); 1723 1724 if (tbqp == head_idx) 1725 goto out_tx_ptr_unlock; 1726 1727 spin_lock_irq(&bp->lock); 1728 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1729 spin_unlock_irq(&bp->lock); 1730 1731 out_tx_ptr_unlock: 1732 spin_unlock(&queue->tx_ptr_lock); 1733 } 1734 1735 static bool macb_tx_complete_pending(struct macb_queue *queue) 1736 { 1737 bool retval = false; 1738 1739 spin_lock(&queue->tx_ptr_lock); 1740 if (queue->tx_head != queue->tx_tail) { 1741 /* Make hw descriptor updates visible to CPU */ 1742 rmb(); 1743 1744 if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED)) 1745 retval = true; 1746 } 1747 spin_unlock(&queue->tx_ptr_lock); 1748 return retval; 1749 } 1750 1751 static int macb_tx_poll(struct napi_struct *napi, int budget) 1752 { 1753 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx); 1754 struct macb *bp = queue->bp; 1755 int work_done; 1756 1757 work_done = macb_tx_complete(queue, budget); 1758 1759 rmb(); // ensure txubr_pending is up to date 1760 if (queue->txubr_pending) { 1761 queue->txubr_pending = false; 1762 netdev_vdbg(bp->dev, "poll: tx restart\n"); 1763 macb_tx_restart(queue); 1764 } 1765 1766 netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n", 1767 (unsigned int)(queue - bp->queues), work_done, budget); 1768 1769 if (work_done < budget && napi_complete_done(napi, work_done)) { 1770 queue_writel(queue, IER, MACB_BIT(TCOMP)); 1771 1772 /* Packet completions only seem to propagate to raise 1773 * interrupts when interrupts are enabled at the time, so if 1774 * packets were sent while interrupts were disabled, 1775 * they will not cause another interrupt to be generated when 1776 * interrupts are re-enabled. 1777 * Check for this case here to avoid losing a wakeup. This can 1778 * potentially race with the interrupt handler doing the same 1779 * actions if an interrupt is raised just after enabling them, 1780 * but this should be harmless. 1781 */ 1782 if (macb_tx_complete_pending(queue)) { 1783 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1784 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1785 queue_writel(queue, ISR, MACB_BIT(TCOMP)); 1786 netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n"); 1787 napi_schedule(napi); 1788 } 1789 } 1790 1791 return work_done; 1792 } 1793 1794 static void macb_hresp_error_task(struct tasklet_struct *t) 1795 { 1796 struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet); 1797 struct net_device *dev = bp->dev; 1798 struct macb_queue *queue; 1799 unsigned int q; 1800 u32 ctrl; 1801 1802 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 1803 queue_writel(queue, IDR, bp->rx_intr_mask | 1804 MACB_TX_INT_FLAGS | 1805 MACB_BIT(HRESP)); 1806 } 1807 ctrl = macb_readl(bp, NCR); 1808 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 1809 macb_writel(bp, NCR, ctrl); 1810 1811 netif_tx_stop_all_queues(dev); 1812 netif_carrier_off(dev); 1813 1814 bp->macbgem_ops.mog_init_rings(bp); 1815 1816 /* Initialize TX and RX buffers */ 1817 macb_init_buffers(bp); 1818 1819 /* Enable interrupts */ 1820 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1821 queue_writel(queue, IER, 1822 bp->rx_intr_mask | 1823 MACB_TX_INT_FLAGS | 1824 MACB_BIT(HRESP)); 1825 1826 ctrl |= MACB_BIT(RE) | MACB_BIT(TE); 1827 macb_writel(bp, NCR, ctrl); 1828 1829 netif_carrier_on(dev); 1830 netif_tx_start_all_queues(dev); 1831 } 1832 1833 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id) 1834 { 1835 struct macb_queue *queue = dev_id; 1836 struct macb *bp = queue->bp; 1837 u32 status; 1838 1839 status = queue_readl(queue, ISR); 1840 1841 if (unlikely(!status)) 1842 return IRQ_NONE; 1843 1844 spin_lock(&bp->lock); 1845 1846 if (status & MACB_BIT(WOL)) { 1847 queue_writel(queue, IDR, MACB_BIT(WOL)); 1848 macb_writel(bp, WOL, 0); 1849 netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n", 1850 (unsigned int)(queue - bp->queues), 1851 (unsigned long)status); 1852 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1853 queue_writel(queue, ISR, MACB_BIT(WOL)); 1854 pm_wakeup_event(&bp->pdev->dev, 0); 1855 } 1856 1857 spin_unlock(&bp->lock); 1858 1859 return IRQ_HANDLED; 1860 } 1861 1862 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id) 1863 { 1864 struct macb_queue *queue = dev_id; 1865 struct macb *bp = queue->bp; 1866 u32 status; 1867 1868 status = queue_readl(queue, ISR); 1869 1870 if (unlikely(!status)) 1871 return IRQ_NONE; 1872 1873 spin_lock(&bp->lock); 1874 1875 if (status & GEM_BIT(WOL)) { 1876 queue_writel(queue, IDR, GEM_BIT(WOL)); 1877 gem_writel(bp, WOL, 0); 1878 netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n", 1879 (unsigned int)(queue - bp->queues), 1880 (unsigned long)status); 1881 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1882 queue_writel(queue, ISR, GEM_BIT(WOL)); 1883 pm_wakeup_event(&bp->pdev->dev, 0); 1884 } 1885 1886 spin_unlock(&bp->lock); 1887 1888 return IRQ_HANDLED; 1889 } 1890 1891 static irqreturn_t macb_interrupt(int irq, void *dev_id) 1892 { 1893 struct macb_queue *queue = dev_id; 1894 struct macb *bp = queue->bp; 1895 struct net_device *dev = bp->dev; 1896 u32 status, ctrl; 1897 1898 status = queue_readl(queue, ISR); 1899 1900 if (unlikely(!status)) 1901 return IRQ_NONE; 1902 1903 spin_lock(&bp->lock); 1904 1905 while (status) { 1906 /* close possible race with dev_close */ 1907 if (unlikely(!netif_running(dev))) { 1908 queue_writel(queue, IDR, -1); 1909 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1910 queue_writel(queue, ISR, -1); 1911 break; 1912 } 1913 1914 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n", 1915 (unsigned int)(queue - bp->queues), 1916 (unsigned long)status); 1917 1918 if (status & bp->rx_intr_mask) { 1919 /* There's no point taking any more interrupts 1920 * until we have processed the buffers. The 1921 * scheduling call may fail if the poll routine 1922 * is already scheduled, so disable interrupts 1923 * now. 1924 */ 1925 queue_writel(queue, IDR, bp->rx_intr_mask); 1926 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1927 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1928 1929 if (napi_schedule_prep(&queue->napi_rx)) { 1930 netdev_vdbg(bp->dev, "scheduling RX softirq\n"); 1931 __napi_schedule(&queue->napi_rx); 1932 } 1933 } 1934 1935 if (status & (MACB_BIT(TCOMP) | 1936 MACB_BIT(TXUBR))) { 1937 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1938 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1939 queue_writel(queue, ISR, MACB_BIT(TCOMP) | 1940 MACB_BIT(TXUBR)); 1941 1942 if (status & MACB_BIT(TXUBR)) { 1943 queue->txubr_pending = true; 1944 wmb(); // ensure softirq can see update 1945 } 1946 1947 if (napi_schedule_prep(&queue->napi_tx)) { 1948 netdev_vdbg(bp->dev, "scheduling TX softirq\n"); 1949 __napi_schedule(&queue->napi_tx); 1950 } 1951 } 1952 1953 if (unlikely(status & (MACB_TX_ERR_FLAGS))) { 1954 queue_writel(queue, IDR, MACB_TX_INT_FLAGS); 1955 schedule_work(&queue->tx_error_task); 1956 1957 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1958 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS); 1959 1960 break; 1961 } 1962 1963 /* Link change detection isn't possible with RMII, so we'll 1964 * add that if/when we get our hands on a full-blown MII PHY. 1965 */ 1966 1967 /* There is a hardware issue under heavy load where DMA can 1968 * stop, this causes endless "used buffer descriptor read" 1969 * interrupts but it can be cleared by re-enabling RX. See 1970 * the at91rm9200 manual, section 41.3.1 or the Zynq manual 1971 * section 16.7.4 for details. RXUBR is only enabled for 1972 * these two versions. 1973 */ 1974 if (status & MACB_BIT(RXUBR)) { 1975 ctrl = macb_readl(bp, NCR); 1976 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1977 wmb(); 1978 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1979 1980 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1981 queue_writel(queue, ISR, MACB_BIT(RXUBR)); 1982 } 1983 1984 if (status & MACB_BIT(ISR_ROVR)) { 1985 /* We missed at least one packet */ 1986 if (macb_is_gem(bp)) 1987 bp->hw_stats.gem.rx_overruns++; 1988 else 1989 bp->hw_stats.macb.rx_overruns++; 1990 1991 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1992 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR)); 1993 } 1994 1995 if (status & MACB_BIT(HRESP)) { 1996 tasklet_schedule(&bp->hresp_err_tasklet); 1997 netdev_err(dev, "DMA bus error: HRESP not OK\n"); 1998 1999 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2000 queue_writel(queue, ISR, MACB_BIT(HRESP)); 2001 } 2002 status = queue_readl(queue, ISR); 2003 } 2004 2005 spin_unlock(&bp->lock); 2006 2007 return IRQ_HANDLED; 2008 } 2009 2010 #ifdef CONFIG_NET_POLL_CONTROLLER 2011 /* Polling receive - used by netconsole and other diagnostic tools 2012 * to allow network i/o with interrupts disabled. 2013 */ 2014 static void macb_poll_controller(struct net_device *dev) 2015 { 2016 struct macb *bp = netdev_priv(dev); 2017 struct macb_queue *queue; 2018 unsigned long flags; 2019 unsigned int q; 2020 2021 local_irq_save(flags); 2022 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2023 macb_interrupt(dev->irq, queue); 2024 local_irq_restore(flags); 2025 } 2026 #endif 2027 2028 static unsigned int macb_tx_map(struct macb *bp, 2029 struct macb_queue *queue, 2030 struct sk_buff *skb, 2031 unsigned int hdrlen) 2032 { 2033 dma_addr_t mapping; 2034 unsigned int len, entry, i, tx_head = queue->tx_head; 2035 struct macb_tx_skb *tx_skb = NULL; 2036 struct macb_dma_desc *desc; 2037 unsigned int offset, size, count = 0; 2038 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags; 2039 unsigned int eof = 1, mss_mfs = 0; 2040 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0; 2041 2042 /* LSO */ 2043 if (skb_shinfo(skb)->gso_size != 0) { 2044 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2045 /* UDP - UFO */ 2046 lso_ctrl = MACB_LSO_UFO_ENABLE; 2047 else 2048 /* TCP - TSO */ 2049 lso_ctrl = MACB_LSO_TSO_ENABLE; 2050 } 2051 2052 /* First, map non-paged data */ 2053 len = skb_headlen(skb); 2054 2055 /* first buffer length */ 2056 size = hdrlen; 2057 2058 offset = 0; 2059 while (len) { 2060 entry = macb_tx_ring_wrap(bp, tx_head); 2061 tx_skb = &queue->tx_skb[entry]; 2062 2063 mapping = dma_map_single(&bp->pdev->dev, 2064 skb->data + offset, 2065 size, DMA_TO_DEVICE); 2066 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2067 goto dma_error; 2068 2069 /* Save info to properly release resources */ 2070 tx_skb->skb = NULL; 2071 tx_skb->mapping = mapping; 2072 tx_skb->size = size; 2073 tx_skb->mapped_as_page = false; 2074 2075 len -= size; 2076 offset += size; 2077 count++; 2078 tx_head++; 2079 2080 size = min(len, bp->max_tx_length); 2081 } 2082 2083 /* Then, map paged data from fragments */ 2084 for (f = 0; f < nr_frags; f++) { 2085 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2086 2087 len = skb_frag_size(frag); 2088 offset = 0; 2089 while (len) { 2090 size = min(len, bp->max_tx_length); 2091 entry = macb_tx_ring_wrap(bp, tx_head); 2092 tx_skb = &queue->tx_skb[entry]; 2093 2094 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 2095 offset, size, DMA_TO_DEVICE); 2096 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2097 goto dma_error; 2098 2099 /* Save info to properly release resources */ 2100 tx_skb->skb = NULL; 2101 tx_skb->mapping = mapping; 2102 tx_skb->size = size; 2103 tx_skb->mapped_as_page = true; 2104 2105 len -= size; 2106 offset += size; 2107 count++; 2108 tx_head++; 2109 } 2110 } 2111 2112 /* Should never happen */ 2113 if (unlikely(!tx_skb)) { 2114 netdev_err(bp->dev, "BUG! empty skb!\n"); 2115 return 0; 2116 } 2117 2118 /* This is the last buffer of the frame: save socket buffer */ 2119 tx_skb->skb = skb; 2120 2121 /* Update TX ring: update buffer descriptors in reverse order 2122 * to avoid race condition 2123 */ 2124 2125 /* Set 'TX_USED' bit in buffer descriptor at tx_head position 2126 * to set the end of TX queue 2127 */ 2128 i = tx_head; 2129 entry = macb_tx_ring_wrap(bp, i); 2130 ctrl = MACB_BIT(TX_USED); 2131 desc = macb_tx_desc(queue, entry); 2132 desc->ctrl = ctrl; 2133 2134 if (lso_ctrl) { 2135 if (lso_ctrl == MACB_LSO_UFO_ENABLE) 2136 /* include header and FCS in value given to h/w */ 2137 mss_mfs = skb_shinfo(skb)->gso_size + 2138 skb_transport_offset(skb) + 2139 ETH_FCS_LEN; 2140 else /* TSO */ { 2141 mss_mfs = skb_shinfo(skb)->gso_size; 2142 /* TCP Sequence Number Source Select 2143 * can be set only for TSO 2144 */ 2145 seq_ctrl = 0; 2146 } 2147 } 2148 2149 do { 2150 i--; 2151 entry = macb_tx_ring_wrap(bp, i); 2152 tx_skb = &queue->tx_skb[entry]; 2153 desc = macb_tx_desc(queue, entry); 2154 2155 ctrl = (u32)tx_skb->size; 2156 if (eof) { 2157 ctrl |= MACB_BIT(TX_LAST); 2158 eof = 0; 2159 } 2160 if (unlikely(entry == (bp->tx_ring_size - 1))) 2161 ctrl |= MACB_BIT(TX_WRAP); 2162 2163 /* First descriptor is header descriptor */ 2164 if (i == queue->tx_head) { 2165 ctrl |= MACB_BF(TX_LSO, lso_ctrl); 2166 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl); 2167 if ((bp->dev->features & NETIF_F_HW_CSUM) && 2168 skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl && 2169 !ptp_one_step_sync(skb)) 2170 ctrl |= MACB_BIT(TX_NOCRC); 2171 } else 2172 /* Only set MSS/MFS on payload descriptors 2173 * (second or later descriptor) 2174 */ 2175 ctrl |= MACB_BF(MSS_MFS, mss_mfs); 2176 2177 /* Set TX buffer descriptor */ 2178 macb_set_addr(bp, desc, tx_skb->mapping); 2179 /* desc->addr must be visible to hardware before clearing 2180 * 'TX_USED' bit in desc->ctrl. 2181 */ 2182 wmb(); 2183 desc->ctrl = ctrl; 2184 } while (i != queue->tx_head); 2185 2186 queue->tx_head = tx_head; 2187 2188 return count; 2189 2190 dma_error: 2191 netdev_err(bp->dev, "TX DMA map failed\n"); 2192 2193 for (i = queue->tx_head; i != tx_head; i++) { 2194 tx_skb = macb_tx_skb(queue, i); 2195 2196 macb_tx_unmap(bp, tx_skb, 0); 2197 } 2198 2199 return 0; 2200 } 2201 2202 static netdev_features_t macb_features_check(struct sk_buff *skb, 2203 struct net_device *dev, 2204 netdev_features_t features) 2205 { 2206 unsigned int nr_frags, f; 2207 unsigned int hdrlen; 2208 2209 /* Validate LSO compatibility */ 2210 2211 /* there is only one buffer or protocol is not UDP */ 2212 if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP)) 2213 return features; 2214 2215 /* length of header */ 2216 hdrlen = skb_transport_offset(skb); 2217 2218 /* For UFO only: 2219 * When software supplies two or more payload buffers all payload buffers 2220 * apart from the last must be a multiple of 8 bytes in size. 2221 */ 2222 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN)) 2223 return features & ~MACB_NETIF_LSO; 2224 2225 nr_frags = skb_shinfo(skb)->nr_frags; 2226 /* No need to check last fragment */ 2227 nr_frags--; 2228 for (f = 0; f < nr_frags; f++) { 2229 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2230 2231 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN)) 2232 return features & ~MACB_NETIF_LSO; 2233 } 2234 return features; 2235 } 2236 2237 static inline int macb_clear_csum(struct sk_buff *skb) 2238 { 2239 /* no change for packets without checksum offloading */ 2240 if (skb->ip_summed != CHECKSUM_PARTIAL) 2241 return 0; 2242 2243 /* make sure we can modify the header */ 2244 if (unlikely(skb_cow_head(skb, 0))) 2245 return -1; 2246 2247 /* initialize checksum field 2248 * This is required - at least for Zynq, which otherwise calculates 2249 * wrong UDP header checksums for UDP packets with UDP data len <=2 2250 */ 2251 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0; 2252 return 0; 2253 } 2254 2255 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev) 2256 { 2257 bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) || 2258 skb_is_nonlinear(*skb); 2259 int padlen = ETH_ZLEN - (*skb)->len; 2260 int tailroom = skb_tailroom(*skb); 2261 struct sk_buff *nskb; 2262 u32 fcs; 2263 2264 if (!(ndev->features & NETIF_F_HW_CSUM) || 2265 !((*skb)->ip_summed != CHECKSUM_PARTIAL) || 2266 skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb)) 2267 return 0; 2268 2269 if (padlen <= 0) { 2270 /* FCS could be appeded to tailroom. */ 2271 if (tailroom >= ETH_FCS_LEN) 2272 goto add_fcs; 2273 /* No room for FCS, need to reallocate skb. */ 2274 else 2275 padlen = ETH_FCS_LEN; 2276 } else { 2277 /* Add room for FCS. */ 2278 padlen += ETH_FCS_LEN; 2279 } 2280 2281 if (cloned || tailroom < padlen) { 2282 nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC); 2283 if (!nskb) 2284 return -ENOMEM; 2285 2286 dev_consume_skb_any(*skb); 2287 *skb = nskb; 2288 } 2289 2290 if (padlen > ETH_FCS_LEN) 2291 skb_put_zero(*skb, padlen - ETH_FCS_LEN); 2292 2293 add_fcs: 2294 /* set FCS to packet */ 2295 fcs = crc32_le(~0, (*skb)->data, (*skb)->len); 2296 fcs = ~fcs; 2297 2298 skb_put_u8(*skb, fcs & 0xff); 2299 skb_put_u8(*skb, (fcs >> 8) & 0xff); 2300 skb_put_u8(*skb, (fcs >> 16) & 0xff); 2301 skb_put_u8(*skb, (fcs >> 24) & 0xff); 2302 2303 return 0; 2304 } 2305 2306 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev) 2307 { 2308 u16 queue_index = skb_get_queue_mapping(skb); 2309 struct macb *bp = netdev_priv(dev); 2310 struct macb_queue *queue = &bp->queues[queue_index]; 2311 unsigned int desc_cnt, nr_frags, frag_size, f; 2312 unsigned int hdrlen; 2313 bool is_lso; 2314 netdev_tx_t ret = NETDEV_TX_OK; 2315 2316 if (macb_clear_csum(skb)) { 2317 dev_kfree_skb_any(skb); 2318 return ret; 2319 } 2320 2321 if (macb_pad_and_fcs(&skb, dev)) { 2322 dev_kfree_skb_any(skb); 2323 return ret; 2324 } 2325 2326 #ifdef CONFIG_MACB_USE_HWSTAMP 2327 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2328 (bp->hw_dma_cap & HW_DMA_CAP_PTP)) 2329 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2330 #endif 2331 2332 is_lso = (skb_shinfo(skb)->gso_size != 0); 2333 2334 if (is_lso) { 2335 /* length of headers */ 2336 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2337 /* only queue eth + ip headers separately for UDP */ 2338 hdrlen = skb_transport_offset(skb); 2339 else 2340 hdrlen = skb_tcp_all_headers(skb); 2341 if (skb_headlen(skb) < hdrlen) { 2342 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n"); 2343 /* if this is required, would need to copy to single buffer */ 2344 return NETDEV_TX_BUSY; 2345 } 2346 } else 2347 hdrlen = min(skb_headlen(skb), bp->max_tx_length); 2348 2349 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 2350 netdev_vdbg(bp->dev, 2351 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n", 2352 queue_index, skb->len, skb->head, skb->data, 2353 skb_tail_pointer(skb), skb_end_pointer(skb)); 2354 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1, 2355 skb->data, 16, true); 2356 #endif 2357 2358 /* Count how many TX buffer descriptors are needed to send this 2359 * socket buffer: skb fragments of jumbo frames may need to be 2360 * split into many buffer descriptors. 2361 */ 2362 if (is_lso && (skb_headlen(skb) > hdrlen)) 2363 /* extra header descriptor if also payload in first buffer */ 2364 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1; 2365 else 2366 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length); 2367 nr_frags = skb_shinfo(skb)->nr_frags; 2368 for (f = 0; f < nr_frags; f++) { 2369 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2370 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length); 2371 } 2372 2373 spin_lock_bh(&queue->tx_ptr_lock); 2374 2375 /* This is a hard error, log it. */ 2376 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, 2377 bp->tx_ring_size) < desc_cnt) { 2378 netif_stop_subqueue(dev, queue_index); 2379 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n", 2380 queue->tx_head, queue->tx_tail); 2381 ret = NETDEV_TX_BUSY; 2382 goto unlock; 2383 } 2384 2385 /* Map socket buffer for DMA transfer */ 2386 if (!macb_tx_map(bp, queue, skb, hdrlen)) { 2387 dev_kfree_skb_any(skb); 2388 goto unlock; 2389 } 2390 2391 /* Make newly initialized descriptor visible to hardware */ 2392 wmb(); 2393 skb_tx_timestamp(skb); 2394 2395 spin_lock_irq(&bp->lock); 2396 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 2397 spin_unlock_irq(&bp->lock); 2398 2399 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1) 2400 netif_stop_subqueue(dev, queue_index); 2401 2402 unlock: 2403 spin_unlock_bh(&queue->tx_ptr_lock); 2404 2405 return ret; 2406 } 2407 2408 static void macb_init_rx_buffer_size(struct macb *bp, size_t size) 2409 { 2410 if (!macb_is_gem(bp)) { 2411 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE; 2412 } else { 2413 bp->rx_buffer_size = size; 2414 2415 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) { 2416 netdev_dbg(bp->dev, 2417 "RX buffer must be multiple of %d bytes, expanding\n", 2418 RX_BUFFER_MULTIPLE); 2419 bp->rx_buffer_size = 2420 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE); 2421 } 2422 } 2423 2424 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n", 2425 bp->dev->mtu, bp->rx_buffer_size); 2426 } 2427 2428 static void gem_free_rx_buffers(struct macb *bp) 2429 { 2430 struct sk_buff *skb; 2431 struct macb_dma_desc *desc; 2432 struct macb_queue *queue; 2433 dma_addr_t addr; 2434 unsigned int q; 2435 int i; 2436 2437 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2438 if (!queue->rx_skbuff) 2439 continue; 2440 2441 for (i = 0; i < bp->rx_ring_size; i++) { 2442 skb = queue->rx_skbuff[i]; 2443 2444 if (!skb) 2445 continue; 2446 2447 desc = macb_rx_desc(queue, i); 2448 addr = macb_get_addr(bp, desc); 2449 2450 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size, 2451 DMA_FROM_DEVICE); 2452 dev_kfree_skb_any(skb); 2453 skb = NULL; 2454 } 2455 2456 kfree(queue->rx_skbuff); 2457 queue->rx_skbuff = NULL; 2458 } 2459 } 2460 2461 static void macb_free_rx_buffers(struct macb *bp) 2462 { 2463 struct macb_queue *queue = &bp->queues[0]; 2464 2465 if (queue->rx_buffers) { 2466 dma_free_coherent(&bp->pdev->dev, 2467 bp->rx_ring_size * bp->rx_buffer_size, 2468 queue->rx_buffers, queue->rx_buffers_dma); 2469 queue->rx_buffers = NULL; 2470 } 2471 } 2472 2473 static void macb_free_consistent(struct macb *bp) 2474 { 2475 struct macb_queue *queue; 2476 unsigned int q; 2477 int size; 2478 2479 bp->macbgem_ops.mog_free_rx_buffers(bp); 2480 2481 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2482 kfree(queue->tx_skb); 2483 queue->tx_skb = NULL; 2484 if (queue->tx_ring) { 2485 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2486 dma_free_coherent(&bp->pdev->dev, size, 2487 queue->tx_ring, queue->tx_ring_dma); 2488 queue->tx_ring = NULL; 2489 } 2490 if (queue->rx_ring) { 2491 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2492 dma_free_coherent(&bp->pdev->dev, size, 2493 queue->rx_ring, queue->rx_ring_dma); 2494 queue->rx_ring = NULL; 2495 } 2496 } 2497 } 2498 2499 static int gem_alloc_rx_buffers(struct macb *bp) 2500 { 2501 struct macb_queue *queue; 2502 unsigned int q; 2503 int size; 2504 2505 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2506 size = bp->rx_ring_size * sizeof(struct sk_buff *); 2507 queue->rx_skbuff = kzalloc(size, GFP_KERNEL); 2508 if (!queue->rx_skbuff) 2509 return -ENOMEM; 2510 else 2511 netdev_dbg(bp->dev, 2512 "Allocated %d RX struct sk_buff entries at %p\n", 2513 bp->rx_ring_size, queue->rx_skbuff); 2514 } 2515 return 0; 2516 } 2517 2518 static int macb_alloc_rx_buffers(struct macb *bp) 2519 { 2520 struct macb_queue *queue = &bp->queues[0]; 2521 int size; 2522 2523 size = bp->rx_ring_size * bp->rx_buffer_size; 2524 queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size, 2525 &queue->rx_buffers_dma, GFP_KERNEL); 2526 if (!queue->rx_buffers) 2527 return -ENOMEM; 2528 2529 netdev_dbg(bp->dev, 2530 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n", 2531 size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers); 2532 return 0; 2533 } 2534 2535 static int macb_alloc_consistent(struct macb *bp) 2536 { 2537 struct macb_queue *queue; 2538 unsigned int q; 2539 int size; 2540 2541 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2542 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2543 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2544 &queue->tx_ring_dma, 2545 GFP_KERNEL); 2546 if (!queue->tx_ring) 2547 goto out_err; 2548 netdev_dbg(bp->dev, 2549 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n", 2550 q, size, (unsigned long)queue->tx_ring_dma, 2551 queue->tx_ring); 2552 2553 size = bp->tx_ring_size * sizeof(struct macb_tx_skb); 2554 queue->tx_skb = kmalloc(size, GFP_KERNEL); 2555 if (!queue->tx_skb) 2556 goto out_err; 2557 2558 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2559 queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2560 &queue->rx_ring_dma, GFP_KERNEL); 2561 if (!queue->rx_ring) 2562 goto out_err; 2563 netdev_dbg(bp->dev, 2564 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n", 2565 size, (unsigned long)queue->rx_ring_dma, queue->rx_ring); 2566 } 2567 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp)) 2568 goto out_err; 2569 2570 return 0; 2571 2572 out_err: 2573 macb_free_consistent(bp); 2574 return -ENOMEM; 2575 } 2576 2577 static void gem_init_rings(struct macb *bp) 2578 { 2579 struct macb_queue *queue; 2580 struct macb_dma_desc *desc = NULL; 2581 unsigned int q; 2582 int i; 2583 2584 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2585 for (i = 0; i < bp->tx_ring_size; i++) { 2586 desc = macb_tx_desc(queue, i); 2587 macb_set_addr(bp, desc, 0); 2588 desc->ctrl = MACB_BIT(TX_USED); 2589 } 2590 desc->ctrl |= MACB_BIT(TX_WRAP); 2591 queue->tx_head = 0; 2592 queue->tx_tail = 0; 2593 2594 queue->rx_tail = 0; 2595 queue->rx_prepared_head = 0; 2596 2597 gem_rx_refill(queue); 2598 } 2599 2600 } 2601 2602 static void macb_init_rings(struct macb *bp) 2603 { 2604 int i; 2605 struct macb_dma_desc *desc = NULL; 2606 2607 macb_init_rx_ring(&bp->queues[0]); 2608 2609 for (i = 0; i < bp->tx_ring_size; i++) { 2610 desc = macb_tx_desc(&bp->queues[0], i); 2611 macb_set_addr(bp, desc, 0); 2612 desc->ctrl = MACB_BIT(TX_USED); 2613 } 2614 bp->queues[0].tx_head = 0; 2615 bp->queues[0].tx_tail = 0; 2616 desc->ctrl |= MACB_BIT(TX_WRAP); 2617 } 2618 2619 static void macb_reset_hw(struct macb *bp) 2620 { 2621 struct macb_queue *queue; 2622 unsigned int q; 2623 u32 ctrl = macb_readl(bp, NCR); 2624 2625 /* Disable RX and TX (XXX: Should we halt the transmission 2626 * more gracefully?) 2627 */ 2628 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 2629 2630 /* Clear the stats registers (XXX: Update stats first?) */ 2631 ctrl |= MACB_BIT(CLRSTAT); 2632 2633 macb_writel(bp, NCR, ctrl); 2634 2635 /* Clear all status flags */ 2636 macb_writel(bp, TSR, -1); 2637 macb_writel(bp, RSR, -1); 2638 2639 /* Disable RX partial store and forward and reset watermark value */ 2640 gem_writel(bp, PBUFRXCUT, 0); 2641 2642 /* Disable all interrupts */ 2643 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2644 queue_writel(queue, IDR, -1); 2645 queue_readl(queue, ISR); 2646 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2647 queue_writel(queue, ISR, -1); 2648 } 2649 } 2650 2651 static u32 gem_mdc_clk_div(struct macb *bp) 2652 { 2653 u32 config; 2654 unsigned long pclk_hz = clk_get_rate(bp->pclk); 2655 2656 if (pclk_hz <= 20000000) 2657 config = GEM_BF(CLK, GEM_CLK_DIV8); 2658 else if (pclk_hz <= 40000000) 2659 config = GEM_BF(CLK, GEM_CLK_DIV16); 2660 else if (pclk_hz <= 80000000) 2661 config = GEM_BF(CLK, GEM_CLK_DIV32); 2662 else if (pclk_hz <= 120000000) 2663 config = GEM_BF(CLK, GEM_CLK_DIV48); 2664 else if (pclk_hz <= 160000000) 2665 config = GEM_BF(CLK, GEM_CLK_DIV64); 2666 else if (pclk_hz <= 240000000) 2667 config = GEM_BF(CLK, GEM_CLK_DIV96); 2668 else if (pclk_hz <= 320000000) 2669 config = GEM_BF(CLK, GEM_CLK_DIV128); 2670 else 2671 config = GEM_BF(CLK, GEM_CLK_DIV224); 2672 2673 return config; 2674 } 2675 2676 static u32 macb_mdc_clk_div(struct macb *bp) 2677 { 2678 u32 config; 2679 unsigned long pclk_hz; 2680 2681 if (macb_is_gem(bp)) 2682 return gem_mdc_clk_div(bp); 2683 2684 pclk_hz = clk_get_rate(bp->pclk); 2685 if (pclk_hz <= 20000000) 2686 config = MACB_BF(CLK, MACB_CLK_DIV8); 2687 else if (pclk_hz <= 40000000) 2688 config = MACB_BF(CLK, MACB_CLK_DIV16); 2689 else if (pclk_hz <= 80000000) 2690 config = MACB_BF(CLK, MACB_CLK_DIV32); 2691 else 2692 config = MACB_BF(CLK, MACB_CLK_DIV64); 2693 2694 return config; 2695 } 2696 2697 /* Get the DMA bus width field of the network configuration register that we 2698 * should program. We find the width from decoding the design configuration 2699 * register to find the maximum supported data bus width. 2700 */ 2701 static u32 macb_dbw(struct macb *bp) 2702 { 2703 if (!macb_is_gem(bp)) 2704 return 0; 2705 2706 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) { 2707 case 4: 2708 return GEM_BF(DBW, GEM_DBW128); 2709 case 2: 2710 return GEM_BF(DBW, GEM_DBW64); 2711 case 1: 2712 default: 2713 return GEM_BF(DBW, GEM_DBW32); 2714 } 2715 } 2716 2717 /* Configure the receive DMA engine 2718 * - use the correct receive buffer size 2719 * - set best burst length for DMA operations 2720 * (if not supported by FIFO, it will fallback to default) 2721 * - set both rx/tx packet buffers to full memory size 2722 * These are configurable parameters for GEM. 2723 */ 2724 static void macb_configure_dma(struct macb *bp) 2725 { 2726 struct macb_queue *queue; 2727 u32 buffer_size; 2728 unsigned int q; 2729 u32 dmacfg; 2730 2731 buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE; 2732 if (macb_is_gem(bp)) { 2733 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L); 2734 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2735 if (q) 2736 queue_writel(queue, RBQS, buffer_size); 2737 else 2738 dmacfg |= GEM_BF(RXBS, buffer_size); 2739 } 2740 if (bp->dma_burst_length) 2741 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg); 2742 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L); 2743 dmacfg &= ~GEM_BIT(ENDIA_PKT); 2744 2745 if (bp->native_io) 2746 dmacfg &= ~GEM_BIT(ENDIA_DESC); 2747 else 2748 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */ 2749 2750 if (bp->dev->features & NETIF_F_HW_CSUM) 2751 dmacfg |= GEM_BIT(TXCOEN); 2752 else 2753 dmacfg &= ~GEM_BIT(TXCOEN); 2754 2755 dmacfg &= ~GEM_BIT(ADDR64); 2756 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 2757 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 2758 dmacfg |= GEM_BIT(ADDR64); 2759 #endif 2760 #ifdef CONFIG_MACB_USE_HWSTAMP 2761 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 2762 dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT); 2763 #endif 2764 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n", 2765 dmacfg); 2766 gem_writel(bp, DMACFG, dmacfg); 2767 } 2768 } 2769 2770 static void macb_init_hw(struct macb *bp) 2771 { 2772 u32 config; 2773 2774 macb_reset_hw(bp); 2775 macb_set_hwaddr(bp); 2776 2777 config = macb_mdc_clk_div(bp); 2778 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */ 2779 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */ 2780 if (bp->caps & MACB_CAPS_JUMBO) 2781 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */ 2782 else 2783 config |= MACB_BIT(BIG); /* Receive oversized frames */ 2784 if (bp->dev->flags & IFF_PROMISC) 2785 config |= MACB_BIT(CAF); /* Copy All Frames */ 2786 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM) 2787 config |= GEM_BIT(RXCOEN); 2788 if (!(bp->dev->flags & IFF_BROADCAST)) 2789 config |= MACB_BIT(NBC); /* No BroadCast */ 2790 config |= macb_dbw(bp); 2791 macb_writel(bp, NCFGR, config); 2792 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 2793 gem_writel(bp, JML, bp->jumbo_max_len); 2794 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK; 2795 if (bp->caps & MACB_CAPS_JUMBO) 2796 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK; 2797 2798 macb_configure_dma(bp); 2799 2800 /* Enable RX partial store and forward and set watermark */ 2801 if (bp->rx_watermark) 2802 gem_writel(bp, PBUFRXCUT, (bp->rx_watermark | GEM_BIT(ENCUTTHRU))); 2803 } 2804 2805 /* The hash address register is 64 bits long and takes up two 2806 * locations in the memory map. The least significant bits are stored 2807 * in EMAC_HSL and the most significant bits in EMAC_HSH. 2808 * 2809 * The unicast hash enable and the multicast hash enable bits in the 2810 * network configuration register enable the reception of hash matched 2811 * frames. The destination address is reduced to a 6 bit index into 2812 * the 64 bit hash register using the following hash function. The 2813 * hash function is an exclusive or of every sixth bit of the 2814 * destination address. 2815 * 2816 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] 2817 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] 2818 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] 2819 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] 2820 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] 2821 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] 2822 * 2823 * da[0] represents the least significant bit of the first byte 2824 * received, that is, the multicast/unicast indicator, and da[47] 2825 * represents the most significant bit of the last byte received. If 2826 * the hash index, hi[n], points to a bit that is set in the hash 2827 * register then the frame will be matched according to whether the 2828 * frame is multicast or unicast. A multicast match will be signalled 2829 * if the multicast hash enable bit is set, da[0] is 1 and the hash 2830 * index points to a bit set in the hash register. A unicast match 2831 * will be signalled if the unicast hash enable bit is set, da[0] is 0 2832 * and the hash index points to a bit set in the hash register. To 2833 * receive all multicast frames, the hash register should be set with 2834 * all ones and the multicast hash enable bit should be set in the 2835 * network configuration register. 2836 */ 2837 2838 static inline int hash_bit_value(int bitnr, __u8 *addr) 2839 { 2840 if (addr[bitnr / 8] & (1 << (bitnr % 8))) 2841 return 1; 2842 return 0; 2843 } 2844 2845 /* Return the hash index value for the specified address. */ 2846 static int hash_get_index(__u8 *addr) 2847 { 2848 int i, j, bitval; 2849 int hash_index = 0; 2850 2851 for (j = 0; j < 6; j++) { 2852 for (i = 0, bitval = 0; i < 8; i++) 2853 bitval ^= hash_bit_value(i * 6 + j, addr); 2854 2855 hash_index |= (bitval << j); 2856 } 2857 2858 return hash_index; 2859 } 2860 2861 /* Add multicast addresses to the internal multicast-hash table. */ 2862 static void macb_sethashtable(struct net_device *dev) 2863 { 2864 struct netdev_hw_addr *ha; 2865 unsigned long mc_filter[2]; 2866 unsigned int bitnr; 2867 struct macb *bp = netdev_priv(dev); 2868 2869 mc_filter[0] = 0; 2870 mc_filter[1] = 0; 2871 2872 netdev_for_each_mc_addr(ha, dev) { 2873 bitnr = hash_get_index(ha->addr); 2874 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 2875 } 2876 2877 macb_or_gem_writel(bp, HRB, mc_filter[0]); 2878 macb_or_gem_writel(bp, HRT, mc_filter[1]); 2879 } 2880 2881 /* Enable/Disable promiscuous and multicast modes. */ 2882 static void macb_set_rx_mode(struct net_device *dev) 2883 { 2884 unsigned long cfg; 2885 struct macb *bp = netdev_priv(dev); 2886 2887 cfg = macb_readl(bp, NCFGR); 2888 2889 if (dev->flags & IFF_PROMISC) { 2890 /* Enable promiscuous mode */ 2891 cfg |= MACB_BIT(CAF); 2892 2893 /* Disable RX checksum offload */ 2894 if (macb_is_gem(bp)) 2895 cfg &= ~GEM_BIT(RXCOEN); 2896 } else { 2897 /* Disable promiscuous mode */ 2898 cfg &= ~MACB_BIT(CAF); 2899 2900 /* Enable RX checksum offload only if requested */ 2901 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM) 2902 cfg |= GEM_BIT(RXCOEN); 2903 } 2904 2905 if (dev->flags & IFF_ALLMULTI) { 2906 /* Enable all multicast mode */ 2907 macb_or_gem_writel(bp, HRB, -1); 2908 macb_or_gem_writel(bp, HRT, -1); 2909 cfg |= MACB_BIT(NCFGR_MTI); 2910 } else if (!netdev_mc_empty(dev)) { 2911 /* Enable specific multicasts */ 2912 macb_sethashtable(dev); 2913 cfg |= MACB_BIT(NCFGR_MTI); 2914 } else if (dev->flags & (~IFF_ALLMULTI)) { 2915 /* Disable all multicast mode */ 2916 macb_or_gem_writel(bp, HRB, 0); 2917 macb_or_gem_writel(bp, HRT, 0); 2918 cfg &= ~MACB_BIT(NCFGR_MTI); 2919 } 2920 2921 macb_writel(bp, NCFGR, cfg); 2922 } 2923 2924 static int macb_open(struct net_device *dev) 2925 { 2926 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN; 2927 struct macb *bp = netdev_priv(dev); 2928 struct macb_queue *queue; 2929 unsigned int q; 2930 int err; 2931 2932 netdev_dbg(bp->dev, "open\n"); 2933 2934 err = pm_runtime_resume_and_get(&bp->pdev->dev); 2935 if (err < 0) 2936 return err; 2937 2938 /* RX buffers initialization */ 2939 macb_init_rx_buffer_size(bp, bufsz); 2940 2941 err = macb_alloc_consistent(bp); 2942 if (err) { 2943 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n", 2944 err); 2945 goto pm_exit; 2946 } 2947 2948 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2949 napi_enable(&queue->napi_rx); 2950 napi_enable(&queue->napi_tx); 2951 } 2952 2953 macb_init_hw(bp); 2954 2955 err = phy_power_on(bp->sgmii_phy); 2956 if (err) 2957 goto reset_hw; 2958 2959 err = macb_phylink_connect(bp); 2960 if (err) 2961 goto phy_off; 2962 2963 netif_tx_start_all_queues(dev); 2964 2965 if (bp->ptp_info) 2966 bp->ptp_info->ptp_init(dev); 2967 2968 return 0; 2969 2970 phy_off: 2971 phy_power_off(bp->sgmii_phy); 2972 2973 reset_hw: 2974 macb_reset_hw(bp); 2975 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2976 napi_disable(&queue->napi_rx); 2977 napi_disable(&queue->napi_tx); 2978 } 2979 macb_free_consistent(bp); 2980 pm_exit: 2981 pm_runtime_put_sync(&bp->pdev->dev); 2982 return err; 2983 } 2984 2985 static int macb_close(struct net_device *dev) 2986 { 2987 struct macb *bp = netdev_priv(dev); 2988 struct macb_queue *queue; 2989 unsigned long flags; 2990 unsigned int q; 2991 2992 netif_tx_stop_all_queues(dev); 2993 2994 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2995 napi_disable(&queue->napi_rx); 2996 napi_disable(&queue->napi_tx); 2997 } 2998 2999 phylink_stop(bp->phylink); 3000 phylink_disconnect_phy(bp->phylink); 3001 3002 phy_power_off(bp->sgmii_phy); 3003 3004 spin_lock_irqsave(&bp->lock, flags); 3005 macb_reset_hw(bp); 3006 netif_carrier_off(dev); 3007 spin_unlock_irqrestore(&bp->lock, flags); 3008 3009 macb_free_consistent(bp); 3010 3011 if (bp->ptp_info) 3012 bp->ptp_info->ptp_remove(dev); 3013 3014 pm_runtime_put(&bp->pdev->dev); 3015 3016 return 0; 3017 } 3018 3019 static int macb_change_mtu(struct net_device *dev, int new_mtu) 3020 { 3021 if (netif_running(dev)) 3022 return -EBUSY; 3023 3024 dev->mtu = new_mtu; 3025 3026 return 0; 3027 } 3028 3029 static int macb_set_mac_addr(struct net_device *dev, void *addr) 3030 { 3031 int err; 3032 3033 err = eth_mac_addr(dev, addr); 3034 if (err < 0) 3035 return err; 3036 3037 macb_set_hwaddr(netdev_priv(dev)); 3038 return 0; 3039 } 3040 3041 static void gem_update_stats(struct macb *bp) 3042 { 3043 struct macb_queue *queue; 3044 unsigned int i, q, idx; 3045 unsigned long *stat; 3046 3047 u32 *p = &bp->hw_stats.gem.tx_octets_31_0; 3048 3049 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) { 3050 u32 offset = gem_statistics[i].offset; 3051 u64 val = bp->macb_reg_readl(bp, offset); 3052 3053 bp->ethtool_stats[i] += val; 3054 *p += val; 3055 3056 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) { 3057 /* Add GEM_OCTTXH, GEM_OCTRXH */ 3058 val = bp->macb_reg_readl(bp, offset + 4); 3059 bp->ethtool_stats[i] += ((u64)val) << 32; 3060 *(++p) += val; 3061 } 3062 } 3063 3064 idx = GEM_STATS_LEN; 3065 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 3066 for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat) 3067 bp->ethtool_stats[idx++] = *stat; 3068 } 3069 3070 static struct net_device_stats *gem_get_stats(struct macb *bp) 3071 { 3072 struct gem_stats *hwstat = &bp->hw_stats.gem; 3073 struct net_device_stats *nstat = &bp->dev->stats; 3074 3075 if (!netif_running(bp->dev)) 3076 return nstat; 3077 3078 gem_update_stats(bp); 3079 3080 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors + 3081 hwstat->rx_alignment_errors + 3082 hwstat->rx_resource_errors + 3083 hwstat->rx_overruns + 3084 hwstat->rx_oversize_frames + 3085 hwstat->rx_jabbers + 3086 hwstat->rx_undersized_frames + 3087 hwstat->rx_length_field_frame_errors); 3088 nstat->tx_errors = (hwstat->tx_late_collisions + 3089 hwstat->tx_excessive_collisions + 3090 hwstat->tx_underrun + 3091 hwstat->tx_carrier_sense_errors); 3092 nstat->multicast = hwstat->rx_multicast_frames; 3093 nstat->collisions = (hwstat->tx_single_collision_frames + 3094 hwstat->tx_multiple_collision_frames + 3095 hwstat->tx_excessive_collisions); 3096 nstat->rx_length_errors = (hwstat->rx_oversize_frames + 3097 hwstat->rx_jabbers + 3098 hwstat->rx_undersized_frames + 3099 hwstat->rx_length_field_frame_errors); 3100 nstat->rx_over_errors = hwstat->rx_resource_errors; 3101 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors; 3102 nstat->rx_frame_errors = hwstat->rx_alignment_errors; 3103 nstat->rx_fifo_errors = hwstat->rx_overruns; 3104 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions; 3105 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors; 3106 nstat->tx_fifo_errors = hwstat->tx_underrun; 3107 3108 return nstat; 3109 } 3110 3111 static void gem_get_ethtool_stats(struct net_device *dev, 3112 struct ethtool_stats *stats, u64 *data) 3113 { 3114 struct macb *bp; 3115 3116 bp = netdev_priv(dev); 3117 gem_update_stats(bp); 3118 memcpy(data, &bp->ethtool_stats, sizeof(u64) 3119 * (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES)); 3120 } 3121 3122 static int gem_get_sset_count(struct net_device *dev, int sset) 3123 { 3124 struct macb *bp = netdev_priv(dev); 3125 3126 switch (sset) { 3127 case ETH_SS_STATS: 3128 return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN; 3129 default: 3130 return -EOPNOTSUPP; 3131 } 3132 } 3133 3134 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p) 3135 { 3136 char stat_string[ETH_GSTRING_LEN]; 3137 struct macb *bp = netdev_priv(dev); 3138 struct macb_queue *queue; 3139 unsigned int i; 3140 unsigned int q; 3141 3142 switch (sset) { 3143 case ETH_SS_STATS: 3144 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN) 3145 memcpy(p, gem_statistics[i].stat_string, 3146 ETH_GSTRING_LEN); 3147 3148 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 3149 for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) { 3150 snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s", 3151 q, queue_statistics[i].stat_string); 3152 memcpy(p, stat_string, ETH_GSTRING_LEN); 3153 } 3154 } 3155 break; 3156 } 3157 } 3158 3159 static struct net_device_stats *macb_get_stats(struct net_device *dev) 3160 { 3161 struct macb *bp = netdev_priv(dev); 3162 struct net_device_stats *nstat = &bp->dev->stats; 3163 struct macb_stats *hwstat = &bp->hw_stats.macb; 3164 3165 if (macb_is_gem(bp)) 3166 return gem_get_stats(bp); 3167 3168 /* read stats from hardware */ 3169 macb_update_stats(bp); 3170 3171 /* Convert HW stats into netdevice stats */ 3172 nstat->rx_errors = (hwstat->rx_fcs_errors + 3173 hwstat->rx_align_errors + 3174 hwstat->rx_resource_errors + 3175 hwstat->rx_overruns + 3176 hwstat->rx_oversize_pkts + 3177 hwstat->rx_jabbers + 3178 hwstat->rx_undersize_pkts + 3179 hwstat->rx_length_mismatch); 3180 nstat->tx_errors = (hwstat->tx_late_cols + 3181 hwstat->tx_excessive_cols + 3182 hwstat->tx_underruns + 3183 hwstat->tx_carrier_errors + 3184 hwstat->sqe_test_errors); 3185 nstat->collisions = (hwstat->tx_single_cols + 3186 hwstat->tx_multiple_cols + 3187 hwstat->tx_excessive_cols); 3188 nstat->rx_length_errors = (hwstat->rx_oversize_pkts + 3189 hwstat->rx_jabbers + 3190 hwstat->rx_undersize_pkts + 3191 hwstat->rx_length_mismatch); 3192 nstat->rx_over_errors = hwstat->rx_resource_errors + 3193 hwstat->rx_overruns; 3194 nstat->rx_crc_errors = hwstat->rx_fcs_errors; 3195 nstat->rx_frame_errors = hwstat->rx_align_errors; 3196 nstat->rx_fifo_errors = hwstat->rx_overruns; 3197 /* XXX: What does "missed" mean? */ 3198 nstat->tx_aborted_errors = hwstat->tx_excessive_cols; 3199 nstat->tx_carrier_errors = hwstat->tx_carrier_errors; 3200 nstat->tx_fifo_errors = hwstat->tx_underruns; 3201 /* Don't know about heartbeat or window errors... */ 3202 3203 return nstat; 3204 } 3205 3206 static int macb_get_regs_len(struct net_device *netdev) 3207 { 3208 return MACB_GREGS_NBR * sizeof(u32); 3209 } 3210 3211 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs, 3212 void *p) 3213 { 3214 struct macb *bp = netdev_priv(dev); 3215 unsigned int tail, head; 3216 u32 *regs_buff = p; 3217 3218 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1)) 3219 | MACB_GREGS_VERSION; 3220 3221 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail); 3222 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head); 3223 3224 regs_buff[0] = macb_readl(bp, NCR); 3225 regs_buff[1] = macb_or_gem_readl(bp, NCFGR); 3226 regs_buff[2] = macb_readl(bp, NSR); 3227 regs_buff[3] = macb_readl(bp, TSR); 3228 regs_buff[4] = macb_readl(bp, RBQP); 3229 regs_buff[5] = macb_readl(bp, TBQP); 3230 regs_buff[6] = macb_readl(bp, RSR); 3231 regs_buff[7] = macb_readl(bp, IMR); 3232 3233 regs_buff[8] = tail; 3234 regs_buff[9] = head; 3235 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail); 3236 regs_buff[11] = macb_tx_dma(&bp->queues[0], head); 3237 3238 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 3239 regs_buff[12] = macb_or_gem_readl(bp, USRIO); 3240 if (macb_is_gem(bp)) 3241 regs_buff[13] = gem_readl(bp, DMACFG); 3242 } 3243 3244 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3245 { 3246 struct macb *bp = netdev_priv(netdev); 3247 3248 if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) { 3249 phylink_ethtool_get_wol(bp->phylink, wol); 3250 wol->supported |= WAKE_MAGIC; 3251 3252 if (bp->wol & MACB_WOL_ENABLED) 3253 wol->wolopts |= WAKE_MAGIC; 3254 } 3255 } 3256 3257 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3258 { 3259 struct macb *bp = netdev_priv(netdev); 3260 int ret; 3261 3262 /* Pass the order to phylink layer */ 3263 ret = phylink_ethtool_set_wol(bp->phylink, wol); 3264 /* Don't manage WoL on MAC if handled by the PHY 3265 * or if there's a failure in talking to the PHY 3266 */ 3267 if (!ret || ret != -EOPNOTSUPP) 3268 return ret; 3269 3270 if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) || 3271 (wol->wolopts & ~WAKE_MAGIC)) 3272 return -EOPNOTSUPP; 3273 3274 if (wol->wolopts & WAKE_MAGIC) 3275 bp->wol |= MACB_WOL_ENABLED; 3276 else 3277 bp->wol &= ~MACB_WOL_ENABLED; 3278 3279 device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED); 3280 3281 return 0; 3282 } 3283 3284 static int macb_get_link_ksettings(struct net_device *netdev, 3285 struct ethtool_link_ksettings *kset) 3286 { 3287 struct macb *bp = netdev_priv(netdev); 3288 3289 return phylink_ethtool_ksettings_get(bp->phylink, kset); 3290 } 3291 3292 static int macb_set_link_ksettings(struct net_device *netdev, 3293 const struct ethtool_link_ksettings *kset) 3294 { 3295 struct macb *bp = netdev_priv(netdev); 3296 3297 return phylink_ethtool_ksettings_set(bp->phylink, kset); 3298 } 3299 3300 static void macb_get_ringparam(struct net_device *netdev, 3301 struct ethtool_ringparam *ring, 3302 struct kernel_ethtool_ringparam *kernel_ring, 3303 struct netlink_ext_ack *extack) 3304 { 3305 struct macb *bp = netdev_priv(netdev); 3306 3307 ring->rx_max_pending = MAX_RX_RING_SIZE; 3308 ring->tx_max_pending = MAX_TX_RING_SIZE; 3309 3310 ring->rx_pending = bp->rx_ring_size; 3311 ring->tx_pending = bp->tx_ring_size; 3312 } 3313 3314 static int macb_set_ringparam(struct net_device *netdev, 3315 struct ethtool_ringparam *ring, 3316 struct kernel_ethtool_ringparam *kernel_ring, 3317 struct netlink_ext_ack *extack) 3318 { 3319 struct macb *bp = netdev_priv(netdev); 3320 u32 new_rx_size, new_tx_size; 3321 unsigned int reset = 0; 3322 3323 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 3324 return -EINVAL; 3325 3326 new_rx_size = clamp_t(u32, ring->rx_pending, 3327 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE); 3328 new_rx_size = roundup_pow_of_two(new_rx_size); 3329 3330 new_tx_size = clamp_t(u32, ring->tx_pending, 3331 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE); 3332 new_tx_size = roundup_pow_of_two(new_tx_size); 3333 3334 if ((new_tx_size == bp->tx_ring_size) && 3335 (new_rx_size == bp->rx_ring_size)) { 3336 /* nothing to do */ 3337 return 0; 3338 } 3339 3340 if (netif_running(bp->dev)) { 3341 reset = 1; 3342 macb_close(bp->dev); 3343 } 3344 3345 bp->rx_ring_size = new_rx_size; 3346 bp->tx_ring_size = new_tx_size; 3347 3348 if (reset) 3349 macb_open(bp->dev); 3350 3351 return 0; 3352 } 3353 3354 #ifdef CONFIG_MACB_USE_HWSTAMP 3355 static unsigned int gem_get_tsu_rate(struct macb *bp) 3356 { 3357 struct clk *tsu_clk; 3358 unsigned int tsu_rate; 3359 3360 tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk"); 3361 if (!IS_ERR(tsu_clk)) 3362 tsu_rate = clk_get_rate(tsu_clk); 3363 /* try pclk instead */ 3364 else if (!IS_ERR(bp->pclk)) { 3365 tsu_clk = bp->pclk; 3366 tsu_rate = clk_get_rate(tsu_clk); 3367 } else 3368 return -ENOTSUPP; 3369 return tsu_rate; 3370 } 3371 3372 static s32 gem_get_ptp_max_adj(void) 3373 { 3374 return 64000000; 3375 } 3376 3377 static int gem_get_ts_info(struct net_device *dev, 3378 struct ethtool_ts_info *info) 3379 { 3380 struct macb *bp = netdev_priv(dev); 3381 3382 if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) { 3383 ethtool_op_get_ts_info(dev, info); 3384 return 0; 3385 } 3386 3387 info->so_timestamping = 3388 SOF_TIMESTAMPING_TX_SOFTWARE | 3389 SOF_TIMESTAMPING_RX_SOFTWARE | 3390 SOF_TIMESTAMPING_SOFTWARE | 3391 SOF_TIMESTAMPING_TX_HARDWARE | 3392 SOF_TIMESTAMPING_RX_HARDWARE | 3393 SOF_TIMESTAMPING_RAW_HARDWARE; 3394 info->tx_types = 3395 (1 << HWTSTAMP_TX_ONESTEP_SYNC) | 3396 (1 << HWTSTAMP_TX_OFF) | 3397 (1 << HWTSTAMP_TX_ON); 3398 info->rx_filters = 3399 (1 << HWTSTAMP_FILTER_NONE) | 3400 (1 << HWTSTAMP_FILTER_ALL); 3401 3402 info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1; 3403 3404 return 0; 3405 } 3406 3407 static struct macb_ptp_info gem_ptp_info = { 3408 .ptp_init = gem_ptp_init, 3409 .ptp_remove = gem_ptp_remove, 3410 .get_ptp_max_adj = gem_get_ptp_max_adj, 3411 .get_tsu_rate = gem_get_tsu_rate, 3412 .get_ts_info = gem_get_ts_info, 3413 .get_hwtst = gem_get_hwtst, 3414 .set_hwtst = gem_set_hwtst, 3415 }; 3416 #endif 3417 3418 static int macb_get_ts_info(struct net_device *netdev, 3419 struct ethtool_ts_info *info) 3420 { 3421 struct macb *bp = netdev_priv(netdev); 3422 3423 if (bp->ptp_info) 3424 return bp->ptp_info->get_ts_info(netdev, info); 3425 3426 return ethtool_op_get_ts_info(netdev, info); 3427 } 3428 3429 static void gem_enable_flow_filters(struct macb *bp, bool enable) 3430 { 3431 struct net_device *netdev = bp->dev; 3432 struct ethtool_rx_fs_item *item; 3433 u32 t2_scr; 3434 int num_t2_scr; 3435 3436 if (!(netdev->features & NETIF_F_NTUPLE)) 3437 return; 3438 3439 num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8)); 3440 3441 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3442 struct ethtool_rx_flow_spec *fs = &item->fs; 3443 struct ethtool_tcpip4_spec *tp4sp_m; 3444 3445 if (fs->location >= num_t2_scr) 3446 continue; 3447 3448 t2_scr = gem_readl_n(bp, SCRT2, fs->location); 3449 3450 /* enable/disable screener regs for the flow entry */ 3451 t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr); 3452 3453 /* only enable fields with no masking */ 3454 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3455 3456 if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF)) 3457 t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr); 3458 else 3459 t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr); 3460 3461 if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF)) 3462 t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr); 3463 else 3464 t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr); 3465 3466 if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF))) 3467 t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr); 3468 else 3469 t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr); 3470 3471 gem_writel_n(bp, SCRT2, fs->location, t2_scr); 3472 } 3473 } 3474 3475 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs) 3476 { 3477 struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m; 3478 uint16_t index = fs->location; 3479 u32 w0, w1, t2_scr; 3480 bool cmp_a = false; 3481 bool cmp_b = false; 3482 bool cmp_c = false; 3483 3484 if (!macb_is_gem(bp)) 3485 return; 3486 3487 tp4sp_v = &(fs->h_u.tcp_ip4_spec); 3488 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3489 3490 /* ignore field if any masking set */ 3491 if (tp4sp_m->ip4src == 0xFFFFFFFF) { 3492 /* 1st compare reg - IP source address */ 3493 w0 = 0; 3494 w1 = 0; 3495 w0 = tp4sp_v->ip4src; 3496 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3497 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3498 w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1); 3499 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0); 3500 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1); 3501 cmp_a = true; 3502 } 3503 3504 /* ignore field if any masking set */ 3505 if (tp4sp_m->ip4dst == 0xFFFFFFFF) { 3506 /* 2nd compare reg - IP destination address */ 3507 w0 = 0; 3508 w1 = 0; 3509 w0 = tp4sp_v->ip4dst; 3510 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3511 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3512 w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1); 3513 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0); 3514 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1); 3515 cmp_b = true; 3516 } 3517 3518 /* ignore both port fields if masking set in both */ 3519 if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) { 3520 /* 3rd compare reg - source port, destination port */ 3521 w0 = 0; 3522 w1 = 0; 3523 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1); 3524 if (tp4sp_m->psrc == tp4sp_m->pdst) { 3525 w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0); 3526 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3527 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3528 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3529 } else { 3530 /* only one port definition */ 3531 w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */ 3532 w0 = GEM_BFINS(T2MASK, 0xFFFF, w0); 3533 if (tp4sp_m->psrc == 0xFFFF) { /* src port */ 3534 w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0); 3535 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3536 } else { /* dst port */ 3537 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3538 w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1); 3539 } 3540 } 3541 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0); 3542 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1); 3543 cmp_c = true; 3544 } 3545 3546 t2_scr = 0; 3547 t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr); 3548 t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr); 3549 if (cmp_a) 3550 t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr); 3551 if (cmp_b) 3552 t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr); 3553 if (cmp_c) 3554 t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr); 3555 gem_writel_n(bp, SCRT2, index, t2_scr); 3556 } 3557 3558 static int gem_add_flow_filter(struct net_device *netdev, 3559 struct ethtool_rxnfc *cmd) 3560 { 3561 struct macb *bp = netdev_priv(netdev); 3562 struct ethtool_rx_flow_spec *fs = &cmd->fs; 3563 struct ethtool_rx_fs_item *item, *newfs; 3564 unsigned long flags; 3565 int ret = -EINVAL; 3566 bool added = false; 3567 3568 newfs = kmalloc(sizeof(*newfs), GFP_KERNEL); 3569 if (newfs == NULL) 3570 return -ENOMEM; 3571 memcpy(&newfs->fs, fs, sizeof(newfs->fs)); 3572 3573 netdev_dbg(netdev, 3574 "Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3575 fs->flow_type, (int)fs->ring_cookie, fs->location, 3576 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3577 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3578 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3579 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3580 3581 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3582 3583 /* find correct place to add in list */ 3584 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3585 if (item->fs.location > newfs->fs.location) { 3586 list_add_tail(&newfs->list, &item->list); 3587 added = true; 3588 break; 3589 } else if (item->fs.location == fs->location) { 3590 netdev_err(netdev, "Rule not added: location %d not free!\n", 3591 fs->location); 3592 ret = -EBUSY; 3593 goto err; 3594 } 3595 } 3596 if (!added) 3597 list_add_tail(&newfs->list, &bp->rx_fs_list.list); 3598 3599 gem_prog_cmp_regs(bp, fs); 3600 bp->rx_fs_list.count++; 3601 /* enable filtering if NTUPLE on */ 3602 gem_enable_flow_filters(bp, 1); 3603 3604 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3605 return 0; 3606 3607 err: 3608 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3609 kfree(newfs); 3610 return ret; 3611 } 3612 3613 static int gem_del_flow_filter(struct net_device *netdev, 3614 struct ethtool_rxnfc *cmd) 3615 { 3616 struct macb *bp = netdev_priv(netdev); 3617 struct ethtool_rx_fs_item *item; 3618 struct ethtool_rx_flow_spec *fs; 3619 unsigned long flags; 3620 3621 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3622 3623 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3624 if (item->fs.location == cmd->fs.location) { 3625 /* disable screener regs for the flow entry */ 3626 fs = &(item->fs); 3627 netdev_dbg(netdev, 3628 "Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3629 fs->flow_type, (int)fs->ring_cookie, fs->location, 3630 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3631 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3632 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3633 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3634 3635 gem_writel_n(bp, SCRT2, fs->location, 0); 3636 3637 list_del(&item->list); 3638 bp->rx_fs_list.count--; 3639 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3640 kfree(item); 3641 return 0; 3642 } 3643 } 3644 3645 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3646 return -EINVAL; 3647 } 3648 3649 static int gem_get_flow_entry(struct net_device *netdev, 3650 struct ethtool_rxnfc *cmd) 3651 { 3652 struct macb *bp = netdev_priv(netdev); 3653 struct ethtool_rx_fs_item *item; 3654 3655 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3656 if (item->fs.location == cmd->fs.location) { 3657 memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs)); 3658 return 0; 3659 } 3660 } 3661 return -EINVAL; 3662 } 3663 3664 static int gem_get_all_flow_entries(struct net_device *netdev, 3665 struct ethtool_rxnfc *cmd, u32 *rule_locs) 3666 { 3667 struct macb *bp = netdev_priv(netdev); 3668 struct ethtool_rx_fs_item *item; 3669 uint32_t cnt = 0; 3670 3671 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3672 if (cnt == cmd->rule_cnt) 3673 return -EMSGSIZE; 3674 rule_locs[cnt] = item->fs.location; 3675 cnt++; 3676 } 3677 cmd->data = bp->max_tuples; 3678 cmd->rule_cnt = cnt; 3679 3680 return 0; 3681 } 3682 3683 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3684 u32 *rule_locs) 3685 { 3686 struct macb *bp = netdev_priv(netdev); 3687 int ret = 0; 3688 3689 switch (cmd->cmd) { 3690 case ETHTOOL_GRXRINGS: 3691 cmd->data = bp->num_queues; 3692 break; 3693 case ETHTOOL_GRXCLSRLCNT: 3694 cmd->rule_cnt = bp->rx_fs_list.count; 3695 break; 3696 case ETHTOOL_GRXCLSRULE: 3697 ret = gem_get_flow_entry(netdev, cmd); 3698 break; 3699 case ETHTOOL_GRXCLSRLALL: 3700 ret = gem_get_all_flow_entries(netdev, cmd, rule_locs); 3701 break; 3702 default: 3703 netdev_err(netdev, 3704 "Command parameter %d is not supported\n", cmd->cmd); 3705 ret = -EOPNOTSUPP; 3706 } 3707 3708 return ret; 3709 } 3710 3711 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3712 { 3713 struct macb *bp = netdev_priv(netdev); 3714 int ret; 3715 3716 switch (cmd->cmd) { 3717 case ETHTOOL_SRXCLSRLINS: 3718 if ((cmd->fs.location >= bp->max_tuples) 3719 || (cmd->fs.ring_cookie >= bp->num_queues)) { 3720 ret = -EINVAL; 3721 break; 3722 } 3723 ret = gem_add_flow_filter(netdev, cmd); 3724 break; 3725 case ETHTOOL_SRXCLSRLDEL: 3726 ret = gem_del_flow_filter(netdev, cmd); 3727 break; 3728 default: 3729 netdev_err(netdev, 3730 "Command parameter %d is not supported\n", cmd->cmd); 3731 ret = -EOPNOTSUPP; 3732 } 3733 3734 return ret; 3735 } 3736 3737 static const struct ethtool_ops macb_ethtool_ops = { 3738 .get_regs_len = macb_get_regs_len, 3739 .get_regs = macb_get_regs, 3740 .get_link = ethtool_op_get_link, 3741 .get_ts_info = ethtool_op_get_ts_info, 3742 .get_wol = macb_get_wol, 3743 .set_wol = macb_set_wol, 3744 .get_link_ksettings = macb_get_link_ksettings, 3745 .set_link_ksettings = macb_set_link_ksettings, 3746 .get_ringparam = macb_get_ringparam, 3747 .set_ringparam = macb_set_ringparam, 3748 }; 3749 3750 static const struct ethtool_ops gem_ethtool_ops = { 3751 .get_regs_len = macb_get_regs_len, 3752 .get_regs = macb_get_regs, 3753 .get_wol = macb_get_wol, 3754 .set_wol = macb_set_wol, 3755 .get_link = ethtool_op_get_link, 3756 .get_ts_info = macb_get_ts_info, 3757 .get_ethtool_stats = gem_get_ethtool_stats, 3758 .get_strings = gem_get_ethtool_strings, 3759 .get_sset_count = gem_get_sset_count, 3760 .get_link_ksettings = macb_get_link_ksettings, 3761 .set_link_ksettings = macb_set_link_ksettings, 3762 .get_ringparam = macb_get_ringparam, 3763 .set_ringparam = macb_set_ringparam, 3764 .get_rxnfc = gem_get_rxnfc, 3765 .set_rxnfc = gem_set_rxnfc, 3766 }; 3767 3768 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3769 { 3770 struct macb *bp = netdev_priv(dev); 3771 3772 if (!netif_running(dev)) 3773 return -EINVAL; 3774 3775 if (bp->ptp_info) { 3776 switch (cmd) { 3777 case SIOCSHWTSTAMP: 3778 return bp->ptp_info->set_hwtst(dev, rq, cmd); 3779 case SIOCGHWTSTAMP: 3780 return bp->ptp_info->get_hwtst(dev, rq); 3781 } 3782 } 3783 3784 return phylink_mii_ioctl(bp->phylink, rq, cmd); 3785 } 3786 3787 static inline void macb_set_txcsum_feature(struct macb *bp, 3788 netdev_features_t features) 3789 { 3790 u32 val; 3791 3792 if (!macb_is_gem(bp)) 3793 return; 3794 3795 val = gem_readl(bp, DMACFG); 3796 if (features & NETIF_F_HW_CSUM) 3797 val |= GEM_BIT(TXCOEN); 3798 else 3799 val &= ~GEM_BIT(TXCOEN); 3800 3801 gem_writel(bp, DMACFG, val); 3802 } 3803 3804 static inline void macb_set_rxcsum_feature(struct macb *bp, 3805 netdev_features_t features) 3806 { 3807 struct net_device *netdev = bp->dev; 3808 u32 val; 3809 3810 if (!macb_is_gem(bp)) 3811 return; 3812 3813 val = gem_readl(bp, NCFGR); 3814 if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC)) 3815 val |= GEM_BIT(RXCOEN); 3816 else 3817 val &= ~GEM_BIT(RXCOEN); 3818 3819 gem_writel(bp, NCFGR, val); 3820 } 3821 3822 static inline void macb_set_rxflow_feature(struct macb *bp, 3823 netdev_features_t features) 3824 { 3825 if (!macb_is_gem(bp)) 3826 return; 3827 3828 gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE)); 3829 } 3830 3831 static int macb_set_features(struct net_device *netdev, 3832 netdev_features_t features) 3833 { 3834 struct macb *bp = netdev_priv(netdev); 3835 netdev_features_t changed = features ^ netdev->features; 3836 3837 /* TX checksum offload */ 3838 if (changed & NETIF_F_HW_CSUM) 3839 macb_set_txcsum_feature(bp, features); 3840 3841 /* RX checksum offload */ 3842 if (changed & NETIF_F_RXCSUM) 3843 macb_set_rxcsum_feature(bp, features); 3844 3845 /* RX Flow Filters */ 3846 if (changed & NETIF_F_NTUPLE) 3847 macb_set_rxflow_feature(bp, features); 3848 3849 return 0; 3850 } 3851 3852 static void macb_restore_features(struct macb *bp) 3853 { 3854 struct net_device *netdev = bp->dev; 3855 netdev_features_t features = netdev->features; 3856 struct ethtool_rx_fs_item *item; 3857 3858 /* TX checksum offload */ 3859 macb_set_txcsum_feature(bp, features); 3860 3861 /* RX checksum offload */ 3862 macb_set_rxcsum_feature(bp, features); 3863 3864 /* RX Flow Filters */ 3865 list_for_each_entry(item, &bp->rx_fs_list.list, list) 3866 gem_prog_cmp_regs(bp, &item->fs); 3867 3868 macb_set_rxflow_feature(bp, features); 3869 } 3870 3871 static const struct net_device_ops macb_netdev_ops = { 3872 .ndo_open = macb_open, 3873 .ndo_stop = macb_close, 3874 .ndo_start_xmit = macb_start_xmit, 3875 .ndo_set_rx_mode = macb_set_rx_mode, 3876 .ndo_get_stats = macb_get_stats, 3877 .ndo_eth_ioctl = macb_ioctl, 3878 .ndo_validate_addr = eth_validate_addr, 3879 .ndo_change_mtu = macb_change_mtu, 3880 .ndo_set_mac_address = macb_set_mac_addr, 3881 #ifdef CONFIG_NET_POLL_CONTROLLER 3882 .ndo_poll_controller = macb_poll_controller, 3883 #endif 3884 .ndo_set_features = macb_set_features, 3885 .ndo_features_check = macb_features_check, 3886 }; 3887 3888 /* Configure peripheral capabilities according to device tree 3889 * and integration options used 3890 */ 3891 static void macb_configure_caps(struct macb *bp, 3892 const struct macb_config *dt_conf) 3893 { 3894 u32 dcfg; 3895 3896 if (dt_conf) 3897 bp->caps = dt_conf->caps; 3898 3899 if (hw_is_gem(bp->regs, bp->native_io)) { 3900 bp->caps |= MACB_CAPS_MACB_IS_GEM; 3901 3902 dcfg = gem_readl(bp, DCFG1); 3903 if (GEM_BFEXT(IRQCOR, dcfg) == 0) 3904 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE; 3905 if (GEM_BFEXT(NO_PCS, dcfg) == 0) 3906 bp->caps |= MACB_CAPS_PCS; 3907 dcfg = gem_readl(bp, DCFG12); 3908 if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1) 3909 bp->caps |= MACB_CAPS_HIGH_SPEED; 3910 dcfg = gem_readl(bp, DCFG2); 3911 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0) 3912 bp->caps |= MACB_CAPS_FIFO_MODE; 3913 if (gem_has_ptp(bp)) { 3914 if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5))) 3915 dev_err(&bp->pdev->dev, 3916 "GEM doesn't support hardware ptp.\n"); 3917 else { 3918 #ifdef CONFIG_MACB_USE_HWSTAMP 3919 bp->hw_dma_cap |= HW_DMA_CAP_PTP; 3920 bp->ptp_info = &gem_ptp_info; 3921 #endif 3922 } 3923 } 3924 } 3925 3926 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps); 3927 } 3928 3929 static void macb_probe_queues(void __iomem *mem, 3930 bool native_io, 3931 unsigned int *queue_mask, 3932 unsigned int *num_queues) 3933 { 3934 *queue_mask = 0x1; 3935 *num_queues = 1; 3936 3937 /* is it macb or gem ? 3938 * 3939 * We need to read directly from the hardware here because 3940 * we are early in the probe process and don't have the 3941 * MACB_CAPS_MACB_IS_GEM flag positioned 3942 */ 3943 if (!hw_is_gem(mem, native_io)) 3944 return; 3945 3946 /* bit 0 is never set but queue 0 always exists */ 3947 *queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff; 3948 *num_queues = hweight32(*queue_mask); 3949 } 3950 3951 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk, 3952 struct clk *rx_clk, struct clk *tsu_clk) 3953 { 3954 struct clk_bulk_data clks[] = { 3955 { .clk = tsu_clk, }, 3956 { .clk = rx_clk, }, 3957 { .clk = pclk, }, 3958 { .clk = hclk, }, 3959 { .clk = tx_clk }, 3960 }; 3961 3962 clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks); 3963 } 3964 3965 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk, 3966 struct clk **hclk, struct clk **tx_clk, 3967 struct clk **rx_clk, struct clk **tsu_clk) 3968 { 3969 struct macb_platform_data *pdata; 3970 int err; 3971 3972 pdata = dev_get_platdata(&pdev->dev); 3973 if (pdata) { 3974 *pclk = pdata->pclk; 3975 *hclk = pdata->hclk; 3976 } else { 3977 *pclk = devm_clk_get(&pdev->dev, "pclk"); 3978 *hclk = devm_clk_get(&pdev->dev, "hclk"); 3979 } 3980 3981 if (IS_ERR_OR_NULL(*pclk)) 3982 return dev_err_probe(&pdev->dev, 3983 IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV, 3984 "failed to get pclk\n"); 3985 3986 if (IS_ERR_OR_NULL(*hclk)) 3987 return dev_err_probe(&pdev->dev, 3988 IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV, 3989 "failed to get hclk\n"); 3990 3991 *tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk"); 3992 if (IS_ERR(*tx_clk)) 3993 return PTR_ERR(*tx_clk); 3994 3995 *rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk"); 3996 if (IS_ERR(*rx_clk)) 3997 return PTR_ERR(*rx_clk); 3998 3999 *tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk"); 4000 if (IS_ERR(*tsu_clk)) 4001 return PTR_ERR(*tsu_clk); 4002 4003 err = clk_prepare_enable(*pclk); 4004 if (err) { 4005 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4006 return err; 4007 } 4008 4009 err = clk_prepare_enable(*hclk); 4010 if (err) { 4011 dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err); 4012 goto err_disable_pclk; 4013 } 4014 4015 err = clk_prepare_enable(*tx_clk); 4016 if (err) { 4017 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 4018 goto err_disable_hclk; 4019 } 4020 4021 err = clk_prepare_enable(*rx_clk); 4022 if (err) { 4023 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 4024 goto err_disable_txclk; 4025 } 4026 4027 err = clk_prepare_enable(*tsu_clk); 4028 if (err) { 4029 dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err); 4030 goto err_disable_rxclk; 4031 } 4032 4033 return 0; 4034 4035 err_disable_rxclk: 4036 clk_disable_unprepare(*rx_clk); 4037 4038 err_disable_txclk: 4039 clk_disable_unprepare(*tx_clk); 4040 4041 err_disable_hclk: 4042 clk_disable_unprepare(*hclk); 4043 4044 err_disable_pclk: 4045 clk_disable_unprepare(*pclk); 4046 4047 return err; 4048 } 4049 4050 static int macb_init(struct platform_device *pdev) 4051 { 4052 struct net_device *dev = platform_get_drvdata(pdev); 4053 unsigned int hw_q, q; 4054 struct macb *bp = netdev_priv(dev); 4055 struct macb_queue *queue; 4056 int err; 4057 u32 val, reg; 4058 4059 bp->tx_ring_size = DEFAULT_TX_RING_SIZE; 4060 bp->rx_ring_size = DEFAULT_RX_RING_SIZE; 4061 4062 /* set the queue register mapping once for all: queue0 has a special 4063 * register mapping but we don't want to test the queue index then 4064 * compute the corresponding register offset at run time. 4065 */ 4066 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) { 4067 if (!(bp->queue_mask & (1 << hw_q))) 4068 continue; 4069 4070 queue = &bp->queues[q]; 4071 queue->bp = bp; 4072 spin_lock_init(&queue->tx_ptr_lock); 4073 netif_napi_add(dev, &queue->napi_rx, macb_rx_poll); 4074 netif_napi_add(dev, &queue->napi_tx, macb_tx_poll); 4075 if (hw_q) { 4076 queue->ISR = GEM_ISR(hw_q - 1); 4077 queue->IER = GEM_IER(hw_q - 1); 4078 queue->IDR = GEM_IDR(hw_q - 1); 4079 queue->IMR = GEM_IMR(hw_q - 1); 4080 queue->TBQP = GEM_TBQP(hw_q - 1); 4081 queue->RBQP = GEM_RBQP(hw_q - 1); 4082 queue->RBQS = GEM_RBQS(hw_q - 1); 4083 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4084 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4085 queue->TBQPH = GEM_TBQPH(hw_q - 1); 4086 queue->RBQPH = GEM_RBQPH(hw_q - 1); 4087 } 4088 #endif 4089 } else { 4090 /* queue0 uses legacy registers */ 4091 queue->ISR = MACB_ISR; 4092 queue->IER = MACB_IER; 4093 queue->IDR = MACB_IDR; 4094 queue->IMR = MACB_IMR; 4095 queue->TBQP = MACB_TBQP; 4096 queue->RBQP = MACB_RBQP; 4097 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4098 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4099 queue->TBQPH = MACB_TBQPH; 4100 queue->RBQPH = MACB_RBQPH; 4101 } 4102 #endif 4103 } 4104 4105 /* get irq: here we use the linux queue index, not the hardware 4106 * queue index. the queue irq definitions in the device tree 4107 * must remove the optional gaps that could exist in the 4108 * hardware queue mask. 4109 */ 4110 queue->irq = platform_get_irq(pdev, q); 4111 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt, 4112 IRQF_SHARED, dev->name, queue); 4113 if (err) { 4114 dev_err(&pdev->dev, 4115 "Unable to request IRQ %d (error %d)\n", 4116 queue->irq, err); 4117 return err; 4118 } 4119 4120 INIT_WORK(&queue->tx_error_task, macb_tx_error_task); 4121 q++; 4122 } 4123 4124 dev->netdev_ops = &macb_netdev_ops; 4125 4126 /* setup appropriated routines according to adapter type */ 4127 if (macb_is_gem(bp)) { 4128 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers; 4129 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers; 4130 bp->macbgem_ops.mog_init_rings = gem_init_rings; 4131 bp->macbgem_ops.mog_rx = gem_rx; 4132 dev->ethtool_ops = &gem_ethtool_ops; 4133 } else { 4134 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers; 4135 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers; 4136 bp->macbgem_ops.mog_init_rings = macb_init_rings; 4137 bp->macbgem_ops.mog_rx = macb_rx; 4138 dev->ethtool_ops = &macb_ethtool_ops; 4139 } 4140 4141 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4142 4143 /* Set features */ 4144 dev->hw_features = NETIF_F_SG; 4145 4146 /* Check LSO capability */ 4147 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6))) 4148 dev->hw_features |= MACB_NETIF_LSO; 4149 4150 /* Checksum offload is only available on gem with packet buffer */ 4151 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE)) 4152 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 4153 if (bp->caps & MACB_CAPS_SG_DISABLED) 4154 dev->hw_features &= ~NETIF_F_SG; 4155 dev->features = dev->hw_features; 4156 4157 /* Check RX Flow Filters support. 4158 * Max Rx flows set by availability of screeners & compare regs: 4159 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs 4160 */ 4161 reg = gem_readl(bp, DCFG8); 4162 bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3), 4163 GEM_BFEXT(T2SCR, reg)); 4164 INIT_LIST_HEAD(&bp->rx_fs_list.list); 4165 if (bp->max_tuples > 0) { 4166 /* also needs one ethtype match to check IPv4 */ 4167 if (GEM_BFEXT(SCR2ETH, reg) > 0) { 4168 /* program this reg now */ 4169 reg = 0; 4170 reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg); 4171 gem_writel_n(bp, ETHT, SCRT2_ETHT, reg); 4172 /* Filtering is supported in hw but don't enable it in kernel now */ 4173 dev->hw_features |= NETIF_F_NTUPLE; 4174 /* init Rx flow definitions */ 4175 bp->rx_fs_list.count = 0; 4176 spin_lock_init(&bp->rx_fs_lock); 4177 } else 4178 bp->max_tuples = 0; 4179 } 4180 4181 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) { 4182 val = 0; 4183 if (phy_interface_mode_is_rgmii(bp->phy_interface)) 4184 val = bp->usrio->rgmii; 4185 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII && 4186 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4187 val = bp->usrio->rmii; 4188 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4189 val = bp->usrio->mii; 4190 4191 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN) 4192 val |= bp->usrio->refclk; 4193 4194 macb_or_gem_writel(bp, USRIO, val); 4195 } 4196 4197 /* Set MII management clock divider */ 4198 val = macb_mdc_clk_div(bp); 4199 val |= macb_dbw(bp); 4200 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) 4201 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 4202 macb_writel(bp, NCFGR, val); 4203 4204 return 0; 4205 } 4206 4207 static const struct macb_usrio_config macb_default_usrio = { 4208 .mii = MACB_BIT(MII), 4209 .rmii = MACB_BIT(RMII), 4210 .rgmii = GEM_BIT(RGMII), 4211 .refclk = MACB_BIT(CLKEN), 4212 }; 4213 4214 #if defined(CONFIG_OF) 4215 /* 1518 rounded up */ 4216 #define AT91ETHER_MAX_RBUFF_SZ 0x600 4217 /* max number of receive buffers */ 4218 #define AT91ETHER_MAX_RX_DESCR 9 4219 4220 static struct sifive_fu540_macb_mgmt *mgmt; 4221 4222 static int at91ether_alloc_coherent(struct macb *lp) 4223 { 4224 struct macb_queue *q = &lp->queues[0]; 4225 4226 q->rx_ring = dma_alloc_coherent(&lp->pdev->dev, 4227 (AT91ETHER_MAX_RX_DESCR * 4228 macb_dma_desc_get_size(lp)), 4229 &q->rx_ring_dma, GFP_KERNEL); 4230 if (!q->rx_ring) 4231 return -ENOMEM; 4232 4233 q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev, 4234 AT91ETHER_MAX_RX_DESCR * 4235 AT91ETHER_MAX_RBUFF_SZ, 4236 &q->rx_buffers_dma, GFP_KERNEL); 4237 if (!q->rx_buffers) { 4238 dma_free_coherent(&lp->pdev->dev, 4239 AT91ETHER_MAX_RX_DESCR * 4240 macb_dma_desc_get_size(lp), 4241 q->rx_ring, q->rx_ring_dma); 4242 q->rx_ring = NULL; 4243 return -ENOMEM; 4244 } 4245 4246 return 0; 4247 } 4248 4249 static void at91ether_free_coherent(struct macb *lp) 4250 { 4251 struct macb_queue *q = &lp->queues[0]; 4252 4253 if (q->rx_ring) { 4254 dma_free_coherent(&lp->pdev->dev, 4255 AT91ETHER_MAX_RX_DESCR * 4256 macb_dma_desc_get_size(lp), 4257 q->rx_ring, q->rx_ring_dma); 4258 q->rx_ring = NULL; 4259 } 4260 4261 if (q->rx_buffers) { 4262 dma_free_coherent(&lp->pdev->dev, 4263 AT91ETHER_MAX_RX_DESCR * 4264 AT91ETHER_MAX_RBUFF_SZ, 4265 q->rx_buffers, q->rx_buffers_dma); 4266 q->rx_buffers = NULL; 4267 } 4268 } 4269 4270 /* Initialize and start the Receiver and Transmit subsystems */ 4271 static int at91ether_start(struct macb *lp) 4272 { 4273 struct macb_queue *q = &lp->queues[0]; 4274 struct macb_dma_desc *desc; 4275 dma_addr_t addr; 4276 u32 ctl; 4277 int i, ret; 4278 4279 ret = at91ether_alloc_coherent(lp); 4280 if (ret) 4281 return ret; 4282 4283 addr = q->rx_buffers_dma; 4284 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) { 4285 desc = macb_rx_desc(q, i); 4286 macb_set_addr(lp, desc, addr); 4287 desc->ctrl = 0; 4288 addr += AT91ETHER_MAX_RBUFF_SZ; 4289 } 4290 4291 /* Set the Wrap bit on the last descriptor */ 4292 desc->addr |= MACB_BIT(RX_WRAP); 4293 4294 /* Reset buffer index */ 4295 q->rx_tail = 0; 4296 4297 /* Program address of descriptor list in Rx Buffer Queue register */ 4298 macb_writel(lp, RBQP, q->rx_ring_dma); 4299 4300 /* Enable Receive and Transmit */ 4301 ctl = macb_readl(lp, NCR); 4302 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE)); 4303 4304 /* Enable MAC interrupts */ 4305 macb_writel(lp, IER, MACB_BIT(RCOMP) | 4306 MACB_BIT(RXUBR) | 4307 MACB_BIT(ISR_TUND) | 4308 MACB_BIT(ISR_RLE) | 4309 MACB_BIT(TCOMP) | 4310 MACB_BIT(ISR_ROVR) | 4311 MACB_BIT(HRESP)); 4312 4313 return 0; 4314 } 4315 4316 static void at91ether_stop(struct macb *lp) 4317 { 4318 u32 ctl; 4319 4320 /* Disable MAC interrupts */ 4321 macb_writel(lp, IDR, MACB_BIT(RCOMP) | 4322 MACB_BIT(RXUBR) | 4323 MACB_BIT(ISR_TUND) | 4324 MACB_BIT(ISR_RLE) | 4325 MACB_BIT(TCOMP) | 4326 MACB_BIT(ISR_ROVR) | 4327 MACB_BIT(HRESP)); 4328 4329 /* Disable Receiver and Transmitter */ 4330 ctl = macb_readl(lp, NCR); 4331 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE))); 4332 4333 /* Free resources. */ 4334 at91ether_free_coherent(lp); 4335 } 4336 4337 /* Open the ethernet interface */ 4338 static int at91ether_open(struct net_device *dev) 4339 { 4340 struct macb *lp = netdev_priv(dev); 4341 u32 ctl; 4342 int ret; 4343 4344 ret = pm_runtime_resume_and_get(&lp->pdev->dev); 4345 if (ret < 0) 4346 return ret; 4347 4348 /* Clear internal statistics */ 4349 ctl = macb_readl(lp, NCR); 4350 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT)); 4351 4352 macb_set_hwaddr(lp); 4353 4354 ret = at91ether_start(lp); 4355 if (ret) 4356 goto pm_exit; 4357 4358 ret = macb_phylink_connect(lp); 4359 if (ret) 4360 goto stop; 4361 4362 netif_start_queue(dev); 4363 4364 return 0; 4365 4366 stop: 4367 at91ether_stop(lp); 4368 pm_exit: 4369 pm_runtime_put_sync(&lp->pdev->dev); 4370 return ret; 4371 } 4372 4373 /* Close the interface */ 4374 static int at91ether_close(struct net_device *dev) 4375 { 4376 struct macb *lp = netdev_priv(dev); 4377 4378 netif_stop_queue(dev); 4379 4380 phylink_stop(lp->phylink); 4381 phylink_disconnect_phy(lp->phylink); 4382 4383 at91ether_stop(lp); 4384 4385 return pm_runtime_put(&lp->pdev->dev); 4386 } 4387 4388 /* Transmit packet */ 4389 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb, 4390 struct net_device *dev) 4391 { 4392 struct macb *lp = netdev_priv(dev); 4393 4394 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) { 4395 int desc = 0; 4396 4397 netif_stop_queue(dev); 4398 4399 /* Store packet information (to free when Tx completed) */ 4400 lp->rm9200_txq[desc].skb = skb; 4401 lp->rm9200_txq[desc].size = skb->len; 4402 lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data, 4403 skb->len, DMA_TO_DEVICE); 4404 if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) { 4405 dev_kfree_skb_any(skb); 4406 dev->stats.tx_dropped++; 4407 netdev_err(dev, "%s: DMA mapping error\n", __func__); 4408 return NETDEV_TX_OK; 4409 } 4410 4411 /* Set address of the data in the Transmit Address register */ 4412 macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping); 4413 /* Set length of the packet in the Transmit Control register */ 4414 macb_writel(lp, TCR, skb->len); 4415 4416 } else { 4417 netdev_err(dev, "%s called, but device is busy!\n", __func__); 4418 return NETDEV_TX_BUSY; 4419 } 4420 4421 return NETDEV_TX_OK; 4422 } 4423 4424 /* Extract received frame from buffer descriptors and sent to upper layers. 4425 * (Called from interrupt context) 4426 */ 4427 static void at91ether_rx(struct net_device *dev) 4428 { 4429 struct macb *lp = netdev_priv(dev); 4430 struct macb_queue *q = &lp->queues[0]; 4431 struct macb_dma_desc *desc; 4432 unsigned char *p_recv; 4433 struct sk_buff *skb; 4434 unsigned int pktlen; 4435 4436 desc = macb_rx_desc(q, q->rx_tail); 4437 while (desc->addr & MACB_BIT(RX_USED)) { 4438 p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ; 4439 pktlen = MACB_BF(RX_FRMLEN, desc->ctrl); 4440 skb = netdev_alloc_skb(dev, pktlen + 2); 4441 if (skb) { 4442 skb_reserve(skb, 2); 4443 skb_put_data(skb, p_recv, pktlen); 4444 4445 skb->protocol = eth_type_trans(skb, dev); 4446 dev->stats.rx_packets++; 4447 dev->stats.rx_bytes += pktlen; 4448 netif_rx(skb); 4449 } else { 4450 dev->stats.rx_dropped++; 4451 } 4452 4453 if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH)) 4454 dev->stats.multicast++; 4455 4456 /* reset ownership bit */ 4457 desc->addr &= ~MACB_BIT(RX_USED); 4458 4459 /* wrap after last buffer */ 4460 if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1) 4461 q->rx_tail = 0; 4462 else 4463 q->rx_tail++; 4464 4465 desc = macb_rx_desc(q, q->rx_tail); 4466 } 4467 } 4468 4469 /* MAC interrupt handler */ 4470 static irqreturn_t at91ether_interrupt(int irq, void *dev_id) 4471 { 4472 struct net_device *dev = dev_id; 4473 struct macb *lp = netdev_priv(dev); 4474 u32 intstatus, ctl; 4475 unsigned int desc; 4476 4477 /* MAC Interrupt Status register indicates what interrupts are pending. 4478 * It is automatically cleared once read. 4479 */ 4480 intstatus = macb_readl(lp, ISR); 4481 4482 /* Receive complete */ 4483 if (intstatus & MACB_BIT(RCOMP)) 4484 at91ether_rx(dev); 4485 4486 /* Transmit complete */ 4487 if (intstatus & MACB_BIT(TCOMP)) { 4488 /* The TCOM bit is set even if the transmission failed */ 4489 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) 4490 dev->stats.tx_errors++; 4491 4492 desc = 0; 4493 if (lp->rm9200_txq[desc].skb) { 4494 dev_consume_skb_irq(lp->rm9200_txq[desc].skb); 4495 lp->rm9200_txq[desc].skb = NULL; 4496 dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping, 4497 lp->rm9200_txq[desc].size, DMA_TO_DEVICE); 4498 dev->stats.tx_packets++; 4499 dev->stats.tx_bytes += lp->rm9200_txq[desc].size; 4500 } 4501 netif_wake_queue(dev); 4502 } 4503 4504 /* Work-around for EMAC Errata section 41.3.1 */ 4505 if (intstatus & MACB_BIT(RXUBR)) { 4506 ctl = macb_readl(lp, NCR); 4507 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE)); 4508 wmb(); 4509 macb_writel(lp, NCR, ctl | MACB_BIT(RE)); 4510 } 4511 4512 if (intstatus & MACB_BIT(ISR_ROVR)) 4513 netdev_err(dev, "ROVR error\n"); 4514 4515 return IRQ_HANDLED; 4516 } 4517 4518 #ifdef CONFIG_NET_POLL_CONTROLLER 4519 static void at91ether_poll_controller(struct net_device *dev) 4520 { 4521 unsigned long flags; 4522 4523 local_irq_save(flags); 4524 at91ether_interrupt(dev->irq, dev); 4525 local_irq_restore(flags); 4526 } 4527 #endif 4528 4529 static const struct net_device_ops at91ether_netdev_ops = { 4530 .ndo_open = at91ether_open, 4531 .ndo_stop = at91ether_close, 4532 .ndo_start_xmit = at91ether_start_xmit, 4533 .ndo_get_stats = macb_get_stats, 4534 .ndo_set_rx_mode = macb_set_rx_mode, 4535 .ndo_set_mac_address = eth_mac_addr, 4536 .ndo_eth_ioctl = macb_ioctl, 4537 .ndo_validate_addr = eth_validate_addr, 4538 #ifdef CONFIG_NET_POLL_CONTROLLER 4539 .ndo_poll_controller = at91ether_poll_controller, 4540 #endif 4541 }; 4542 4543 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk, 4544 struct clk **hclk, struct clk **tx_clk, 4545 struct clk **rx_clk, struct clk **tsu_clk) 4546 { 4547 int err; 4548 4549 *hclk = NULL; 4550 *tx_clk = NULL; 4551 *rx_clk = NULL; 4552 *tsu_clk = NULL; 4553 4554 *pclk = devm_clk_get(&pdev->dev, "ether_clk"); 4555 if (IS_ERR(*pclk)) 4556 return PTR_ERR(*pclk); 4557 4558 err = clk_prepare_enable(*pclk); 4559 if (err) { 4560 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4561 return err; 4562 } 4563 4564 return 0; 4565 } 4566 4567 static int at91ether_init(struct platform_device *pdev) 4568 { 4569 struct net_device *dev = platform_get_drvdata(pdev); 4570 struct macb *bp = netdev_priv(dev); 4571 int err; 4572 4573 bp->queues[0].bp = bp; 4574 4575 dev->netdev_ops = &at91ether_netdev_ops; 4576 dev->ethtool_ops = &macb_ethtool_ops; 4577 4578 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt, 4579 0, dev->name, dev); 4580 if (err) 4581 return err; 4582 4583 macb_writel(bp, NCR, 0); 4584 4585 macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG)); 4586 4587 return 0; 4588 } 4589 4590 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw, 4591 unsigned long parent_rate) 4592 { 4593 return mgmt->rate; 4594 } 4595 4596 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate, 4597 unsigned long *parent_rate) 4598 { 4599 if (WARN_ON(rate < 2500000)) 4600 return 2500000; 4601 else if (rate == 2500000) 4602 return 2500000; 4603 else if (WARN_ON(rate < 13750000)) 4604 return 2500000; 4605 else if (WARN_ON(rate < 25000000)) 4606 return 25000000; 4607 else if (rate == 25000000) 4608 return 25000000; 4609 else if (WARN_ON(rate < 75000000)) 4610 return 25000000; 4611 else if (WARN_ON(rate < 125000000)) 4612 return 125000000; 4613 else if (rate == 125000000) 4614 return 125000000; 4615 4616 WARN_ON(rate > 125000000); 4617 4618 return 125000000; 4619 } 4620 4621 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate, 4622 unsigned long parent_rate) 4623 { 4624 rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate); 4625 if (rate != 125000000) 4626 iowrite32(1, mgmt->reg); 4627 else 4628 iowrite32(0, mgmt->reg); 4629 mgmt->rate = rate; 4630 4631 return 0; 4632 } 4633 4634 static const struct clk_ops fu540_c000_ops = { 4635 .recalc_rate = fu540_macb_tx_recalc_rate, 4636 .round_rate = fu540_macb_tx_round_rate, 4637 .set_rate = fu540_macb_tx_set_rate, 4638 }; 4639 4640 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk, 4641 struct clk **hclk, struct clk **tx_clk, 4642 struct clk **rx_clk, struct clk **tsu_clk) 4643 { 4644 struct clk_init_data init; 4645 int err = 0; 4646 4647 err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk); 4648 if (err) 4649 return err; 4650 4651 mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL); 4652 if (!mgmt) { 4653 err = -ENOMEM; 4654 goto err_disable_clks; 4655 } 4656 4657 init.name = "sifive-gemgxl-mgmt"; 4658 init.ops = &fu540_c000_ops; 4659 init.flags = 0; 4660 init.num_parents = 0; 4661 4662 mgmt->rate = 0; 4663 mgmt->hw.init = &init; 4664 4665 *tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw); 4666 if (IS_ERR(*tx_clk)) { 4667 err = PTR_ERR(*tx_clk); 4668 goto err_disable_clks; 4669 } 4670 4671 err = clk_prepare_enable(*tx_clk); 4672 if (err) { 4673 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err); 4674 *tx_clk = NULL; 4675 goto err_disable_clks; 4676 } else { 4677 dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name); 4678 } 4679 4680 return 0; 4681 4682 err_disable_clks: 4683 macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk); 4684 4685 return err; 4686 } 4687 4688 static int fu540_c000_init(struct platform_device *pdev) 4689 { 4690 mgmt->reg = devm_platform_ioremap_resource(pdev, 1); 4691 if (IS_ERR(mgmt->reg)) 4692 return PTR_ERR(mgmt->reg); 4693 4694 return macb_init(pdev); 4695 } 4696 4697 static int init_reset_optional(struct platform_device *pdev) 4698 { 4699 struct net_device *dev = platform_get_drvdata(pdev); 4700 struct macb *bp = netdev_priv(dev); 4701 int ret; 4702 4703 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 4704 /* Ensure PHY device used in SGMII mode is ready */ 4705 bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL); 4706 4707 if (IS_ERR(bp->sgmii_phy)) 4708 return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy), 4709 "failed to get SGMII PHY\n"); 4710 4711 ret = phy_init(bp->sgmii_phy); 4712 if (ret) 4713 return dev_err_probe(&pdev->dev, ret, 4714 "failed to init SGMII PHY\n"); 4715 4716 ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG); 4717 if (!ret) { 4718 u32 pm_info[2]; 4719 4720 ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains", 4721 pm_info, ARRAY_SIZE(pm_info)); 4722 if (ret) { 4723 dev_err(&pdev->dev, "Failed to read power management information\n"); 4724 goto err_out_phy_exit; 4725 } 4726 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0); 4727 if (ret) 4728 goto err_out_phy_exit; 4729 4730 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1); 4731 if (ret) 4732 goto err_out_phy_exit; 4733 } 4734 4735 } 4736 4737 /* Fully reset controller at hardware level if mapped in device tree */ 4738 ret = device_reset_optional(&pdev->dev); 4739 if (ret) { 4740 phy_exit(bp->sgmii_phy); 4741 return dev_err_probe(&pdev->dev, ret, "failed to reset controller"); 4742 } 4743 4744 ret = macb_init(pdev); 4745 4746 err_out_phy_exit: 4747 if (ret) 4748 phy_exit(bp->sgmii_phy); 4749 4750 return ret; 4751 } 4752 4753 static const struct macb_usrio_config sama7g5_usrio = { 4754 .mii = 0, 4755 .rmii = 1, 4756 .rgmii = 2, 4757 .refclk = BIT(2), 4758 .hdfctlen = BIT(6), 4759 }; 4760 4761 static const struct macb_config fu540_c000_config = { 4762 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4763 MACB_CAPS_GEM_HAS_PTP, 4764 .dma_burst_length = 16, 4765 .clk_init = fu540_c000_clk_init, 4766 .init = fu540_c000_init, 4767 .jumbo_max_len = 10240, 4768 .usrio = &macb_default_usrio, 4769 }; 4770 4771 static const struct macb_config at91sam9260_config = { 4772 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4773 .clk_init = macb_clk_init, 4774 .init = macb_init, 4775 .usrio = &macb_default_usrio, 4776 }; 4777 4778 static const struct macb_config sama5d3macb_config = { 4779 .caps = MACB_CAPS_SG_DISABLED | 4780 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4781 .clk_init = macb_clk_init, 4782 .init = macb_init, 4783 .usrio = &macb_default_usrio, 4784 }; 4785 4786 static const struct macb_config pc302gem_config = { 4787 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE, 4788 .dma_burst_length = 16, 4789 .clk_init = macb_clk_init, 4790 .init = macb_init, 4791 .usrio = &macb_default_usrio, 4792 }; 4793 4794 static const struct macb_config sama5d2_config = { 4795 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4796 .dma_burst_length = 16, 4797 .clk_init = macb_clk_init, 4798 .init = macb_init, 4799 .usrio = &macb_default_usrio, 4800 }; 4801 4802 static const struct macb_config sama5d29_config = { 4803 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP, 4804 .dma_burst_length = 16, 4805 .clk_init = macb_clk_init, 4806 .init = macb_init, 4807 .usrio = &macb_default_usrio, 4808 }; 4809 4810 static const struct macb_config sama5d3_config = { 4811 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4812 MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO, 4813 .dma_burst_length = 16, 4814 .clk_init = macb_clk_init, 4815 .init = macb_init, 4816 .jumbo_max_len = 10240, 4817 .usrio = &macb_default_usrio, 4818 }; 4819 4820 static const struct macb_config sama5d4_config = { 4821 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4822 .dma_burst_length = 4, 4823 .clk_init = macb_clk_init, 4824 .init = macb_init, 4825 .usrio = &macb_default_usrio, 4826 }; 4827 4828 static const struct macb_config emac_config = { 4829 .caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC, 4830 .clk_init = at91ether_clk_init, 4831 .init = at91ether_init, 4832 .usrio = &macb_default_usrio, 4833 }; 4834 4835 static const struct macb_config np4_config = { 4836 .caps = MACB_CAPS_USRIO_DISABLED, 4837 .clk_init = macb_clk_init, 4838 .init = macb_init, 4839 .usrio = &macb_default_usrio, 4840 }; 4841 4842 static const struct macb_config zynqmp_config = { 4843 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4844 MACB_CAPS_JUMBO | 4845 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH, 4846 .dma_burst_length = 16, 4847 .clk_init = macb_clk_init, 4848 .init = init_reset_optional, 4849 .jumbo_max_len = 10240, 4850 .usrio = &macb_default_usrio, 4851 }; 4852 4853 static const struct macb_config zynq_config = { 4854 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF | 4855 MACB_CAPS_NEEDS_RSTONUBR, 4856 .dma_burst_length = 16, 4857 .clk_init = macb_clk_init, 4858 .init = macb_init, 4859 .usrio = &macb_default_usrio, 4860 }; 4861 4862 static const struct macb_config mpfs_config = { 4863 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4864 MACB_CAPS_JUMBO | 4865 MACB_CAPS_GEM_HAS_PTP, 4866 .dma_burst_length = 16, 4867 .clk_init = macb_clk_init, 4868 .init = init_reset_optional, 4869 .usrio = &macb_default_usrio, 4870 .max_tx_length = 4040, /* Cadence Erratum 1686 */ 4871 .jumbo_max_len = 4040, 4872 }; 4873 4874 static const struct macb_config sama7g5_gem_config = { 4875 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG | 4876 MACB_CAPS_MIIONRGMII | MACB_CAPS_GEM_HAS_PTP, 4877 .dma_burst_length = 16, 4878 .clk_init = macb_clk_init, 4879 .init = macb_init, 4880 .usrio = &sama7g5_usrio, 4881 }; 4882 4883 static const struct macb_config sama7g5_emac_config = { 4884 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | 4885 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII | 4886 MACB_CAPS_GEM_HAS_PTP, 4887 .dma_burst_length = 16, 4888 .clk_init = macb_clk_init, 4889 .init = macb_init, 4890 .usrio = &sama7g5_usrio, 4891 }; 4892 4893 static const struct macb_config versal_config = { 4894 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4895 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK, 4896 .dma_burst_length = 16, 4897 .clk_init = macb_clk_init, 4898 .init = init_reset_optional, 4899 .jumbo_max_len = 10240, 4900 .usrio = &macb_default_usrio, 4901 }; 4902 4903 static const struct of_device_id macb_dt_ids[] = { 4904 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config }, 4905 { .compatible = "cdns,macb" }, 4906 { .compatible = "cdns,np4-macb", .data = &np4_config }, 4907 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config }, 4908 { .compatible = "cdns,gem", .data = &pc302gem_config }, 4909 { .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config }, 4910 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config }, 4911 { .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config }, 4912 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config }, 4913 { .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config }, 4914 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config }, 4915 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config }, 4916 { .compatible = "cdns,emac", .data = &emac_config }, 4917 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */ 4918 { .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */ 4919 { .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config }, 4920 { .compatible = "microchip,mpfs-macb", .data = &mpfs_config }, 4921 { .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config }, 4922 { .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config }, 4923 { .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config}, 4924 { .compatible = "xlnx,zynq-gem", .data = &zynq_config }, 4925 { .compatible = "xlnx,versal-gem", .data = &versal_config}, 4926 { /* sentinel */ } 4927 }; 4928 MODULE_DEVICE_TABLE(of, macb_dt_ids); 4929 #endif /* CONFIG_OF */ 4930 4931 static const struct macb_config default_gem_config = { 4932 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4933 MACB_CAPS_JUMBO | 4934 MACB_CAPS_GEM_HAS_PTP, 4935 .dma_burst_length = 16, 4936 .clk_init = macb_clk_init, 4937 .init = macb_init, 4938 .usrio = &macb_default_usrio, 4939 .jumbo_max_len = 10240, 4940 }; 4941 4942 static int macb_probe(struct platform_device *pdev) 4943 { 4944 const struct macb_config *macb_config = &default_gem_config; 4945 int (*clk_init)(struct platform_device *, struct clk **, 4946 struct clk **, struct clk **, struct clk **, 4947 struct clk **) = macb_config->clk_init; 4948 int (*init)(struct platform_device *) = macb_config->init; 4949 struct device_node *np = pdev->dev.of_node; 4950 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL; 4951 struct clk *tsu_clk = NULL; 4952 unsigned int queue_mask, num_queues; 4953 bool native_io; 4954 phy_interface_t interface; 4955 struct net_device *dev; 4956 struct resource *regs; 4957 u32 wtrmrk_rst_val; 4958 void __iomem *mem; 4959 struct macb *bp; 4960 int err, val; 4961 4962 mem = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 4963 if (IS_ERR(mem)) 4964 return PTR_ERR(mem); 4965 4966 if (np) { 4967 const struct of_device_id *match; 4968 4969 match = of_match_node(macb_dt_ids, np); 4970 if (match && match->data) { 4971 macb_config = match->data; 4972 clk_init = macb_config->clk_init; 4973 init = macb_config->init; 4974 } 4975 } 4976 4977 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk); 4978 if (err) 4979 return err; 4980 4981 pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT); 4982 pm_runtime_use_autosuspend(&pdev->dev); 4983 pm_runtime_get_noresume(&pdev->dev); 4984 pm_runtime_set_active(&pdev->dev); 4985 pm_runtime_enable(&pdev->dev); 4986 native_io = hw_is_native_io(mem); 4987 4988 macb_probe_queues(mem, native_io, &queue_mask, &num_queues); 4989 dev = alloc_etherdev_mq(sizeof(*bp), num_queues); 4990 if (!dev) { 4991 err = -ENOMEM; 4992 goto err_disable_clocks; 4993 } 4994 4995 dev->base_addr = regs->start; 4996 4997 SET_NETDEV_DEV(dev, &pdev->dev); 4998 4999 bp = netdev_priv(dev); 5000 bp->pdev = pdev; 5001 bp->dev = dev; 5002 bp->regs = mem; 5003 bp->native_io = native_io; 5004 if (native_io) { 5005 bp->macb_reg_readl = hw_readl_native; 5006 bp->macb_reg_writel = hw_writel_native; 5007 } else { 5008 bp->macb_reg_readl = hw_readl; 5009 bp->macb_reg_writel = hw_writel; 5010 } 5011 bp->num_queues = num_queues; 5012 bp->queue_mask = queue_mask; 5013 if (macb_config) 5014 bp->dma_burst_length = macb_config->dma_burst_length; 5015 bp->pclk = pclk; 5016 bp->hclk = hclk; 5017 bp->tx_clk = tx_clk; 5018 bp->rx_clk = rx_clk; 5019 bp->tsu_clk = tsu_clk; 5020 if (macb_config) 5021 bp->jumbo_max_len = macb_config->jumbo_max_len; 5022 5023 if (!hw_is_gem(bp->regs, bp->native_io)) 5024 bp->max_tx_length = MACB_MAX_TX_LEN; 5025 else if (macb_config->max_tx_length) 5026 bp->max_tx_length = macb_config->max_tx_length; 5027 else 5028 bp->max_tx_length = GEM_MAX_TX_LEN; 5029 5030 bp->wol = 0; 5031 if (of_property_read_bool(np, "magic-packet")) 5032 bp->wol |= MACB_WOL_HAS_MAGIC_PACKET; 5033 device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET); 5034 5035 bp->usrio = macb_config->usrio; 5036 5037 /* By default we set to partial store and forward mode for zynqmp. 5038 * Disable if not set in devicetree. 5039 */ 5040 if (GEM_BFEXT(PBUF_CUTTHRU, gem_readl(bp, DCFG6))) { 5041 err = of_property_read_u32(bp->pdev->dev.of_node, 5042 "cdns,rx-watermark", 5043 &bp->rx_watermark); 5044 5045 if (!err) { 5046 /* Disable partial store and forward in case of error or 5047 * invalid watermark value 5048 */ 5049 wtrmrk_rst_val = (1 << (GEM_BFEXT(RX_PBUF_ADDR, gem_readl(bp, DCFG2)))) - 1; 5050 if (bp->rx_watermark > wtrmrk_rst_val || !bp->rx_watermark) { 5051 dev_info(&bp->pdev->dev, "Invalid watermark value\n"); 5052 bp->rx_watermark = 0; 5053 } 5054 } 5055 } 5056 spin_lock_init(&bp->lock); 5057 5058 /* setup capabilities */ 5059 macb_configure_caps(bp, macb_config); 5060 5061 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 5062 if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) { 5063 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); 5064 bp->hw_dma_cap |= HW_DMA_CAP_64B; 5065 } 5066 #endif 5067 platform_set_drvdata(pdev, dev); 5068 5069 dev->irq = platform_get_irq(pdev, 0); 5070 if (dev->irq < 0) { 5071 err = dev->irq; 5072 goto err_out_free_netdev; 5073 } 5074 5075 /* MTU range: 68 - 1500 or 10240 */ 5076 dev->min_mtu = GEM_MTU_MIN_SIZE; 5077 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 5078 dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN; 5079 else 5080 dev->max_mtu = ETH_DATA_LEN; 5081 5082 if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) { 5083 val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10)); 5084 if (val) 5085 bp->rx_bd_rd_prefetch = (2 << (val - 1)) * 5086 macb_dma_desc_get_size(bp); 5087 5088 val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10)); 5089 if (val) 5090 bp->tx_bd_rd_prefetch = (2 << (val - 1)) * 5091 macb_dma_desc_get_size(bp); 5092 } 5093 5094 bp->rx_intr_mask = MACB_RX_INT_FLAGS; 5095 if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR) 5096 bp->rx_intr_mask |= MACB_BIT(RXUBR); 5097 5098 err = of_get_ethdev_address(np, bp->dev); 5099 if (err == -EPROBE_DEFER) 5100 goto err_out_free_netdev; 5101 else if (err) 5102 macb_get_hwaddr(bp); 5103 5104 err = of_get_phy_mode(np, &interface); 5105 if (err) 5106 /* not found in DT, MII by default */ 5107 bp->phy_interface = PHY_INTERFACE_MODE_MII; 5108 else 5109 bp->phy_interface = interface; 5110 5111 /* IP specific init */ 5112 err = init(pdev); 5113 if (err) 5114 goto err_out_free_netdev; 5115 5116 err = macb_mii_init(bp); 5117 if (err) 5118 goto err_out_phy_exit; 5119 5120 netif_carrier_off(dev); 5121 5122 err = register_netdev(dev); 5123 if (err) { 5124 dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); 5125 goto err_out_unregister_mdio; 5126 } 5127 5128 tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task); 5129 5130 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n", 5131 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID), 5132 dev->base_addr, dev->irq, dev->dev_addr); 5133 5134 pm_runtime_mark_last_busy(&bp->pdev->dev); 5135 pm_runtime_put_autosuspend(&bp->pdev->dev); 5136 5137 return 0; 5138 5139 err_out_unregister_mdio: 5140 mdiobus_unregister(bp->mii_bus); 5141 mdiobus_free(bp->mii_bus); 5142 5143 err_out_phy_exit: 5144 phy_exit(bp->sgmii_phy); 5145 5146 err_out_free_netdev: 5147 free_netdev(dev); 5148 5149 err_disable_clocks: 5150 macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk); 5151 pm_runtime_disable(&pdev->dev); 5152 pm_runtime_set_suspended(&pdev->dev); 5153 pm_runtime_dont_use_autosuspend(&pdev->dev); 5154 5155 return err; 5156 } 5157 5158 static int macb_remove(struct platform_device *pdev) 5159 { 5160 struct net_device *dev; 5161 struct macb *bp; 5162 5163 dev = platform_get_drvdata(pdev); 5164 5165 if (dev) { 5166 bp = netdev_priv(dev); 5167 phy_exit(bp->sgmii_phy); 5168 mdiobus_unregister(bp->mii_bus); 5169 mdiobus_free(bp->mii_bus); 5170 5171 unregister_netdev(dev); 5172 tasklet_kill(&bp->hresp_err_tasklet); 5173 pm_runtime_disable(&pdev->dev); 5174 pm_runtime_dont_use_autosuspend(&pdev->dev); 5175 if (!pm_runtime_suspended(&pdev->dev)) { 5176 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, 5177 bp->rx_clk, bp->tsu_clk); 5178 pm_runtime_set_suspended(&pdev->dev); 5179 } 5180 phylink_destroy(bp->phylink); 5181 free_netdev(dev); 5182 } 5183 5184 return 0; 5185 } 5186 5187 static int __maybe_unused macb_suspend(struct device *dev) 5188 { 5189 struct net_device *netdev = dev_get_drvdata(dev); 5190 struct macb *bp = netdev_priv(netdev); 5191 struct macb_queue *queue; 5192 unsigned long flags; 5193 unsigned int q; 5194 int err; 5195 5196 if (!device_may_wakeup(&bp->dev->dev)) 5197 phy_exit(bp->sgmii_phy); 5198 5199 if (!netif_running(netdev)) 5200 return 0; 5201 5202 if (bp->wol & MACB_WOL_ENABLED) { 5203 spin_lock_irqsave(&bp->lock, flags); 5204 /* Flush all status bits */ 5205 macb_writel(bp, TSR, -1); 5206 macb_writel(bp, RSR, -1); 5207 for (q = 0, queue = bp->queues; q < bp->num_queues; 5208 ++q, ++queue) { 5209 /* Disable all interrupts */ 5210 queue_writel(queue, IDR, -1); 5211 queue_readl(queue, ISR); 5212 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5213 queue_writel(queue, ISR, -1); 5214 } 5215 /* Change interrupt handler and 5216 * Enable WoL IRQ on queue 0 5217 */ 5218 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5219 if (macb_is_gem(bp)) { 5220 err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt, 5221 IRQF_SHARED, netdev->name, bp->queues); 5222 if (err) { 5223 dev_err(dev, 5224 "Unable to request IRQ %d (error %d)\n", 5225 bp->queues[0].irq, err); 5226 spin_unlock_irqrestore(&bp->lock, flags); 5227 return err; 5228 } 5229 queue_writel(bp->queues, IER, GEM_BIT(WOL)); 5230 gem_writel(bp, WOL, MACB_BIT(MAG)); 5231 } else { 5232 err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt, 5233 IRQF_SHARED, netdev->name, bp->queues); 5234 if (err) { 5235 dev_err(dev, 5236 "Unable to request IRQ %d (error %d)\n", 5237 bp->queues[0].irq, err); 5238 spin_unlock_irqrestore(&bp->lock, flags); 5239 return err; 5240 } 5241 queue_writel(bp->queues, IER, MACB_BIT(WOL)); 5242 macb_writel(bp, WOL, MACB_BIT(MAG)); 5243 } 5244 spin_unlock_irqrestore(&bp->lock, flags); 5245 5246 enable_irq_wake(bp->queues[0].irq); 5247 } 5248 5249 netif_device_detach(netdev); 5250 for (q = 0, queue = bp->queues; q < bp->num_queues; 5251 ++q, ++queue) { 5252 napi_disable(&queue->napi_rx); 5253 napi_disable(&queue->napi_tx); 5254 } 5255 5256 if (!(bp->wol & MACB_WOL_ENABLED)) { 5257 rtnl_lock(); 5258 phylink_stop(bp->phylink); 5259 rtnl_unlock(); 5260 spin_lock_irqsave(&bp->lock, flags); 5261 macb_reset_hw(bp); 5262 spin_unlock_irqrestore(&bp->lock, flags); 5263 } 5264 5265 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5266 bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO); 5267 5268 if (netdev->hw_features & NETIF_F_NTUPLE) 5269 bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT); 5270 5271 if (bp->ptp_info) 5272 bp->ptp_info->ptp_remove(netdev); 5273 if (!device_may_wakeup(dev)) 5274 pm_runtime_force_suspend(dev); 5275 5276 return 0; 5277 } 5278 5279 static int __maybe_unused macb_resume(struct device *dev) 5280 { 5281 struct net_device *netdev = dev_get_drvdata(dev); 5282 struct macb *bp = netdev_priv(netdev); 5283 struct macb_queue *queue; 5284 unsigned long flags; 5285 unsigned int q; 5286 int err; 5287 5288 if (!device_may_wakeup(&bp->dev->dev)) 5289 phy_init(bp->sgmii_phy); 5290 5291 if (!netif_running(netdev)) 5292 return 0; 5293 5294 if (!device_may_wakeup(dev)) 5295 pm_runtime_force_resume(dev); 5296 5297 if (bp->wol & MACB_WOL_ENABLED) { 5298 spin_lock_irqsave(&bp->lock, flags); 5299 /* Disable WoL */ 5300 if (macb_is_gem(bp)) { 5301 queue_writel(bp->queues, IDR, GEM_BIT(WOL)); 5302 gem_writel(bp, WOL, 0); 5303 } else { 5304 queue_writel(bp->queues, IDR, MACB_BIT(WOL)); 5305 macb_writel(bp, WOL, 0); 5306 } 5307 /* Clear ISR on queue 0 */ 5308 queue_readl(bp->queues, ISR); 5309 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5310 queue_writel(bp->queues, ISR, -1); 5311 /* Replace interrupt handler on queue 0 */ 5312 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5313 err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt, 5314 IRQF_SHARED, netdev->name, bp->queues); 5315 if (err) { 5316 dev_err(dev, 5317 "Unable to request IRQ %d (error %d)\n", 5318 bp->queues[0].irq, err); 5319 spin_unlock_irqrestore(&bp->lock, flags); 5320 return err; 5321 } 5322 spin_unlock_irqrestore(&bp->lock, flags); 5323 5324 disable_irq_wake(bp->queues[0].irq); 5325 5326 /* Now make sure we disable phy before moving 5327 * to common restore path 5328 */ 5329 rtnl_lock(); 5330 phylink_stop(bp->phylink); 5331 rtnl_unlock(); 5332 } 5333 5334 for (q = 0, queue = bp->queues; q < bp->num_queues; 5335 ++q, ++queue) { 5336 napi_enable(&queue->napi_rx); 5337 napi_enable(&queue->napi_tx); 5338 } 5339 5340 if (netdev->hw_features & NETIF_F_NTUPLE) 5341 gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2); 5342 5343 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5344 macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio); 5345 5346 macb_writel(bp, NCR, MACB_BIT(MPE)); 5347 macb_init_hw(bp); 5348 macb_set_rx_mode(netdev); 5349 macb_restore_features(bp); 5350 rtnl_lock(); 5351 5352 phylink_start(bp->phylink); 5353 rtnl_unlock(); 5354 5355 netif_device_attach(netdev); 5356 if (bp->ptp_info) 5357 bp->ptp_info->ptp_init(netdev); 5358 5359 return 0; 5360 } 5361 5362 static int __maybe_unused macb_runtime_suspend(struct device *dev) 5363 { 5364 struct net_device *netdev = dev_get_drvdata(dev); 5365 struct macb *bp = netdev_priv(netdev); 5366 5367 if (!(device_may_wakeup(dev))) 5368 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk); 5369 else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) 5370 macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk); 5371 5372 return 0; 5373 } 5374 5375 static int __maybe_unused macb_runtime_resume(struct device *dev) 5376 { 5377 struct net_device *netdev = dev_get_drvdata(dev); 5378 struct macb *bp = netdev_priv(netdev); 5379 5380 if (!(device_may_wakeup(dev))) { 5381 clk_prepare_enable(bp->pclk); 5382 clk_prepare_enable(bp->hclk); 5383 clk_prepare_enable(bp->tx_clk); 5384 clk_prepare_enable(bp->rx_clk); 5385 clk_prepare_enable(bp->tsu_clk); 5386 } else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) { 5387 clk_prepare_enable(bp->tsu_clk); 5388 } 5389 5390 return 0; 5391 } 5392 5393 static const struct dev_pm_ops macb_pm_ops = { 5394 SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume) 5395 SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL) 5396 }; 5397 5398 static struct platform_driver macb_driver = { 5399 .probe = macb_probe, 5400 .remove = macb_remove, 5401 .driver = { 5402 .name = "macb", 5403 .of_match_table = of_match_ptr(macb_dt_ids), 5404 .pm = &macb_pm_ops, 5405 }, 5406 }; 5407 5408 module_platform_driver(macb_driver); 5409 5410 MODULE_LICENSE("GPL"); 5411 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver"); 5412 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 5413 MODULE_ALIAS("platform:macb"); 5414