1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cadence MACB/GEM Ethernet Controller driver 4 * 5 * Copyright (C) 2004-2006 Atmel Corporation 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/crc32.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/circ_buf.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/io.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/interrupt.h> 23 #include <linux/netdevice.h> 24 #include <linux/etherdevice.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/platform_device.h> 27 #include <linux/phylink.h> 28 #include <linux/of.h> 29 #include <linux/of_device.h> 30 #include <linux/of_gpio.h> 31 #include <linux/of_mdio.h> 32 #include <linux/of_net.h> 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/tcp.h> 36 #include <linux/iopoll.h> 37 #include <linux/phy/phy.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/ptp_classify.h> 40 #include <linux/reset.h> 41 #include <linux/firmware/xlnx-zynqmp.h> 42 #include "macb.h" 43 44 /* This structure is only used for MACB on SiFive FU540 devices */ 45 struct sifive_fu540_macb_mgmt { 46 void __iomem *reg; 47 unsigned long rate; 48 struct clk_hw hw; 49 }; 50 51 #define MACB_RX_BUFFER_SIZE 128 52 #define RX_BUFFER_MULTIPLE 64 /* bytes */ 53 54 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */ 55 #define MIN_RX_RING_SIZE 64 56 #define MAX_RX_RING_SIZE 8192 57 #define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 58 * (bp)->rx_ring_size) 59 60 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */ 61 #define MIN_TX_RING_SIZE 64 62 #define MAX_TX_RING_SIZE 4096 63 #define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 64 * (bp)->tx_ring_size) 65 66 /* level of occupied TX descriptors under which we wake up TX process */ 67 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4) 68 69 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR)) 70 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \ 71 | MACB_BIT(ISR_RLE) \ 72 | MACB_BIT(TXERR)) 73 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \ 74 | MACB_BIT(TXUBR)) 75 76 /* Max length of transmit frame must be a multiple of 8 bytes */ 77 #define MACB_TX_LEN_ALIGN 8 78 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1))) 79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a 80 * false amba_error in TX path from the DMA assuming there is not enough 81 * space in the SRAM (16KB) even when there is. 82 */ 83 #define GEM_MAX_TX_LEN (unsigned int)(0x3FC0) 84 85 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU 86 #define MACB_NETIF_LSO NETIF_F_TSO 87 88 #define MACB_WOL_HAS_MAGIC_PACKET (0x1 << 0) 89 #define MACB_WOL_ENABLED (0x1 << 1) 90 91 #define HS_SPEED_10000M 4 92 #define MACB_SERDES_RATE_10G 1 93 94 /* Graceful stop timeouts in us. We should allow up to 95 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions) 96 */ 97 #define MACB_HALT_TIMEOUT 14000 98 #define MACB_PM_TIMEOUT 100 /* ms */ 99 100 #define MACB_MDIO_TIMEOUT 1000000 /* in usecs */ 101 102 /* DMA buffer descriptor might be different size 103 * depends on hardware configuration: 104 * 105 * 1. dma address width 32 bits: 106 * word 1: 32 bit address of Data Buffer 107 * word 2: control 108 * 109 * 2. dma address width 64 bits: 110 * word 1: 32 bit address of Data Buffer 111 * word 2: control 112 * word 3: upper 32 bit address of Data Buffer 113 * word 4: unused 114 * 115 * 3. dma address width 32 bits with hardware timestamping: 116 * word 1: 32 bit address of Data Buffer 117 * word 2: control 118 * word 3: timestamp word 1 119 * word 4: timestamp word 2 120 * 121 * 4. dma address width 64 bits with hardware timestamping: 122 * word 1: 32 bit address of Data Buffer 123 * word 2: control 124 * word 3: upper 32 bit address of Data Buffer 125 * word 4: unused 126 * word 5: timestamp word 1 127 * word 6: timestamp word 2 128 */ 129 static unsigned int macb_dma_desc_get_size(struct macb *bp) 130 { 131 #ifdef MACB_EXT_DESC 132 unsigned int desc_size; 133 134 switch (bp->hw_dma_cap) { 135 case HW_DMA_CAP_64B: 136 desc_size = sizeof(struct macb_dma_desc) 137 + sizeof(struct macb_dma_desc_64); 138 break; 139 case HW_DMA_CAP_PTP: 140 desc_size = sizeof(struct macb_dma_desc) 141 + sizeof(struct macb_dma_desc_ptp); 142 break; 143 case HW_DMA_CAP_64B_PTP: 144 desc_size = sizeof(struct macb_dma_desc) 145 + sizeof(struct macb_dma_desc_64) 146 + sizeof(struct macb_dma_desc_ptp); 147 break; 148 default: 149 desc_size = sizeof(struct macb_dma_desc); 150 } 151 return desc_size; 152 #endif 153 return sizeof(struct macb_dma_desc); 154 } 155 156 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx) 157 { 158 #ifdef MACB_EXT_DESC 159 switch (bp->hw_dma_cap) { 160 case HW_DMA_CAP_64B: 161 case HW_DMA_CAP_PTP: 162 desc_idx <<= 1; 163 break; 164 case HW_DMA_CAP_64B_PTP: 165 desc_idx *= 3; 166 break; 167 default: 168 break; 169 } 170 #endif 171 return desc_idx; 172 } 173 174 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 175 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc) 176 { 177 return (struct macb_dma_desc_64 *)((void *)desc 178 + sizeof(struct macb_dma_desc)); 179 } 180 #endif 181 182 /* Ring buffer accessors */ 183 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index) 184 { 185 return index & (bp->tx_ring_size - 1); 186 } 187 188 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue, 189 unsigned int index) 190 { 191 index = macb_tx_ring_wrap(queue->bp, index); 192 index = macb_adj_dma_desc_idx(queue->bp, index); 193 return &queue->tx_ring[index]; 194 } 195 196 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue, 197 unsigned int index) 198 { 199 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)]; 200 } 201 202 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index) 203 { 204 dma_addr_t offset; 205 206 offset = macb_tx_ring_wrap(queue->bp, index) * 207 macb_dma_desc_get_size(queue->bp); 208 209 return queue->tx_ring_dma + offset; 210 } 211 212 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index) 213 { 214 return index & (bp->rx_ring_size - 1); 215 } 216 217 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index) 218 { 219 index = macb_rx_ring_wrap(queue->bp, index); 220 index = macb_adj_dma_desc_idx(queue->bp, index); 221 return &queue->rx_ring[index]; 222 } 223 224 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index) 225 { 226 return queue->rx_buffers + queue->bp->rx_buffer_size * 227 macb_rx_ring_wrap(queue->bp, index); 228 } 229 230 /* I/O accessors */ 231 static u32 hw_readl_native(struct macb *bp, int offset) 232 { 233 return __raw_readl(bp->regs + offset); 234 } 235 236 static void hw_writel_native(struct macb *bp, int offset, u32 value) 237 { 238 __raw_writel(value, bp->regs + offset); 239 } 240 241 static u32 hw_readl(struct macb *bp, int offset) 242 { 243 return readl_relaxed(bp->regs + offset); 244 } 245 246 static void hw_writel(struct macb *bp, int offset, u32 value) 247 { 248 writel_relaxed(value, bp->regs + offset); 249 } 250 251 /* Find the CPU endianness by using the loopback bit of NCR register. When the 252 * CPU is in big endian we need to program swapped mode for management 253 * descriptor access. 254 */ 255 static bool hw_is_native_io(void __iomem *addr) 256 { 257 u32 value = MACB_BIT(LLB); 258 259 __raw_writel(value, addr + MACB_NCR); 260 value = __raw_readl(addr + MACB_NCR); 261 262 /* Write 0 back to disable everything */ 263 __raw_writel(0, addr + MACB_NCR); 264 265 return value == MACB_BIT(LLB); 266 } 267 268 static bool hw_is_gem(void __iomem *addr, bool native_io) 269 { 270 u32 id; 271 272 if (native_io) 273 id = __raw_readl(addr + MACB_MID); 274 else 275 id = readl_relaxed(addr + MACB_MID); 276 277 return MACB_BFEXT(IDNUM, id) >= 0x2; 278 } 279 280 static void macb_set_hwaddr(struct macb *bp) 281 { 282 u32 bottom; 283 u16 top; 284 285 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr)); 286 macb_or_gem_writel(bp, SA1B, bottom); 287 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4))); 288 macb_or_gem_writel(bp, SA1T, top); 289 290 if (gem_has_ptp(bp)) { 291 gem_writel(bp, RXPTPUNI, bottom); 292 gem_writel(bp, TXPTPUNI, bottom); 293 } 294 295 /* Clear unused address register sets */ 296 macb_or_gem_writel(bp, SA2B, 0); 297 macb_or_gem_writel(bp, SA2T, 0); 298 macb_or_gem_writel(bp, SA3B, 0); 299 macb_or_gem_writel(bp, SA3T, 0); 300 macb_or_gem_writel(bp, SA4B, 0); 301 macb_or_gem_writel(bp, SA4T, 0); 302 } 303 304 static void macb_get_hwaddr(struct macb *bp) 305 { 306 u32 bottom; 307 u16 top; 308 u8 addr[6]; 309 int i; 310 311 /* Check all 4 address register for valid address */ 312 for (i = 0; i < 4; i++) { 313 bottom = macb_or_gem_readl(bp, SA1B + i * 8); 314 top = macb_or_gem_readl(bp, SA1T + i * 8); 315 316 addr[0] = bottom & 0xff; 317 addr[1] = (bottom >> 8) & 0xff; 318 addr[2] = (bottom >> 16) & 0xff; 319 addr[3] = (bottom >> 24) & 0xff; 320 addr[4] = top & 0xff; 321 addr[5] = (top >> 8) & 0xff; 322 323 if (is_valid_ether_addr(addr)) { 324 eth_hw_addr_set(bp->dev, addr); 325 return; 326 } 327 } 328 329 dev_info(&bp->pdev->dev, "invalid hw address, using random\n"); 330 eth_hw_addr_random(bp->dev); 331 } 332 333 static int macb_mdio_wait_for_idle(struct macb *bp) 334 { 335 u32 val; 336 337 return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE), 338 1, MACB_MDIO_TIMEOUT); 339 } 340 341 static int macb_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 342 { 343 struct macb *bp = bus->priv; 344 int status; 345 346 status = pm_runtime_resume_and_get(&bp->pdev->dev); 347 if (status < 0) 348 goto mdio_pm_exit; 349 350 status = macb_mdio_wait_for_idle(bp); 351 if (status < 0) 352 goto mdio_read_exit; 353 354 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 355 | MACB_BF(RW, MACB_MAN_C22_READ) 356 | MACB_BF(PHYA, mii_id) 357 | MACB_BF(REGA, regnum) 358 | MACB_BF(CODE, MACB_MAN_C22_CODE))); 359 360 status = macb_mdio_wait_for_idle(bp); 361 if (status < 0) 362 goto mdio_read_exit; 363 364 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 365 366 mdio_read_exit: 367 pm_runtime_mark_last_busy(&bp->pdev->dev); 368 pm_runtime_put_autosuspend(&bp->pdev->dev); 369 mdio_pm_exit: 370 return status; 371 } 372 373 static int macb_mdio_read_c45(struct mii_bus *bus, int mii_id, int devad, 374 int regnum) 375 { 376 struct macb *bp = bus->priv; 377 int status; 378 379 status = pm_runtime_get_sync(&bp->pdev->dev); 380 if (status < 0) { 381 pm_runtime_put_noidle(&bp->pdev->dev); 382 goto mdio_pm_exit; 383 } 384 385 status = macb_mdio_wait_for_idle(bp); 386 if (status < 0) 387 goto mdio_read_exit; 388 389 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 390 | MACB_BF(RW, MACB_MAN_C45_ADDR) 391 | MACB_BF(PHYA, mii_id) 392 | MACB_BF(REGA, devad & 0x1F) 393 | MACB_BF(DATA, regnum & 0xFFFF) 394 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 395 396 status = macb_mdio_wait_for_idle(bp); 397 if (status < 0) 398 goto mdio_read_exit; 399 400 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 401 | MACB_BF(RW, MACB_MAN_C45_READ) 402 | MACB_BF(PHYA, mii_id) 403 | MACB_BF(REGA, devad & 0x1F) 404 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 405 406 status = macb_mdio_wait_for_idle(bp); 407 if (status < 0) 408 goto mdio_read_exit; 409 410 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 411 412 mdio_read_exit: 413 pm_runtime_mark_last_busy(&bp->pdev->dev); 414 pm_runtime_put_autosuspend(&bp->pdev->dev); 415 mdio_pm_exit: 416 return status; 417 } 418 419 static int macb_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 420 u16 value) 421 { 422 struct macb *bp = bus->priv; 423 int status; 424 425 status = pm_runtime_resume_and_get(&bp->pdev->dev); 426 if (status < 0) 427 goto mdio_pm_exit; 428 429 status = macb_mdio_wait_for_idle(bp); 430 if (status < 0) 431 goto mdio_write_exit; 432 433 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 434 | MACB_BF(RW, MACB_MAN_C22_WRITE) 435 | MACB_BF(PHYA, mii_id) 436 | MACB_BF(REGA, regnum) 437 | MACB_BF(CODE, MACB_MAN_C22_CODE) 438 | MACB_BF(DATA, value))); 439 440 status = macb_mdio_wait_for_idle(bp); 441 if (status < 0) 442 goto mdio_write_exit; 443 444 mdio_write_exit: 445 pm_runtime_mark_last_busy(&bp->pdev->dev); 446 pm_runtime_put_autosuspend(&bp->pdev->dev); 447 mdio_pm_exit: 448 return status; 449 } 450 451 static int macb_mdio_write_c45(struct mii_bus *bus, int mii_id, 452 int devad, int regnum, 453 u16 value) 454 { 455 struct macb *bp = bus->priv; 456 int status; 457 458 status = pm_runtime_get_sync(&bp->pdev->dev); 459 if (status < 0) { 460 pm_runtime_put_noidle(&bp->pdev->dev); 461 goto mdio_pm_exit; 462 } 463 464 status = macb_mdio_wait_for_idle(bp); 465 if (status < 0) 466 goto mdio_write_exit; 467 468 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 469 | MACB_BF(RW, MACB_MAN_C45_ADDR) 470 | MACB_BF(PHYA, mii_id) 471 | MACB_BF(REGA, devad & 0x1F) 472 | MACB_BF(DATA, regnum & 0xFFFF) 473 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 474 475 status = macb_mdio_wait_for_idle(bp); 476 if (status < 0) 477 goto mdio_write_exit; 478 479 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 480 | MACB_BF(RW, MACB_MAN_C45_WRITE) 481 | MACB_BF(PHYA, mii_id) 482 | MACB_BF(REGA, devad & 0x1F) 483 | MACB_BF(CODE, MACB_MAN_C45_CODE) 484 | MACB_BF(DATA, value))); 485 486 status = macb_mdio_wait_for_idle(bp); 487 if (status < 0) 488 goto mdio_write_exit; 489 490 mdio_write_exit: 491 pm_runtime_mark_last_busy(&bp->pdev->dev); 492 pm_runtime_put_autosuspend(&bp->pdev->dev); 493 mdio_pm_exit: 494 return status; 495 } 496 497 static void macb_init_buffers(struct macb *bp) 498 { 499 struct macb_queue *queue; 500 unsigned int q; 501 502 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 503 queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma)); 504 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 505 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 506 queue_writel(queue, RBQPH, 507 upper_32_bits(queue->rx_ring_dma)); 508 #endif 509 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 510 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 511 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 512 queue_writel(queue, TBQPH, 513 upper_32_bits(queue->tx_ring_dma)); 514 #endif 515 } 516 } 517 518 /** 519 * macb_set_tx_clk() - Set a clock to a new frequency 520 * @bp: pointer to struct macb 521 * @speed: New frequency in Hz 522 */ 523 static void macb_set_tx_clk(struct macb *bp, int speed) 524 { 525 long ferr, rate, rate_rounded; 526 527 if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG)) 528 return; 529 530 /* In case of MII the PHY is the clock master */ 531 if (bp->phy_interface == PHY_INTERFACE_MODE_MII) 532 return; 533 534 switch (speed) { 535 case SPEED_10: 536 rate = 2500000; 537 break; 538 case SPEED_100: 539 rate = 25000000; 540 break; 541 case SPEED_1000: 542 rate = 125000000; 543 break; 544 default: 545 return; 546 } 547 548 rate_rounded = clk_round_rate(bp->tx_clk, rate); 549 if (rate_rounded < 0) 550 return; 551 552 /* RGMII allows 50 ppm frequency error. Test and warn if this limit 553 * is not satisfied. 554 */ 555 ferr = abs(rate_rounded - rate); 556 ferr = DIV_ROUND_UP(ferr, rate / 100000); 557 if (ferr > 5) 558 netdev_warn(bp->dev, 559 "unable to generate target frequency: %ld Hz\n", 560 rate); 561 562 if (clk_set_rate(bp->tx_clk, rate_rounded)) 563 netdev_err(bp->dev, "adjusting tx_clk failed.\n"); 564 } 565 566 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int neg_mode, 567 phy_interface_t interface, int speed, 568 int duplex) 569 { 570 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 571 u32 config; 572 573 config = gem_readl(bp, USX_CONTROL); 574 config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config); 575 config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config); 576 config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS)); 577 config |= GEM_BIT(TX_EN); 578 gem_writel(bp, USX_CONTROL, config); 579 } 580 581 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs, 582 struct phylink_link_state *state) 583 { 584 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 585 u32 val; 586 587 state->speed = SPEED_10000; 588 state->duplex = 1; 589 state->an_complete = 1; 590 591 val = gem_readl(bp, USX_STATUS); 592 state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK)); 593 val = gem_readl(bp, NCFGR); 594 if (val & GEM_BIT(PAE)) 595 state->pause = MLO_PAUSE_RX; 596 } 597 598 static int macb_usx_pcs_config(struct phylink_pcs *pcs, 599 unsigned int neg_mode, 600 phy_interface_t interface, 601 const unsigned long *advertising, 602 bool permit_pause_to_mac) 603 { 604 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 605 606 gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) | 607 GEM_BIT(SIGNAL_OK)); 608 609 return 0; 610 } 611 612 static void macb_pcs_get_state(struct phylink_pcs *pcs, 613 struct phylink_link_state *state) 614 { 615 state->link = 0; 616 } 617 618 static void macb_pcs_an_restart(struct phylink_pcs *pcs) 619 { 620 /* Not supported */ 621 } 622 623 static int macb_pcs_config(struct phylink_pcs *pcs, 624 unsigned int neg_mode, 625 phy_interface_t interface, 626 const unsigned long *advertising, 627 bool permit_pause_to_mac) 628 { 629 return 0; 630 } 631 632 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = { 633 .pcs_get_state = macb_usx_pcs_get_state, 634 .pcs_config = macb_usx_pcs_config, 635 .pcs_link_up = macb_usx_pcs_link_up, 636 }; 637 638 static const struct phylink_pcs_ops macb_phylink_pcs_ops = { 639 .pcs_get_state = macb_pcs_get_state, 640 .pcs_an_restart = macb_pcs_an_restart, 641 .pcs_config = macb_pcs_config, 642 }; 643 644 static void macb_mac_config(struct phylink_config *config, unsigned int mode, 645 const struct phylink_link_state *state) 646 { 647 struct net_device *ndev = to_net_dev(config->dev); 648 struct macb *bp = netdev_priv(ndev); 649 unsigned long flags; 650 u32 old_ctrl, ctrl; 651 u32 old_ncr, ncr; 652 653 spin_lock_irqsave(&bp->lock, flags); 654 655 old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR); 656 old_ncr = ncr = macb_or_gem_readl(bp, NCR); 657 658 if (bp->caps & MACB_CAPS_MACB_IS_EMAC) { 659 if (state->interface == PHY_INTERFACE_MODE_RMII) 660 ctrl |= MACB_BIT(RM9200_RMII); 661 } else if (macb_is_gem(bp)) { 662 ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL)); 663 ncr &= ~GEM_BIT(ENABLE_HS_MAC); 664 665 if (state->interface == PHY_INTERFACE_MODE_SGMII) { 666 ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 667 } else if (state->interface == PHY_INTERFACE_MODE_10GBASER) { 668 ctrl |= GEM_BIT(PCSSEL); 669 ncr |= GEM_BIT(ENABLE_HS_MAC); 670 } else if (bp->caps & MACB_CAPS_MIIONRGMII && 671 bp->phy_interface == PHY_INTERFACE_MODE_MII) { 672 ncr |= MACB_BIT(MIIONRGMII); 673 } 674 } 675 676 /* Apply the new configuration, if any */ 677 if (old_ctrl ^ ctrl) 678 macb_or_gem_writel(bp, NCFGR, ctrl); 679 680 if (old_ncr ^ ncr) 681 macb_or_gem_writel(bp, NCR, ncr); 682 683 /* Disable AN for SGMII fixed link configuration, enable otherwise. 684 * Must be written after PCSSEL is set in NCFGR, 685 * otherwise writes will not take effect. 686 */ 687 if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) { 688 u32 pcsctrl, old_pcsctrl; 689 690 old_pcsctrl = gem_readl(bp, PCSCNTRL); 691 if (mode == MLO_AN_FIXED) 692 pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG); 693 else 694 pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG); 695 if (old_pcsctrl != pcsctrl) 696 gem_writel(bp, PCSCNTRL, pcsctrl); 697 } 698 699 spin_unlock_irqrestore(&bp->lock, flags); 700 } 701 702 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode, 703 phy_interface_t interface) 704 { 705 struct net_device *ndev = to_net_dev(config->dev); 706 struct macb *bp = netdev_priv(ndev); 707 struct macb_queue *queue; 708 unsigned int q; 709 u32 ctrl; 710 711 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) 712 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 713 queue_writel(queue, IDR, 714 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 715 716 /* Disable Rx and Tx */ 717 ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE)); 718 macb_writel(bp, NCR, ctrl); 719 720 netif_tx_stop_all_queues(ndev); 721 } 722 723 static void macb_mac_link_up(struct phylink_config *config, 724 struct phy_device *phy, 725 unsigned int mode, phy_interface_t interface, 726 int speed, int duplex, 727 bool tx_pause, bool rx_pause) 728 { 729 struct net_device *ndev = to_net_dev(config->dev); 730 struct macb *bp = netdev_priv(ndev); 731 struct macb_queue *queue; 732 unsigned long flags; 733 unsigned int q; 734 u32 ctrl; 735 736 spin_lock_irqsave(&bp->lock, flags); 737 738 ctrl = macb_or_gem_readl(bp, NCFGR); 739 740 ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); 741 742 if (speed == SPEED_100) 743 ctrl |= MACB_BIT(SPD); 744 745 if (duplex) 746 ctrl |= MACB_BIT(FD); 747 748 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) { 749 ctrl &= ~MACB_BIT(PAE); 750 if (macb_is_gem(bp)) { 751 ctrl &= ~GEM_BIT(GBE); 752 753 if (speed == SPEED_1000) 754 ctrl |= GEM_BIT(GBE); 755 } 756 757 if (rx_pause) 758 ctrl |= MACB_BIT(PAE); 759 760 macb_set_tx_clk(bp, speed); 761 762 /* Initialize rings & buffers as clearing MACB_BIT(TE) in link down 763 * cleared the pipeline and control registers. 764 */ 765 bp->macbgem_ops.mog_init_rings(bp); 766 macb_init_buffers(bp); 767 768 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 769 queue_writel(queue, IER, 770 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 771 } 772 773 macb_or_gem_writel(bp, NCFGR, ctrl); 774 775 if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER) 776 gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M, 777 gem_readl(bp, HS_MAC_CONFIG))); 778 779 spin_unlock_irqrestore(&bp->lock, flags); 780 781 /* Enable Rx and Tx; Enable PTP unicast */ 782 ctrl = macb_readl(bp, NCR); 783 if (gem_has_ptp(bp)) 784 ctrl |= MACB_BIT(PTPUNI); 785 786 macb_writel(bp, NCR, ctrl | MACB_BIT(RE) | MACB_BIT(TE)); 787 788 netif_tx_wake_all_queues(ndev); 789 } 790 791 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config, 792 phy_interface_t interface) 793 { 794 struct net_device *ndev = to_net_dev(config->dev); 795 struct macb *bp = netdev_priv(ndev); 796 797 if (interface == PHY_INTERFACE_MODE_10GBASER) 798 return &bp->phylink_usx_pcs; 799 else if (interface == PHY_INTERFACE_MODE_SGMII) 800 return &bp->phylink_sgmii_pcs; 801 else 802 return NULL; 803 } 804 805 static const struct phylink_mac_ops macb_phylink_ops = { 806 .mac_select_pcs = macb_mac_select_pcs, 807 .mac_config = macb_mac_config, 808 .mac_link_down = macb_mac_link_down, 809 .mac_link_up = macb_mac_link_up, 810 }; 811 812 static bool macb_phy_handle_exists(struct device_node *dn) 813 { 814 dn = of_parse_phandle(dn, "phy-handle", 0); 815 of_node_put(dn); 816 return dn != NULL; 817 } 818 819 static int macb_phylink_connect(struct macb *bp) 820 { 821 struct device_node *dn = bp->pdev->dev.of_node; 822 struct net_device *dev = bp->dev; 823 struct phy_device *phydev; 824 int ret; 825 826 if (dn) 827 ret = phylink_of_phy_connect(bp->phylink, dn, 0); 828 829 if (!dn || (ret && !macb_phy_handle_exists(dn))) { 830 phydev = phy_find_first(bp->mii_bus); 831 if (!phydev) { 832 netdev_err(dev, "no PHY found\n"); 833 return -ENXIO; 834 } 835 836 /* attach the mac to the phy */ 837 ret = phylink_connect_phy(bp->phylink, phydev); 838 } 839 840 if (ret) { 841 netdev_err(dev, "Could not attach PHY (%d)\n", ret); 842 return ret; 843 } 844 845 phylink_start(bp->phylink); 846 847 return 0; 848 } 849 850 static void macb_get_pcs_fixed_state(struct phylink_config *config, 851 struct phylink_link_state *state) 852 { 853 struct net_device *ndev = to_net_dev(config->dev); 854 struct macb *bp = netdev_priv(ndev); 855 856 state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0; 857 } 858 859 /* based on au1000_eth. c*/ 860 static int macb_mii_probe(struct net_device *dev) 861 { 862 struct macb *bp = netdev_priv(dev); 863 864 bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops; 865 bp->phylink_sgmii_pcs.neg_mode = true; 866 bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops; 867 bp->phylink_usx_pcs.neg_mode = true; 868 869 bp->phylink_config.dev = &dev->dev; 870 bp->phylink_config.type = PHYLINK_NETDEV; 871 bp->phylink_config.mac_managed_pm = true; 872 873 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 874 bp->phylink_config.poll_fixed_state = true; 875 bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state; 876 } 877 878 bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | 879 MAC_10 | MAC_100; 880 881 __set_bit(PHY_INTERFACE_MODE_MII, 882 bp->phylink_config.supported_interfaces); 883 __set_bit(PHY_INTERFACE_MODE_RMII, 884 bp->phylink_config.supported_interfaces); 885 886 /* Determine what modes are supported */ 887 if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) { 888 bp->phylink_config.mac_capabilities |= MAC_1000FD; 889 if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF)) 890 bp->phylink_config.mac_capabilities |= MAC_1000HD; 891 892 __set_bit(PHY_INTERFACE_MODE_GMII, 893 bp->phylink_config.supported_interfaces); 894 phy_interface_set_rgmii(bp->phylink_config.supported_interfaces); 895 896 if (bp->caps & MACB_CAPS_PCS) 897 __set_bit(PHY_INTERFACE_MODE_SGMII, 898 bp->phylink_config.supported_interfaces); 899 900 if (bp->caps & MACB_CAPS_HIGH_SPEED) { 901 __set_bit(PHY_INTERFACE_MODE_10GBASER, 902 bp->phylink_config.supported_interfaces); 903 bp->phylink_config.mac_capabilities |= MAC_10000FD; 904 } 905 } 906 907 bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode, 908 bp->phy_interface, &macb_phylink_ops); 909 if (IS_ERR(bp->phylink)) { 910 netdev_err(dev, "Could not create a phylink instance (%ld)\n", 911 PTR_ERR(bp->phylink)); 912 return PTR_ERR(bp->phylink); 913 } 914 915 return 0; 916 } 917 918 static int macb_mdiobus_register(struct macb *bp) 919 { 920 struct device_node *child, *np = bp->pdev->dev.of_node; 921 922 /* If we have a child named mdio, probe it instead of looking for PHYs 923 * directly under the MAC node 924 */ 925 child = of_get_child_by_name(np, "mdio"); 926 if (child) { 927 int ret = of_mdiobus_register(bp->mii_bus, child); 928 929 of_node_put(child); 930 return ret; 931 } 932 933 if (of_phy_is_fixed_link(np)) 934 return mdiobus_register(bp->mii_bus); 935 936 /* Only create the PHY from the device tree if at least one PHY is 937 * described. Otherwise scan the entire MDIO bus. We do this to support 938 * old device tree that did not follow the best practices and did not 939 * describe their network PHYs. 940 */ 941 for_each_available_child_of_node(np, child) 942 if (of_mdiobus_child_is_phy(child)) { 943 /* The loop increments the child refcount, 944 * decrement it before returning. 945 */ 946 of_node_put(child); 947 948 return of_mdiobus_register(bp->mii_bus, np); 949 } 950 951 return mdiobus_register(bp->mii_bus); 952 } 953 954 static int macb_mii_init(struct macb *bp) 955 { 956 int err = -ENXIO; 957 958 /* Enable management port */ 959 macb_writel(bp, NCR, MACB_BIT(MPE)); 960 961 bp->mii_bus = mdiobus_alloc(); 962 if (!bp->mii_bus) { 963 err = -ENOMEM; 964 goto err_out; 965 } 966 967 bp->mii_bus->name = "MACB_mii_bus"; 968 bp->mii_bus->read = &macb_mdio_read_c22; 969 bp->mii_bus->write = &macb_mdio_write_c22; 970 bp->mii_bus->read_c45 = &macb_mdio_read_c45; 971 bp->mii_bus->write_c45 = &macb_mdio_write_c45; 972 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 973 bp->pdev->name, bp->pdev->id); 974 bp->mii_bus->priv = bp; 975 bp->mii_bus->parent = &bp->pdev->dev; 976 977 dev_set_drvdata(&bp->dev->dev, bp->mii_bus); 978 979 err = macb_mdiobus_register(bp); 980 if (err) 981 goto err_out_free_mdiobus; 982 983 err = macb_mii_probe(bp->dev); 984 if (err) 985 goto err_out_unregister_bus; 986 987 return 0; 988 989 err_out_unregister_bus: 990 mdiobus_unregister(bp->mii_bus); 991 err_out_free_mdiobus: 992 mdiobus_free(bp->mii_bus); 993 err_out: 994 return err; 995 } 996 997 static void macb_update_stats(struct macb *bp) 998 { 999 u32 *p = &bp->hw_stats.macb.rx_pause_frames; 1000 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1; 1001 int offset = MACB_PFR; 1002 1003 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4); 1004 1005 for (; p < end; p++, offset += 4) 1006 *p += bp->macb_reg_readl(bp, offset); 1007 } 1008 1009 static int macb_halt_tx(struct macb *bp) 1010 { 1011 unsigned long halt_time, timeout; 1012 u32 status; 1013 1014 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT)); 1015 1016 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT); 1017 do { 1018 halt_time = jiffies; 1019 status = macb_readl(bp, TSR); 1020 if (!(status & MACB_BIT(TGO))) 1021 return 0; 1022 1023 udelay(250); 1024 } while (time_before(halt_time, timeout)); 1025 1026 return -ETIMEDOUT; 1027 } 1028 1029 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget) 1030 { 1031 if (tx_skb->mapping) { 1032 if (tx_skb->mapped_as_page) 1033 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping, 1034 tx_skb->size, DMA_TO_DEVICE); 1035 else 1036 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping, 1037 tx_skb->size, DMA_TO_DEVICE); 1038 tx_skb->mapping = 0; 1039 } 1040 1041 if (tx_skb->skb) { 1042 napi_consume_skb(tx_skb->skb, budget); 1043 tx_skb->skb = NULL; 1044 } 1045 } 1046 1047 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr) 1048 { 1049 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1050 struct macb_dma_desc_64 *desc_64; 1051 1052 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1053 desc_64 = macb_64b_desc(bp, desc); 1054 desc_64->addrh = upper_32_bits(addr); 1055 /* The low bits of RX address contain the RX_USED bit, clearing 1056 * of which allows packet RX. Make sure the high bits are also 1057 * visible to HW at that point. 1058 */ 1059 dma_wmb(); 1060 } 1061 #endif 1062 desc->addr = lower_32_bits(addr); 1063 } 1064 1065 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc) 1066 { 1067 dma_addr_t addr = 0; 1068 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1069 struct macb_dma_desc_64 *desc_64; 1070 1071 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1072 desc_64 = macb_64b_desc(bp, desc); 1073 addr = ((u64)(desc_64->addrh) << 32); 1074 } 1075 #endif 1076 addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr)); 1077 #ifdef CONFIG_MACB_USE_HWSTAMP 1078 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 1079 addr &= ~GEM_BIT(DMA_RXVALID); 1080 #endif 1081 return addr; 1082 } 1083 1084 static void macb_tx_error_task(struct work_struct *work) 1085 { 1086 struct macb_queue *queue = container_of(work, struct macb_queue, 1087 tx_error_task); 1088 bool halt_timeout = false; 1089 struct macb *bp = queue->bp; 1090 struct macb_tx_skb *tx_skb; 1091 struct macb_dma_desc *desc; 1092 struct sk_buff *skb; 1093 unsigned int tail; 1094 unsigned long flags; 1095 1096 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n", 1097 (unsigned int)(queue - bp->queues), 1098 queue->tx_tail, queue->tx_head); 1099 1100 /* Prevent the queue NAPI TX poll from running, as it calls 1101 * macb_tx_complete(), which in turn may call netif_wake_subqueue(). 1102 * As explained below, we have to halt the transmission before updating 1103 * TBQP registers so we call netif_tx_stop_all_queues() to notify the 1104 * network engine about the macb/gem being halted. 1105 */ 1106 napi_disable(&queue->napi_tx); 1107 spin_lock_irqsave(&bp->lock, flags); 1108 1109 /* Make sure nobody is trying to queue up new packets */ 1110 netif_tx_stop_all_queues(bp->dev); 1111 1112 /* Stop transmission now 1113 * (in case we have just queued new packets) 1114 * macb/gem must be halted to write TBQP register 1115 */ 1116 if (macb_halt_tx(bp)) { 1117 netdev_err(bp->dev, "BUG: halt tx timed out\n"); 1118 macb_writel(bp, NCR, macb_readl(bp, NCR) & (~MACB_BIT(TE))); 1119 halt_timeout = true; 1120 } 1121 1122 /* Treat frames in TX queue including the ones that caused the error. 1123 * Free transmit buffers in upper layer. 1124 */ 1125 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) { 1126 u32 ctrl; 1127 1128 desc = macb_tx_desc(queue, tail); 1129 ctrl = desc->ctrl; 1130 tx_skb = macb_tx_skb(queue, tail); 1131 skb = tx_skb->skb; 1132 1133 if (ctrl & MACB_BIT(TX_USED)) { 1134 /* skb is set for the last buffer of the frame */ 1135 while (!skb) { 1136 macb_tx_unmap(bp, tx_skb, 0); 1137 tail++; 1138 tx_skb = macb_tx_skb(queue, tail); 1139 skb = tx_skb->skb; 1140 } 1141 1142 /* ctrl still refers to the first buffer descriptor 1143 * since it's the only one written back by the hardware 1144 */ 1145 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) { 1146 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n", 1147 macb_tx_ring_wrap(bp, tail), 1148 skb->data); 1149 bp->dev->stats.tx_packets++; 1150 queue->stats.tx_packets++; 1151 bp->dev->stats.tx_bytes += skb->len; 1152 queue->stats.tx_bytes += skb->len; 1153 } 1154 } else { 1155 /* "Buffers exhausted mid-frame" errors may only happen 1156 * if the driver is buggy, so complain loudly about 1157 * those. Statistics are updated by hardware. 1158 */ 1159 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED)) 1160 netdev_err(bp->dev, 1161 "BUG: TX buffers exhausted mid-frame\n"); 1162 1163 desc->ctrl = ctrl | MACB_BIT(TX_USED); 1164 } 1165 1166 macb_tx_unmap(bp, tx_skb, 0); 1167 } 1168 1169 /* Set end of TX queue */ 1170 desc = macb_tx_desc(queue, 0); 1171 macb_set_addr(bp, desc, 0); 1172 desc->ctrl = MACB_BIT(TX_USED); 1173 1174 /* Make descriptor updates visible to hardware */ 1175 wmb(); 1176 1177 /* Reinitialize the TX desc queue */ 1178 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 1179 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1180 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 1181 queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma)); 1182 #endif 1183 /* Make TX ring reflect state of hardware */ 1184 queue->tx_head = 0; 1185 queue->tx_tail = 0; 1186 1187 /* Housework before enabling TX IRQ */ 1188 macb_writel(bp, TSR, macb_readl(bp, TSR)); 1189 queue_writel(queue, IER, MACB_TX_INT_FLAGS); 1190 1191 if (halt_timeout) 1192 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE)); 1193 1194 /* Now we are ready to start transmission again */ 1195 netif_tx_start_all_queues(bp->dev); 1196 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1197 1198 spin_unlock_irqrestore(&bp->lock, flags); 1199 napi_enable(&queue->napi_tx); 1200 } 1201 1202 static bool ptp_one_step_sync(struct sk_buff *skb) 1203 { 1204 struct ptp_header *hdr; 1205 unsigned int ptp_class; 1206 u8 msgtype; 1207 1208 /* No need to parse packet if PTP TS is not involved */ 1209 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 1210 goto not_oss; 1211 1212 /* Identify and return whether PTP one step sync is being processed */ 1213 ptp_class = ptp_classify_raw(skb); 1214 if (ptp_class == PTP_CLASS_NONE) 1215 goto not_oss; 1216 1217 hdr = ptp_parse_header(skb, ptp_class); 1218 if (!hdr) 1219 goto not_oss; 1220 1221 if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP) 1222 goto not_oss; 1223 1224 msgtype = ptp_get_msgtype(hdr, ptp_class); 1225 if (msgtype == PTP_MSGTYPE_SYNC) 1226 return true; 1227 1228 not_oss: 1229 return false; 1230 } 1231 1232 static int macb_tx_complete(struct macb_queue *queue, int budget) 1233 { 1234 struct macb *bp = queue->bp; 1235 u16 queue_index = queue - bp->queues; 1236 unsigned int tail; 1237 unsigned int head; 1238 int packets = 0; 1239 1240 spin_lock(&queue->tx_ptr_lock); 1241 head = queue->tx_head; 1242 for (tail = queue->tx_tail; tail != head && packets < budget; tail++) { 1243 struct macb_tx_skb *tx_skb; 1244 struct sk_buff *skb; 1245 struct macb_dma_desc *desc; 1246 u32 ctrl; 1247 1248 desc = macb_tx_desc(queue, tail); 1249 1250 /* Make hw descriptor updates visible to CPU */ 1251 rmb(); 1252 1253 ctrl = desc->ctrl; 1254 1255 /* TX_USED bit is only set by hardware on the very first buffer 1256 * descriptor of the transmitted frame. 1257 */ 1258 if (!(ctrl & MACB_BIT(TX_USED))) 1259 break; 1260 1261 /* Process all buffers of the current transmitted frame */ 1262 for (;; tail++) { 1263 tx_skb = macb_tx_skb(queue, tail); 1264 skb = tx_skb->skb; 1265 1266 /* First, update TX stats if needed */ 1267 if (skb) { 1268 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1269 !ptp_one_step_sync(skb)) 1270 gem_ptp_do_txstamp(bp, skb, desc); 1271 1272 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n", 1273 macb_tx_ring_wrap(bp, tail), 1274 skb->data); 1275 bp->dev->stats.tx_packets++; 1276 queue->stats.tx_packets++; 1277 bp->dev->stats.tx_bytes += skb->len; 1278 queue->stats.tx_bytes += skb->len; 1279 packets++; 1280 } 1281 1282 /* Now we can safely release resources */ 1283 macb_tx_unmap(bp, tx_skb, budget); 1284 1285 /* skb is set only for the last buffer of the frame. 1286 * WARNING: at this point skb has been freed by 1287 * macb_tx_unmap(). 1288 */ 1289 if (skb) 1290 break; 1291 } 1292 } 1293 1294 queue->tx_tail = tail; 1295 if (__netif_subqueue_stopped(bp->dev, queue_index) && 1296 CIRC_CNT(queue->tx_head, queue->tx_tail, 1297 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp)) 1298 netif_wake_subqueue(bp->dev, queue_index); 1299 spin_unlock(&queue->tx_ptr_lock); 1300 1301 return packets; 1302 } 1303 1304 static void gem_rx_refill(struct macb_queue *queue) 1305 { 1306 unsigned int entry; 1307 struct sk_buff *skb; 1308 dma_addr_t paddr; 1309 struct macb *bp = queue->bp; 1310 struct macb_dma_desc *desc; 1311 1312 while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail, 1313 bp->rx_ring_size) > 0) { 1314 entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head); 1315 1316 /* Make hw descriptor updates visible to CPU */ 1317 rmb(); 1318 1319 desc = macb_rx_desc(queue, entry); 1320 1321 if (!queue->rx_skbuff[entry]) { 1322 /* allocate sk_buff for this free entry in ring */ 1323 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size); 1324 if (unlikely(!skb)) { 1325 netdev_err(bp->dev, 1326 "Unable to allocate sk_buff\n"); 1327 break; 1328 } 1329 1330 /* now fill corresponding descriptor entry */ 1331 paddr = dma_map_single(&bp->pdev->dev, skb->data, 1332 bp->rx_buffer_size, 1333 DMA_FROM_DEVICE); 1334 if (dma_mapping_error(&bp->pdev->dev, paddr)) { 1335 dev_kfree_skb(skb); 1336 break; 1337 } 1338 1339 queue->rx_skbuff[entry] = skb; 1340 1341 if (entry == bp->rx_ring_size - 1) 1342 paddr |= MACB_BIT(RX_WRAP); 1343 desc->ctrl = 0; 1344 /* Setting addr clears RX_USED and allows reception, 1345 * make sure ctrl is cleared first to avoid a race. 1346 */ 1347 dma_wmb(); 1348 macb_set_addr(bp, desc, paddr); 1349 1350 /* properly align Ethernet header */ 1351 skb_reserve(skb, NET_IP_ALIGN); 1352 } else { 1353 desc->ctrl = 0; 1354 dma_wmb(); 1355 desc->addr &= ~MACB_BIT(RX_USED); 1356 } 1357 queue->rx_prepared_head++; 1358 } 1359 1360 /* Make descriptor updates visible to hardware */ 1361 wmb(); 1362 1363 netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n", 1364 queue, queue->rx_prepared_head, queue->rx_tail); 1365 } 1366 1367 /* Mark DMA descriptors from begin up to and not including end as unused */ 1368 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin, 1369 unsigned int end) 1370 { 1371 unsigned int frag; 1372 1373 for (frag = begin; frag != end; frag++) { 1374 struct macb_dma_desc *desc = macb_rx_desc(queue, frag); 1375 1376 desc->addr &= ~MACB_BIT(RX_USED); 1377 } 1378 1379 /* Make descriptor updates visible to hardware */ 1380 wmb(); 1381 1382 /* When this happens, the hardware stats registers for 1383 * whatever caused this is updated, so we don't have to record 1384 * anything. 1385 */ 1386 } 1387 1388 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi, 1389 int budget) 1390 { 1391 struct macb *bp = queue->bp; 1392 unsigned int len; 1393 unsigned int entry; 1394 struct sk_buff *skb; 1395 struct macb_dma_desc *desc; 1396 int count = 0; 1397 1398 while (count < budget) { 1399 u32 ctrl; 1400 dma_addr_t addr; 1401 bool rxused; 1402 1403 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1404 desc = macb_rx_desc(queue, entry); 1405 1406 /* Make hw descriptor updates visible to CPU */ 1407 rmb(); 1408 1409 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false; 1410 addr = macb_get_addr(bp, desc); 1411 1412 if (!rxused) 1413 break; 1414 1415 /* Ensure ctrl is at least as up-to-date as rxused */ 1416 dma_rmb(); 1417 1418 ctrl = desc->ctrl; 1419 1420 queue->rx_tail++; 1421 count++; 1422 1423 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) { 1424 netdev_err(bp->dev, 1425 "not whole frame pointed by descriptor\n"); 1426 bp->dev->stats.rx_dropped++; 1427 queue->stats.rx_dropped++; 1428 break; 1429 } 1430 skb = queue->rx_skbuff[entry]; 1431 if (unlikely(!skb)) { 1432 netdev_err(bp->dev, 1433 "inconsistent Rx descriptor chain\n"); 1434 bp->dev->stats.rx_dropped++; 1435 queue->stats.rx_dropped++; 1436 break; 1437 } 1438 /* now everything is ready for receiving packet */ 1439 queue->rx_skbuff[entry] = NULL; 1440 len = ctrl & bp->rx_frm_len_mask; 1441 1442 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len); 1443 1444 skb_put(skb, len); 1445 dma_unmap_single(&bp->pdev->dev, addr, 1446 bp->rx_buffer_size, DMA_FROM_DEVICE); 1447 1448 skb->protocol = eth_type_trans(skb, bp->dev); 1449 skb_checksum_none_assert(skb); 1450 if (bp->dev->features & NETIF_F_RXCSUM && 1451 !(bp->dev->flags & IFF_PROMISC) && 1452 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK) 1453 skb->ip_summed = CHECKSUM_UNNECESSARY; 1454 1455 bp->dev->stats.rx_packets++; 1456 queue->stats.rx_packets++; 1457 bp->dev->stats.rx_bytes += skb->len; 1458 queue->stats.rx_bytes += skb->len; 1459 1460 gem_ptp_do_rxstamp(bp, skb, desc); 1461 1462 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 1463 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1464 skb->len, skb->csum); 1465 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1, 1466 skb_mac_header(skb), 16, true); 1467 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1, 1468 skb->data, 32, true); 1469 #endif 1470 1471 napi_gro_receive(napi, skb); 1472 } 1473 1474 gem_rx_refill(queue); 1475 1476 return count; 1477 } 1478 1479 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi, 1480 unsigned int first_frag, unsigned int last_frag) 1481 { 1482 unsigned int len; 1483 unsigned int frag; 1484 unsigned int offset; 1485 struct sk_buff *skb; 1486 struct macb_dma_desc *desc; 1487 struct macb *bp = queue->bp; 1488 1489 desc = macb_rx_desc(queue, last_frag); 1490 len = desc->ctrl & bp->rx_frm_len_mask; 1491 1492 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n", 1493 macb_rx_ring_wrap(bp, first_frag), 1494 macb_rx_ring_wrap(bp, last_frag), len); 1495 1496 /* The ethernet header starts NET_IP_ALIGN bytes into the 1497 * first buffer. Since the header is 14 bytes, this makes the 1498 * payload word-aligned. 1499 * 1500 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy 1501 * the two padding bytes into the skb so that we avoid hitting 1502 * the slowpath in memcpy(), and pull them off afterwards. 1503 */ 1504 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN); 1505 if (!skb) { 1506 bp->dev->stats.rx_dropped++; 1507 for (frag = first_frag; ; frag++) { 1508 desc = macb_rx_desc(queue, frag); 1509 desc->addr &= ~MACB_BIT(RX_USED); 1510 if (frag == last_frag) 1511 break; 1512 } 1513 1514 /* Make descriptor updates visible to hardware */ 1515 wmb(); 1516 1517 return 1; 1518 } 1519 1520 offset = 0; 1521 len += NET_IP_ALIGN; 1522 skb_checksum_none_assert(skb); 1523 skb_put(skb, len); 1524 1525 for (frag = first_frag; ; frag++) { 1526 unsigned int frag_len = bp->rx_buffer_size; 1527 1528 if (offset + frag_len > len) { 1529 if (unlikely(frag != last_frag)) { 1530 dev_kfree_skb_any(skb); 1531 return -1; 1532 } 1533 frag_len = len - offset; 1534 } 1535 skb_copy_to_linear_data_offset(skb, offset, 1536 macb_rx_buffer(queue, frag), 1537 frag_len); 1538 offset += bp->rx_buffer_size; 1539 desc = macb_rx_desc(queue, frag); 1540 desc->addr &= ~MACB_BIT(RX_USED); 1541 1542 if (frag == last_frag) 1543 break; 1544 } 1545 1546 /* Make descriptor updates visible to hardware */ 1547 wmb(); 1548 1549 __skb_pull(skb, NET_IP_ALIGN); 1550 skb->protocol = eth_type_trans(skb, bp->dev); 1551 1552 bp->dev->stats.rx_packets++; 1553 bp->dev->stats.rx_bytes += skb->len; 1554 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1555 skb->len, skb->csum); 1556 napi_gro_receive(napi, skb); 1557 1558 return 0; 1559 } 1560 1561 static inline void macb_init_rx_ring(struct macb_queue *queue) 1562 { 1563 struct macb *bp = queue->bp; 1564 dma_addr_t addr; 1565 struct macb_dma_desc *desc = NULL; 1566 int i; 1567 1568 addr = queue->rx_buffers_dma; 1569 for (i = 0; i < bp->rx_ring_size; i++) { 1570 desc = macb_rx_desc(queue, i); 1571 macb_set_addr(bp, desc, addr); 1572 desc->ctrl = 0; 1573 addr += bp->rx_buffer_size; 1574 } 1575 desc->addr |= MACB_BIT(RX_WRAP); 1576 queue->rx_tail = 0; 1577 } 1578 1579 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi, 1580 int budget) 1581 { 1582 struct macb *bp = queue->bp; 1583 bool reset_rx_queue = false; 1584 int received = 0; 1585 unsigned int tail; 1586 int first_frag = -1; 1587 1588 for (tail = queue->rx_tail; budget > 0; tail++) { 1589 struct macb_dma_desc *desc = macb_rx_desc(queue, tail); 1590 u32 ctrl; 1591 1592 /* Make hw descriptor updates visible to CPU */ 1593 rmb(); 1594 1595 if (!(desc->addr & MACB_BIT(RX_USED))) 1596 break; 1597 1598 /* Ensure ctrl is at least as up-to-date as addr */ 1599 dma_rmb(); 1600 1601 ctrl = desc->ctrl; 1602 1603 if (ctrl & MACB_BIT(RX_SOF)) { 1604 if (first_frag != -1) 1605 discard_partial_frame(queue, first_frag, tail); 1606 first_frag = tail; 1607 } 1608 1609 if (ctrl & MACB_BIT(RX_EOF)) { 1610 int dropped; 1611 1612 if (unlikely(first_frag == -1)) { 1613 reset_rx_queue = true; 1614 continue; 1615 } 1616 1617 dropped = macb_rx_frame(queue, napi, first_frag, tail); 1618 first_frag = -1; 1619 if (unlikely(dropped < 0)) { 1620 reset_rx_queue = true; 1621 continue; 1622 } 1623 if (!dropped) { 1624 received++; 1625 budget--; 1626 } 1627 } 1628 } 1629 1630 if (unlikely(reset_rx_queue)) { 1631 unsigned long flags; 1632 u32 ctrl; 1633 1634 netdev_err(bp->dev, "RX queue corruption: reset it\n"); 1635 1636 spin_lock_irqsave(&bp->lock, flags); 1637 1638 ctrl = macb_readl(bp, NCR); 1639 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1640 1641 macb_init_rx_ring(queue); 1642 queue_writel(queue, RBQP, queue->rx_ring_dma); 1643 1644 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1645 1646 spin_unlock_irqrestore(&bp->lock, flags); 1647 return received; 1648 } 1649 1650 if (first_frag != -1) 1651 queue->rx_tail = first_frag; 1652 else 1653 queue->rx_tail = tail; 1654 1655 return received; 1656 } 1657 1658 static bool macb_rx_pending(struct macb_queue *queue) 1659 { 1660 struct macb *bp = queue->bp; 1661 unsigned int entry; 1662 struct macb_dma_desc *desc; 1663 1664 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1665 desc = macb_rx_desc(queue, entry); 1666 1667 /* Make hw descriptor updates visible to CPU */ 1668 rmb(); 1669 1670 return (desc->addr & MACB_BIT(RX_USED)) != 0; 1671 } 1672 1673 static int macb_rx_poll(struct napi_struct *napi, int budget) 1674 { 1675 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx); 1676 struct macb *bp = queue->bp; 1677 int work_done; 1678 1679 work_done = bp->macbgem_ops.mog_rx(queue, napi, budget); 1680 1681 netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n", 1682 (unsigned int)(queue - bp->queues), work_done, budget); 1683 1684 if (work_done < budget && napi_complete_done(napi, work_done)) { 1685 queue_writel(queue, IER, bp->rx_intr_mask); 1686 1687 /* Packet completions only seem to propagate to raise 1688 * interrupts when interrupts are enabled at the time, so if 1689 * packets were received while interrupts were disabled, 1690 * they will not cause another interrupt to be generated when 1691 * interrupts are re-enabled. 1692 * Check for this case here to avoid losing a wakeup. This can 1693 * potentially race with the interrupt handler doing the same 1694 * actions if an interrupt is raised just after enabling them, 1695 * but this should be harmless. 1696 */ 1697 if (macb_rx_pending(queue)) { 1698 queue_writel(queue, IDR, bp->rx_intr_mask); 1699 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1700 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1701 netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n"); 1702 napi_schedule(napi); 1703 } 1704 } 1705 1706 /* TODO: Handle errors */ 1707 1708 return work_done; 1709 } 1710 1711 static void macb_tx_restart(struct macb_queue *queue) 1712 { 1713 struct macb *bp = queue->bp; 1714 unsigned int head_idx, tbqp; 1715 1716 spin_lock(&queue->tx_ptr_lock); 1717 1718 if (queue->tx_head == queue->tx_tail) 1719 goto out_tx_ptr_unlock; 1720 1721 tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp); 1722 tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp)); 1723 head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head)); 1724 1725 if (tbqp == head_idx) 1726 goto out_tx_ptr_unlock; 1727 1728 spin_lock_irq(&bp->lock); 1729 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1730 spin_unlock_irq(&bp->lock); 1731 1732 out_tx_ptr_unlock: 1733 spin_unlock(&queue->tx_ptr_lock); 1734 } 1735 1736 static bool macb_tx_complete_pending(struct macb_queue *queue) 1737 { 1738 bool retval = false; 1739 1740 spin_lock(&queue->tx_ptr_lock); 1741 if (queue->tx_head != queue->tx_tail) { 1742 /* Make hw descriptor updates visible to CPU */ 1743 rmb(); 1744 1745 if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED)) 1746 retval = true; 1747 } 1748 spin_unlock(&queue->tx_ptr_lock); 1749 return retval; 1750 } 1751 1752 static int macb_tx_poll(struct napi_struct *napi, int budget) 1753 { 1754 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx); 1755 struct macb *bp = queue->bp; 1756 int work_done; 1757 1758 work_done = macb_tx_complete(queue, budget); 1759 1760 rmb(); // ensure txubr_pending is up to date 1761 if (queue->txubr_pending) { 1762 queue->txubr_pending = false; 1763 netdev_vdbg(bp->dev, "poll: tx restart\n"); 1764 macb_tx_restart(queue); 1765 } 1766 1767 netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n", 1768 (unsigned int)(queue - bp->queues), work_done, budget); 1769 1770 if (work_done < budget && napi_complete_done(napi, work_done)) { 1771 queue_writel(queue, IER, MACB_BIT(TCOMP)); 1772 1773 /* Packet completions only seem to propagate to raise 1774 * interrupts when interrupts are enabled at the time, so if 1775 * packets were sent while interrupts were disabled, 1776 * they will not cause another interrupt to be generated when 1777 * interrupts are re-enabled. 1778 * Check for this case here to avoid losing a wakeup. This can 1779 * potentially race with the interrupt handler doing the same 1780 * actions if an interrupt is raised just after enabling them, 1781 * but this should be harmless. 1782 */ 1783 if (macb_tx_complete_pending(queue)) { 1784 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1785 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1786 queue_writel(queue, ISR, MACB_BIT(TCOMP)); 1787 netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n"); 1788 napi_schedule(napi); 1789 } 1790 } 1791 1792 return work_done; 1793 } 1794 1795 static void macb_hresp_error_task(struct tasklet_struct *t) 1796 { 1797 struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet); 1798 struct net_device *dev = bp->dev; 1799 struct macb_queue *queue; 1800 unsigned int q; 1801 u32 ctrl; 1802 1803 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 1804 queue_writel(queue, IDR, bp->rx_intr_mask | 1805 MACB_TX_INT_FLAGS | 1806 MACB_BIT(HRESP)); 1807 } 1808 ctrl = macb_readl(bp, NCR); 1809 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 1810 macb_writel(bp, NCR, ctrl); 1811 1812 netif_tx_stop_all_queues(dev); 1813 netif_carrier_off(dev); 1814 1815 bp->macbgem_ops.mog_init_rings(bp); 1816 1817 /* Initialize TX and RX buffers */ 1818 macb_init_buffers(bp); 1819 1820 /* Enable interrupts */ 1821 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1822 queue_writel(queue, IER, 1823 bp->rx_intr_mask | 1824 MACB_TX_INT_FLAGS | 1825 MACB_BIT(HRESP)); 1826 1827 ctrl |= MACB_BIT(RE) | MACB_BIT(TE); 1828 macb_writel(bp, NCR, ctrl); 1829 1830 netif_carrier_on(dev); 1831 netif_tx_start_all_queues(dev); 1832 } 1833 1834 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id) 1835 { 1836 struct macb_queue *queue = dev_id; 1837 struct macb *bp = queue->bp; 1838 u32 status; 1839 1840 status = queue_readl(queue, ISR); 1841 1842 if (unlikely(!status)) 1843 return IRQ_NONE; 1844 1845 spin_lock(&bp->lock); 1846 1847 if (status & MACB_BIT(WOL)) { 1848 queue_writel(queue, IDR, MACB_BIT(WOL)); 1849 macb_writel(bp, WOL, 0); 1850 netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n", 1851 (unsigned int)(queue - bp->queues), 1852 (unsigned long)status); 1853 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1854 queue_writel(queue, ISR, MACB_BIT(WOL)); 1855 pm_wakeup_event(&bp->pdev->dev, 0); 1856 } 1857 1858 spin_unlock(&bp->lock); 1859 1860 return IRQ_HANDLED; 1861 } 1862 1863 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id) 1864 { 1865 struct macb_queue *queue = dev_id; 1866 struct macb *bp = queue->bp; 1867 u32 status; 1868 1869 status = queue_readl(queue, ISR); 1870 1871 if (unlikely(!status)) 1872 return IRQ_NONE; 1873 1874 spin_lock(&bp->lock); 1875 1876 if (status & GEM_BIT(WOL)) { 1877 queue_writel(queue, IDR, GEM_BIT(WOL)); 1878 gem_writel(bp, WOL, 0); 1879 netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n", 1880 (unsigned int)(queue - bp->queues), 1881 (unsigned long)status); 1882 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1883 queue_writel(queue, ISR, GEM_BIT(WOL)); 1884 pm_wakeup_event(&bp->pdev->dev, 0); 1885 } 1886 1887 spin_unlock(&bp->lock); 1888 1889 return IRQ_HANDLED; 1890 } 1891 1892 static irqreturn_t macb_interrupt(int irq, void *dev_id) 1893 { 1894 struct macb_queue *queue = dev_id; 1895 struct macb *bp = queue->bp; 1896 struct net_device *dev = bp->dev; 1897 u32 status, ctrl; 1898 1899 status = queue_readl(queue, ISR); 1900 1901 if (unlikely(!status)) 1902 return IRQ_NONE; 1903 1904 spin_lock(&bp->lock); 1905 1906 while (status) { 1907 /* close possible race with dev_close */ 1908 if (unlikely(!netif_running(dev))) { 1909 queue_writel(queue, IDR, -1); 1910 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1911 queue_writel(queue, ISR, -1); 1912 break; 1913 } 1914 1915 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n", 1916 (unsigned int)(queue - bp->queues), 1917 (unsigned long)status); 1918 1919 if (status & bp->rx_intr_mask) { 1920 /* There's no point taking any more interrupts 1921 * until we have processed the buffers. The 1922 * scheduling call may fail if the poll routine 1923 * is already scheduled, so disable interrupts 1924 * now. 1925 */ 1926 queue_writel(queue, IDR, bp->rx_intr_mask); 1927 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1928 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1929 1930 if (napi_schedule_prep(&queue->napi_rx)) { 1931 netdev_vdbg(bp->dev, "scheduling RX softirq\n"); 1932 __napi_schedule(&queue->napi_rx); 1933 } 1934 } 1935 1936 if (status & (MACB_BIT(TCOMP) | 1937 MACB_BIT(TXUBR))) { 1938 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1939 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1940 queue_writel(queue, ISR, MACB_BIT(TCOMP) | 1941 MACB_BIT(TXUBR)); 1942 1943 if (status & MACB_BIT(TXUBR)) { 1944 queue->txubr_pending = true; 1945 wmb(); // ensure softirq can see update 1946 } 1947 1948 if (napi_schedule_prep(&queue->napi_tx)) { 1949 netdev_vdbg(bp->dev, "scheduling TX softirq\n"); 1950 __napi_schedule(&queue->napi_tx); 1951 } 1952 } 1953 1954 if (unlikely(status & (MACB_TX_ERR_FLAGS))) { 1955 queue_writel(queue, IDR, MACB_TX_INT_FLAGS); 1956 schedule_work(&queue->tx_error_task); 1957 1958 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1959 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS); 1960 1961 break; 1962 } 1963 1964 /* Link change detection isn't possible with RMII, so we'll 1965 * add that if/when we get our hands on a full-blown MII PHY. 1966 */ 1967 1968 /* There is a hardware issue under heavy load where DMA can 1969 * stop, this causes endless "used buffer descriptor read" 1970 * interrupts but it can be cleared by re-enabling RX. See 1971 * the at91rm9200 manual, section 41.3.1 or the Zynq manual 1972 * section 16.7.4 for details. RXUBR is only enabled for 1973 * these two versions. 1974 */ 1975 if (status & MACB_BIT(RXUBR)) { 1976 ctrl = macb_readl(bp, NCR); 1977 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1978 wmb(); 1979 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1980 1981 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1982 queue_writel(queue, ISR, MACB_BIT(RXUBR)); 1983 } 1984 1985 if (status & MACB_BIT(ISR_ROVR)) { 1986 /* We missed at least one packet */ 1987 if (macb_is_gem(bp)) 1988 bp->hw_stats.gem.rx_overruns++; 1989 else 1990 bp->hw_stats.macb.rx_overruns++; 1991 1992 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1993 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR)); 1994 } 1995 1996 if (status & MACB_BIT(HRESP)) { 1997 tasklet_schedule(&bp->hresp_err_tasklet); 1998 netdev_err(dev, "DMA bus error: HRESP not OK\n"); 1999 2000 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2001 queue_writel(queue, ISR, MACB_BIT(HRESP)); 2002 } 2003 status = queue_readl(queue, ISR); 2004 } 2005 2006 spin_unlock(&bp->lock); 2007 2008 return IRQ_HANDLED; 2009 } 2010 2011 #ifdef CONFIG_NET_POLL_CONTROLLER 2012 /* Polling receive - used by netconsole and other diagnostic tools 2013 * to allow network i/o with interrupts disabled. 2014 */ 2015 static void macb_poll_controller(struct net_device *dev) 2016 { 2017 struct macb *bp = netdev_priv(dev); 2018 struct macb_queue *queue; 2019 unsigned long flags; 2020 unsigned int q; 2021 2022 local_irq_save(flags); 2023 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2024 macb_interrupt(dev->irq, queue); 2025 local_irq_restore(flags); 2026 } 2027 #endif 2028 2029 static unsigned int macb_tx_map(struct macb *bp, 2030 struct macb_queue *queue, 2031 struct sk_buff *skb, 2032 unsigned int hdrlen) 2033 { 2034 dma_addr_t mapping; 2035 unsigned int len, entry, i, tx_head = queue->tx_head; 2036 struct macb_tx_skb *tx_skb = NULL; 2037 struct macb_dma_desc *desc; 2038 unsigned int offset, size, count = 0; 2039 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags; 2040 unsigned int eof = 1, mss_mfs = 0; 2041 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0; 2042 2043 /* LSO */ 2044 if (skb_shinfo(skb)->gso_size != 0) { 2045 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2046 /* UDP - UFO */ 2047 lso_ctrl = MACB_LSO_UFO_ENABLE; 2048 else 2049 /* TCP - TSO */ 2050 lso_ctrl = MACB_LSO_TSO_ENABLE; 2051 } 2052 2053 /* First, map non-paged data */ 2054 len = skb_headlen(skb); 2055 2056 /* first buffer length */ 2057 size = hdrlen; 2058 2059 offset = 0; 2060 while (len) { 2061 entry = macb_tx_ring_wrap(bp, tx_head); 2062 tx_skb = &queue->tx_skb[entry]; 2063 2064 mapping = dma_map_single(&bp->pdev->dev, 2065 skb->data + offset, 2066 size, DMA_TO_DEVICE); 2067 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2068 goto dma_error; 2069 2070 /* Save info to properly release resources */ 2071 tx_skb->skb = NULL; 2072 tx_skb->mapping = mapping; 2073 tx_skb->size = size; 2074 tx_skb->mapped_as_page = false; 2075 2076 len -= size; 2077 offset += size; 2078 count++; 2079 tx_head++; 2080 2081 size = min(len, bp->max_tx_length); 2082 } 2083 2084 /* Then, map paged data from fragments */ 2085 for (f = 0; f < nr_frags; f++) { 2086 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2087 2088 len = skb_frag_size(frag); 2089 offset = 0; 2090 while (len) { 2091 size = min(len, bp->max_tx_length); 2092 entry = macb_tx_ring_wrap(bp, tx_head); 2093 tx_skb = &queue->tx_skb[entry]; 2094 2095 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 2096 offset, size, DMA_TO_DEVICE); 2097 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2098 goto dma_error; 2099 2100 /* Save info to properly release resources */ 2101 tx_skb->skb = NULL; 2102 tx_skb->mapping = mapping; 2103 tx_skb->size = size; 2104 tx_skb->mapped_as_page = true; 2105 2106 len -= size; 2107 offset += size; 2108 count++; 2109 tx_head++; 2110 } 2111 } 2112 2113 /* Should never happen */ 2114 if (unlikely(!tx_skb)) { 2115 netdev_err(bp->dev, "BUG! empty skb!\n"); 2116 return 0; 2117 } 2118 2119 /* This is the last buffer of the frame: save socket buffer */ 2120 tx_skb->skb = skb; 2121 2122 /* Update TX ring: update buffer descriptors in reverse order 2123 * to avoid race condition 2124 */ 2125 2126 /* Set 'TX_USED' bit in buffer descriptor at tx_head position 2127 * to set the end of TX queue 2128 */ 2129 i = tx_head; 2130 entry = macb_tx_ring_wrap(bp, i); 2131 ctrl = MACB_BIT(TX_USED); 2132 desc = macb_tx_desc(queue, entry); 2133 desc->ctrl = ctrl; 2134 2135 if (lso_ctrl) { 2136 if (lso_ctrl == MACB_LSO_UFO_ENABLE) 2137 /* include header and FCS in value given to h/w */ 2138 mss_mfs = skb_shinfo(skb)->gso_size + 2139 skb_transport_offset(skb) + 2140 ETH_FCS_LEN; 2141 else /* TSO */ { 2142 mss_mfs = skb_shinfo(skb)->gso_size; 2143 /* TCP Sequence Number Source Select 2144 * can be set only for TSO 2145 */ 2146 seq_ctrl = 0; 2147 } 2148 } 2149 2150 do { 2151 i--; 2152 entry = macb_tx_ring_wrap(bp, i); 2153 tx_skb = &queue->tx_skb[entry]; 2154 desc = macb_tx_desc(queue, entry); 2155 2156 ctrl = (u32)tx_skb->size; 2157 if (eof) { 2158 ctrl |= MACB_BIT(TX_LAST); 2159 eof = 0; 2160 } 2161 if (unlikely(entry == (bp->tx_ring_size - 1))) 2162 ctrl |= MACB_BIT(TX_WRAP); 2163 2164 /* First descriptor is header descriptor */ 2165 if (i == queue->tx_head) { 2166 ctrl |= MACB_BF(TX_LSO, lso_ctrl); 2167 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl); 2168 if ((bp->dev->features & NETIF_F_HW_CSUM) && 2169 skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl && 2170 !ptp_one_step_sync(skb)) 2171 ctrl |= MACB_BIT(TX_NOCRC); 2172 } else 2173 /* Only set MSS/MFS on payload descriptors 2174 * (second or later descriptor) 2175 */ 2176 ctrl |= MACB_BF(MSS_MFS, mss_mfs); 2177 2178 /* Set TX buffer descriptor */ 2179 macb_set_addr(bp, desc, tx_skb->mapping); 2180 /* desc->addr must be visible to hardware before clearing 2181 * 'TX_USED' bit in desc->ctrl. 2182 */ 2183 wmb(); 2184 desc->ctrl = ctrl; 2185 } while (i != queue->tx_head); 2186 2187 queue->tx_head = tx_head; 2188 2189 return count; 2190 2191 dma_error: 2192 netdev_err(bp->dev, "TX DMA map failed\n"); 2193 2194 for (i = queue->tx_head; i != tx_head; i++) { 2195 tx_skb = macb_tx_skb(queue, i); 2196 2197 macb_tx_unmap(bp, tx_skb, 0); 2198 } 2199 2200 return 0; 2201 } 2202 2203 static netdev_features_t macb_features_check(struct sk_buff *skb, 2204 struct net_device *dev, 2205 netdev_features_t features) 2206 { 2207 unsigned int nr_frags, f; 2208 unsigned int hdrlen; 2209 2210 /* Validate LSO compatibility */ 2211 2212 /* there is only one buffer or protocol is not UDP */ 2213 if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP)) 2214 return features; 2215 2216 /* length of header */ 2217 hdrlen = skb_transport_offset(skb); 2218 2219 /* For UFO only: 2220 * When software supplies two or more payload buffers all payload buffers 2221 * apart from the last must be a multiple of 8 bytes in size. 2222 */ 2223 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN)) 2224 return features & ~MACB_NETIF_LSO; 2225 2226 nr_frags = skb_shinfo(skb)->nr_frags; 2227 /* No need to check last fragment */ 2228 nr_frags--; 2229 for (f = 0; f < nr_frags; f++) { 2230 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2231 2232 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN)) 2233 return features & ~MACB_NETIF_LSO; 2234 } 2235 return features; 2236 } 2237 2238 static inline int macb_clear_csum(struct sk_buff *skb) 2239 { 2240 /* no change for packets without checksum offloading */ 2241 if (skb->ip_summed != CHECKSUM_PARTIAL) 2242 return 0; 2243 2244 /* make sure we can modify the header */ 2245 if (unlikely(skb_cow_head(skb, 0))) 2246 return -1; 2247 2248 /* initialize checksum field 2249 * This is required - at least for Zynq, which otherwise calculates 2250 * wrong UDP header checksums for UDP packets with UDP data len <=2 2251 */ 2252 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0; 2253 return 0; 2254 } 2255 2256 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev) 2257 { 2258 bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) || 2259 skb_is_nonlinear(*skb); 2260 int padlen = ETH_ZLEN - (*skb)->len; 2261 int tailroom = skb_tailroom(*skb); 2262 struct sk_buff *nskb; 2263 u32 fcs; 2264 2265 if (!(ndev->features & NETIF_F_HW_CSUM) || 2266 !((*skb)->ip_summed != CHECKSUM_PARTIAL) || 2267 skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb)) 2268 return 0; 2269 2270 if (padlen <= 0) { 2271 /* FCS could be appeded to tailroom. */ 2272 if (tailroom >= ETH_FCS_LEN) 2273 goto add_fcs; 2274 /* No room for FCS, need to reallocate skb. */ 2275 else 2276 padlen = ETH_FCS_LEN; 2277 } else { 2278 /* Add room for FCS. */ 2279 padlen += ETH_FCS_LEN; 2280 } 2281 2282 if (cloned || tailroom < padlen) { 2283 nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC); 2284 if (!nskb) 2285 return -ENOMEM; 2286 2287 dev_consume_skb_any(*skb); 2288 *skb = nskb; 2289 } 2290 2291 if (padlen > ETH_FCS_LEN) 2292 skb_put_zero(*skb, padlen - ETH_FCS_LEN); 2293 2294 add_fcs: 2295 /* set FCS to packet */ 2296 fcs = crc32_le(~0, (*skb)->data, (*skb)->len); 2297 fcs = ~fcs; 2298 2299 skb_put_u8(*skb, fcs & 0xff); 2300 skb_put_u8(*skb, (fcs >> 8) & 0xff); 2301 skb_put_u8(*skb, (fcs >> 16) & 0xff); 2302 skb_put_u8(*skb, (fcs >> 24) & 0xff); 2303 2304 return 0; 2305 } 2306 2307 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev) 2308 { 2309 u16 queue_index = skb_get_queue_mapping(skb); 2310 struct macb *bp = netdev_priv(dev); 2311 struct macb_queue *queue = &bp->queues[queue_index]; 2312 unsigned int desc_cnt, nr_frags, frag_size, f; 2313 unsigned int hdrlen; 2314 bool is_lso; 2315 netdev_tx_t ret = NETDEV_TX_OK; 2316 2317 if (macb_clear_csum(skb)) { 2318 dev_kfree_skb_any(skb); 2319 return ret; 2320 } 2321 2322 if (macb_pad_and_fcs(&skb, dev)) { 2323 dev_kfree_skb_any(skb); 2324 return ret; 2325 } 2326 2327 #ifdef CONFIG_MACB_USE_HWSTAMP 2328 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2329 (bp->hw_dma_cap & HW_DMA_CAP_PTP)) 2330 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2331 #endif 2332 2333 is_lso = (skb_shinfo(skb)->gso_size != 0); 2334 2335 if (is_lso) { 2336 /* length of headers */ 2337 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2338 /* only queue eth + ip headers separately for UDP */ 2339 hdrlen = skb_transport_offset(skb); 2340 else 2341 hdrlen = skb_tcp_all_headers(skb); 2342 if (skb_headlen(skb) < hdrlen) { 2343 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n"); 2344 /* if this is required, would need to copy to single buffer */ 2345 return NETDEV_TX_BUSY; 2346 } 2347 } else 2348 hdrlen = min(skb_headlen(skb), bp->max_tx_length); 2349 2350 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 2351 netdev_vdbg(bp->dev, 2352 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n", 2353 queue_index, skb->len, skb->head, skb->data, 2354 skb_tail_pointer(skb), skb_end_pointer(skb)); 2355 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1, 2356 skb->data, 16, true); 2357 #endif 2358 2359 /* Count how many TX buffer descriptors are needed to send this 2360 * socket buffer: skb fragments of jumbo frames may need to be 2361 * split into many buffer descriptors. 2362 */ 2363 if (is_lso && (skb_headlen(skb) > hdrlen)) 2364 /* extra header descriptor if also payload in first buffer */ 2365 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1; 2366 else 2367 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length); 2368 nr_frags = skb_shinfo(skb)->nr_frags; 2369 for (f = 0; f < nr_frags; f++) { 2370 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2371 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length); 2372 } 2373 2374 spin_lock_bh(&queue->tx_ptr_lock); 2375 2376 /* This is a hard error, log it. */ 2377 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, 2378 bp->tx_ring_size) < desc_cnt) { 2379 netif_stop_subqueue(dev, queue_index); 2380 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n", 2381 queue->tx_head, queue->tx_tail); 2382 ret = NETDEV_TX_BUSY; 2383 goto unlock; 2384 } 2385 2386 /* Map socket buffer for DMA transfer */ 2387 if (!macb_tx_map(bp, queue, skb, hdrlen)) { 2388 dev_kfree_skb_any(skb); 2389 goto unlock; 2390 } 2391 2392 /* Make newly initialized descriptor visible to hardware */ 2393 wmb(); 2394 skb_tx_timestamp(skb); 2395 2396 spin_lock_irq(&bp->lock); 2397 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 2398 spin_unlock_irq(&bp->lock); 2399 2400 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1) 2401 netif_stop_subqueue(dev, queue_index); 2402 2403 unlock: 2404 spin_unlock_bh(&queue->tx_ptr_lock); 2405 2406 return ret; 2407 } 2408 2409 static void macb_init_rx_buffer_size(struct macb *bp, size_t size) 2410 { 2411 if (!macb_is_gem(bp)) { 2412 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE; 2413 } else { 2414 bp->rx_buffer_size = size; 2415 2416 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) { 2417 netdev_dbg(bp->dev, 2418 "RX buffer must be multiple of %d bytes, expanding\n", 2419 RX_BUFFER_MULTIPLE); 2420 bp->rx_buffer_size = 2421 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE); 2422 } 2423 } 2424 2425 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n", 2426 bp->dev->mtu, bp->rx_buffer_size); 2427 } 2428 2429 static void gem_free_rx_buffers(struct macb *bp) 2430 { 2431 struct sk_buff *skb; 2432 struct macb_dma_desc *desc; 2433 struct macb_queue *queue; 2434 dma_addr_t addr; 2435 unsigned int q; 2436 int i; 2437 2438 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2439 if (!queue->rx_skbuff) 2440 continue; 2441 2442 for (i = 0; i < bp->rx_ring_size; i++) { 2443 skb = queue->rx_skbuff[i]; 2444 2445 if (!skb) 2446 continue; 2447 2448 desc = macb_rx_desc(queue, i); 2449 addr = macb_get_addr(bp, desc); 2450 2451 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size, 2452 DMA_FROM_DEVICE); 2453 dev_kfree_skb_any(skb); 2454 skb = NULL; 2455 } 2456 2457 kfree(queue->rx_skbuff); 2458 queue->rx_skbuff = NULL; 2459 } 2460 } 2461 2462 static void macb_free_rx_buffers(struct macb *bp) 2463 { 2464 struct macb_queue *queue = &bp->queues[0]; 2465 2466 if (queue->rx_buffers) { 2467 dma_free_coherent(&bp->pdev->dev, 2468 bp->rx_ring_size * bp->rx_buffer_size, 2469 queue->rx_buffers, queue->rx_buffers_dma); 2470 queue->rx_buffers = NULL; 2471 } 2472 } 2473 2474 static void macb_free_consistent(struct macb *bp) 2475 { 2476 struct macb_queue *queue; 2477 unsigned int q; 2478 int size; 2479 2480 bp->macbgem_ops.mog_free_rx_buffers(bp); 2481 2482 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2483 kfree(queue->tx_skb); 2484 queue->tx_skb = NULL; 2485 if (queue->tx_ring) { 2486 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2487 dma_free_coherent(&bp->pdev->dev, size, 2488 queue->tx_ring, queue->tx_ring_dma); 2489 queue->tx_ring = NULL; 2490 } 2491 if (queue->rx_ring) { 2492 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2493 dma_free_coherent(&bp->pdev->dev, size, 2494 queue->rx_ring, queue->rx_ring_dma); 2495 queue->rx_ring = NULL; 2496 } 2497 } 2498 } 2499 2500 static int gem_alloc_rx_buffers(struct macb *bp) 2501 { 2502 struct macb_queue *queue; 2503 unsigned int q; 2504 int size; 2505 2506 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2507 size = bp->rx_ring_size * sizeof(struct sk_buff *); 2508 queue->rx_skbuff = kzalloc(size, GFP_KERNEL); 2509 if (!queue->rx_skbuff) 2510 return -ENOMEM; 2511 else 2512 netdev_dbg(bp->dev, 2513 "Allocated %d RX struct sk_buff entries at %p\n", 2514 bp->rx_ring_size, queue->rx_skbuff); 2515 } 2516 return 0; 2517 } 2518 2519 static int macb_alloc_rx_buffers(struct macb *bp) 2520 { 2521 struct macb_queue *queue = &bp->queues[0]; 2522 int size; 2523 2524 size = bp->rx_ring_size * bp->rx_buffer_size; 2525 queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size, 2526 &queue->rx_buffers_dma, GFP_KERNEL); 2527 if (!queue->rx_buffers) 2528 return -ENOMEM; 2529 2530 netdev_dbg(bp->dev, 2531 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n", 2532 size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers); 2533 return 0; 2534 } 2535 2536 static int macb_alloc_consistent(struct macb *bp) 2537 { 2538 struct macb_queue *queue; 2539 unsigned int q; 2540 int size; 2541 2542 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2543 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2544 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2545 &queue->tx_ring_dma, 2546 GFP_KERNEL); 2547 if (!queue->tx_ring) 2548 goto out_err; 2549 netdev_dbg(bp->dev, 2550 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n", 2551 q, size, (unsigned long)queue->tx_ring_dma, 2552 queue->tx_ring); 2553 2554 size = bp->tx_ring_size * sizeof(struct macb_tx_skb); 2555 queue->tx_skb = kmalloc(size, GFP_KERNEL); 2556 if (!queue->tx_skb) 2557 goto out_err; 2558 2559 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2560 queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2561 &queue->rx_ring_dma, GFP_KERNEL); 2562 if (!queue->rx_ring) 2563 goto out_err; 2564 netdev_dbg(bp->dev, 2565 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n", 2566 size, (unsigned long)queue->rx_ring_dma, queue->rx_ring); 2567 } 2568 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp)) 2569 goto out_err; 2570 2571 return 0; 2572 2573 out_err: 2574 macb_free_consistent(bp); 2575 return -ENOMEM; 2576 } 2577 2578 static void gem_init_rings(struct macb *bp) 2579 { 2580 struct macb_queue *queue; 2581 struct macb_dma_desc *desc = NULL; 2582 unsigned int q; 2583 int i; 2584 2585 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2586 for (i = 0; i < bp->tx_ring_size; i++) { 2587 desc = macb_tx_desc(queue, i); 2588 macb_set_addr(bp, desc, 0); 2589 desc->ctrl = MACB_BIT(TX_USED); 2590 } 2591 desc->ctrl |= MACB_BIT(TX_WRAP); 2592 queue->tx_head = 0; 2593 queue->tx_tail = 0; 2594 2595 queue->rx_tail = 0; 2596 queue->rx_prepared_head = 0; 2597 2598 gem_rx_refill(queue); 2599 } 2600 2601 } 2602 2603 static void macb_init_rings(struct macb *bp) 2604 { 2605 int i; 2606 struct macb_dma_desc *desc = NULL; 2607 2608 macb_init_rx_ring(&bp->queues[0]); 2609 2610 for (i = 0; i < bp->tx_ring_size; i++) { 2611 desc = macb_tx_desc(&bp->queues[0], i); 2612 macb_set_addr(bp, desc, 0); 2613 desc->ctrl = MACB_BIT(TX_USED); 2614 } 2615 bp->queues[0].tx_head = 0; 2616 bp->queues[0].tx_tail = 0; 2617 desc->ctrl |= MACB_BIT(TX_WRAP); 2618 } 2619 2620 static void macb_reset_hw(struct macb *bp) 2621 { 2622 struct macb_queue *queue; 2623 unsigned int q; 2624 u32 ctrl = macb_readl(bp, NCR); 2625 2626 /* Disable RX and TX (XXX: Should we halt the transmission 2627 * more gracefully?) 2628 */ 2629 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 2630 2631 /* Clear the stats registers (XXX: Update stats first?) */ 2632 ctrl |= MACB_BIT(CLRSTAT); 2633 2634 macb_writel(bp, NCR, ctrl); 2635 2636 /* Clear all status flags */ 2637 macb_writel(bp, TSR, -1); 2638 macb_writel(bp, RSR, -1); 2639 2640 /* Disable RX partial store and forward and reset watermark value */ 2641 gem_writel(bp, PBUFRXCUT, 0); 2642 2643 /* Disable all interrupts */ 2644 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2645 queue_writel(queue, IDR, -1); 2646 queue_readl(queue, ISR); 2647 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2648 queue_writel(queue, ISR, -1); 2649 } 2650 } 2651 2652 static u32 gem_mdc_clk_div(struct macb *bp) 2653 { 2654 u32 config; 2655 unsigned long pclk_hz = clk_get_rate(bp->pclk); 2656 2657 if (pclk_hz <= 20000000) 2658 config = GEM_BF(CLK, GEM_CLK_DIV8); 2659 else if (pclk_hz <= 40000000) 2660 config = GEM_BF(CLK, GEM_CLK_DIV16); 2661 else if (pclk_hz <= 80000000) 2662 config = GEM_BF(CLK, GEM_CLK_DIV32); 2663 else if (pclk_hz <= 120000000) 2664 config = GEM_BF(CLK, GEM_CLK_DIV48); 2665 else if (pclk_hz <= 160000000) 2666 config = GEM_BF(CLK, GEM_CLK_DIV64); 2667 else if (pclk_hz <= 240000000) 2668 config = GEM_BF(CLK, GEM_CLK_DIV96); 2669 else if (pclk_hz <= 320000000) 2670 config = GEM_BF(CLK, GEM_CLK_DIV128); 2671 else 2672 config = GEM_BF(CLK, GEM_CLK_DIV224); 2673 2674 return config; 2675 } 2676 2677 static u32 macb_mdc_clk_div(struct macb *bp) 2678 { 2679 u32 config; 2680 unsigned long pclk_hz; 2681 2682 if (macb_is_gem(bp)) 2683 return gem_mdc_clk_div(bp); 2684 2685 pclk_hz = clk_get_rate(bp->pclk); 2686 if (pclk_hz <= 20000000) 2687 config = MACB_BF(CLK, MACB_CLK_DIV8); 2688 else if (pclk_hz <= 40000000) 2689 config = MACB_BF(CLK, MACB_CLK_DIV16); 2690 else if (pclk_hz <= 80000000) 2691 config = MACB_BF(CLK, MACB_CLK_DIV32); 2692 else 2693 config = MACB_BF(CLK, MACB_CLK_DIV64); 2694 2695 return config; 2696 } 2697 2698 /* Get the DMA bus width field of the network configuration register that we 2699 * should program. We find the width from decoding the design configuration 2700 * register to find the maximum supported data bus width. 2701 */ 2702 static u32 macb_dbw(struct macb *bp) 2703 { 2704 if (!macb_is_gem(bp)) 2705 return 0; 2706 2707 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) { 2708 case 4: 2709 return GEM_BF(DBW, GEM_DBW128); 2710 case 2: 2711 return GEM_BF(DBW, GEM_DBW64); 2712 case 1: 2713 default: 2714 return GEM_BF(DBW, GEM_DBW32); 2715 } 2716 } 2717 2718 /* Configure the receive DMA engine 2719 * - use the correct receive buffer size 2720 * - set best burst length for DMA operations 2721 * (if not supported by FIFO, it will fallback to default) 2722 * - set both rx/tx packet buffers to full memory size 2723 * These are configurable parameters for GEM. 2724 */ 2725 static void macb_configure_dma(struct macb *bp) 2726 { 2727 struct macb_queue *queue; 2728 u32 buffer_size; 2729 unsigned int q; 2730 u32 dmacfg; 2731 2732 buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE; 2733 if (macb_is_gem(bp)) { 2734 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L); 2735 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2736 if (q) 2737 queue_writel(queue, RBQS, buffer_size); 2738 else 2739 dmacfg |= GEM_BF(RXBS, buffer_size); 2740 } 2741 if (bp->dma_burst_length) 2742 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg); 2743 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L); 2744 dmacfg &= ~GEM_BIT(ENDIA_PKT); 2745 2746 if (bp->native_io) 2747 dmacfg &= ~GEM_BIT(ENDIA_DESC); 2748 else 2749 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */ 2750 2751 if (bp->dev->features & NETIF_F_HW_CSUM) 2752 dmacfg |= GEM_BIT(TXCOEN); 2753 else 2754 dmacfg &= ~GEM_BIT(TXCOEN); 2755 2756 dmacfg &= ~GEM_BIT(ADDR64); 2757 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 2758 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 2759 dmacfg |= GEM_BIT(ADDR64); 2760 #endif 2761 #ifdef CONFIG_MACB_USE_HWSTAMP 2762 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 2763 dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT); 2764 #endif 2765 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n", 2766 dmacfg); 2767 gem_writel(bp, DMACFG, dmacfg); 2768 } 2769 } 2770 2771 static void macb_init_hw(struct macb *bp) 2772 { 2773 u32 config; 2774 2775 macb_reset_hw(bp); 2776 macb_set_hwaddr(bp); 2777 2778 config = macb_mdc_clk_div(bp); 2779 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */ 2780 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */ 2781 if (bp->caps & MACB_CAPS_JUMBO) 2782 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */ 2783 else 2784 config |= MACB_BIT(BIG); /* Receive oversized frames */ 2785 if (bp->dev->flags & IFF_PROMISC) 2786 config |= MACB_BIT(CAF); /* Copy All Frames */ 2787 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM) 2788 config |= GEM_BIT(RXCOEN); 2789 if (!(bp->dev->flags & IFF_BROADCAST)) 2790 config |= MACB_BIT(NBC); /* No BroadCast */ 2791 config |= macb_dbw(bp); 2792 macb_writel(bp, NCFGR, config); 2793 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 2794 gem_writel(bp, JML, bp->jumbo_max_len); 2795 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK; 2796 if (bp->caps & MACB_CAPS_JUMBO) 2797 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK; 2798 2799 macb_configure_dma(bp); 2800 2801 /* Enable RX partial store and forward and set watermark */ 2802 if (bp->rx_watermark) 2803 gem_writel(bp, PBUFRXCUT, (bp->rx_watermark | GEM_BIT(ENCUTTHRU))); 2804 } 2805 2806 /* The hash address register is 64 bits long and takes up two 2807 * locations in the memory map. The least significant bits are stored 2808 * in EMAC_HSL and the most significant bits in EMAC_HSH. 2809 * 2810 * The unicast hash enable and the multicast hash enable bits in the 2811 * network configuration register enable the reception of hash matched 2812 * frames. The destination address is reduced to a 6 bit index into 2813 * the 64 bit hash register using the following hash function. The 2814 * hash function is an exclusive or of every sixth bit of the 2815 * destination address. 2816 * 2817 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] 2818 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] 2819 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] 2820 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] 2821 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] 2822 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] 2823 * 2824 * da[0] represents the least significant bit of the first byte 2825 * received, that is, the multicast/unicast indicator, and da[47] 2826 * represents the most significant bit of the last byte received. If 2827 * the hash index, hi[n], points to a bit that is set in the hash 2828 * register then the frame will be matched according to whether the 2829 * frame is multicast or unicast. A multicast match will be signalled 2830 * if the multicast hash enable bit is set, da[0] is 1 and the hash 2831 * index points to a bit set in the hash register. A unicast match 2832 * will be signalled if the unicast hash enable bit is set, da[0] is 0 2833 * and the hash index points to a bit set in the hash register. To 2834 * receive all multicast frames, the hash register should be set with 2835 * all ones and the multicast hash enable bit should be set in the 2836 * network configuration register. 2837 */ 2838 2839 static inline int hash_bit_value(int bitnr, __u8 *addr) 2840 { 2841 if (addr[bitnr / 8] & (1 << (bitnr % 8))) 2842 return 1; 2843 return 0; 2844 } 2845 2846 /* Return the hash index value for the specified address. */ 2847 static int hash_get_index(__u8 *addr) 2848 { 2849 int i, j, bitval; 2850 int hash_index = 0; 2851 2852 for (j = 0; j < 6; j++) { 2853 for (i = 0, bitval = 0; i < 8; i++) 2854 bitval ^= hash_bit_value(i * 6 + j, addr); 2855 2856 hash_index |= (bitval << j); 2857 } 2858 2859 return hash_index; 2860 } 2861 2862 /* Add multicast addresses to the internal multicast-hash table. */ 2863 static void macb_sethashtable(struct net_device *dev) 2864 { 2865 struct netdev_hw_addr *ha; 2866 unsigned long mc_filter[2]; 2867 unsigned int bitnr; 2868 struct macb *bp = netdev_priv(dev); 2869 2870 mc_filter[0] = 0; 2871 mc_filter[1] = 0; 2872 2873 netdev_for_each_mc_addr(ha, dev) { 2874 bitnr = hash_get_index(ha->addr); 2875 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 2876 } 2877 2878 macb_or_gem_writel(bp, HRB, mc_filter[0]); 2879 macb_or_gem_writel(bp, HRT, mc_filter[1]); 2880 } 2881 2882 /* Enable/Disable promiscuous and multicast modes. */ 2883 static void macb_set_rx_mode(struct net_device *dev) 2884 { 2885 unsigned long cfg; 2886 struct macb *bp = netdev_priv(dev); 2887 2888 cfg = macb_readl(bp, NCFGR); 2889 2890 if (dev->flags & IFF_PROMISC) { 2891 /* Enable promiscuous mode */ 2892 cfg |= MACB_BIT(CAF); 2893 2894 /* Disable RX checksum offload */ 2895 if (macb_is_gem(bp)) 2896 cfg &= ~GEM_BIT(RXCOEN); 2897 } else { 2898 /* Disable promiscuous mode */ 2899 cfg &= ~MACB_BIT(CAF); 2900 2901 /* Enable RX checksum offload only if requested */ 2902 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM) 2903 cfg |= GEM_BIT(RXCOEN); 2904 } 2905 2906 if (dev->flags & IFF_ALLMULTI) { 2907 /* Enable all multicast mode */ 2908 macb_or_gem_writel(bp, HRB, -1); 2909 macb_or_gem_writel(bp, HRT, -1); 2910 cfg |= MACB_BIT(NCFGR_MTI); 2911 } else if (!netdev_mc_empty(dev)) { 2912 /* Enable specific multicasts */ 2913 macb_sethashtable(dev); 2914 cfg |= MACB_BIT(NCFGR_MTI); 2915 } else if (dev->flags & (~IFF_ALLMULTI)) { 2916 /* Disable all multicast mode */ 2917 macb_or_gem_writel(bp, HRB, 0); 2918 macb_or_gem_writel(bp, HRT, 0); 2919 cfg &= ~MACB_BIT(NCFGR_MTI); 2920 } 2921 2922 macb_writel(bp, NCFGR, cfg); 2923 } 2924 2925 static int macb_open(struct net_device *dev) 2926 { 2927 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN; 2928 struct macb *bp = netdev_priv(dev); 2929 struct macb_queue *queue; 2930 unsigned int q; 2931 int err; 2932 2933 netdev_dbg(bp->dev, "open\n"); 2934 2935 err = pm_runtime_resume_and_get(&bp->pdev->dev); 2936 if (err < 0) 2937 return err; 2938 2939 /* RX buffers initialization */ 2940 macb_init_rx_buffer_size(bp, bufsz); 2941 2942 err = macb_alloc_consistent(bp); 2943 if (err) { 2944 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n", 2945 err); 2946 goto pm_exit; 2947 } 2948 2949 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2950 napi_enable(&queue->napi_rx); 2951 napi_enable(&queue->napi_tx); 2952 } 2953 2954 macb_init_hw(bp); 2955 2956 err = phy_power_on(bp->sgmii_phy); 2957 if (err) 2958 goto reset_hw; 2959 2960 err = macb_phylink_connect(bp); 2961 if (err) 2962 goto phy_off; 2963 2964 netif_tx_start_all_queues(dev); 2965 2966 if (bp->ptp_info) 2967 bp->ptp_info->ptp_init(dev); 2968 2969 return 0; 2970 2971 phy_off: 2972 phy_power_off(bp->sgmii_phy); 2973 2974 reset_hw: 2975 macb_reset_hw(bp); 2976 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2977 napi_disable(&queue->napi_rx); 2978 napi_disable(&queue->napi_tx); 2979 } 2980 macb_free_consistent(bp); 2981 pm_exit: 2982 pm_runtime_put_sync(&bp->pdev->dev); 2983 return err; 2984 } 2985 2986 static int macb_close(struct net_device *dev) 2987 { 2988 struct macb *bp = netdev_priv(dev); 2989 struct macb_queue *queue; 2990 unsigned long flags; 2991 unsigned int q; 2992 2993 netif_tx_stop_all_queues(dev); 2994 2995 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2996 napi_disable(&queue->napi_rx); 2997 napi_disable(&queue->napi_tx); 2998 } 2999 3000 phylink_stop(bp->phylink); 3001 phylink_disconnect_phy(bp->phylink); 3002 3003 phy_power_off(bp->sgmii_phy); 3004 3005 spin_lock_irqsave(&bp->lock, flags); 3006 macb_reset_hw(bp); 3007 netif_carrier_off(dev); 3008 spin_unlock_irqrestore(&bp->lock, flags); 3009 3010 macb_free_consistent(bp); 3011 3012 if (bp->ptp_info) 3013 bp->ptp_info->ptp_remove(dev); 3014 3015 pm_runtime_put(&bp->pdev->dev); 3016 3017 return 0; 3018 } 3019 3020 static int macb_change_mtu(struct net_device *dev, int new_mtu) 3021 { 3022 if (netif_running(dev)) 3023 return -EBUSY; 3024 3025 dev->mtu = new_mtu; 3026 3027 return 0; 3028 } 3029 3030 static int macb_set_mac_addr(struct net_device *dev, void *addr) 3031 { 3032 int err; 3033 3034 err = eth_mac_addr(dev, addr); 3035 if (err < 0) 3036 return err; 3037 3038 macb_set_hwaddr(netdev_priv(dev)); 3039 return 0; 3040 } 3041 3042 static void gem_update_stats(struct macb *bp) 3043 { 3044 struct macb_queue *queue; 3045 unsigned int i, q, idx; 3046 unsigned long *stat; 3047 3048 u32 *p = &bp->hw_stats.gem.tx_octets_31_0; 3049 3050 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) { 3051 u32 offset = gem_statistics[i].offset; 3052 u64 val = bp->macb_reg_readl(bp, offset); 3053 3054 bp->ethtool_stats[i] += val; 3055 *p += val; 3056 3057 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) { 3058 /* Add GEM_OCTTXH, GEM_OCTRXH */ 3059 val = bp->macb_reg_readl(bp, offset + 4); 3060 bp->ethtool_stats[i] += ((u64)val) << 32; 3061 *(++p) += val; 3062 } 3063 } 3064 3065 idx = GEM_STATS_LEN; 3066 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 3067 for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat) 3068 bp->ethtool_stats[idx++] = *stat; 3069 } 3070 3071 static struct net_device_stats *gem_get_stats(struct macb *bp) 3072 { 3073 struct gem_stats *hwstat = &bp->hw_stats.gem; 3074 struct net_device_stats *nstat = &bp->dev->stats; 3075 3076 if (!netif_running(bp->dev)) 3077 return nstat; 3078 3079 gem_update_stats(bp); 3080 3081 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors + 3082 hwstat->rx_alignment_errors + 3083 hwstat->rx_resource_errors + 3084 hwstat->rx_overruns + 3085 hwstat->rx_oversize_frames + 3086 hwstat->rx_jabbers + 3087 hwstat->rx_undersized_frames + 3088 hwstat->rx_length_field_frame_errors); 3089 nstat->tx_errors = (hwstat->tx_late_collisions + 3090 hwstat->tx_excessive_collisions + 3091 hwstat->tx_underrun + 3092 hwstat->tx_carrier_sense_errors); 3093 nstat->multicast = hwstat->rx_multicast_frames; 3094 nstat->collisions = (hwstat->tx_single_collision_frames + 3095 hwstat->tx_multiple_collision_frames + 3096 hwstat->tx_excessive_collisions); 3097 nstat->rx_length_errors = (hwstat->rx_oversize_frames + 3098 hwstat->rx_jabbers + 3099 hwstat->rx_undersized_frames + 3100 hwstat->rx_length_field_frame_errors); 3101 nstat->rx_over_errors = hwstat->rx_resource_errors; 3102 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors; 3103 nstat->rx_frame_errors = hwstat->rx_alignment_errors; 3104 nstat->rx_fifo_errors = hwstat->rx_overruns; 3105 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions; 3106 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors; 3107 nstat->tx_fifo_errors = hwstat->tx_underrun; 3108 3109 return nstat; 3110 } 3111 3112 static void gem_get_ethtool_stats(struct net_device *dev, 3113 struct ethtool_stats *stats, u64 *data) 3114 { 3115 struct macb *bp; 3116 3117 bp = netdev_priv(dev); 3118 gem_update_stats(bp); 3119 memcpy(data, &bp->ethtool_stats, sizeof(u64) 3120 * (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES)); 3121 } 3122 3123 static int gem_get_sset_count(struct net_device *dev, int sset) 3124 { 3125 struct macb *bp = netdev_priv(dev); 3126 3127 switch (sset) { 3128 case ETH_SS_STATS: 3129 return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN; 3130 default: 3131 return -EOPNOTSUPP; 3132 } 3133 } 3134 3135 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p) 3136 { 3137 char stat_string[ETH_GSTRING_LEN]; 3138 struct macb *bp = netdev_priv(dev); 3139 struct macb_queue *queue; 3140 unsigned int i; 3141 unsigned int q; 3142 3143 switch (sset) { 3144 case ETH_SS_STATS: 3145 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN) 3146 memcpy(p, gem_statistics[i].stat_string, 3147 ETH_GSTRING_LEN); 3148 3149 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 3150 for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) { 3151 snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s", 3152 q, queue_statistics[i].stat_string); 3153 memcpy(p, stat_string, ETH_GSTRING_LEN); 3154 } 3155 } 3156 break; 3157 } 3158 } 3159 3160 static struct net_device_stats *macb_get_stats(struct net_device *dev) 3161 { 3162 struct macb *bp = netdev_priv(dev); 3163 struct net_device_stats *nstat = &bp->dev->stats; 3164 struct macb_stats *hwstat = &bp->hw_stats.macb; 3165 3166 if (macb_is_gem(bp)) 3167 return gem_get_stats(bp); 3168 3169 /* read stats from hardware */ 3170 macb_update_stats(bp); 3171 3172 /* Convert HW stats into netdevice stats */ 3173 nstat->rx_errors = (hwstat->rx_fcs_errors + 3174 hwstat->rx_align_errors + 3175 hwstat->rx_resource_errors + 3176 hwstat->rx_overruns + 3177 hwstat->rx_oversize_pkts + 3178 hwstat->rx_jabbers + 3179 hwstat->rx_undersize_pkts + 3180 hwstat->rx_length_mismatch); 3181 nstat->tx_errors = (hwstat->tx_late_cols + 3182 hwstat->tx_excessive_cols + 3183 hwstat->tx_underruns + 3184 hwstat->tx_carrier_errors + 3185 hwstat->sqe_test_errors); 3186 nstat->collisions = (hwstat->tx_single_cols + 3187 hwstat->tx_multiple_cols + 3188 hwstat->tx_excessive_cols); 3189 nstat->rx_length_errors = (hwstat->rx_oversize_pkts + 3190 hwstat->rx_jabbers + 3191 hwstat->rx_undersize_pkts + 3192 hwstat->rx_length_mismatch); 3193 nstat->rx_over_errors = hwstat->rx_resource_errors + 3194 hwstat->rx_overruns; 3195 nstat->rx_crc_errors = hwstat->rx_fcs_errors; 3196 nstat->rx_frame_errors = hwstat->rx_align_errors; 3197 nstat->rx_fifo_errors = hwstat->rx_overruns; 3198 /* XXX: What does "missed" mean? */ 3199 nstat->tx_aborted_errors = hwstat->tx_excessive_cols; 3200 nstat->tx_carrier_errors = hwstat->tx_carrier_errors; 3201 nstat->tx_fifo_errors = hwstat->tx_underruns; 3202 /* Don't know about heartbeat or window errors... */ 3203 3204 return nstat; 3205 } 3206 3207 static int macb_get_regs_len(struct net_device *netdev) 3208 { 3209 return MACB_GREGS_NBR * sizeof(u32); 3210 } 3211 3212 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs, 3213 void *p) 3214 { 3215 struct macb *bp = netdev_priv(dev); 3216 unsigned int tail, head; 3217 u32 *regs_buff = p; 3218 3219 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1)) 3220 | MACB_GREGS_VERSION; 3221 3222 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail); 3223 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head); 3224 3225 regs_buff[0] = macb_readl(bp, NCR); 3226 regs_buff[1] = macb_or_gem_readl(bp, NCFGR); 3227 regs_buff[2] = macb_readl(bp, NSR); 3228 regs_buff[3] = macb_readl(bp, TSR); 3229 regs_buff[4] = macb_readl(bp, RBQP); 3230 regs_buff[5] = macb_readl(bp, TBQP); 3231 regs_buff[6] = macb_readl(bp, RSR); 3232 regs_buff[7] = macb_readl(bp, IMR); 3233 3234 regs_buff[8] = tail; 3235 regs_buff[9] = head; 3236 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail); 3237 regs_buff[11] = macb_tx_dma(&bp->queues[0], head); 3238 3239 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 3240 regs_buff[12] = macb_or_gem_readl(bp, USRIO); 3241 if (macb_is_gem(bp)) 3242 regs_buff[13] = gem_readl(bp, DMACFG); 3243 } 3244 3245 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3246 { 3247 struct macb *bp = netdev_priv(netdev); 3248 3249 if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) { 3250 phylink_ethtool_get_wol(bp->phylink, wol); 3251 wol->supported |= WAKE_MAGIC; 3252 3253 if (bp->wol & MACB_WOL_ENABLED) 3254 wol->wolopts |= WAKE_MAGIC; 3255 } 3256 } 3257 3258 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3259 { 3260 struct macb *bp = netdev_priv(netdev); 3261 int ret; 3262 3263 /* Pass the order to phylink layer */ 3264 ret = phylink_ethtool_set_wol(bp->phylink, wol); 3265 /* Don't manage WoL on MAC if handled by the PHY 3266 * or if there's a failure in talking to the PHY 3267 */ 3268 if (!ret || ret != -EOPNOTSUPP) 3269 return ret; 3270 3271 if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) || 3272 (wol->wolopts & ~WAKE_MAGIC)) 3273 return -EOPNOTSUPP; 3274 3275 if (wol->wolopts & WAKE_MAGIC) 3276 bp->wol |= MACB_WOL_ENABLED; 3277 else 3278 bp->wol &= ~MACB_WOL_ENABLED; 3279 3280 device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED); 3281 3282 return 0; 3283 } 3284 3285 static int macb_get_link_ksettings(struct net_device *netdev, 3286 struct ethtool_link_ksettings *kset) 3287 { 3288 struct macb *bp = netdev_priv(netdev); 3289 3290 return phylink_ethtool_ksettings_get(bp->phylink, kset); 3291 } 3292 3293 static int macb_set_link_ksettings(struct net_device *netdev, 3294 const struct ethtool_link_ksettings *kset) 3295 { 3296 struct macb *bp = netdev_priv(netdev); 3297 3298 return phylink_ethtool_ksettings_set(bp->phylink, kset); 3299 } 3300 3301 static void macb_get_ringparam(struct net_device *netdev, 3302 struct ethtool_ringparam *ring, 3303 struct kernel_ethtool_ringparam *kernel_ring, 3304 struct netlink_ext_ack *extack) 3305 { 3306 struct macb *bp = netdev_priv(netdev); 3307 3308 ring->rx_max_pending = MAX_RX_RING_SIZE; 3309 ring->tx_max_pending = MAX_TX_RING_SIZE; 3310 3311 ring->rx_pending = bp->rx_ring_size; 3312 ring->tx_pending = bp->tx_ring_size; 3313 } 3314 3315 static int macb_set_ringparam(struct net_device *netdev, 3316 struct ethtool_ringparam *ring, 3317 struct kernel_ethtool_ringparam *kernel_ring, 3318 struct netlink_ext_ack *extack) 3319 { 3320 struct macb *bp = netdev_priv(netdev); 3321 u32 new_rx_size, new_tx_size; 3322 unsigned int reset = 0; 3323 3324 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 3325 return -EINVAL; 3326 3327 new_rx_size = clamp_t(u32, ring->rx_pending, 3328 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE); 3329 new_rx_size = roundup_pow_of_two(new_rx_size); 3330 3331 new_tx_size = clamp_t(u32, ring->tx_pending, 3332 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE); 3333 new_tx_size = roundup_pow_of_two(new_tx_size); 3334 3335 if ((new_tx_size == bp->tx_ring_size) && 3336 (new_rx_size == bp->rx_ring_size)) { 3337 /* nothing to do */ 3338 return 0; 3339 } 3340 3341 if (netif_running(bp->dev)) { 3342 reset = 1; 3343 macb_close(bp->dev); 3344 } 3345 3346 bp->rx_ring_size = new_rx_size; 3347 bp->tx_ring_size = new_tx_size; 3348 3349 if (reset) 3350 macb_open(bp->dev); 3351 3352 return 0; 3353 } 3354 3355 #ifdef CONFIG_MACB_USE_HWSTAMP 3356 static unsigned int gem_get_tsu_rate(struct macb *bp) 3357 { 3358 struct clk *tsu_clk; 3359 unsigned int tsu_rate; 3360 3361 tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk"); 3362 if (!IS_ERR(tsu_clk)) 3363 tsu_rate = clk_get_rate(tsu_clk); 3364 /* try pclk instead */ 3365 else if (!IS_ERR(bp->pclk)) { 3366 tsu_clk = bp->pclk; 3367 tsu_rate = clk_get_rate(tsu_clk); 3368 } else 3369 return -ENOTSUPP; 3370 return tsu_rate; 3371 } 3372 3373 static s32 gem_get_ptp_max_adj(void) 3374 { 3375 return 64000000; 3376 } 3377 3378 static int gem_get_ts_info(struct net_device *dev, 3379 struct ethtool_ts_info *info) 3380 { 3381 struct macb *bp = netdev_priv(dev); 3382 3383 if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) { 3384 ethtool_op_get_ts_info(dev, info); 3385 return 0; 3386 } 3387 3388 info->so_timestamping = 3389 SOF_TIMESTAMPING_TX_SOFTWARE | 3390 SOF_TIMESTAMPING_RX_SOFTWARE | 3391 SOF_TIMESTAMPING_SOFTWARE | 3392 SOF_TIMESTAMPING_TX_HARDWARE | 3393 SOF_TIMESTAMPING_RX_HARDWARE | 3394 SOF_TIMESTAMPING_RAW_HARDWARE; 3395 info->tx_types = 3396 (1 << HWTSTAMP_TX_ONESTEP_SYNC) | 3397 (1 << HWTSTAMP_TX_OFF) | 3398 (1 << HWTSTAMP_TX_ON); 3399 info->rx_filters = 3400 (1 << HWTSTAMP_FILTER_NONE) | 3401 (1 << HWTSTAMP_FILTER_ALL); 3402 3403 info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1; 3404 3405 return 0; 3406 } 3407 3408 static struct macb_ptp_info gem_ptp_info = { 3409 .ptp_init = gem_ptp_init, 3410 .ptp_remove = gem_ptp_remove, 3411 .get_ptp_max_adj = gem_get_ptp_max_adj, 3412 .get_tsu_rate = gem_get_tsu_rate, 3413 .get_ts_info = gem_get_ts_info, 3414 .get_hwtst = gem_get_hwtst, 3415 .set_hwtst = gem_set_hwtst, 3416 }; 3417 #endif 3418 3419 static int macb_get_ts_info(struct net_device *netdev, 3420 struct ethtool_ts_info *info) 3421 { 3422 struct macb *bp = netdev_priv(netdev); 3423 3424 if (bp->ptp_info) 3425 return bp->ptp_info->get_ts_info(netdev, info); 3426 3427 return ethtool_op_get_ts_info(netdev, info); 3428 } 3429 3430 static void gem_enable_flow_filters(struct macb *bp, bool enable) 3431 { 3432 struct net_device *netdev = bp->dev; 3433 struct ethtool_rx_fs_item *item; 3434 u32 t2_scr; 3435 int num_t2_scr; 3436 3437 if (!(netdev->features & NETIF_F_NTUPLE)) 3438 return; 3439 3440 num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8)); 3441 3442 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3443 struct ethtool_rx_flow_spec *fs = &item->fs; 3444 struct ethtool_tcpip4_spec *tp4sp_m; 3445 3446 if (fs->location >= num_t2_scr) 3447 continue; 3448 3449 t2_scr = gem_readl_n(bp, SCRT2, fs->location); 3450 3451 /* enable/disable screener regs for the flow entry */ 3452 t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr); 3453 3454 /* only enable fields with no masking */ 3455 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3456 3457 if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF)) 3458 t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr); 3459 else 3460 t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr); 3461 3462 if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF)) 3463 t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr); 3464 else 3465 t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr); 3466 3467 if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF))) 3468 t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr); 3469 else 3470 t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr); 3471 3472 gem_writel_n(bp, SCRT2, fs->location, t2_scr); 3473 } 3474 } 3475 3476 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs) 3477 { 3478 struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m; 3479 uint16_t index = fs->location; 3480 u32 w0, w1, t2_scr; 3481 bool cmp_a = false; 3482 bool cmp_b = false; 3483 bool cmp_c = false; 3484 3485 if (!macb_is_gem(bp)) 3486 return; 3487 3488 tp4sp_v = &(fs->h_u.tcp_ip4_spec); 3489 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3490 3491 /* ignore field if any masking set */ 3492 if (tp4sp_m->ip4src == 0xFFFFFFFF) { 3493 /* 1st compare reg - IP source address */ 3494 w0 = 0; 3495 w1 = 0; 3496 w0 = tp4sp_v->ip4src; 3497 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3498 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3499 w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1); 3500 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0); 3501 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1); 3502 cmp_a = true; 3503 } 3504 3505 /* ignore field if any masking set */ 3506 if (tp4sp_m->ip4dst == 0xFFFFFFFF) { 3507 /* 2nd compare reg - IP destination address */ 3508 w0 = 0; 3509 w1 = 0; 3510 w0 = tp4sp_v->ip4dst; 3511 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3512 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3513 w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1); 3514 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0); 3515 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1); 3516 cmp_b = true; 3517 } 3518 3519 /* ignore both port fields if masking set in both */ 3520 if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) { 3521 /* 3rd compare reg - source port, destination port */ 3522 w0 = 0; 3523 w1 = 0; 3524 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1); 3525 if (tp4sp_m->psrc == tp4sp_m->pdst) { 3526 w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0); 3527 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3528 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3529 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3530 } else { 3531 /* only one port definition */ 3532 w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */ 3533 w0 = GEM_BFINS(T2MASK, 0xFFFF, w0); 3534 if (tp4sp_m->psrc == 0xFFFF) { /* src port */ 3535 w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0); 3536 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3537 } else { /* dst port */ 3538 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3539 w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1); 3540 } 3541 } 3542 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0); 3543 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1); 3544 cmp_c = true; 3545 } 3546 3547 t2_scr = 0; 3548 t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr); 3549 t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr); 3550 if (cmp_a) 3551 t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr); 3552 if (cmp_b) 3553 t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr); 3554 if (cmp_c) 3555 t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr); 3556 gem_writel_n(bp, SCRT2, index, t2_scr); 3557 } 3558 3559 static int gem_add_flow_filter(struct net_device *netdev, 3560 struct ethtool_rxnfc *cmd) 3561 { 3562 struct macb *bp = netdev_priv(netdev); 3563 struct ethtool_rx_flow_spec *fs = &cmd->fs; 3564 struct ethtool_rx_fs_item *item, *newfs; 3565 unsigned long flags; 3566 int ret = -EINVAL; 3567 bool added = false; 3568 3569 newfs = kmalloc(sizeof(*newfs), GFP_KERNEL); 3570 if (newfs == NULL) 3571 return -ENOMEM; 3572 memcpy(&newfs->fs, fs, sizeof(newfs->fs)); 3573 3574 netdev_dbg(netdev, 3575 "Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3576 fs->flow_type, (int)fs->ring_cookie, fs->location, 3577 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3578 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3579 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3580 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3581 3582 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3583 3584 /* find correct place to add in list */ 3585 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3586 if (item->fs.location > newfs->fs.location) { 3587 list_add_tail(&newfs->list, &item->list); 3588 added = true; 3589 break; 3590 } else if (item->fs.location == fs->location) { 3591 netdev_err(netdev, "Rule not added: location %d not free!\n", 3592 fs->location); 3593 ret = -EBUSY; 3594 goto err; 3595 } 3596 } 3597 if (!added) 3598 list_add_tail(&newfs->list, &bp->rx_fs_list.list); 3599 3600 gem_prog_cmp_regs(bp, fs); 3601 bp->rx_fs_list.count++; 3602 /* enable filtering if NTUPLE on */ 3603 gem_enable_flow_filters(bp, 1); 3604 3605 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3606 return 0; 3607 3608 err: 3609 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3610 kfree(newfs); 3611 return ret; 3612 } 3613 3614 static int gem_del_flow_filter(struct net_device *netdev, 3615 struct ethtool_rxnfc *cmd) 3616 { 3617 struct macb *bp = netdev_priv(netdev); 3618 struct ethtool_rx_fs_item *item; 3619 struct ethtool_rx_flow_spec *fs; 3620 unsigned long flags; 3621 3622 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3623 3624 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3625 if (item->fs.location == cmd->fs.location) { 3626 /* disable screener regs for the flow entry */ 3627 fs = &(item->fs); 3628 netdev_dbg(netdev, 3629 "Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3630 fs->flow_type, (int)fs->ring_cookie, fs->location, 3631 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3632 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3633 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3634 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3635 3636 gem_writel_n(bp, SCRT2, fs->location, 0); 3637 3638 list_del(&item->list); 3639 bp->rx_fs_list.count--; 3640 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3641 kfree(item); 3642 return 0; 3643 } 3644 } 3645 3646 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3647 return -EINVAL; 3648 } 3649 3650 static int gem_get_flow_entry(struct net_device *netdev, 3651 struct ethtool_rxnfc *cmd) 3652 { 3653 struct macb *bp = netdev_priv(netdev); 3654 struct ethtool_rx_fs_item *item; 3655 3656 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3657 if (item->fs.location == cmd->fs.location) { 3658 memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs)); 3659 return 0; 3660 } 3661 } 3662 return -EINVAL; 3663 } 3664 3665 static int gem_get_all_flow_entries(struct net_device *netdev, 3666 struct ethtool_rxnfc *cmd, u32 *rule_locs) 3667 { 3668 struct macb *bp = netdev_priv(netdev); 3669 struct ethtool_rx_fs_item *item; 3670 uint32_t cnt = 0; 3671 3672 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3673 if (cnt == cmd->rule_cnt) 3674 return -EMSGSIZE; 3675 rule_locs[cnt] = item->fs.location; 3676 cnt++; 3677 } 3678 cmd->data = bp->max_tuples; 3679 cmd->rule_cnt = cnt; 3680 3681 return 0; 3682 } 3683 3684 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3685 u32 *rule_locs) 3686 { 3687 struct macb *bp = netdev_priv(netdev); 3688 int ret = 0; 3689 3690 switch (cmd->cmd) { 3691 case ETHTOOL_GRXRINGS: 3692 cmd->data = bp->num_queues; 3693 break; 3694 case ETHTOOL_GRXCLSRLCNT: 3695 cmd->rule_cnt = bp->rx_fs_list.count; 3696 break; 3697 case ETHTOOL_GRXCLSRULE: 3698 ret = gem_get_flow_entry(netdev, cmd); 3699 break; 3700 case ETHTOOL_GRXCLSRLALL: 3701 ret = gem_get_all_flow_entries(netdev, cmd, rule_locs); 3702 break; 3703 default: 3704 netdev_err(netdev, 3705 "Command parameter %d is not supported\n", cmd->cmd); 3706 ret = -EOPNOTSUPP; 3707 } 3708 3709 return ret; 3710 } 3711 3712 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3713 { 3714 struct macb *bp = netdev_priv(netdev); 3715 int ret; 3716 3717 switch (cmd->cmd) { 3718 case ETHTOOL_SRXCLSRLINS: 3719 if ((cmd->fs.location >= bp->max_tuples) 3720 || (cmd->fs.ring_cookie >= bp->num_queues)) { 3721 ret = -EINVAL; 3722 break; 3723 } 3724 ret = gem_add_flow_filter(netdev, cmd); 3725 break; 3726 case ETHTOOL_SRXCLSRLDEL: 3727 ret = gem_del_flow_filter(netdev, cmd); 3728 break; 3729 default: 3730 netdev_err(netdev, 3731 "Command parameter %d is not supported\n", cmd->cmd); 3732 ret = -EOPNOTSUPP; 3733 } 3734 3735 return ret; 3736 } 3737 3738 static const struct ethtool_ops macb_ethtool_ops = { 3739 .get_regs_len = macb_get_regs_len, 3740 .get_regs = macb_get_regs, 3741 .get_link = ethtool_op_get_link, 3742 .get_ts_info = ethtool_op_get_ts_info, 3743 .get_wol = macb_get_wol, 3744 .set_wol = macb_set_wol, 3745 .get_link_ksettings = macb_get_link_ksettings, 3746 .set_link_ksettings = macb_set_link_ksettings, 3747 .get_ringparam = macb_get_ringparam, 3748 .set_ringparam = macb_set_ringparam, 3749 }; 3750 3751 static const struct ethtool_ops gem_ethtool_ops = { 3752 .get_regs_len = macb_get_regs_len, 3753 .get_regs = macb_get_regs, 3754 .get_wol = macb_get_wol, 3755 .set_wol = macb_set_wol, 3756 .get_link = ethtool_op_get_link, 3757 .get_ts_info = macb_get_ts_info, 3758 .get_ethtool_stats = gem_get_ethtool_stats, 3759 .get_strings = gem_get_ethtool_strings, 3760 .get_sset_count = gem_get_sset_count, 3761 .get_link_ksettings = macb_get_link_ksettings, 3762 .set_link_ksettings = macb_set_link_ksettings, 3763 .get_ringparam = macb_get_ringparam, 3764 .set_ringparam = macb_set_ringparam, 3765 .get_rxnfc = gem_get_rxnfc, 3766 .set_rxnfc = gem_set_rxnfc, 3767 }; 3768 3769 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3770 { 3771 struct macb *bp = netdev_priv(dev); 3772 3773 if (!netif_running(dev)) 3774 return -EINVAL; 3775 3776 if (bp->ptp_info) { 3777 switch (cmd) { 3778 case SIOCSHWTSTAMP: 3779 return bp->ptp_info->set_hwtst(dev, rq, cmd); 3780 case SIOCGHWTSTAMP: 3781 return bp->ptp_info->get_hwtst(dev, rq); 3782 } 3783 } 3784 3785 return phylink_mii_ioctl(bp->phylink, rq, cmd); 3786 } 3787 3788 static inline void macb_set_txcsum_feature(struct macb *bp, 3789 netdev_features_t features) 3790 { 3791 u32 val; 3792 3793 if (!macb_is_gem(bp)) 3794 return; 3795 3796 val = gem_readl(bp, DMACFG); 3797 if (features & NETIF_F_HW_CSUM) 3798 val |= GEM_BIT(TXCOEN); 3799 else 3800 val &= ~GEM_BIT(TXCOEN); 3801 3802 gem_writel(bp, DMACFG, val); 3803 } 3804 3805 static inline void macb_set_rxcsum_feature(struct macb *bp, 3806 netdev_features_t features) 3807 { 3808 struct net_device *netdev = bp->dev; 3809 u32 val; 3810 3811 if (!macb_is_gem(bp)) 3812 return; 3813 3814 val = gem_readl(bp, NCFGR); 3815 if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC)) 3816 val |= GEM_BIT(RXCOEN); 3817 else 3818 val &= ~GEM_BIT(RXCOEN); 3819 3820 gem_writel(bp, NCFGR, val); 3821 } 3822 3823 static inline void macb_set_rxflow_feature(struct macb *bp, 3824 netdev_features_t features) 3825 { 3826 if (!macb_is_gem(bp)) 3827 return; 3828 3829 gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE)); 3830 } 3831 3832 static int macb_set_features(struct net_device *netdev, 3833 netdev_features_t features) 3834 { 3835 struct macb *bp = netdev_priv(netdev); 3836 netdev_features_t changed = features ^ netdev->features; 3837 3838 /* TX checksum offload */ 3839 if (changed & NETIF_F_HW_CSUM) 3840 macb_set_txcsum_feature(bp, features); 3841 3842 /* RX checksum offload */ 3843 if (changed & NETIF_F_RXCSUM) 3844 macb_set_rxcsum_feature(bp, features); 3845 3846 /* RX Flow Filters */ 3847 if (changed & NETIF_F_NTUPLE) 3848 macb_set_rxflow_feature(bp, features); 3849 3850 return 0; 3851 } 3852 3853 static void macb_restore_features(struct macb *bp) 3854 { 3855 struct net_device *netdev = bp->dev; 3856 netdev_features_t features = netdev->features; 3857 struct ethtool_rx_fs_item *item; 3858 3859 /* TX checksum offload */ 3860 macb_set_txcsum_feature(bp, features); 3861 3862 /* RX checksum offload */ 3863 macb_set_rxcsum_feature(bp, features); 3864 3865 /* RX Flow Filters */ 3866 list_for_each_entry(item, &bp->rx_fs_list.list, list) 3867 gem_prog_cmp_regs(bp, &item->fs); 3868 3869 macb_set_rxflow_feature(bp, features); 3870 } 3871 3872 static const struct net_device_ops macb_netdev_ops = { 3873 .ndo_open = macb_open, 3874 .ndo_stop = macb_close, 3875 .ndo_start_xmit = macb_start_xmit, 3876 .ndo_set_rx_mode = macb_set_rx_mode, 3877 .ndo_get_stats = macb_get_stats, 3878 .ndo_eth_ioctl = macb_ioctl, 3879 .ndo_validate_addr = eth_validate_addr, 3880 .ndo_change_mtu = macb_change_mtu, 3881 .ndo_set_mac_address = macb_set_mac_addr, 3882 #ifdef CONFIG_NET_POLL_CONTROLLER 3883 .ndo_poll_controller = macb_poll_controller, 3884 #endif 3885 .ndo_set_features = macb_set_features, 3886 .ndo_features_check = macb_features_check, 3887 }; 3888 3889 /* Configure peripheral capabilities according to device tree 3890 * and integration options used 3891 */ 3892 static void macb_configure_caps(struct macb *bp, 3893 const struct macb_config *dt_conf) 3894 { 3895 u32 dcfg; 3896 3897 if (dt_conf) 3898 bp->caps = dt_conf->caps; 3899 3900 if (hw_is_gem(bp->regs, bp->native_io)) { 3901 bp->caps |= MACB_CAPS_MACB_IS_GEM; 3902 3903 dcfg = gem_readl(bp, DCFG1); 3904 if (GEM_BFEXT(IRQCOR, dcfg) == 0) 3905 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE; 3906 if (GEM_BFEXT(NO_PCS, dcfg) == 0) 3907 bp->caps |= MACB_CAPS_PCS; 3908 dcfg = gem_readl(bp, DCFG12); 3909 if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1) 3910 bp->caps |= MACB_CAPS_HIGH_SPEED; 3911 dcfg = gem_readl(bp, DCFG2); 3912 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0) 3913 bp->caps |= MACB_CAPS_FIFO_MODE; 3914 if (gem_has_ptp(bp)) { 3915 if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5))) 3916 dev_err(&bp->pdev->dev, 3917 "GEM doesn't support hardware ptp.\n"); 3918 else { 3919 #ifdef CONFIG_MACB_USE_HWSTAMP 3920 bp->hw_dma_cap |= HW_DMA_CAP_PTP; 3921 bp->ptp_info = &gem_ptp_info; 3922 #endif 3923 } 3924 } 3925 } 3926 3927 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps); 3928 } 3929 3930 static void macb_probe_queues(void __iomem *mem, 3931 bool native_io, 3932 unsigned int *queue_mask, 3933 unsigned int *num_queues) 3934 { 3935 *queue_mask = 0x1; 3936 *num_queues = 1; 3937 3938 /* is it macb or gem ? 3939 * 3940 * We need to read directly from the hardware here because 3941 * we are early in the probe process and don't have the 3942 * MACB_CAPS_MACB_IS_GEM flag positioned 3943 */ 3944 if (!hw_is_gem(mem, native_io)) 3945 return; 3946 3947 /* bit 0 is never set but queue 0 always exists */ 3948 *queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff; 3949 *num_queues = hweight32(*queue_mask); 3950 } 3951 3952 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk, 3953 struct clk *rx_clk, struct clk *tsu_clk) 3954 { 3955 struct clk_bulk_data clks[] = { 3956 { .clk = tsu_clk, }, 3957 { .clk = rx_clk, }, 3958 { .clk = pclk, }, 3959 { .clk = hclk, }, 3960 { .clk = tx_clk }, 3961 }; 3962 3963 clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks); 3964 } 3965 3966 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk, 3967 struct clk **hclk, struct clk **tx_clk, 3968 struct clk **rx_clk, struct clk **tsu_clk) 3969 { 3970 struct macb_platform_data *pdata; 3971 int err; 3972 3973 pdata = dev_get_platdata(&pdev->dev); 3974 if (pdata) { 3975 *pclk = pdata->pclk; 3976 *hclk = pdata->hclk; 3977 } else { 3978 *pclk = devm_clk_get(&pdev->dev, "pclk"); 3979 *hclk = devm_clk_get(&pdev->dev, "hclk"); 3980 } 3981 3982 if (IS_ERR_OR_NULL(*pclk)) 3983 return dev_err_probe(&pdev->dev, 3984 IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV, 3985 "failed to get pclk\n"); 3986 3987 if (IS_ERR_OR_NULL(*hclk)) 3988 return dev_err_probe(&pdev->dev, 3989 IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV, 3990 "failed to get hclk\n"); 3991 3992 *tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk"); 3993 if (IS_ERR(*tx_clk)) 3994 return PTR_ERR(*tx_clk); 3995 3996 *rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk"); 3997 if (IS_ERR(*rx_clk)) 3998 return PTR_ERR(*rx_clk); 3999 4000 *tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk"); 4001 if (IS_ERR(*tsu_clk)) 4002 return PTR_ERR(*tsu_clk); 4003 4004 err = clk_prepare_enable(*pclk); 4005 if (err) { 4006 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4007 return err; 4008 } 4009 4010 err = clk_prepare_enable(*hclk); 4011 if (err) { 4012 dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err); 4013 goto err_disable_pclk; 4014 } 4015 4016 err = clk_prepare_enable(*tx_clk); 4017 if (err) { 4018 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 4019 goto err_disable_hclk; 4020 } 4021 4022 err = clk_prepare_enable(*rx_clk); 4023 if (err) { 4024 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 4025 goto err_disable_txclk; 4026 } 4027 4028 err = clk_prepare_enable(*tsu_clk); 4029 if (err) { 4030 dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err); 4031 goto err_disable_rxclk; 4032 } 4033 4034 return 0; 4035 4036 err_disable_rxclk: 4037 clk_disable_unprepare(*rx_clk); 4038 4039 err_disable_txclk: 4040 clk_disable_unprepare(*tx_clk); 4041 4042 err_disable_hclk: 4043 clk_disable_unprepare(*hclk); 4044 4045 err_disable_pclk: 4046 clk_disable_unprepare(*pclk); 4047 4048 return err; 4049 } 4050 4051 static int macb_init(struct platform_device *pdev) 4052 { 4053 struct net_device *dev = platform_get_drvdata(pdev); 4054 unsigned int hw_q, q; 4055 struct macb *bp = netdev_priv(dev); 4056 struct macb_queue *queue; 4057 int err; 4058 u32 val, reg; 4059 4060 bp->tx_ring_size = DEFAULT_TX_RING_SIZE; 4061 bp->rx_ring_size = DEFAULT_RX_RING_SIZE; 4062 4063 /* set the queue register mapping once for all: queue0 has a special 4064 * register mapping but we don't want to test the queue index then 4065 * compute the corresponding register offset at run time. 4066 */ 4067 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) { 4068 if (!(bp->queue_mask & (1 << hw_q))) 4069 continue; 4070 4071 queue = &bp->queues[q]; 4072 queue->bp = bp; 4073 spin_lock_init(&queue->tx_ptr_lock); 4074 netif_napi_add(dev, &queue->napi_rx, macb_rx_poll); 4075 netif_napi_add(dev, &queue->napi_tx, macb_tx_poll); 4076 if (hw_q) { 4077 queue->ISR = GEM_ISR(hw_q - 1); 4078 queue->IER = GEM_IER(hw_q - 1); 4079 queue->IDR = GEM_IDR(hw_q - 1); 4080 queue->IMR = GEM_IMR(hw_q - 1); 4081 queue->TBQP = GEM_TBQP(hw_q - 1); 4082 queue->RBQP = GEM_RBQP(hw_q - 1); 4083 queue->RBQS = GEM_RBQS(hw_q - 1); 4084 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4085 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4086 queue->TBQPH = GEM_TBQPH(hw_q - 1); 4087 queue->RBQPH = GEM_RBQPH(hw_q - 1); 4088 } 4089 #endif 4090 } else { 4091 /* queue0 uses legacy registers */ 4092 queue->ISR = MACB_ISR; 4093 queue->IER = MACB_IER; 4094 queue->IDR = MACB_IDR; 4095 queue->IMR = MACB_IMR; 4096 queue->TBQP = MACB_TBQP; 4097 queue->RBQP = MACB_RBQP; 4098 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4099 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4100 queue->TBQPH = MACB_TBQPH; 4101 queue->RBQPH = MACB_RBQPH; 4102 } 4103 #endif 4104 } 4105 4106 /* get irq: here we use the linux queue index, not the hardware 4107 * queue index. the queue irq definitions in the device tree 4108 * must remove the optional gaps that could exist in the 4109 * hardware queue mask. 4110 */ 4111 queue->irq = platform_get_irq(pdev, q); 4112 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt, 4113 IRQF_SHARED, dev->name, queue); 4114 if (err) { 4115 dev_err(&pdev->dev, 4116 "Unable to request IRQ %d (error %d)\n", 4117 queue->irq, err); 4118 return err; 4119 } 4120 4121 INIT_WORK(&queue->tx_error_task, macb_tx_error_task); 4122 q++; 4123 } 4124 4125 dev->netdev_ops = &macb_netdev_ops; 4126 4127 /* setup appropriated routines according to adapter type */ 4128 if (macb_is_gem(bp)) { 4129 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers; 4130 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers; 4131 bp->macbgem_ops.mog_init_rings = gem_init_rings; 4132 bp->macbgem_ops.mog_rx = gem_rx; 4133 dev->ethtool_ops = &gem_ethtool_ops; 4134 } else { 4135 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers; 4136 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers; 4137 bp->macbgem_ops.mog_init_rings = macb_init_rings; 4138 bp->macbgem_ops.mog_rx = macb_rx; 4139 dev->ethtool_ops = &macb_ethtool_ops; 4140 } 4141 4142 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4143 4144 /* Set features */ 4145 dev->hw_features = NETIF_F_SG; 4146 4147 /* Check LSO capability */ 4148 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6))) 4149 dev->hw_features |= MACB_NETIF_LSO; 4150 4151 /* Checksum offload is only available on gem with packet buffer */ 4152 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE)) 4153 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 4154 if (bp->caps & MACB_CAPS_SG_DISABLED) 4155 dev->hw_features &= ~NETIF_F_SG; 4156 dev->features = dev->hw_features; 4157 4158 /* Check RX Flow Filters support. 4159 * Max Rx flows set by availability of screeners & compare regs: 4160 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs 4161 */ 4162 reg = gem_readl(bp, DCFG8); 4163 bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3), 4164 GEM_BFEXT(T2SCR, reg)); 4165 INIT_LIST_HEAD(&bp->rx_fs_list.list); 4166 if (bp->max_tuples > 0) { 4167 /* also needs one ethtype match to check IPv4 */ 4168 if (GEM_BFEXT(SCR2ETH, reg) > 0) { 4169 /* program this reg now */ 4170 reg = 0; 4171 reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg); 4172 gem_writel_n(bp, ETHT, SCRT2_ETHT, reg); 4173 /* Filtering is supported in hw but don't enable it in kernel now */ 4174 dev->hw_features |= NETIF_F_NTUPLE; 4175 /* init Rx flow definitions */ 4176 bp->rx_fs_list.count = 0; 4177 spin_lock_init(&bp->rx_fs_lock); 4178 } else 4179 bp->max_tuples = 0; 4180 } 4181 4182 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) { 4183 val = 0; 4184 if (phy_interface_mode_is_rgmii(bp->phy_interface)) 4185 val = bp->usrio->rgmii; 4186 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII && 4187 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4188 val = bp->usrio->rmii; 4189 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4190 val = bp->usrio->mii; 4191 4192 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN) 4193 val |= bp->usrio->refclk; 4194 4195 macb_or_gem_writel(bp, USRIO, val); 4196 } 4197 4198 /* Set MII management clock divider */ 4199 val = macb_mdc_clk_div(bp); 4200 val |= macb_dbw(bp); 4201 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) 4202 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 4203 macb_writel(bp, NCFGR, val); 4204 4205 return 0; 4206 } 4207 4208 static const struct macb_usrio_config macb_default_usrio = { 4209 .mii = MACB_BIT(MII), 4210 .rmii = MACB_BIT(RMII), 4211 .rgmii = GEM_BIT(RGMII), 4212 .refclk = MACB_BIT(CLKEN), 4213 }; 4214 4215 #if defined(CONFIG_OF) 4216 /* 1518 rounded up */ 4217 #define AT91ETHER_MAX_RBUFF_SZ 0x600 4218 /* max number of receive buffers */ 4219 #define AT91ETHER_MAX_RX_DESCR 9 4220 4221 static struct sifive_fu540_macb_mgmt *mgmt; 4222 4223 static int at91ether_alloc_coherent(struct macb *lp) 4224 { 4225 struct macb_queue *q = &lp->queues[0]; 4226 4227 q->rx_ring = dma_alloc_coherent(&lp->pdev->dev, 4228 (AT91ETHER_MAX_RX_DESCR * 4229 macb_dma_desc_get_size(lp)), 4230 &q->rx_ring_dma, GFP_KERNEL); 4231 if (!q->rx_ring) 4232 return -ENOMEM; 4233 4234 q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev, 4235 AT91ETHER_MAX_RX_DESCR * 4236 AT91ETHER_MAX_RBUFF_SZ, 4237 &q->rx_buffers_dma, GFP_KERNEL); 4238 if (!q->rx_buffers) { 4239 dma_free_coherent(&lp->pdev->dev, 4240 AT91ETHER_MAX_RX_DESCR * 4241 macb_dma_desc_get_size(lp), 4242 q->rx_ring, q->rx_ring_dma); 4243 q->rx_ring = NULL; 4244 return -ENOMEM; 4245 } 4246 4247 return 0; 4248 } 4249 4250 static void at91ether_free_coherent(struct macb *lp) 4251 { 4252 struct macb_queue *q = &lp->queues[0]; 4253 4254 if (q->rx_ring) { 4255 dma_free_coherent(&lp->pdev->dev, 4256 AT91ETHER_MAX_RX_DESCR * 4257 macb_dma_desc_get_size(lp), 4258 q->rx_ring, q->rx_ring_dma); 4259 q->rx_ring = NULL; 4260 } 4261 4262 if (q->rx_buffers) { 4263 dma_free_coherent(&lp->pdev->dev, 4264 AT91ETHER_MAX_RX_DESCR * 4265 AT91ETHER_MAX_RBUFF_SZ, 4266 q->rx_buffers, q->rx_buffers_dma); 4267 q->rx_buffers = NULL; 4268 } 4269 } 4270 4271 /* Initialize and start the Receiver and Transmit subsystems */ 4272 static int at91ether_start(struct macb *lp) 4273 { 4274 struct macb_queue *q = &lp->queues[0]; 4275 struct macb_dma_desc *desc; 4276 dma_addr_t addr; 4277 u32 ctl; 4278 int i, ret; 4279 4280 ret = at91ether_alloc_coherent(lp); 4281 if (ret) 4282 return ret; 4283 4284 addr = q->rx_buffers_dma; 4285 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) { 4286 desc = macb_rx_desc(q, i); 4287 macb_set_addr(lp, desc, addr); 4288 desc->ctrl = 0; 4289 addr += AT91ETHER_MAX_RBUFF_SZ; 4290 } 4291 4292 /* Set the Wrap bit on the last descriptor */ 4293 desc->addr |= MACB_BIT(RX_WRAP); 4294 4295 /* Reset buffer index */ 4296 q->rx_tail = 0; 4297 4298 /* Program address of descriptor list in Rx Buffer Queue register */ 4299 macb_writel(lp, RBQP, q->rx_ring_dma); 4300 4301 /* Enable Receive and Transmit */ 4302 ctl = macb_readl(lp, NCR); 4303 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE)); 4304 4305 /* Enable MAC interrupts */ 4306 macb_writel(lp, IER, MACB_BIT(RCOMP) | 4307 MACB_BIT(RXUBR) | 4308 MACB_BIT(ISR_TUND) | 4309 MACB_BIT(ISR_RLE) | 4310 MACB_BIT(TCOMP) | 4311 MACB_BIT(ISR_ROVR) | 4312 MACB_BIT(HRESP)); 4313 4314 return 0; 4315 } 4316 4317 static void at91ether_stop(struct macb *lp) 4318 { 4319 u32 ctl; 4320 4321 /* Disable MAC interrupts */ 4322 macb_writel(lp, IDR, MACB_BIT(RCOMP) | 4323 MACB_BIT(RXUBR) | 4324 MACB_BIT(ISR_TUND) | 4325 MACB_BIT(ISR_RLE) | 4326 MACB_BIT(TCOMP) | 4327 MACB_BIT(ISR_ROVR) | 4328 MACB_BIT(HRESP)); 4329 4330 /* Disable Receiver and Transmitter */ 4331 ctl = macb_readl(lp, NCR); 4332 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE))); 4333 4334 /* Free resources. */ 4335 at91ether_free_coherent(lp); 4336 } 4337 4338 /* Open the ethernet interface */ 4339 static int at91ether_open(struct net_device *dev) 4340 { 4341 struct macb *lp = netdev_priv(dev); 4342 u32 ctl; 4343 int ret; 4344 4345 ret = pm_runtime_resume_and_get(&lp->pdev->dev); 4346 if (ret < 0) 4347 return ret; 4348 4349 /* Clear internal statistics */ 4350 ctl = macb_readl(lp, NCR); 4351 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT)); 4352 4353 macb_set_hwaddr(lp); 4354 4355 ret = at91ether_start(lp); 4356 if (ret) 4357 goto pm_exit; 4358 4359 ret = macb_phylink_connect(lp); 4360 if (ret) 4361 goto stop; 4362 4363 netif_start_queue(dev); 4364 4365 return 0; 4366 4367 stop: 4368 at91ether_stop(lp); 4369 pm_exit: 4370 pm_runtime_put_sync(&lp->pdev->dev); 4371 return ret; 4372 } 4373 4374 /* Close the interface */ 4375 static int at91ether_close(struct net_device *dev) 4376 { 4377 struct macb *lp = netdev_priv(dev); 4378 4379 netif_stop_queue(dev); 4380 4381 phylink_stop(lp->phylink); 4382 phylink_disconnect_phy(lp->phylink); 4383 4384 at91ether_stop(lp); 4385 4386 return pm_runtime_put(&lp->pdev->dev); 4387 } 4388 4389 /* Transmit packet */ 4390 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb, 4391 struct net_device *dev) 4392 { 4393 struct macb *lp = netdev_priv(dev); 4394 4395 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) { 4396 int desc = 0; 4397 4398 netif_stop_queue(dev); 4399 4400 /* Store packet information (to free when Tx completed) */ 4401 lp->rm9200_txq[desc].skb = skb; 4402 lp->rm9200_txq[desc].size = skb->len; 4403 lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data, 4404 skb->len, DMA_TO_DEVICE); 4405 if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) { 4406 dev_kfree_skb_any(skb); 4407 dev->stats.tx_dropped++; 4408 netdev_err(dev, "%s: DMA mapping error\n", __func__); 4409 return NETDEV_TX_OK; 4410 } 4411 4412 /* Set address of the data in the Transmit Address register */ 4413 macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping); 4414 /* Set length of the packet in the Transmit Control register */ 4415 macb_writel(lp, TCR, skb->len); 4416 4417 } else { 4418 netdev_err(dev, "%s called, but device is busy!\n", __func__); 4419 return NETDEV_TX_BUSY; 4420 } 4421 4422 return NETDEV_TX_OK; 4423 } 4424 4425 /* Extract received frame from buffer descriptors and sent to upper layers. 4426 * (Called from interrupt context) 4427 */ 4428 static void at91ether_rx(struct net_device *dev) 4429 { 4430 struct macb *lp = netdev_priv(dev); 4431 struct macb_queue *q = &lp->queues[0]; 4432 struct macb_dma_desc *desc; 4433 unsigned char *p_recv; 4434 struct sk_buff *skb; 4435 unsigned int pktlen; 4436 4437 desc = macb_rx_desc(q, q->rx_tail); 4438 while (desc->addr & MACB_BIT(RX_USED)) { 4439 p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ; 4440 pktlen = MACB_BF(RX_FRMLEN, desc->ctrl); 4441 skb = netdev_alloc_skb(dev, pktlen + 2); 4442 if (skb) { 4443 skb_reserve(skb, 2); 4444 skb_put_data(skb, p_recv, pktlen); 4445 4446 skb->protocol = eth_type_trans(skb, dev); 4447 dev->stats.rx_packets++; 4448 dev->stats.rx_bytes += pktlen; 4449 netif_rx(skb); 4450 } else { 4451 dev->stats.rx_dropped++; 4452 } 4453 4454 if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH)) 4455 dev->stats.multicast++; 4456 4457 /* reset ownership bit */ 4458 desc->addr &= ~MACB_BIT(RX_USED); 4459 4460 /* wrap after last buffer */ 4461 if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1) 4462 q->rx_tail = 0; 4463 else 4464 q->rx_tail++; 4465 4466 desc = macb_rx_desc(q, q->rx_tail); 4467 } 4468 } 4469 4470 /* MAC interrupt handler */ 4471 static irqreturn_t at91ether_interrupt(int irq, void *dev_id) 4472 { 4473 struct net_device *dev = dev_id; 4474 struct macb *lp = netdev_priv(dev); 4475 u32 intstatus, ctl; 4476 unsigned int desc; 4477 4478 /* MAC Interrupt Status register indicates what interrupts are pending. 4479 * It is automatically cleared once read. 4480 */ 4481 intstatus = macb_readl(lp, ISR); 4482 4483 /* Receive complete */ 4484 if (intstatus & MACB_BIT(RCOMP)) 4485 at91ether_rx(dev); 4486 4487 /* Transmit complete */ 4488 if (intstatus & MACB_BIT(TCOMP)) { 4489 /* The TCOM bit is set even if the transmission failed */ 4490 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) 4491 dev->stats.tx_errors++; 4492 4493 desc = 0; 4494 if (lp->rm9200_txq[desc].skb) { 4495 dev_consume_skb_irq(lp->rm9200_txq[desc].skb); 4496 lp->rm9200_txq[desc].skb = NULL; 4497 dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping, 4498 lp->rm9200_txq[desc].size, DMA_TO_DEVICE); 4499 dev->stats.tx_packets++; 4500 dev->stats.tx_bytes += lp->rm9200_txq[desc].size; 4501 } 4502 netif_wake_queue(dev); 4503 } 4504 4505 /* Work-around for EMAC Errata section 41.3.1 */ 4506 if (intstatus & MACB_BIT(RXUBR)) { 4507 ctl = macb_readl(lp, NCR); 4508 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE)); 4509 wmb(); 4510 macb_writel(lp, NCR, ctl | MACB_BIT(RE)); 4511 } 4512 4513 if (intstatus & MACB_BIT(ISR_ROVR)) 4514 netdev_err(dev, "ROVR error\n"); 4515 4516 return IRQ_HANDLED; 4517 } 4518 4519 #ifdef CONFIG_NET_POLL_CONTROLLER 4520 static void at91ether_poll_controller(struct net_device *dev) 4521 { 4522 unsigned long flags; 4523 4524 local_irq_save(flags); 4525 at91ether_interrupt(dev->irq, dev); 4526 local_irq_restore(flags); 4527 } 4528 #endif 4529 4530 static const struct net_device_ops at91ether_netdev_ops = { 4531 .ndo_open = at91ether_open, 4532 .ndo_stop = at91ether_close, 4533 .ndo_start_xmit = at91ether_start_xmit, 4534 .ndo_get_stats = macb_get_stats, 4535 .ndo_set_rx_mode = macb_set_rx_mode, 4536 .ndo_set_mac_address = eth_mac_addr, 4537 .ndo_eth_ioctl = macb_ioctl, 4538 .ndo_validate_addr = eth_validate_addr, 4539 #ifdef CONFIG_NET_POLL_CONTROLLER 4540 .ndo_poll_controller = at91ether_poll_controller, 4541 #endif 4542 }; 4543 4544 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk, 4545 struct clk **hclk, struct clk **tx_clk, 4546 struct clk **rx_clk, struct clk **tsu_clk) 4547 { 4548 int err; 4549 4550 *hclk = NULL; 4551 *tx_clk = NULL; 4552 *rx_clk = NULL; 4553 *tsu_clk = NULL; 4554 4555 *pclk = devm_clk_get(&pdev->dev, "ether_clk"); 4556 if (IS_ERR(*pclk)) 4557 return PTR_ERR(*pclk); 4558 4559 err = clk_prepare_enable(*pclk); 4560 if (err) { 4561 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4562 return err; 4563 } 4564 4565 return 0; 4566 } 4567 4568 static int at91ether_init(struct platform_device *pdev) 4569 { 4570 struct net_device *dev = platform_get_drvdata(pdev); 4571 struct macb *bp = netdev_priv(dev); 4572 int err; 4573 4574 bp->queues[0].bp = bp; 4575 4576 dev->netdev_ops = &at91ether_netdev_ops; 4577 dev->ethtool_ops = &macb_ethtool_ops; 4578 4579 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt, 4580 0, dev->name, dev); 4581 if (err) 4582 return err; 4583 4584 macb_writel(bp, NCR, 0); 4585 4586 macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG)); 4587 4588 return 0; 4589 } 4590 4591 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw, 4592 unsigned long parent_rate) 4593 { 4594 return mgmt->rate; 4595 } 4596 4597 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate, 4598 unsigned long *parent_rate) 4599 { 4600 if (WARN_ON(rate < 2500000)) 4601 return 2500000; 4602 else if (rate == 2500000) 4603 return 2500000; 4604 else if (WARN_ON(rate < 13750000)) 4605 return 2500000; 4606 else if (WARN_ON(rate < 25000000)) 4607 return 25000000; 4608 else if (rate == 25000000) 4609 return 25000000; 4610 else if (WARN_ON(rate < 75000000)) 4611 return 25000000; 4612 else if (WARN_ON(rate < 125000000)) 4613 return 125000000; 4614 else if (rate == 125000000) 4615 return 125000000; 4616 4617 WARN_ON(rate > 125000000); 4618 4619 return 125000000; 4620 } 4621 4622 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate, 4623 unsigned long parent_rate) 4624 { 4625 rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate); 4626 if (rate != 125000000) 4627 iowrite32(1, mgmt->reg); 4628 else 4629 iowrite32(0, mgmt->reg); 4630 mgmt->rate = rate; 4631 4632 return 0; 4633 } 4634 4635 static const struct clk_ops fu540_c000_ops = { 4636 .recalc_rate = fu540_macb_tx_recalc_rate, 4637 .round_rate = fu540_macb_tx_round_rate, 4638 .set_rate = fu540_macb_tx_set_rate, 4639 }; 4640 4641 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk, 4642 struct clk **hclk, struct clk **tx_clk, 4643 struct clk **rx_clk, struct clk **tsu_clk) 4644 { 4645 struct clk_init_data init; 4646 int err = 0; 4647 4648 err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk); 4649 if (err) 4650 return err; 4651 4652 mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL); 4653 if (!mgmt) { 4654 err = -ENOMEM; 4655 goto err_disable_clks; 4656 } 4657 4658 init.name = "sifive-gemgxl-mgmt"; 4659 init.ops = &fu540_c000_ops; 4660 init.flags = 0; 4661 init.num_parents = 0; 4662 4663 mgmt->rate = 0; 4664 mgmt->hw.init = &init; 4665 4666 *tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw); 4667 if (IS_ERR(*tx_clk)) { 4668 err = PTR_ERR(*tx_clk); 4669 goto err_disable_clks; 4670 } 4671 4672 err = clk_prepare_enable(*tx_clk); 4673 if (err) { 4674 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err); 4675 *tx_clk = NULL; 4676 goto err_disable_clks; 4677 } else { 4678 dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name); 4679 } 4680 4681 return 0; 4682 4683 err_disable_clks: 4684 macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk); 4685 4686 return err; 4687 } 4688 4689 static int fu540_c000_init(struct platform_device *pdev) 4690 { 4691 mgmt->reg = devm_platform_ioremap_resource(pdev, 1); 4692 if (IS_ERR(mgmt->reg)) 4693 return PTR_ERR(mgmt->reg); 4694 4695 return macb_init(pdev); 4696 } 4697 4698 static int init_reset_optional(struct platform_device *pdev) 4699 { 4700 struct net_device *dev = platform_get_drvdata(pdev); 4701 struct macb *bp = netdev_priv(dev); 4702 int ret; 4703 4704 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 4705 /* Ensure PHY device used in SGMII mode is ready */ 4706 bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL); 4707 4708 if (IS_ERR(bp->sgmii_phy)) 4709 return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy), 4710 "failed to get SGMII PHY\n"); 4711 4712 ret = phy_init(bp->sgmii_phy); 4713 if (ret) 4714 return dev_err_probe(&pdev->dev, ret, 4715 "failed to init SGMII PHY\n"); 4716 4717 ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG); 4718 if (!ret) { 4719 u32 pm_info[2]; 4720 4721 ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains", 4722 pm_info, ARRAY_SIZE(pm_info)); 4723 if (ret) { 4724 dev_err(&pdev->dev, "Failed to read power management information\n"); 4725 goto err_out_phy_exit; 4726 } 4727 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0); 4728 if (ret) 4729 goto err_out_phy_exit; 4730 4731 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1); 4732 if (ret) 4733 goto err_out_phy_exit; 4734 } 4735 4736 } 4737 4738 /* Fully reset controller at hardware level if mapped in device tree */ 4739 ret = device_reset_optional(&pdev->dev); 4740 if (ret) { 4741 phy_exit(bp->sgmii_phy); 4742 return dev_err_probe(&pdev->dev, ret, "failed to reset controller"); 4743 } 4744 4745 ret = macb_init(pdev); 4746 4747 err_out_phy_exit: 4748 if (ret) 4749 phy_exit(bp->sgmii_phy); 4750 4751 return ret; 4752 } 4753 4754 static const struct macb_usrio_config sama7g5_usrio = { 4755 .mii = 0, 4756 .rmii = 1, 4757 .rgmii = 2, 4758 .refclk = BIT(2), 4759 .hdfctlen = BIT(6), 4760 }; 4761 4762 static const struct macb_config fu540_c000_config = { 4763 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4764 MACB_CAPS_GEM_HAS_PTP, 4765 .dma_burst_length = 16, 4766 .clk_init = fu540_c000_clk_init, 4767 .init = fu540_c000_init, 4768 .jumbo_max_len = 10240, 4769 .usrio = &macb_default_usrio, 4770 }; 4771 4772 static const struct macb_config at91sam9260_config = { 4773 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4774 .clk_init = macb_clk_init, 4775 .init = macb_init, 4776 .usrio = &macb_default_usrio, 4777 }; 4778 4779 static const struct macb_config sama5d3macb_config = { 4780 .caps = MACB_CAPS_SG_DISABLED | 4781 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4782 .clk_init = macb_clk_init, 4783 .init = macb_init, 4784 .usrio = &macb_default_usrio, 4785 }; 4786 4787 static const struct macb_config pc302gem_config = { 4788 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE, 4789 .dma_burst_length = 16, 4790 .clk_init = macb_clk_init, 4791 .init = macb_init, 4792 .usrio = &macb_default_usrio, 4793 }; 4794 4795 static const struct macb_config sama5d2_config = { 4796 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4797 .dma_burst_length = 16, 4798 .clk_init = macb_clk_init, 4799 .init = macb_init, 4800 .usrio = &macb_default_usrio, 4801 }; 4802 4803 static const struct macb_config sama5d29_config = { 4804 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP, 4805 .dma_burst_length = 16, 4806 .clk_init = macb_clk_init, 4807 .init = macb_init, 4808 .usrio = &macb_default_usrio, 4809 }; 4810 4811 static const struct macb_config sama5d3_config = { 4812 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4813 MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO, 4814 .dma_burst_length = 16, 4815 .clk_init = macb_clk_init, 4816 .init = macb_init, 4817 .jumbo_max_len = 10240, 4818 .usrio = &macb_default_usrio, 4819 }; 4820 4821 static const struct macb_config sama5d4_config = { 4822 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4823 .dma_burst_length = 4, 4824 .clk_init = macb_clk_init, 4825 .init = macb_init, 4826 .usrio = &macb_default_usrio, 4827 }; 4828 4829 static const struct macb_config emac_config = { 4830 .caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC, 4831 .clk_init = at91ether_clk_init, 4832 .init = at91ether_init, 4833 .usrio = &macb_default_usrio, 4834 }; 4835 4836 static const struct macb_config np4_config = { 4837 .caps = MACB_CAPS_USRIO_DISABLED, 4838 .clk_init = macb_clk_init, 4839 .init = macb_init, 4840 .usrio = &macb_default_usrio, 4841 }; 4842 4843 static const struct macb_config zynqmp_config = { 4844 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4845 MACB_CAPS_JUMBO | 4846 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH, 4847 .dma_burst_length = 16, 4848 .clk_init = macb_clk_init, 4849 .init = init_reset_optional, 4850 .jumbo_max_len = 10240, 4851 .usrio = &macb_default_usrio, 4852 }; 4853 4854 static const struct macb_config zynq_config = { 4855 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF | 4856 MACB_CAPS_NEEDS_RSTONUBR, 4857 .dma_burst_length = 16, 4858 .clk_init = macb_clk_init, 4859 .init = macb_init, 4860 .usrio = &macb_default_usrio, 4861 }; 4862 4863 static const struct macb_config mpfs_config = { 4864 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4865 MACB_CAPS_JUMBO | 4866 MACB_CAPS_GEM_HAS_PTP, 4867 .dma_burst_length = 16, 4868 .clk_init = macb_clk_init, 4869 .init = init_reset_optional, 4870 .usrio = &macb_default_usrio, 4871 .max_tx_length = 4040, /* Cadence Erratum 1686 */ 4872 .jumbo_max_len = 4040, 4873 }; 4874 4875 static const struct macb_config sama7g5_gem_config = { 4876 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG | 4877 MACB_CAPS_MIIONRGMII | MACB_CAPS_GEM_HAS_PTP, 4878 .dma_burst_length = 16, 4879 .clk_init = macb_clk_init, 4880 .init = macb_init, 4881 .usrio = &sama7g5_usrio, 4882 }; 4883 4884 static const struct macb_config sama7g5_emac_config = { 4885 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | 4886 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII | 4887 MACB_CAPS_GEM_HAS_PTP, 4888 .dma_burst_length = 16, 4889 .clk_init = macb_clk_init, 4890 .init = macb_init, 4891 .usrio = &sama7g5_usrio, 4892 }; 4893 4894 static const struct macb_config versal_config = { 4895 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4896 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK, 4897 .dma_burst_length = 16, 4898 .clk_init = macb_clk_init, 4899 .init = init_reset_optional, 4900 .jumbo_max_len = 10240, 4901 .usrio = &macb_default_usrio, 4902 }; 4903 4904 static const struct of_device_id macb_dt_ids[] = { 4905 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config }, 4906 { .compatible = "cdns,macb" }, 4907 { .compatible = "cdns,np4-macb", .data = &np4_config }, 4908 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config }, 4909 { .compatible = "cdns,gem", .data = &pc302gem_config }, 4910 { .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config }, 4911 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config }, 4912 { .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config }, 4913 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config }, 4914 { .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config }, 4915 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config }, 4916 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config }, 4917 { .compatible = "cdns,emac", .data = &emac_config }, 4918 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */ 4919 { .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */ 4920 { .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config }, 4921 { .compatible = "microchip,mpfs-macb", .data = &mpfs_config }, 4922 { .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config }, 4923 { .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config }, 4924 { .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config}, 4925 { .compatible = "xlnx,zynq-gem", .data = &zynq_config }, 4926 { .compatible = "xlnx,versal-gem", .data = &versal_config}, 4927 { /* sentinel */ } 4928 }; 4929 MODULE_DEVICE_TABLE(of, macb_dt_ids); 4930 #endif /* CONFIG_OF */ 4931 4932 static const struct macb_config default_gem_config = { 4933 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4934 MACB_CAPS_JUMBO | 4935 MACB_CAPS_GEM_HAS_PTP, 4936 .dma_burst_length = 16, 4937 .clk_init = macb_clk_init, 4938 .init = macb_init, 4939 .usrio = &macb_default_usrio, 4940 .jumbo_max_len = 10240, 4941 }; 4942 4943 static int macb_probe(struct platform_device *pdev) 4944 { 4945 const struct macb_config *macb_config = &default_gem_config; 4946 int (*clk_init)(struct platform_device *, struct clk **, 4947 struct clk **, struct clk **, struct clk **, 4948 struct clk **) = macb_config->clk_init; 4949 int (*init)(struct platform_device *) = macb_config->init; 4950 struct device_node *np = pdev->dev.of_node; 4951 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL; 4952 struct clk *tsu_clk = NULL; 4953 unsigned int queue_mask, num_queues; 4954 bool native_io; 4955 phy_interface_t interface; 4956 struct net_device *dev; 4957 struct resource *regs; 4958 u32 wtrmrk_rst_val; 4959 void __iomem *mem; 4960 struct macb *bp; 4961 int err, val; 4962 4963 mem = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 4964 if (IS_ERR(mem)) 4965 return PTR_ERR(mem); 4966 4967 if (np) { 4968 const struct of_device_id *match; 4969 4970 match = of_match_node(macb_dt_ids, np); 4971 if (match && match->data) { 4972 macb_config = match->data; 4973 clk_init = macb_config->clk_init; 4974 init = macb_config->init; 4975 } 4976 } 4977 4978 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk); 4979 if (err) 4980 return err; 4981 4982 pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT); 4983 pm_runtime_use_autosuspend(&pdev->dev); 4984 pm_runtime_get_noresume(&pdev->dev); 4985 pm_runtime_set_active(&pdev->dev); 4986 pm_runtime_enable(&pdev->dev); 4987 native_io = hw_is_native_io(mem); 4988 4989 macb_probe_queues(mem, native_io, &queue_mask, &num_queues); 4990 dev = alloc_etherdev_mq(sizeof(*bp), num_queues); 4991 if (!dev) { 4992 err = -ENOMEM; 4993 goto err_disable_clocks; 4994 } 4995 4996 dev->base_addr = regs->start; 4997 4998 SET_NETDEV_DEV(dev, &pdev->dev); 4999 5000 bp = netdev_priv(dev); 5001 bp->pdev = pdev; 5002 bp->dev = dev; 5003 bp->regs = mem; 5004 bp->native_io = native_io; 5005 if (native_io) { 5006 bp->macb_reg_readl = hw_readl_native; 5007 bp->macb_reg_writel = hw_writel_native; 5008 } else { 5009 bp->macb_reg_readl = hw_readl; 5010 bp->macb_reg_writel = hw_writel; 5011 } 5012 bp->num_queues = num_queues; 5013 bp->queue_mask = queue_mask; 5014 if (macb_config) 5015 bp->dma_burst_length = macb_config->dma_burst_length; 5016 bp->pclk = pclk; 5017 bp->hclk = hclk; 5018 bp->tx_clk = tx_clk; 5019 bp->rx_clk = rx_clk; 5020 bp->tsu_clk = tsu_clk; 5021 if (macb_config) 5022 bp->jumbo_max_len = macb_config->jumbo_max_len; 5023 5024 if (!hw_is_gem(bp->regs, bp->native_io)) 5025 bp->max_tx_length = MACB_MAX_TX_LEN; 5026 else if (macb_config->max_tx_length) 5027 bp->max_tx_length = macb_config->max_tx_length; 5028 else 5029 bp->max_tx_length = GEM_MAX_TX_LEN; 5030 5031 bp->wol = 0; 5032 if (of_property_read_bool(np, "magic-packet")) 5033 bp->wol |= MACB_WOL_HAS_MAGIC_PACKET; 5034 device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET); 5035 5036 bp->usrio = macb_config->usrio; 5037 5038 /* By default we set to partial store and forward mode for zynqmp. 5039 * Disable if not set in devicetree. 5040 */ 5041 if (GEM_BFEXT(PBUF_CUTTHRU, gem_readl(bp, DCFG6))) { 5042 err = of_property_read_u32(bp->pdev->dev.of_node, 5043 "cdns,rx-watermark", 5044 &bp->rx_watermark); 5045 5046 if (!err) { 5047 /* Disable partial store and forward in case of error or 5048 * invalid watermark value 5049 */ 5050 wtrmrk_rst_val = (1 << (GEM_BFEXT(RX_PBUF_ADDR, gem_readl(bp, DCFG2)))) - 1; 5051 if (bp->rx_watermark > wtrmrk_rst_val || !bp->rx_watermark) { 5052 dev_info(&bp->pdev->dev, "Invalid watermark value\n"); 5053 bp->rx_watermark = 0; 5054 } 5055 } 5056 } 5057 spin_lock_init(&bp->lock); 5058 5059 /* setup capabilities */ 5060 macb_configure_caps(bp, macb_config); 5061 5062 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 5063 if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) { 5064 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); 5065 bp->hw_dma_cap |= HW_DMA_CAP_64B; 5066 } 5067 #endif 5068 platform_set_drvdata(pdev, dev); 5069 5070 dev->irq = platform_get_irq(pdev, 0); 5071 if (dev->irq < 0) { 5072 err = dev->irq; 5073 goto err_out_free_netdev; 5074 } 5075 5076 /* MTU range: 68 - 1500 or 10240 */ 5077 dev->min_mtu = GEM_MTU_MIN_SIZE; 5078 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 5079 dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN; 5080 else 5081 dev->max_mtu = ETH_DATA_LEN; 5082 5083 if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) { 5084 val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10)); 5085 if (val) 5086 bp->rx_bd_rd_prefetch = (2 << (val - 1)) * 5087 macb_dma_desc_get_size(bp); 5088 5089 val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10)); 5090 if (val) 5091 bp->tx_bd_rd_prefetch = (2 << (val - 1)) * 5092 macb_dma_desc_get_size(bp); 5093 } 5094 5095 bp->rx_intr_mask = MACB_RX_INT_FLAGS; 5096 if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR) 5097 bp->rx_intr_mask |= MACB_BIT(RXUBR); 5098 5099 err = of_get_ethdev_address(np, bp->dev); 5100 if (err == -EPROBE_DEFER) 5101 goto err_out_free_netdev; 5102 else if (err) 5103 macb_get_hwaddr(bp); 5104 5105 err = of_get_phy_mode(np, &interface); 5106 if (err) 5107 /* not found in DT, MII by default */ 5108 bp->phy_interface = PHY_INTERFACE_MODE_MII; 5109 else 5110 bp->phy_interface = interface; 5111 5112 /* IP specific init */ 5113 err = init(pdev); 5114 if (err) 5115 goto err_out_free_netdev; 5116 5117 err = macb_mii_init(bp); 5118 if (err) 5119 goto err_out_phy_exit; 5120 5121 netif_carrier_off(dev); 5122 5123 err = register_netdev(dev); 5124 if (err) { 5125 dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); 5126 goto err_out_unregister_mdio; 5127 } 5128 5129 tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task); 5130 5131 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n", 5132 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID), 5133 dev->base_addr, dev->irq, dev->dev_addr); 5134 5135 pm_runtime_mark_last_busy(&bp->pdev->dev); 5136 pm_runtime_put_autosuspend(&bp->pdev->dev); 5137 5138 return 0; 5139 5140 err_out_unregister_mdio: 5141 mdiobus_unregister(bp->mii_bus); 5142 mdiobus_free(bp->mii_bus); 5143 5144 err_out_phy_exit: 5145 phy_exit(bp->sgmii_phy); 5146 5147 err_out_free_netdev: 5148 free_netdev(dev); 5149 5150 err_disable_clocks: 5151 macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk); 5152 pm_runtime_disable(&pdev->dev); 5153 pm_runtime_set_suspended(&pdev->dev); 5154 pm_runtime_dont_use_autosuspend(&pdev->dev); 5155 5156 return err; 5157 } 5158 5159 static int macb_remove(struct platform_device *pdev) 5160 { 5161 struct net_device *dev; 5162 struct macb *bp; 5163 5164 dev = platform_get_drvdata(pdev); 5165 5166 if (dev) { 5167 bp = netdev_priv(dev); 5168 phy_exit(bp->sgmii_phy); 5169 mdiobus_unregister(bp->mii_bus); 5170 mdiobus_free(bp->mii_bus); 5171 5172 unregister_netdev(dev); 5173 tasklet_kill(&bp->hresp_err_tasklet); 5174 pm_runtime_disable(&pdev->dev); 5175 pm_runtime_dont_use_autosuspend(&pdev->dev); 5176 if (!pm_runtime_suspended(&pdev->dev)) { 5177 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, 5178 bp->rx_clk, bp->tsu_clk); 5179 pm_runtime_set_suspended(&pdev->dev); 5180 } 5181 phylink_destroy(bp->phylink); 5182 free_netdev(dev); 5183 } 5184 5185 return 0; 5186 } 5187 5188 static int __maybe_unused macb_suspend(struct device *dev) 5189 { 5190 struct net_device *netdev = dev_get_drvdata(dev); 5191 struct macb *bp = netdev_priv(netdev); 5192 struct macb_queue *queue; 5193 unsigned long flags; 5194 unsigned int q; 5195 int err; 5196 5197 if (!netif_running(netdev)) 5198 return 0; 5199 5200 if (bp->wol & MACB_WOL_ENABLED) { 5201 spin_lock_irqsave(&bp->lock, flags); 5202 /* Flush all status bits */ 5203 macb_writel(bp, TSR, -1); 5204 macb_writel(bp, RSR, -1); 5205 for (q = 0, queue = bp->queues; q < bp->num_queues; 5206 ++q, ++queue) { 5207 /* Disable all interrupts */ 5208 queue_writel(queue, IDR, -1); 5209 queue_readl(queue, ISR); 5210 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5211 queue_writel(queue, ISR, -1); 5212 } 5213 /* Change interrupt handler and 5214 * Enable WoL IRQ on queue 0 5215 */ 5216 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5217 if (macb_is_gem(bp)) { 5218 err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt, 5219 IRQF_SHARED, netdev->name, bp->queues); 5220 if (err) { 5221 dev_err(dev, 5222 "Unable to request IRQ %d (error %d)\n", 5223 bp->queues[0].irq, err); 5224 spin_unlock_irqrestore(&bp->lock, flags); 5225 return err; 5226 } 5227 queue_writel(bp->queues, IER, GEM_BIT(WOL)); 5228 gem_writel(bp, WOL, MACB_BIT(MAG)); 5229 } else { 5230 err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt, 5231 IRQF_SHARED, netdev->name, bp->queues); 5232 if (err) { 5233 dev_err(dev, 5234 "Unable to request IRQ %d (error %d)\n", 5235 bp->queues[0].irq, err); 5236 spin_unlock_irqrestore(&bp->lock, flags); 5237 return err; 5238 } 5239 queue_writel(bp->queues, IER, MACB_BIT(WOL)); 5240 macb_writel(bp, WOL, MACB_BIT(MAG)); 5241 } 5242 spin_unlock_irqrestore(&bp->lock, flags); 5243 5244 enable_irq_wake(bp->queues[0].irq); 5245 } 5246 5247 netif_device_detach(netdev); 5248 for (q = 0, queue = bp->queues; q < bp->num_queues; 5249 ++q, ++queue) { 5250 napi_disable(&queue->napi_rx); 5251 napi_disable(&queue->napi_tx); 5252 } 5253 5254 if (!(bp->wol & MACB_WOL_ENABLED)) { 5255 rtnl_lock(); 5256 phylink_stop(bp->phylink); 5257 phy_exit(bp->sgmii_phy); 5258 rtnl_unlock(); 5259 spin_lock_irqsave(&bp->lock, flags); 5260 macb_reset_hw(bp); 5261 spin_unlock_irqrestore(&bp->lock, flags); 5262 } 5263 5264 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5265 bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO); 5266 5267 if (netdev->hw_features & NETIF_F_NTUPLE) 5268 bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT); 5269 5270 if (bp->ptp_info) 5271 bp->ptp_info->ptp_remove(netdev); 5272 if (!device_may_wakeup(dev)) 5273 pm_runtime_force_suspend(dev); 5274 5275 return 0; 5276 } 5277 5278 static int __maybe_unused macb_resume(struct device *dev) 5279 { 5280 struct net_device *netdev = dev_get_drvdata(dev); 5281 struct macb *bp = netdev_priv(netdev); 5282 struct macb_queue *queue; 5283 unsigned long flags; 5284 unsigned int q; 5285 int err; 5286 5287 if (!netif_running(netdev)) 5288 return 0; 5289 5290 if (!device_may_wakeup(dev)) 5291 pm_runtime_force_resume(dev); 5292 5293 if (bp->wol & MACB_WOL_ENABLED) { 5294 spin_lock_irqsave(&bp->lock, flags); 5295 /* Disable WoL */ 5296 if (macb_is_gem(bp)) { 5297 queue_writel(bp->queues, IDR, GEM_BIT(WOL)); 5298 gem_writel(bp, WOL, 0); 5299 } else { 5300 queue_writel(bp->queues, IDR, MACB_BIT(WOL)); 5301 macb_writel(bp, WOL, 0); 5302 } 5303 /* Clear ISR on queue 0 */ 5304 queue_readl(bp->queues, ISR); 5305 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5306 queue_writel(bp->queues, ISR, -1); 5307 /* Replace interrupt handler on queue 0 */ 5308 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5309 err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt, 5310 IRQF_SHARED, netdev->name, bp->queues); 5311 if (err) { 5312 dev_err(dev, 5313 "Unable to request IRQ %d (error %d)\n", 5314 bp->queues[0].irq, err); 5315 spin_unlock_irqrestore(&bp->lock, flags); 5316 return err; 5317 } 5318 spin_unlock_irqrestore(&bp->lock, flags); 5319 5320 disable_irq_wake(bp->queues[0].irq); 5321 5322 /* Now make sure we disable phy before moving 5323 * to common restore path 5324 */ 5325 rtnl_lock(); 5326 phylink_stop(bp->phylink); 5327 rtnl_unlock(); 5328 } 5329 5330 for (q = 0, queue = bp->queues; q < bp->num_queues; 5331 ++q, ++queue) { 5332 napi_enable(&queue->napi_rx); 5333 napi_enable(&queue->napi_tx); 5334 } 5335 5336 if (netdev->hw_features & NETIF_F_NTUPLE) 5337 gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2); 5338 5339 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5340 macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio); 5341 5342 macb_writel(bp, NCR, MACB_BIT(MPE)); 5343 macb_init_hw(bp); 5344 macb_set_rx_mode(netdev); 5345 macb_restore_features(bp); 5346 rtnl_lock(); 5347 if (!device_may_wakeup(&bp->dev->dev)) 5348 phy_init(bp->sgmii_phy); 5349 5350 phylink_start(bp->phylink); 5351 rtnl_unlock(); 5352 5353 netif_device_attach(netdev); 5354 if (bp->ptp_info) 5355 bp->ptp_info->ptp_init(netdev); 5356 5357 return 0; 5358 } 5359 5360 static int __maybe_unused macb_runtime_suspend(struct device *dev) 5361 { 5362 struct net_device *netdev = dev_get_drvdata(dev); 5363 struct macb *bp = netdev_priv(netdev); 5364 5365 if (!(device_may_wakeup(dev))) 5366 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk); 5367 else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) 5368 macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk); 5369 5370 return 0; 5371 } 5372 5373 static int __maybe_unused macb_runtime_resume(struct device *dev) 5374 { 5375 struct net_device *netdev = dev_get_drvdata(dev); 5376 struct macb *bp = netdev_priv(netdev); 5377 5378 if (!(device_may_wakeup(dev))) { 5379 clk_prepare_enable(bp->pclk); 5380 clk_prepare_enable(bp->hclk); 5381 clk_prepare_enable(bp->tx_clk); 5382 clk_prepare_enable(bp->rx_clk); 5383 clk_prepare_enable(bp->tsu_clk); 5384 } else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) { 5385 clk_prepare_enable(bp->tsu_clk); 5386 } 5387 5388 return 0; 5389 } 5390 5391 static const struct dev_pm_ops macb_pm_ops = { 5392 SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume) 5393 SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL) 5394 }; 5395 5396 static struct platform_driver macb_driver = { 5397 .probe = macb_probe, 5398 .remove = macb_remove, 5399 .driver = { 5400 .name = "macb", 5401 .of_match_table = of_match_ptr(macb_dt_ids), 5402 .pm = &macb_pm_ops, 5403 }, 5404 }; 5405 5406 module_platform_driver(macb_driver); 5407 5408 MODULE_LICENSE("GPL"); 5409 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver"); 5410 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 5411 MODULE_ALIAS("platform:macb"); 5412