1 /*
2  * Linux network driver for QLogic BR-series Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15  * Copyright (c) 2014-2015 QLogic Corporation
16  * All rights reserved
17  * www.qlogic.com
18  */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30 
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34 
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36 
37 /*
38  * Module params
39  */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43 
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47 
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 		 " Range[false:0|true:1]");
52 
53 /*
54  * Global variables
55  */
56 static u32 bnad_rxqs_per_cq = 2;
57 static u32 bna_id;
58 static struct mutex bnad_list_mutex;
59 static LIST_HEAD(bnad_list);
60 static const u8 bnad_bcast_addr[] __aligned(2) =
61 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
62 
63 /*
64  * Local MACROS
65  */
66 #define BNAD_GET_MBOX_IRQ(_bnad)				\
67 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
68 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
69 	 ((_bnad)->pcidev->irq))
70 
71 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
72 do {								\
73 	(_res_info)->res_type = BNA_RES_T_MEM;			\
74 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
75 	(_res_info)->res_u.mem_info.num = (_num);		\
76 	(_res_info)->res_u.mem_info.len = (_size);		\
77 } while (0)
78 
79 static void
80 bnad_add_to_list(struct bnad *bnad)
81 {
82 	mutex_lock(&bnad_list_mutex);
83 	list_add_tail(&bnad->list_entry, &bnad_list);
84 	bnad->id = bna_id++;
85 	mutex_unlock(&bnad_list_mutex);
86 }
87 
88 static void
89 bnad_remove_from_list(struct bnad *bnad)
90 {
91 	mutex_lock(&bnad_list_mutex);
92 	list_del(&bnad->list_entry);
93 	mutex_unlock(&bnad_list_mutex);
94 }
95 
96 /*
97  * Reinitialize completions in CQ, once Rx is taken down
98  */
99 static void
100 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
101 {
102 	struct bna_cq_entry *cmpl;
103 	int i;
104 
105 	for (i = 0; i < ccb->q_depth; i++) {
106 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
107 		cmpl->valid = 0;
108 	}
109 }
110 
111 /* Tx Datapath functions */
112 
113 
114 /* Caller should ensure that the entry at unmap_q[index] is valid */
115 static u32
116 bnad_tx_buff_unmap(struct bnad *bnad,
117 			      struct bnad_tx_unmap *unmap_q,
118 			      u32 q_depth, u32 index)
119 {
120 	struct bnad_tx_unmap *unmap;
121 	struct sk_buff *skb;
122 	int vector, nvecs;
123 
124 	unmap = &unmap_q[index];
125 	nvecs = unmap->nvecs;
126 
127 	skb = unmap->skb;
128 	unmap->skb = NULL;
129 	unmap->nvecs = 0;
130 	dma_unmap_single(&bnad->pcidev->dev,
131 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
132 		skb_headlen(skb), DMA_TO_DEVICE);
133 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
134 	nvecs--;
135 
136 	vector = 0;
137 	while (nvecs) {
138 		vector++;
139 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
140 			vector = 0;
141 			BNA_QE_INDX_INC(index, q_depth);
142 			unmap = &unmap_q[index];
143 		}
144 
145 		dma_unmap_page(&bnad->pcidev->dev,
146 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
147 			dma_unmap_len(&unmap->vectors[vector], dma_len),
148 			DMA_TO_DEVICE);
149 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
150 		nvecs--;
151 	}
152 
153 	BNA_QE_INDX_INC(index, q_depth);
154 
155 	return index;
156 }
157 
158 /*
159  * Frees all pending Tx Bufs
160  * At this point no activity is expected on the Q,
161  * so DMA unmap & freeing is fine.
162  */
163 static void
164 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
165 {
166 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
167 	struct sk_buff *skb;
168 	int i;
169 
170 	for (i = 0; i < tcb->q_depth; i++) {
171 		skb = unmap_q[i].skb;
172 		if (!skb)
173 			continue;
174 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
175 
176 		dev_kfree_skb_any(skb);
177 	}
178 }
179 
180 /*
181  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
182  * Can be called in a) Interrupt context
183  *		    b) Sending context
184  */
185 static u32
186 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
187 {
188 	u32 sent_packets = 0, sent_bytes = 0;
189 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
190 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
191 	struct bnad_tx_unmap *unmap;
192 	struct sk_buff *skb;
193 
194 	/* Just return if TX is stopped */
195 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
196 		return 0;
197 
198 	hw_cons = *(tcb->hw_consumer_index);
199 	cons = tcb->consumer_index;
200 	q_depth = tcb->q_depth;
201 
202 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
203 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
204 
205 	while (wis) {
206 		unmap = &unmap_q[cons];
207 
208 		skb = unmap->skb;
209 
210 		sent_packets++;
211 		sent_bytes += skb->len;
212 
213 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
214 		wis -= unmap_wis;
215 
216 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
217 		dev_kfree_skb_any(skb);
218 	}
219 
220 	/* Update consumer pointers. */
221 	tcb->consumer_index = hw_cons;
222 
223 	tcb->txq->tx_packets += sent_packets;
224 	tcb->txq->tx_bytes += sent_bytes;
225 
226 	return sent_packets;
227 }
228 
229 static u32
230 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
231 {
232 	struct net_device *netdev = bnad->netdev;
233 	u32 sent = 0;
234 
235 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
236 		return 0;
237 
238 	sent = bnad_txcmpl_process(bnad, tcb);
239 	if (sent) {
240 		if (netif_queue_stopped(netdev) &&
241 		    netif_carrier_ok(netdev) &&
242 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
243 				    BNAD_NETIF_WAKE_THRESHOLD) {
244 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
245 				netif_wake_queue(netdev);
246 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
247 			}
248 		}
249 	}
250 
251 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
252 		bna_ib_ack(tcb->i_dbell, sent);
253 
254 	smp_mb__before_atomic();
255 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
256 
257 	return sent;
258 }
259 
260 /* MSIX Tx Completion Handler */
261 static irqreturn_t
262 bnad_msix_tx(int irq, void *data)
263 {
264 	struct bna_tcb *tcb = (struct bna_tcb *)data;
265 	struct bnad *bnad = tcb->bnad;
266 
267 	bnad_tx_complete(bnad, tcb);
268 
269 	return IRQ_HANDLED;
270 }
271 
272 static inline void
273 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
274 {
275 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
276 
277 	unmap_q->reuse_pi = -1;
278 	unmap_q->alloc_order = -1;
279 	unmap_q->map_size = 0;
280 	unmap_q->type = BNAD_RXBUF_NONE;
281 }
282 
283 /* Default is page-based allocation. Multi-buffer support - TBD */
284 static int
285 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
286 {
287 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
288 	int order;
289 
290 	bnad_rxq_alloc_uninit(bnad, rcb);
291 
292 	order = get_order(rcb->rxq->buffer_size);
293 
294 	unmap_q->type = BNAD_RXBUF_PAGE;
295 
296 	if (bna_is_small_rxq(rcb->id)) {
297 		unmap_q->alloc_order = 0;
298 		unmap_q->map_size = rcb->rxq->buffer_size;
299 	} else {
300 		if (rcb->rxq->multi_buffer) {
301 			unmap_q->alloc_order = 0;
302 			unmap_q->map_size = rcb->rxq->buffer_size;
303 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
304 		} else {
305 			unmap_q->alloc_order = order;
306 			unmap_q->map_size =
307 				(rcb->rxq->buffer_size > 2048) ?
308 				PAGE_SIZE << order : 2048;
309 		}
310 	}
311 
312 	BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
313 
314 	return 0;
315 }
316 
317 static inline void
318 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
319 {
320 	if (!unmap->page)
321 		return;
322 
323 	dma_unmap_page(&bnad->pcidev->dev,
324 			dma_unmap_addr(&unmap->vector, dma_addr),
325 			unmap->vector.len, DMA_FROM_DEVICE);
326 	put_page(unmap->page);
327 	unmap->page = NULL;
328 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
329 	unmap->vector.len = 0;
330 }
331 
332 static inline void
333 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
334 {
335 	if (!unmap->skb)
336 		return;
337 
338 	dma_unmap_single(&bnad->pcidev->dev,
339 			dma_unmap_addr(&unmap->vector, dma_addr),
340 			unmap->vector.len, DMA_FROM_DEVICE);
341 	dev_kfree_skb_any(unmap->skb);
342 	unmap->skb = NULL;
343 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
344 	unmap->vector.len = 0;
345 }
346 
347 static void
348 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
349 {
350 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
351 	int i;
352 
353 	for (i = 0; i < rcb->q_depth; i++) {
354 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
355 
356 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
357 			bnad_rxq_cleanup_skb(bnad, unmap);
358 		else
359 			bnad_rxq_cleanup_page(bnad, unmap);
360 	}
361 	bnad_rxq_alloc_uninit(bnad, rcb);
362 }
363 
364 static u32
365 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
366 {
367 	u32 alloced, prod, q_depth;
368 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
369 	struct bnad_rx_unmap *unmap, *prev;
370 	struct bna_rxq_entry *rxent;
371 	struct page *page;
372 	u32 page_offset, alloc_size;
373 	dma_addr_t dma_addr;
374 
375 	prod = rcb->producer_index;
376 	q_depth = rcb->q_depth;
377 
378 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
379 	alloced = 0;
380 
381 	while (nalloc--) {
382 		unmap = &unmap_q->unmap[prod];
383 
384 		if (unmap_q->reuse_pi < 0) {
385 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
386 					unmap_q->alloc_order);
387 			page_offset = 0;
388 		} else {
389 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
390 			page = prev->page;
391 			page_offset = prev->page_offset + unmap_q->map_size;
392 			get_page(page);
393 		}
394 
395 		if (unlikely(!page)) {
396 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
397 			rcb->rxq->rxbuf_alloc_failed++;
398 			goto finishing;
399 		}
400 
401 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
402 				unmap_q->map_size, DMA_FROM_DEVICE);
403 
404 		unmap->page = page;
405 		unmap->page_offset = page_offset;
406 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
407 		unmap->vector.len = unmap_q->map_size;
408 		page_offset += unmap_q->map_size;
409 
410 		if (page_offset < alloc_size)
411 			unmap_q->reuse_pi = prod;
412 		else
413 			unmap_q->reuse_pi = -1;
414 
415 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
416 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
417 		BNA_QE_INDX_INC(prod, q_depth);
418 		alloced++;
419 	}
420 
421 finishing:
422 	if (likely(alloced)) {
423 		rcb->producer_index = prod;
424 		smp_mb();
425 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
426 			bna_rxq_prod_indx_doorbell(rcb);
427 	}
428 
429 	return alloced;
430 }
431 
432 static u32
433 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
434 {
435 	u32 alloced, prod, q_depth, buff_sz;
436 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
437 	struct bnad_rx_unmap *unmap;
438 	struct bna_rxq_entry *rxent;
439 	struct sk_buff *skb;
440 	dma_addr_t dma_addr;
441 
442 	buff_sz = rcb->rxq->buffer_size;
443 	prod = rcb->producer_index;
444 	q_depth = rcb->q_depth;
445 
446 	alloced = 0;
447 	while (nalloc--) {
448 		unmap = &unmap_q->unmap[prod];
449 
450 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
451 
452 		if (unlikely(!skb)) {
453 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
454 			rcb->rxq->rxbuf_alloc_failed++;
455 			goto finishing;
456 		}
457 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
458 					  buff_sz, DMA_FROM_DEVICE);
459 
460 		unmap->skb = skb;
461 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
462 		unmap->vector.len = buff_sz;
463 
464 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
465 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
466 		BNA_QE_INDX_INC(prod, q_depth);
467 		alloced++;
468 	}
469 
470 finishing:
471 	if (likely(alloced)) {
472 		rcb->producer_index = prod;
473 		smp_mb();
474 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
475 			bna_rxq_prod_indx_doorbell(rcb);
476 	}
477 
478 	return alloced;
479 }
480 
481 static inline void
482 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
483 {
484 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
485 	u32 to_alloc;
486 
487 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
488 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
489 		return;
490 
491 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
492 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
493 	else
494 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
495 }
496 
497 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
498 					BNA_CQ_EF_IPV6 | \
499 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
500 					BNA_CQ_EF_L4_CKSUM_OK)
501 
502 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
503 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
504 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
505 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
506 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
507 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
508 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
509 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
510 
511 static void
512 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
513 		    u32 sop_ci, u32 nvecs)
514 {
515 	struct bnad_rx_unmap_q *unmap_q;
516 	struct bnad_rx_unmap *unmap;
517 	u32 ci, vec;
518 
519 	unmap_q = rcb->unmap_q;
520 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
521 		unmap = &unmap_q->unmap[ci];
522 		BNA_QE_INDX_INC(ci, rcb->q_depth);
523 
524 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
525 			bnad_rxq_cleanup_skb(bnad, unmap);
526 		else
527 			bnad_rxq_cleanup_page(bnad, unmap);
528 	}
529 }
530 
531 static void
532 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
533 			u32 sop_ci, u32 nvecs, u32 last_fraglen)
534 {
535 	struct bnad *bnad;
536 	u32 ci, vec, len, totlen = 0;
537 	struct bnad_rx_unmap_q *unmap_q;
538 	struct bnad_rx_unmap *unmap;
539 
540 	unmap_q = rcb->unmap_q;
541 	bnad = rcb->bnad;
542 
543 	/* prefetch header */
544 	prefetch(page_address(unmap_q->unmap[sop_ci].page) +
545 			unmap_q->unmap[sop_ci].page_offset);
546 
547 	for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
548 		unmap = &unmap_q->unmap[ci];
549 		BNA_QE_INDX_INC(ci, rcb->q_depth);
550 
551 		dma_unmap_page(&bnad->pcidev->dev,
552 				dma_unmap_addr(&unmap->vector, dma_addr),
553 				unmap->vector.len, DMA_FROM_DEVICE);
554 
555 		len = (vec == nvecs) ?
556 			last_fraglen : unmap->vector.len;
557 		skb->truesize += unmap->vector.len;
558 		totlen += len;
559 
560 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
561 				unmap->page, unmap->page_offset, len);
562 
563 		unmap->page = NULL;
564 		unmap->vector.len = 0;
565 	}
566 
567 	skb->len += totlen;
568 	skb->data_len += totlen;
569 }
570 
571 static inline void
572 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
573 		  struct bnad_rx_unmap *unmap, u32 len)
574 {
575 	prefetch(skb->data);
576 
577 	dma_unmap_single(&bnad->pcidev->dev,
578 			dma_unmap_addr(&unmap->vector, dma_addr),
579 			unmap->vector.len, DMA_FROM_DEVICE);
580 
581 	skb_put(skb, len);
582 	skb->protocol = eth_type_trans(skb, bnad->netdev);
583 
584 	unmap->skb = NULL;
585 	unmap->vector.len = 0;
586 }
587 
588 static u32
589 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
590 {
591 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
592 	struct bna_rcb *rcb = NULL;
593 	struct bnad_rx_unmap_q *unmap_q;
594 	struct bnad_rx_unmap *unmap = NULL;
595 	struct sk_buff *skb = NULL;
596 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
597 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
598 	u32 packets = 0, len = 0, totlen = 0;
599 	u32 pi, vec, sop_ci = 0, nvecs = 0;
600 	u32 flags, masked_flags;
601 
602 	prefetch(bnad->netdev);
603 
604 	cq = ccb->sw_q;
605 
606 	while (packets < budget) {
607 		cmpl = &cq[ccb->producer_index];
608 		if (!cmpl->valid)
609 			break;
610 		/* The 'valid' field is set by the adapter, only after writing
611 		 * the other fields of completion entry. Hence, do not load
612 		 * other fields of completion entry *before* the 'valid' is
613 		 * loaded. Adding the rmb() here prevents the compiler and/or
614 		 * CPU from reordering the reads which would potentially result
615 		 * in reading stale values in completion entry.
616 		 */
617 		rmb();
618 
619 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
620 
621 		if (bna_is_small_rxq(cmpl->rxq_id))
622 			rcb = ccb->rcb[1];
623 		else
624 			rcb = ccb->rcb[0];
625 
626 		unmap_q = rcb->unmap_q;
627 
628 		/* start of packet ci */
629 		sop_ci = rcb->consumer_index;
630 
631 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
632 			unmap = &unmap_q->unmap[sop_ci];
633 			skb = unmap->skb;
634 		} else {
635 			skb = napi_get_frags(&rx_ctrl->napi);
636 			if (unlikely(!skb))
637 				break;
638 		}
639 		prefetch(skb);
640 
641 		flags = ntohl(cmpl->flags);
642 		len = ntohs(cmpl->length);
643 		totlen = len;
644 		nvecs = 1;
645 
646 		/* Check all the completions for this frame.
647 		 * busy-wait doesn't help much, break here.
648 		 */
649 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
650 		    (flags & BNA_CQ_EF_EOP) == 0) {
651 			pi = ccb->producer_index;
652 			do {
653 				BNA_QE_INDX_INC(pi, ccb->q_depth);
654 				next_cmpl = &cq[pi];
655 
656 				if (!next_cmpl->valid)
657 					break;
658 				/* The 'valid' field is set by the adapter, only
659 				 * after writing the other fields of completion
660 				 * entry. Hence, do not load other fields of
661 				 * completion entry *before* the 'valid' is
662 				 * loaded. Adding the rmb() here prevents the
663 				 * compiler and/or CPU from reordering the reads
664 				 * which would potentially result in reading
665 				 * stale values in completion entry.
666 				 */
667 				rmb();
668 
669 				len = ntohs(next_cmpl->length);
670 				flags = ntohl(next_cmpl->flags);
671 
672 				nvecs++;
673 				totlen += len;
674 			} while ((flags & BNA_CQ_EF_EOP) == 0);
675 
676 			if (!next_cmpl->valid)
677 				break;
678 		}
679 		packets++;
680 
681 		/* TODO: BNA_CQ_EF_LOCAL ? */
682 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
683 						BNA_CQ_EF_FCS_ERROR |
684 						BNA_CQ_EF_TOO_LONG))) {
685 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
686 			rcb->rxq->rx_packets_with_error++;
687 
688 			goto next;
689 		}
690 
691 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
692 			bnad_cq_setup_skb(bnad, skb, unmap, len);
693 		else
694 			bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
695 
696 		rcb->rxq->rx_packets++;
697 		rcb->rxq->rx_bytes += totlen;
698 		ccb->bytes_per_intr += totlen;
699 
700 		masked_flags = flags & flags_cksum_prot_mask;
701 
702 		if (likely
703 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
704 		     ((masked_flags == flags_tcp4) ||
705 		      (masked_flags == flags_udp4) ||
706 		      (masked_flags == flags_tcp6) ||
707 		      (masked_flags == flags_udp6))))
708 			skb->ip_summed = CHECKSUM_UNNECESSARY;
709 		else
710 			skb_checksum_none_assert(skb);
711 
712 		if ((flags & BNA_CQ_EF_VLAN) &&
713 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
714 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
715 
716 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
717 			netif_receive_skb(skb);
718 		else
719 			napi_gro_frags(&rx_ctrl->napi);
720 
721 next:
722 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
723 		for (vec = 0; vec < nvecs; vec++) {
724 			cmpl = &cq[ccb->producer_index];
725 			cmpl->valid = 0;
726 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
727 		}
728 	}
729 
730 	napi_gro_flush(&rx_ctrl->napi, false);
731 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
732 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
733 
734 	bnad_rxq_post(bnad, ccb->rcb[0]);
735 	if (ccb->rcb[1])
736 		bnad_rxq_post(bnad, ccb->rcb[1]);
737 
738 	return packets;
739 }
740 
741 static void
742 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
743 {
744 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
745 	struct napi_struct *napi = &rx_ctrl->napi;
746 
747 	if (likely(napi_schedule_prep(napi))) {
748 		__napi_schedule(napi);
749 		rx_ctrl->rx_schedule++;
750 	}
751 }
752 
753 /* MSIX Rx Path Handler */
754 static irqreturn_t
755 bnad_msix_rx(int irq, void *data)
756 {
757 	struct bna_ccb *ccb = (struct bna_ccb *)data;
758 
759 	if (ccb) {
760 		((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
761 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
762 	}
763 
764 	return IRQ_HANDLED;
765 }
766 
767 /* Interrupt handlers */
768 
769 /* Mbox Interrupt Handlers */
770 static irqreturn_t
771 bnad_msix_mbox_handler(int irq, void *data)
772 {
773 	u32 intr_status;
774 	unsigned long flags;
775 	struct bnad *bnad = (struct bnad *)data;
776 
777 	spin_lock_irqsave(&bnad->bna_lock, flags);
778 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
779 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
780 		return IRQ_HANDLED;
781 	}
782 
783 	bna_intr_status_get(&bnad->bna, intr_status);
784 
785 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
786 		bna_mbox_handler(&bnad->bna, intr_status);
787 
788 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
789 
790 	return IRQ_HANDLED;
791 }
792 
793 static irqreturn_t
794 bnad_isr(int irq, void *data)
795 {
796 	int i, j;
797 	u32 intr_status;
798 	unsigned long flags;
799 	struct bnad *bnad = (struct bnad *)data;
800 	struct bnad_rx_info *rx_info;
801 	struct bnad_rx_ctrl *rx_ctrl;
802 	struct bna_tcb *tcb = NULL;
803 
804 	spin_lock_irqsave(&bnad->bna_lock, flags);
805 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
806 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
807 		return IRQ_NONE;
808 	}
809 
810 	bna_intr_status_get(&bnad->bna, intr_status);
811 
812 	if (unlikely(!intr_status)) {
813 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
814 		return IRQ_NONE;
815 	}
816 
817 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
818 		bna_mbox_handler(&bnad->bna, intr_status);
819 
820 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
821 
822 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
823 		return IRQ_HANDLED;
824 
825 	/* Process data interrupts */
826 	/* Tx processing */
827 	for (i = 0; i < bnad->num_tx; i++) {
828 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
829 			tcb = bnad->tx_info[i].tcb[j];
830 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
831 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
832 		}
833 	}
834 	/* Rx processing */
835 	for (i = 0; i < bnad->num_rx; i++) {
836 		rx_info = &bnad->rx_info[i];
837 		if (!rx_info->rx)
838 			continue;
839 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
840 			rx_ctrl = &rx_info->rx_ctrl[j];
841 			if (rx_ctrl->ccb)
842 				bnad_netif_rx_schedule_poll(bnad,
843 							    rx_ctrl->ccb);
844 		}
845 	}
846 	return IRQ_HANDLED;
847 }
848 
849 /*
850  * Called in interrupt / callback context
851  * with bna_lock held, so cfg_flags access is OK
852  */
853 static void
854 bnad_enable_mbox_irq(struct bnad *bnad)
855 {
856 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
857 
858 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
859 }
860 
861 /*
862  * Called with bnad->bna_lock held b'cos of
863  * bnad->cfg_flags access.
864  */
865 static void
866 bnad_disable_mbox_irq(struct bnad *bnad)
867 {
868 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
869 
870 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
871 }
872 
873 static void
874 bnad_set_netdev_perm_addr(struct bnad *bnad)
875 {
876 	struct net_device *netdev = bnad->netdev;
877 
878 	ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
879 	if (is_zero_ether_addr(netdev->dev_addr))
880 		ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
881 }
882 
883 /* Control Path Handlers */
884 
885 /* Callbacks */
886 void
887 bnad_cb_mbox_intr_enable(struct bnad *bnad)
888 {
889 	bnad_enable_mbox_irq(bnad);
890 }
891 
892 void
893 bnad_cb_mbox_intr_disable(struct bnad *bnad)
894 {
895 	bnad_disable_mbox_irq(bnad);
896 }
897 
898 void
899 bnad_cb_ioceth_ready(struct bnad *bnad)
900 {
901 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
902 	complete(&bnad->bnad_completions.ioc_comp);
903 }
904 
905 void
906 bnad_cb_ioceth_failed(struct bnad *bnad)
907 {
908 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
909 	complete(&bnad->bnad_completions.ioc_comp);
910 }
911 
912 void
913 bnad_cb_ioceth_disabled(struct bnad *bnad)
914 {
915 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
916 	complete(&bnad->bnad_completions.ioc_comp);
917 }
918 
919 static void
920 bnad_cb_enet_disabled(void *arg)
921 {
922 	struct bnad *bnad = (struct bnad *)arg;
923 
924 	netif_carrier_off(bnad->netdev);
925 	complete(&bnad->bnad_completions.enet_comp);
926 }
927 
928 void
929 bnad_cb_ethport_link_status(struct bnad *bnad,
930 			enum bna_link_status link_status)
931 {
932 	bool link_up = false;
933 
934 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
935 
936 	if (link_status == BNA_CEE_UP) {
937 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
938 			BNAD_UPDATE_CTR(bnad, cee_toggle);
939 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
940 	} else {
941 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
942 			BNAD_UPDATE_CTR(bnad, cee_toggle);
943 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
944 	}
945 
946 	if (link_up) {
947 		if (!netif_carrier_ok(bnad->netdev)) {
948 			uint tx_id, tcb_id;
949 			netdev_info(bnad->netdev, "link up\n");
950 			netif_carrier_on(bnad->netdev);
951 			BNAD_UPDATE_CTR(bnad, link_toggle);
952 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
953 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
954 				      tcb_id++) {
955 					struct bna_tcb *tcb =
956 					bnad->tx_info[tx_id].tcb[tcb_id];
957 					u32 txq_id;
958 					if (!tcb)
959 						continue;
960 
961 					txq_id = tcb->id;
962 
963 					if (test_bit(BNAD_TXQ_TX_STARTED,
964 						     &tcb->flags)) {
965 						/*
966 						 * Force an immediate
967 						 * Transmit Schedule */
968 						netif_wake_subqueue(
969 								bnad->netdev,
970 								txq_id);
971 						BNAD_UPDATE_CTR(bnad,
972 							netif_queue_wakeup);
973 					} else {
974 						netif_stop_subqueue(
975 								bnad->netdev,
976 								txq_id);
977 						BNAD_UPDATE_CTR(bnad,
978 							netif_queue_stop);
979 					}
980 				}
981 			}
982 		}
983 	} else {
984 		if (netif_carrier_ok(bnad->netdev)) {
985 			netdev_info(bnad->netdev, "link down\n");
986 			netif_carrier_off(bnad->netdev);
987 			BNAD_UPDATE_CTR(bnad, link_toggle);
988 		}
989 	}
990 }
991 
992 static void
993 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
994 {
995 	struct bnad *bnad = (struct bnad *)arg;
996 
997 	complete(&bnad->bnad_completions.tx_comp);
998 }
999 
1000 static void
1001 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1002 {
1003 	struct bnad_tx_info *tx_info =
1004 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1005 
1006 	tcb->priv = tcb;
1007 	tx_info->tcb[tcb->id] = tcb;
1008 }
1009 
1010 static void
1011 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1012 {
1013 	struct bnad_tx_info *tx_info =
1014 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1015 
1016 	tx_info->tcb[tcb->id] = NULL;
1017 	tcb->priv = NULL;
1018 }
1019 
1020 static void
1021 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1022 {
1023 	struct bnad_rx_info *rx_info =
1024 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1025 
1026 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1027 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1028 }
1029 
1030 static void
1031 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1032 {
1033 	struct bnad_rx_info *rx_info =
1034 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1035 
1036 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1037 }
1038 
1039 static void
1040 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1041 {
1042 	struct bnad_tx_info *tx_info =
1043 			(struct bnad_tx_info *)tx->priv;
1044 	struct bna_tcb *tcb;
1045 	u32 txq_id;
1046 	int i;
1047 
1048 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1049 		tcb = tx_info->tcb[i];
1050 		if (!tcb)
1051 			continue;
1052 		txq_id = tcb->id;
1053 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1054 		netif_stop_subqueue(bnad->netdev, txq_id);
1055 	}
1056 }
1057 
1058 static void
1059 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1060 {
1061 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1062 	struct bna_tcb *tcb;
1063 	u32 txq_id;
1064 	int i;
1065 
1066 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1067 		tcb = tx_info->tcb[i];
1068 		if (!tcb)
1069 			continue;
1070 		txq_id = tcb->id;
1071 
1072 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1073 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1074 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1075 
1076 		if (netif_carrier_ok(bnad->netdev)) {
1077 			netif_wake_subqueue(bnad->netdev, txq_id);
1078 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1079 		}
1080 	}
1081 
1082 	/*
1083 	 * Workaround for first ioceth enable failure & we
1084 	 * get a 0 MAC address. We try to get the MAC address
1085 	 * again here.
1086 	 */
1087 	if (is_zero_ether_addr(bnad->perm_addr)) {
1088 		bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1089 		bnad_set_netdev_perm_addr(bnad);
1090 	}
1091 }
1092 
1093 /*
1094  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1095  */
1096 static void
1097 bnad_tx_cleanup(struct delayed_work *work)
1098 {
1099 	struct bnad_tx_info *tx_info =
1100 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1101 	struct bnad *bnad = NULL;
1102 	struct bna_tcb *tcb;
1103 	unsigned long flags;
1104 	u32 i, pending = 0;
1105 
1106 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1107 		tcb = tx_info->tcb[i];
1108 		if (!tcb)
1109 			continue;
1110 
1111 		bnad = tcb->bnad;
1112 
1113 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1114 			pending++;
1115 			continue;
1116 		}
1117 
1118 		bnad_txq_cleanup(bnad, tcb);
1119 
1120 		smp_mb__before_atomic();
1121 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1122 	}
1123 
1124 	if (pending) {
1125 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1126 			msecs_to_jiffies(1));
1127 		return;
1128 	}
1129 
1130 	spin_lock_irqsave(&bnad->bna_lock, flags);
1131 	bna_tx_cleanup_complete(tx_info->tx);
1132 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1133 }
1134 
1135 static void
1136 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1137 {
1138 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1139 	struct bna_tcb *tcb;
1140 	int i;
1141 
1142 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1143 		tcb = tx_info->tcb[i];
1144 		if (!tcb)
1145 			continue;
1146 	}
1147 
1148 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1149 }
1150 
1151 static void
1152 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1153 {
1154 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1155 	struct bna_ccb *ccb;
1156 	struct bnad_rx_ctrl *rx_ctrl;
1157 	int i;
1158 
1159 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1160 		rx_ctrl = &rx_info->rx_ctrl[i];
1161 		ccb = rx_ctrl->ccb;
1162 		if (!ccb)
1163 			continue;
1164 
1165 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1166 
1167 		if (ccb->rcb[1])
1168 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1169 	}
1170 }
1171 
1172 /*
1173  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1174  */
1175 static void
1176 bnad_rx_cleanup(void *work)
1177 {
1178 	struct bnad_rx_info *rx_info =
1179 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1180 	struct bnad_rx_ctrl *rx_ctrl;
1181 	struct bnad *bnad = NULL;
1182 	unsigned long flags;
1183 	u32 i;
1184 
1185 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1186 		rx_ctrl = &rx_info->rx_ctrl[i];
1187 
1188 		if (!rx_ctrl->ccb)
1189 			continue;
1190 
1191 		bnad = rx_ctrl->ccb->bnad;
1192 
1193 		/*
1194 		 * Wait till the poll handler has exited
1195 		 * and nothing can be scheduled anymore
1196 		 */
1197 		napi_disable(&rx_ctrl->napi);
1198 
1199 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1200 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1201 		if (rx_ctrl->ccb->rcb[1])
1202 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1203 	}
1204 
1205 	spin_lock_irqsave(&bnad->bna_lock, flags);
1206 	bna_rx_cleanup_complete(rx_info->rx);
1207 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1208 }
1209 
1210 static void
1211 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1212 {
1213 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1214 	struct bna_ccb *ccb;
1215 	struct bnad_rx_ctrl *rx_ctrl;
1216 	int i;
1217 
1218 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1219 		rx_ctrl = &rx_info->rx_ctrl[i];
1220 		ccb = rx_ctrl->ccb;
1221 		if (!ccb)
1222 			continue;
1223 
1224 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1225 
1226 		if (ccb->rcb[1])
1227 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1228 	}
1229 
1230 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1231 }
1232 
1233 static void
1234 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1235 {
1236 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1237 	struct bna_ccb *ccb;
1238 	struct bna_rcb *rcb;
1239 	struct bnad_rx_ctrl *rx_ctrl;
1240 	int i, j;
1241 
1242 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1243 		rx_ctrl = &rx_info->rx_ctrl[i];
1244 		ccb = rx_ctrl->ccb;
1245 		if (!ccb)
1246 			continue;
1247 
1248 		napi_enable(&rx_ctrl->napi);
1249 
1250 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1251 			rcb = ccb->rcb[j];
1252 			if (!rcb)
1253 				continue;
1254 
1255 			bnad_rxq_alloc_init(bnad, rcb);
1256 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1257 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1258 			bnad_rxq_post(bnad, rcb);
1259 		}
1260 	}
1261 }
1262 
1263 static void
1264 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1265 {
1266 	struct bnad *bnad = (struct bnad *)arg;
1267 
1268 	complete(&bnad->bnad_completions.rx_comp);
1269 }
1270 
1271 static void
1272 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1273 {
1274 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1275 	complete(&bnad->bnad_completions.mcast_comp);
1276 }
1277 
1278 void
1279 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1280 		       struct bna_stats *stats)
1281 {
1282 	if (status == BNA_CB_SUCCESS)
1283 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1284 
1285 	if (!netif_running(bnad->netdev) ||
1286 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1287 		return;
1288 
1289 	mod_timer(&bnad->stats_timer,
1290 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1291 }
1292 
1293 static void
1294 bnad_cb_enet_mtu_set(struct bnad *bnad)
1295 {
1296 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1297 	complete(&bnad->bnad_completions.mtu_comp);
1298 }
1299 
1300 void
1301 bnad_cb_completion(void *arg, enum bfa_status status)
1302 {
1303 	struct bnad_iocmd_comp *iocmd_comp =
1304 			(struct bnad_iocmd_comp *)arg;
1305 
1306 	iocmd_comp->comp_status = (u32) status;
1307 	complete(&iocmd_comp->comp);
1308 }
1309 
1310 /* Resource allocation, free functions */
1311 
1312 static void
1313 bnad_mem_free(struct bnad *bnad,
1314 	      struct bna_mem_info *mem_info)
1315 {
1316 	int i;
1317 	dma_addr_t dma_pa;
1318 
1319 	if (mem_info->mdl == NULL)
1320 		return;
1321 
1322 	for (i = 0; i < mem_info->num; i++) {
1323 		if (mem_info->mdl[i].kva != NULL) {
1324 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1325 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1326 						dma_pa);
1327 				dma_free_coherent(&bnad->pcidev->dev,
1328 						  mem_info->mdl[i].len,
1329 						  mem_info->mdl[i].kva, dma_pa);
1330 			} else
1331 				kfree(mem_info->mdl[i].kva);
1332 		}
1333 	}
1334 	kfree(mem_info->mdl);
1335 	mem_info->mdl = NULL;
1336 }
1337 
1338 static int
1339 bnad_mem_alloc(struct bnad *bnad,
1340 	       struct bna_mem_info *mem_info)
1341 {
1342 	int i;
1343 	dma_addr_t dma_pa;
1344 
1345 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1346 		mem_info->mdl = NULL;
1347 		return 0;
1348 	}
1349 
1350 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1351 				GFP_KERNEL);
1352 	if (mem_info->mdl == NULL)
1353 		return -ENOMEM;
1354 
1355 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1356 		for (i = 0; i < mem_info->num; i++) {
1357 			mem_info->mdl[i].len = mem_info->len;
1358 			mem_info->mdl[i].kva =
1359 				dma_alloc_coherent(&bnad->pcidev->dev,
1360 						   mem_info->len, &dma_pa,
1361 						   GFP_KERNEL);
1362 			if (mem_info->mdl[i].kva == NULL)
1363 				goto err_return;
1364 
1365 			BNA_SET_DMA_ADDR(dma_pa,
1366 					 &(mem_info->mdl[i].dma));
1367 		}
1368 	} else {
1369 		for (i = 0; i < mem_info->num; i++) {
1370 			mem_info->mdl[i].len = mem_info->len;
1371 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1372 							GFP_KERNEL);
1373 			if (mem_info->mdl[i].kva == NULL)
1374 				goto err_return;
1375 		}
1376 	}
1377 
1378 	return 0;
1379 
1380 err_return:
1381 	bnad_mem_free(bnad, mem_info);
1382 	return -ENOMEM;
1383 }
1384 
1385 /* Free IRQ for Mailbox */
1386 static void
1387 bnad_mbox_irq_free(struct bnad *bnad)
1388 {
1389 	int irq;
1390 	unsigned long flags;
1391 
1392 	spin_lock_irqsave(&bnad->bna_lock, flags);
1393 	bnad_disable_mbox_irq(bnad);
1394 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1395 
1396 	irq = BNAD_GET_MBOX_IRQ(bnad);
1397 	free_irq(irq, bnad);
1398 }
1399 
1400 /*
1401  * Allocates IRQ for Mailbox, but keep it disabled
1402  * This will be enabled once we get the mbox enable callback
1403  * from bna
1404  */
1405 static int
1406 bnad_mbox_irq_alloc(struct bnad *bnad)
1407 {
1408 	int		err = 0;
1409 	unsigned long	irq_flags, flags;
1410 	u32	irq;
1411 	irq_handler_t	irq_handler;
1412 
1413 	spin_lock_irqsave(&bnad->bna_lock, flags);
1414 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1415 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1416 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1417 		irq_flags = 0;
1418 	} else {
1419 		irq_handler = (irq_handler_t)bnad_isr;
1420 		irq = bnad->pcidev->irq;
1421 		irq_flags = IRQF_SHARED;
1422 	}
1423 
1424 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1425 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1426 
1427 	/*
1428 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1429 	 * called from request_irq() for SHARED IRQs do not execute
1430 	 */
1431 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1432 
1433 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1434 
1435 	err = request_irq(irq, irq_handler, irq_flags,
1436 			  bnad->mbox_irq_name, bnad);
1437 
1438 	return err;
1439 }
1440 
1441 static void
1442 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1443 {
1444 	kfree(intr_info->idl);
1445 	intr_info->idl = NULL;
1446 }
1447 
1448 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1449 static int
1450 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1451 		    u32 txrx_id, struct bna_intr_info *intr_info)
1452 {
1453 	int i, vector_start = 0;
1454 	u32 cfg_flags;
1455 	unsigned long flags;
1456 
1457 	spin_lock_irqsave(&bnad->bna_lock, flags);
1458 	cfg_flags = bnad->cfg_flags;
1459 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1460 
1461 	if (cfg_flags & BNAD_CF_MSIX) {
1462 		intr_info->intr_type = BNA_INTR_T_MSIX;
1463 		intr_info->idl = kcalloc(intr_info->num,
1464 					sizeof(struct bna_intr_descr),
1465 					GFP_KERNEL);
1466 		if (!intr_info->idl)
1467 			return -ENOMEM;
1468 
1469 		switch (src) {
1470 		case BNAD_INTR_TX:
1471 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1472 			break;
1473 
1474 		case BNAD_INTR_RX:
1475 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1476 					(bnad->num_tx * bnad->num_txq_per_tx) +
1477 					txrx_id;
1478 			break;
1479 
1480 		default:
1481 			BUG();
1482 		}
1483 
1484 		for (i = 0; i < intr_info->num; i++)
1485 			intr_info->idl[i].vector = vector_start + i;
1486 	} else {
1487 		intr_info->intr_type = BNA_INTR_T_INTX;
1488 		intr_info->num = 1;
1489 		intr_info->idl = kcalloc(intr_info->num,
1490 					sizeof(struct bna_intr_descr),
1491 					GFP_KERNEL);
1492 		if (!intr_info->idl)
1493 			return -ENOMEM;
1494 
1495 		switch (src) {
1496 		case BNAD_INTR_TX:
1497 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1498 			break;
1499 
1500 		case BNAD_INTR_RX:
1501 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1502 			break;
1503 		}
1504 	}
1505 	return 0;
1506 }
1507 
1508 /* NOTE: Should be called for MSIX only
1509  * Unregisters Tx MSIX vector(s) from the kernel
1510  */
1511 static void
1512 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1513 			int num_txqs)
1514 {
1515 	int i;
1516 	int vector_num;
1517 
1518 	for (i = 0; i < num_txqs; i++) {
1519 		if (tx_info->tcb[i] == NULL)
1520 			continue;
1521 
1522 		vector_num = tx_info->tcb[i]->intr_vector;
1523 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1524 	}
1525 }
1526 
1527 /* NOTE: Should be called for MSIX only
1528  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1529  */
1530 static int
1531 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1532 			u32 tx_id, int num_txqs)
1533 {
1534 	int i;
1535 	int err;
1536 	int vector_num;
1537 
1538 	for (i = 0; i < num_txqs; i++) {
1539 		vector_num = tx_info->tcb[i]->intr_vector;
1540 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1541 				tx_id + tx_info->tcb[i]->id);
1542 		err = request_irq(bnad->msix_table[vector_num].vector,
1543 				  (irq_handler_t)bnad_msix_tx, 0,
1544 				  tx_info->tcb[i]->name,
1545 				  tx_info->tcb[i]);
1546 		if (err)
1547 			goto err_return;
1548 	}
1549 
1550 	return 0;
1551 
1552 err_return:
1553 	if (i > 0)
1554 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1555 	return -1;
1556 }
1557 
1558 /* NOTE: Should be called for MSIX only
1559  * Unregisters Rx MSIX vector(s) from the kernel
1560  */
1561 static void
1562 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1563 			int num_rxps)
1564 {
1565 	int i;
1566 	int vector_num;
1567 
1568 	for (i = 0; i < num_rxps; i++) {
1569 		if (rx_info->rx_ctrl[i].ccb == NULL)
1570 			continue;
1571 
1572 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1573 		free_irq(bnad->msix_table[vector_num].vector,
1574 			 rx_info->rx_ctrl[i].ccb);
1575 	}
1576 }
1577 
1578 /* NOTE: Should be called for MSIX only
1579  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1580  */
1581 static int
1582 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1583 			u32 rx_id, int num_rxps)
1584 {
1585 	int i;
1586 	int err;
1587 	int vector_num;
1588 
1589 	for (i = 0; i < num_rxps; i++) {
1590 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1591 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1592 			bnad->netdev->name,
1593 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1594 		err = request_irq(bnad->msix_table[vector_num].vector,
1595 				  (irq_handler_t)bnad_msix_rx, 0,
1596 				  rx_info->rx_ctrl[i].ccb->name,
1597 				  rx_info->rx_ctrl[i].ccb);
1598 		if (err)
1599 			goto err_return;
1600 	}
1601 
1602 	return 0;
1603 
1604 err_return:
1605 	if (i > 0)
1606 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1607 	return -1;
1608 }
1609 
1610 /* Free Tx object Resources */
1611 static void
1612 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1613 {
1614 	int i;
1615 
1616 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1617 		if (res_info[i].res_type == BNA_RES_T_MEM)
1618 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1619 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1620 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1621 	}
1622 }
1623 
1624 /* Allocates memory and interrupt resources for Tx object */
1625 static int
1626 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1627 		  u32 tx_id)
1628 {
1629 	int i, err = 0;
1630 
1631 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1632 		if (res_info[i].res_type == BNA_RES_T_MEM)
1633 			err = bnad_mem_alloc(bnad,
1634 					&res_info[i].res_u.mem_info);
1635 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1636 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1637 					&res_info[i].res_u.intr_info);
1638 		if (err)
1639 			goto err_return;
1640 	}
1641 	return 0;
1642 
1643 err_return:
1644 	bnad_tx_res_free(bnad, res_info);
1645 	return err;
1646 }
1647 
1648 /* Free Rx object Resources */
1649 static void
1650 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1651 {
1652 	int i;
1653 
1654 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1655 		if (res_info[i].res_type == BNA_RES_T_MEM)
1656 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1657 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1658 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1659 	}
1660 }
1661 
1662 /* Allocates memory and interrupt resources for Rx object */
1663 static int
1664 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1665 		  uint rx_id)
1666 {
1667 	int i, err = 0;
1668 
1669 	/* All memory needs to be allocated before setup_ccbs */
1670 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1671 		if (res_info[i].res_type == BNA_RES_T_MEM)
1672 			err = bnad_mem_alloc(bnad,
1673 					&res_info[i].res_u.mem_info);
1674 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1675 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1676 					&res_info[i].res_u.intr_info);
1677 		if (err)
1678 			goto err_return;
1679 	}
1680 	return 0;
1681 
1682 err_return:
1683 	bnad_rx_res_free(bnad, res_info);
1684 	return err;
1685 }
1686 
1687 /* Timer callbacks */
1688 /* a) IOC timer */
1689 static void
1690 bnad_ioc_timeout(unsigned long data)
1691 {
1692 	struct bnad *bnad = (struct bnad *)data;
1693 	unsigned long flags;
1694 
1695 	spin_lock_irqsave(&bnad->bna_lock, flags);
1696 	bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1697 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1698 }
1699 
1700 static void
1701 bnad_ioc_hb_check(unsigned long data)
1702 {
1703 	struct bnad *bnad = (struct bnad *)data;
1704 	unsigned long flags;
1705 
1706 	spin_lock_irqsave(&bnad->bna_lock, flags);
1707 	bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1708 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1709 }
1710 
1711 static void
1712 bnad_iocpf_timeout(unsigned long data)
1713 {
1714 	struct bnad *bnad = (struct bnad *)data;
1715 	unsigned long flags;
1716 
1717 	spin_lock_irqsave(&bnad->bna_lock, flags);
1718 	bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1719 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1720 }
1721 
1722 static void
1723 bnad_iocpf_sem_timeout(unsigned long data)
1724 {
1725 	struct bnad *bnad = (struct bnad *)data;
1726 	unsigned long flags;
1727 
1728 	spin_lock_irqsave(&bnad->bna_lock, flags);
1729 	bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1730 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1731 }
1732 
1733 /*
1734  * All timer routines use bnad->bna_lock to protect against
1735  * the following race, which may occur in case of no locking:
1736  *	Time	CPU m	CPU n
1737  *	0       1 = test_bit
1738  *	1			clear_bit
1739  *	2			del_timer_sync
1740  *	3	mod_timer
1741  */
1742 
1743 /* b) Dynamic Interrupt Moderation Timer */
1744 static void
1745 bnad_dim_timeout(unsigned long data)
1746 {
1747 	struct bnad *bnad = (struct bnad *)data;
1748 	struct bnad_rx_info *rx_info;
1749 	struct bnad_rx_ctrl *rx_ctrl;
1750 	int i, j;
1751 	unsigned long flags;
1752 
1753 	if (!netif_carrier_ok(bnad->netdev))
1754 		return;
1755 
1756 	spin_lock_irqsave(&bnad->bna_lock, flags);
1757 	for (i = 0; i < bnad->num_rx; i++) {
1758 		rx_info = &bnad->rx_info[i];
1759 		if (!rx_info->rx)
1760 			continue;
1761 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1762 			rx_ctrl = &rx_info->rx_ctrl[j];
1763 			if (!rx_ctrl->ccb)
1764 				continue;
1765 			bna_rx_dim_update(rx_ctrl->ccb);
1766 		}
1767 	}
1768 
1769 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1770 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1771 		mod_timer(&bnad->dim_timer,
1772 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1773 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1774 }
1775 
1776 /* c)  Statistics Timer */
1777 static void
1778 bnad_stats_timeout(unsigned long data)
1779 {
1780 	struct bnad *bnad = (struct bnad *)data;
1781 	unsigned long flags;
1782 
1783 	if (!netif_running(bnad->netdev) ||
1784 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1785 		return;
1786 
1787 	spin_lock_irqsave(&bnad->bna_lock, flags);
1788 	bna_hw_stats_get(&bnad->bna);
1789 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1790 }
1791 
1792 /*
1793  * Set up timer for DIM
1794  * Called with bnad->bna_lock held
1795  */
1796 void
1797 bnad_dim_timer_start(struct bnad *bnad)
1798 {
1799 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1800 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1801 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1802 			    (unsigned long)bnad);
1803 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1804 		mod_timer(&bnad->dim_timer,
1805 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1806 	}
1807 }
1808 
1809 /*
1810  * Set up timer for statistics
1811  * Called with mutex_lock(&bnad->conf_mutex) held
1812  */
1813 static void
1814 bnad_stats_timer_start(struct bnad *bnad)
1815 {
1816 	unsigned long flags;
1817 
1818 	spin_lock_irqsave(&bnad->bna_lock, flags);
1819 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1820 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1821 			    (unsigned long)bnad);
1822 		mod_timer(&bnad->stats_timer,
1823 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1824 	}
1825 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1826 }
1827 
1828 /*
1829  * Stops the stats timer
1830  * Called with mutex_lock(&bnad->conf_mutex) held
1831  */
1832 static void
1833 bnad_stats_timer_stop(struct bnad *bnad)
1834 {
1835 	int to_del = 0;
1836 	unsigned long flags;
1837 
1838 	spin_lock_irqsave(&bnad->bna_lock, flags);
1839 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1840 		to_del = 1;
1841 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1842 	if (to_del)
1843 		del_timer_sync(&bnad->stats_timer);
1844 }
1845 
1846 /* Utilities */
1847 
1848 static void
1849 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1850 {
1851 	int i = 1; /* Index 0 has broadcast address */
1852 	struct netdev_hw_addr *mc_addr;
1853 
1854 	netdev_for_each_mc_addr(mc_addr, netdev) {
1855 		ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1856 		i++;
1857 	}
1858 }
1859 
1860 static int
1861 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1862 {
1863 	struct bnad_rx_ctrl *rx_ctrl =
1864 		container_of(napi, struct bnad_rx_ctrl, napi);
1865 	struct bnad *bnad = rx_ctrl->bnad;
1866 	int rcvd = 0;
1867 
1868 	rx_ctrl->rx_poll_ctr++;
1869 
1870 	if (!netif_carrier_ok(bnad->netdev))
1871 		goto poll_exit;
1872 
1873 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1874 	if (rcvd >= budget)
1875 		return rcvd;
1876 
1877 poll_exit:
1878 	napi_complete(napi);
1879 
1880 	rx_ctrl->rx_complete++;
1881 
1882 	if (rx_ctrl->ccb)
1883 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1884 
1885 	return rcvd;
1886 }
1887 
1888 #define BNAD_NAPI_POLL_QUOTA		64
1889 static void
1890 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1891 {
1892 	struct bnad_rx_ctrl *rx_ctrl;
1893 	int i;
1894 
1895 	/* Initialize & enable NAPI */
1896 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1897 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1898 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1899 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1900 	}
1901 }
1902 
1903 static void
1904 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1905 {
1906 	int i;
1907 
1908 	/* First disable and then clean up */
1909 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1910 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1911 }
1912 
1913 /* Should be held with conf_lock held */
1914 void
1915 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1916 {
1917 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1918 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1919 	unsigned long flags;
1920 
1921 	if (!tx_info->tx)
1922 		return;
1923 
1924 	init_completion(&bnad->bnad_completions.tx_comp);
1925 	spin_lock_irqsave(&bnad->bna_lock, flags);
1926 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1927 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1928 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1929 
1930 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1931 		bnad_tx_msix_unregister(bnad, tx_info,
1932 			bnad->num_txq_per_tx);
1933 
1934 	spin_lock_irqsave(&bnad->bna_lock, flags);
1935 	bna_tx_destroy(tx_info->tx);
1936 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1937 
1938 	tx_info->tx = NULL;
1939 	tx_info->tx_id = 0;
1940 
1941 	bnad_tx_res_free(bnad, res_info);
1942 }
1943 
1944 /* Should be held with conf_lock held */
1945 int
1946 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1947 {
1948 	int err;
1949 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1950 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1951 	struct bna_intr_info *intr_info =
1952 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1953 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1954 	static const struct bna_tx_event_cbfn tx_cbfn = {
1955 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1956 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1957 		.tx_stall_cbfn = bnad_cb_tx_stall,
1958 		.tx_resume_cbfn = bnad_cb_tx_resume,
1959 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1960 	};
1961 
1962 	struct bna_tx *tx;
1963 	unsigned long flags;
1964 
1965 	tx_info->tx_id = tx_id;
1966 
1967 	/* Initialize the Tx object configuration */
1968 	tx_config->num_txq = bnad->num_txq_per_tx;
1969 	tx_config->txq_depth = bnad->txq_depth;
1970 	tx_config->tx_type = BNA_TX_T_REGULAR;
1971 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1972 
1973 	/* Get BNA's resource requirement for one tx object */
1974 	spin_lock_irqsave(&bnad->bna_lock, flags);
1975 	bna_tx_res_req(bnad->num_txq_per_tx,
1976 		bnad->txq_depth, res_info);
1977 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1978 
1979 	/* Fill Unmap Q memory requirements */
1980 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1981 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1982 			bnad->txq_depth));
1983 
1984 	/* Allocate resources */
1985 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1986 	if (err)
1987 		return err;
1988 
1989 	/* Ask BNA to create one Tx object, supplying required resources */
1990 	spin_lock_irqsave(&bnad->bna_lock, flags);
1991 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1992 			tx_info);
1993 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1994 	if (!tx) {
1995 		err = -ENOMEM;
1996 		goto err_return;
1997 	}
1998 	tx_info->tx = tx;
1999 
2000 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2001 			(work_func_t)bnad_tx_cleanup);
2002 
2003 	/* Register ISR for the Tx object */
2004 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2005 		err = bnad_tx_msix_register(bnad, tx_info,
2006 			tx_id, bnad->num_txq_per_tx);
2007 		if (err)
2008 			goto cleanup_tx;
2009 	}
2010 
2011 	spin_lock_irqsave(&bnad->bna_lock, flags);
2012 	bna_tx_enable(tx);
2013 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2014 
2015 	return 0;
2016 
2017 cleanup_tx:
2018 	spin_lock_irqsave(&bnad->bna_lock, flags);
2019 	bna_tx_destroy(tx_info->tx);
2020 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2021 	tx_info->tx = NULL;
2022 	tx_info->tx_id = 0;
2023 err_return:
2024 	bnad_tx_res_free(bnad, res_info);
2025 	return err;
2026 }
2027 
2028 /* Setup the rx config for bna_rx_create */
2029 /* bnad decides the configuration */
2030 static void
2031 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2032 {
2033 	memset(rx_config, 0, sizeof(*rx_config));
2034 	rx_config->rx_type = BNA_RX_T_REGULAR;
2035 	rx_config->num_paths = bnad->num_rxp_per_rx;
2036 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2037 
2038 	if (bnad->num_rxp_per_rx > 1) {
2039 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2040 		rx_config->rss_config.hash_type =
2041 				(BFI_ENET_RSS_IPV6 |
2042 				 BFI_ENET_RSS_IPV6_TCP |
2043 				 BFI_ENET_RSS_IPV4 |
2044 				 BFI_ENET_RSS_IPV4_TCP);
2045 		rx_config->rss_config.hash_mask =
2046 				bnad->num_rxp_per_rx - 1;
2047 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2048 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2049 	} else {
2050 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2051 		memset(&rx_config->rss_config, 0,
2052 		       sizeof(rx_config->rss_config));
2053 	}
2054 
2055 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2056 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2057 
2058 	/* BNA_RXP_SINGLE - one data-buffer queue
2059 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2060 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2061 	 */
2062 	/* TODO: configurable param for queue type */
2063 	rx_config->rxp_type = BNA_RXP_SLR;
2064 
2065 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2066 	    rx_config->frame_size > 4096) {
2067 		/* though size_routing_enable is set in SLR,
2068 		 * small packets may get routed to same rxq.
2069 		 * set buf_size to 2048 instead of PAGE_SIZE.
2070 		 */
2071 		rx_config->q0_buf_size = 2048;
2072 		/* this should be in multiples of 2 */
2073 		rx_config->q0_num_vecs = 4;
2074 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2075 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2076 	} else {
2077 		rx_config->q0_buf_size = rx_config->frame_size;
2078 		rx_config->q0_num_vecs = 1;
2079 		rx_config->q0_depth = bnad->rxq_depth;
2080 	}
2081 
2082 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2083 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2084 		rx_config->q1_depth = bnad->rxq_depth;
2085 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2086 	}
2087 
2088 	rx_config->vlan_strip_status =
2089 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2090 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2091 }
2092 
2093 static void
2094 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2095 {
2096 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2097 	int i;
2098 
2099 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2100 		rx_info->rx_ctrl[i].bnad = bnad;
2101 }
2102 
2103 /* Called with mutex_lock(&bnad->conf_mutex) held */
2104 static u32
2105 bnad_reinit_rx(struct bnad *bnad)
2106 {
2107 	struct net_device *netdev = bnad->netdev;
2108 	u32 err = 0, current_err = 0;
2109 	u32 rx_id = 0, count = 0;
2110 	unsigned long flags;
2111 
2112 	/* destroy and create new rx objects */
2113 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2114 		if (!bnad->rx_info[rx_id].rx)
2115 			continue;
2116 		bnad_destroy_rx(bnad, rx_id);
2117 	}
2118 
2119 	spin_lock_irqsave(&bnad->bna_lock, flags);
2120 	bna_enet_mtu_set(&bnad->bna.enet,
2121 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2122 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2123 
2124 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2125 		count++;
2126 		current_err = bnad_setup_rx(bnad, rx_id);
2127 		if (current_err && !err) {
2128 			err = current_err;
2129 			netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2130 		}
2131 	}
2132 
2133 	/* restore rx configuration */
2134 	if (bnad->rx_info[0].rx && !err) {
2135 		bnad_restore_vlans(bnad, 0);
2136 		bnad_enable_default_bcast(bnad);
2137 		spin_lock_irqsave(&bnad->bna_lock, flags);
2138 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2139 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2140 		bnad_set_rx_mode(netdev);
2141 	}
2142 
2143 	return count;
2144 }
2145 
2146 /* Called with bnad_conf_lock() held */
2147 void
2148 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2149 {
2150 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2151 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2152 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2153 	unsigned long flags;
2154 	int to_del = 0;
2155 
2156 	if (!rx_info->rx)
2157 		return;
2158 
2159 	if (0 == rx_id) {
2160 		spin_lock_irqsave(&bnad->bna_lock, flags);
2161 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2162 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2163 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2164 			to_del = 1;
2165 		}
2166 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2167 		if (to_del)
2168 			del_timer_sync(&bnad->dim_timer);
2169 	}
2170 
2171 	init_completion(&bnad->bnad_completions.rx_comp);
2172 	spin_lock_irqsave(&bnad->bna_lock, flags);
2173 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2174 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2175 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2176 
2177 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2178 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2179 
2180 	bnad_napi_delete(bnad, rx_id);
2181 
2182 	spin_lock_irqsave(&bnad->bna_lock, flags);
2183 	bna_rx_destroy(rx_info->rx);
2184 
2185 	rx_info->rx = NULL;
2186 	rx_info->rx_id = 0;
2187 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2188 
2189 	bnad_rx_res_free(bnad, res_info);
2190 }
2191 
2192 /* Called with mutex_lock(&bnad->conf_mutex) held */
2193 int
2194 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2195 {
2196 	int err;
2197 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2198 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2199 	struct bna_intr_info *intr_info =
2200 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2201 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2202 	static const struct bna_rx_event_cbfn rx_cbfn = {
2203 		.rcb_setup_cbfn = NULL,
2204 		.rcb_destroy_cbfn = NULL,
2205 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2206 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2207 		.rx_stall_cbfn = bnad_cb_rx_stall,
2208 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2209 		.rx_post_cbfn = bnad_cb_rx_post,
2210 	};
2211 	struct bna_rx *rx;
2212 	unsigned long flags;
2213 
2214 	rx_info->rx_id = rx_id;
2215 
2216 	/* Initialize the Rx object configuration */
2217 	bnad_init_rx_config(bnad, rx_config);
2218 
2219 	/* Get BNA's resource requirement for one Rx object */
2220 	spin_lock_irqsave(&bnad->bna_lock, flags);
2221 	bna_rx_res_req(rx_config, res_info);
2222 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2223 
2224 	/* Fill Unmap Q memory requirements */
2225 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2226 				 rx_config->num_paths,
2227 			(rx_config->q0_depth *
2228 			 sizeof(struct bnad_rx_unmap)) +
2229 			 sizeof(struct bnad_rx_unmap_q));
2230 
2231 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2232 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2233 					 rx_config->num_paths,
2234 				(rx_config->q1_depth *
2235 				 sizeof(struct bnad_rx_unmap) +
2236 				 sizeof(struct bnad_rx_unmap_q)));
2237 	}
2238 	/* Allocate resource */
2239 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2240 	if (err)
2241 		return err;
2242 
2243 	bnad_rx_ctrl_init(bnad, rx_id);
2244 
2245 	/* Ask BNA to create one Rx object, supplying required resources */
2246 	spin_lock_irqsave(&bnad->bna_lock, flags);
2247 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2248 			rx_info);
2249 	if (!rx) {
2250 		err = -ENOMEM;
2251 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2252 		goto err_return;
2253 	}
2254 	rx_info->rx = rx;
2255 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2256 
2257 	INIT_WORK(&rx_info->rx_cleanup_work,
2258 			(work_func_t)(bnad_rx_cleanup));
2259 
2260 	/*
2261 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2262 	 * so that IRQ handler cannot schedule NAPI at this point.
2263 	 */
2264 	bnad_napi_add(bnad, rx_id);
2265 
2266 	/* Register ISR for the Rx object */
2267 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2268 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2269 						rx_config->num_paths);
2270 		if (err)
2271 			goto err_return;
2272 	}
2273 
2274 	spin_lock_irqsave(&bnad->bna_lock, flags);
2275 	if (0 == rx_id) {
2276 		/* Set up Dynamic Interrupt Moderation Vector */
2277 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2278 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2279 
2280 		/* Enable VLAN filtering only on the default Rx */
2281 		bna_rx_vlanfilter_enable(rx);
2282 
2283 		/* Start the DIM timer */
2284 		bnad_dim_timer_start(bnad);
2285 	}
2286 
2287 	bna_rx_enable(rx);
2288 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2289 
2290 	return 0;
2291 
2292 err_return:
2293 	bnad_destroy_rx(bnad, rx_id);
2294 	return err;
2295 }
2296 
2297 /* Called with conf_lock & bnad->bna_lock held */
2298 void
2299 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2300 {
2301 	struct bnad_tx_info *tx_info;
2302 
2303 	tx_info = &bnad->tx_info[0];
2304 	if (!tx_info->tx)
2305 		return;
2306 
2307 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2308 }
2309 
2310 /* Called with conf_lock & bnad->bna_lock held */
2311 void
2312 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2313 {
2314 	struct bnad_rx_info *rx_info;
2315 	int	i;
2316 
2317 	for (i = 0; i < bnad->num_rx; i++) {
2318 		rx_info = &bnad->rx_info[i];
2319 		if (!rx_info->rx)
2320 			continue;
2321 		bna_rx_coalescing_timeo_set(rx_info->rx,
2322 				bnad->rx_coalescing_timeo);
2323 	}
2324 }
2325 
2326 /*
2327  * Called with bnad->bna_lock held
2328  */
2329 int
2330 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2331 {
2332 	int ret;
2333 
2334 	if (!is_valid_ether_addr(mac_addr))
2335 		return -EADDRNOTAVAIL;
2336 
2337 	/* If datapath is down, pretend everything went through */
2338 	if (!bnad->rx_info[0].rx)
2339 		return 0;
2340 
2341 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2342 	if (ret != BNA_CB_SUCCESS)
2343 		return -EADDRNOTAVAIL;
2344 
2345 	return 0;
2346 }
2347 
2348 /* Should be called with conf_lock held */
2349 int
2350 bnad_enable_default_bcast(struct bnad *bnad)
2351 {
2352 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2353 	int ret;
2354 	unsigned long flags;
2355 
2356 	init_completion(&bnad->bnad_completions.mcast_comp);
2357 
2358 	spin_lock_irqsave(&bnad->bna_lock, flags);
2359 	ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2360 			       bnad_cb_rx_mcast_add);
2361 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2362 
2363 	if (ret == BNA_CB_SUCCESS)
2364 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2365 	else
2366 		return -ENODEV;
2367 
2368 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2369 		return -ENODEV;
2370 
2371 	return 0;
2372 }
2373 
2374 /* Called with mutex_lock(&bnad->conf_mutex) held */
2375 void
2376 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2377 {
2378 	u16 vid;
2379 	unsigned long flags;
2380 
2381 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2382 		spin_lock_irqsave(&bnad->bna_lock, flags);
2383 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2384 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2385 	}
2386 }
2387 
2388 /* Statistics utilities */
2389 void
2390 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2391 {
2392 	int i, j;
2393 
2394 	for (i = 0; i < bnad->num_rx; i++) {
2395 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2396 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2397 				stats->rx_packets += bnad->rx_info[i].
2398 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2399 				stats->rx_bytes += bnad->rx_info[i].
2400 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2401 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2402 					bnad->rx_info[i].rx_ctrl[j].ccb->
2403 					rcb[1]->rxq) {
2404 					stats->rx_packets +=
2405 						bnad->rx_info[i].rx_ctrl[j].
2406 						ccb->rcb[1]->rxq->rx_packets;
2407 					stats->rx_bytes +=
2408 						bnad->rx_info[i].rx_ctrl[j].
2409 						ccb->rcb[1]->rxq->rx_bytes;
2410 				}
2411 			}
2412 		}
2413 	}
2414 	for (i = 0; i < bnad->num_tx; i++) {
2415 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2416 			if (bnad->tx_info[i].tcb[j]) {
2417 				stats->tx_packets +=
2418 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2419 				stats->tx_bytes +=
2420 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2421 			}
2422 		}
2423 	}
2424 }
2425 
2426 /*
2427  * Must be called with the bna_lock held.
2428  */
2429 void
2430 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2431 {
2432 	struct bfi_enet_stats_mac *mac_stats;
2433 	u32 bmap;
2434 	int i;
2435 
2436 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2437 	stats->rx_errors =
2438 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2439 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2440 		mac_stats->rx_undersize;
2441 	stats->tx_errors = mac_stats->tx_fcs_error +
2442 					mac_stats->tx_undersize;
2443 	stats->rx_dropped = mac_stats->rx_drop;
2444 	stats->tx_dropped = mac_stats->tx_drop;
2445 	stats->multicast = mac_stats->rx_multicast;
2446 	stats->collisions = mac_stats->tx_total_collision;
2447 
2448 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2449 
2450 	/* receive ring buffer overflow  ?? */
2451 
2452 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2453 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2454 	/* recv'r fifo overrun */
2455 	bmap = bna_rx_rid_mask(&bnad->bna);
2456 	for (i = 0; bmap; i++) {
2457 		if (bmap & 1) {
2458 			stats->rx_fifo_errors +=
2459 				bnad->stats.bna_stats->
2460 					hw_stats.rxf_stats[i].frame_drops;
2461 			break;
2462 		}
2463 		bmap >>= 1;
2464 	}
2465 }
2466 
2467 static void
2468 bnad_mbox_irq_sync(struct bnad *bnad)
2469 {
2470 	u32 irq;
2471 	unsigned long flags;
2472 
2473 	spin_lock_irqsave(&bnad->bna_lock, flags);
2474 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2475 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2476 	else
2477 		irq = bnad->pcidev->irq;
2478 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2479 
2480 	synchronize_irq(irq);
2481 }
2482 
2483 /* Utility used by bnad_start_xmit, for doing TSO */
2484 static int
2485 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2486 {
2487 	int err;
2488 
2489 	err = skb_cow_head(skb, 0);
2490 	if (err < 0) {
2491 		BNAD_UPDATE_CTR(bnad, tso_err);
2492 		return err;
2493 	}
2494 
2495 	/*
2496 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2497 	 * excluding the length field.
2498 	 */
2499 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2500 		struct iphdr *iph = ip_hdr(skb);
2501 
2502 		/* Do we really need these? */
2503 		iph->tot_len = 0;
2504 		iph->check = 0;
2505 
2506 		tcp_hdr(skb)->check =
2507 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2508 					   IPPROTO_TCP, 0);
2509 		BNAD_UPDATE_CTR(bnad, tso4);
2510 	} else {
2511 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2512 
2513 		ipv6h->payload_len = 0;
2514 		tcp_hdr(skb)->check =
2515 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2516 					 IPPROTO_TCP, 0);
2517 		BNAD_UPDATE_CTR(bnad, tso6);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 /*
2524  * Initialize Q numbers depending on Rx Paths
2525  * Called with bnad->bna_lock held, because of cfg_flags
2526  * access.
2527  */
2528 static void
2529 bnad_q_num_init(struct bnad *bnad)
2530 {
2531 	int rxps;
2532 
2533 	rxps = min((uint)num_online_cpus(),
2534 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2535 
2536 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2537 		rxps = 1;	/* INTx */
2538 
2539 	bnad->num_rx = 1;
2540 	bnad->num_tx = 1;
2541 	bnad->num_rxp_per_rx = rxps;
2542 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2543 }
2544 
2545 /*
2546  * Adjusts the Q numbers, given a number of msix vectors
2547  * Give preference to RSS as opposed to Tx priority Queues,
2548  * in such a case, just use 1 Tx Q
2549  * Called with bnad->bna_lock held b'cos of cfg_flags access
2550  */
2551 static void
2552 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2553 {
2554 	bnad->num_txq_per_tx = 1;
2555 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2556 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2557 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2558 		bnad->num_rxp_per_rx = msix_vectors -
2559 			(bnad->num_tx * bnad->num_txq_per_tx) -
2560 			BNAD_MAILBOX_MSIX_VECTORS;
2561 	} else
2562 		bnad->num_rxp_per_rx = 1;
2563 }
2564 
2565 /* Enable / disable ioceth */
2566 static int
2567 bnad_ioceth_disable(struct bnad *bnad)
2568 {
2569 	unsigned long flags;
2570 	int err = 0;
2571 
2572 	spin_lock_irqsave(&bnad->bna_lock, flags);
2573 	init_completion(&bnad->bnad_completions.ioc_comp);
2574 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2575 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2576 
2577 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2578 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2579 
2580 	err = bnad->bnad_completions.ioc_comp_status;
2581 	return err;
2582 }
2583 
2584 static int
2585 bnad_ioceth_enable(struct bnad *bnad)
2586 {
2587 	int err = 0;
2588 	unsigned long flags;
2589 
2590 	spin_lock_irqsave(&bnad->bna_lock, flags);
2591 	init_completion(&bnad->bnad_completions.ioc_comp);
2592 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2593 	bna_ioceth_enable(&bnad->bna.ioceth);
2594 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2595 
2596 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2597 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2598 
2599 	err = bnad->bnad_completions.ioc_comp_status;
2600 
2601 	return err;
2602 }
2603 
2604 /* Free BNA resources */
2605 static void
2606 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2607 		u32 res_val_max)
2608 {
2609 	int i;
2610 
2611 	for (i = 0; i < res_val_max; i++)
2612 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2613 }
2614 
2615 /* Allocates memory and interrupt resources for BNA */
2616 static int
2617 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2618 		u32 res_val_max)
2619 {
2620 	int i, err;
2621 
2622 	for (i = 0; i < res_val_max; i++) {
2623 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2624 		if (err)
2625 			goto err_return;
2626 	}
2627 	return 0;
2628 
2629 err_return:
2630 	bnad_res_free(bnad, res_info, res_val_max);
2631 	return err;
2632 }
2633 
2634 /* Interrupt enable / disable */
2635 static void
2636 bnad_enable_msix(struct bnad *bnad)
2637 {
2638 	int i, ret;
2639 	unsigned long flags;
2640 
2641 	spin_lock_irqsave(&bnad->bna_lock, flags);
2642 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2643 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2644 		return;
2645 	}
2646 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2647 
2648 	if (bnad->msix_table)
2649 		return;
2650 
2651 	bnad->msix_table =
2652 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2653 
2654 	if (!bnad->msix_table)
2655 		goto intx_mode;
2656 
2657 	for (i = 0; i < bnad->msix_num; i++)
2658 		bnad->msix_table[i].entry = i;
2659 
2660 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2661 				    1, bnad->msix_num);
2662 	if (ret < 0) {
2663 		goto intx_mode;
2664 	} else if (ret < bnad->msix_num) {
2665 		dev_warn(&bnad->pcidev->dev,
2666 			 "%d MSI-X vectors allocated < %d requested\n",
2667 			 ret, bnad->msix_num);
2668 
2669 		spin_lock_irqsave(&bnad->bna_lock, flags);
2670 		/* ret = #of vectors that we got */
2671 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2672 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2673 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2674 
2675 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2676 			 BNAD_MAILBOX_MSIX_VECTORS;
2677 
2678 		if (bnad->msix_num > ret) {
2679 			pci_disable_msix(bnad->pcidev);
2680 			goto intx_mode;
2681 		}
2682 	}
2683 
2684 	pci_intx(bnad->pcidev, 0);
2685 
2686 	return;
2687 
2688 intx_mode:
2689 	dev_warn(&bnad->pcidev->dev,
2690 		 "MSI-X enable failed - operating in INTx mode\n");
2691 
2692 	kfree(bnad->msix_table);
2693 	bnad->msix_table = NULL;
2694 	bnad->msix_num = 0;
2695 	spin_lock_irqsave(&bnad->bna_lock, flags);
2696 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2697 	bnad_q_num_init(bnad);
2698 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2699 }
2700 
2701 static void
2702 bnad_disable_msix(struct bnad *bnad)
2703 {
2704 	u32 cfg_flags;
2705 	unsigned long flags;
2706 
2707 	spin_lock_irqsave(&bnad->bna_lock, flags);
2708 	cfg_flags = bnad->cfg_flags;
2709 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2710 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2711 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2712 
2713 	if (cfg_flags & BNAD_CF_MSIX) {
2714 		pci_disable_msix(bnad->pcidev);
2715 		kfree(bnad->msix_table);
2716 		bnad->msix_table = NULL;
2717 	}
2718 }
2719 
2720 /* Netdev entry points */
2721 static int
2722 bnad_open(struct net_device *netdev)
2723 {
2724 	int err;
2725 	struct bnad *bnad = netdev_priv(netdev);
2726 	struct bna_pause_config pause_config;
2727 	unsigned long flags;
2728 
2729 	mutex_lock(&bnad->conf_mutex);
2730 
2731 	/* Tx */
2732 	err = bnad_setup_tx(bnad, 0);
2733 	if (err)
2734 		goto err_return;
2735 
2736 	/* Rx */
2737 	err = bnad_setup_rx(bnad, 0);
2738 	if (err)
2739 		goto cleanup_tx;
2740 
2741 	/* Port */
2742 	pause_config.tx_pause = 0;
2743 	pause_config.rx_pause = 0;
2744 
2745 	spin_lock_irqsave(&bnad->bna_lock, flags);
2746 	bna_enet_mtu_set(&bnad->bna.enet,
2747 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2748 	bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2749 	bna_enet_enable(&bnad->bna.enet);
2750 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2751 
2752 	/* Enable broadcast */
2753 	bnad_enable_default_bcast(bnad);
2754 
2755 	/* Restore VLANs, if any */
2756 	bnad_restore_vlans(bnad, 0);
2757 
2758 	/* Set the UCAST address */
2759 	spin_lock_irqsave(&bnad->bna_lock, flags);
2760 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2761 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2762 
2763 	/* Start the stats timer */
2764 	bnad_stats_timer_start(bnad);
2765 
2766 	mutex_unlock(&bnad->conf_mutex);
2767 
2768 	return 0;
2769 
2770 cleanup_tx:
2771 	bnad_destroy_tx(bnad, 0);
2772 
2773 err_return:
2774 	mutex_unlock(&bnad->conf_mutex);
2775 	return err;
2776 }
2777 
2778 static int
2779 bnad_stop(struct net_device *netdev)
2780 {
2781 	struct bnad *bnad = netdev_priv(netdev);
2782 	unsigned long flags;
2783 
2784 	mutex_lock(&bnad->conf_mutex);
2785 
2786 	/* Stop the stats timer */
2787 	bnad_stats_timer_stop(bnad);
2788 
2789 	init_completion(&bnad->bnad_completions.enet_comp);
2790 
2791 	spin_lock_irqsave(&bnad->bna_lock, flags);
2792 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2793 			bnad_cb_enet_disabled);
2794 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2795 
2796 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2797 
2798 	bnad_destroy_tx(bnad, 0);
2799 	bnad_destroy_rx(bnad, 0);
2800 
2801 	/* Synchronize mailbox IRQ */
2802 	bnad_mbox_irq_sync(bnad);
2803 
2804 	mutex_unlock(&bnad->conf_mutex);
2805 
2806 	return 0;
2807 }
2808 
2809 /* TX */
2810 /* Returns 0 for success */
2811 static int
2812 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2813 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2814 {
2815 	u16 flags = 0;
2816 	u32 gso_size;
2817 	u16 vlan_tag = 0;
2818 
2819 	if (skb_vlan_tag_present(skb)) {
2820 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2821 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2822 	}
2823 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2824 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2825 				| (vlan_tag & 0x1fff);
2826 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2827 	}
2828 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2829 
2830 	if (skb_is_gso(skb)) {
2831 		gso_size = skb_shinfo(skb)->gso_size;
2832 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2833 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2834 			return -EINVAL;
2835 		}
2836 		if (unlikely((gso_size + skb_transport_offset(skb) +
2837 			      tcp_hdrlen(skb)) >= skb->len)) {
2838 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2839 			txqent->hdr.wi.lso_mss = 0;
2840 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2841 		} else {
2842 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2843 			txqent->hdr.wi.lso_mss = htons(gso_size);
2844 		}
2845 
2846 		if (bnad_tso_prepare(bnad, skb)) {
2847 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2848 			return -EINVAL;
2849 		}
2850 
2851 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2852 		txqent->hdr.wi.l4_hdr_size_n_offset =
2853 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2854 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2855 	} else  {
2856 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2857 		txqent->hdr.wi.lso_mss = 0;
2858 
2859 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2860 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2861 			return -EINVAL;
2862 		}
2863 
2864 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2865 			__be16 net_proto = vlan_get_protocol(skb);
2866 			u8 proto = 0;
2867 
2868 			if (net_proto == htons(ETH_P_IP))
2869 				proto = ip_hdr(skb)->protocol;
2870 #ifdef NETIF_F_IPV6_CSUM
2871 			else if (net_proto == htons(ETH_P_IPV6)) {
2872 				/* nexthdr may not be TCP immediately. */
2873 				proto = ipv6_hdr(skb)->nexthdr;
2874 			}
2875 #endif
2876 			if (proto == IPPROTO_TCP) {
2877 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2878 				txqent->hdr.wi.l4_hdr_size_n_offset =
2879 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2880 					      (0, skb_transport_offset(skb)));
2881 
2882 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2883 
2884 				if (unlikely(skb_headlen(skb) <
2885 					    skb_transport_offset(skb) +
2886 				    tcp_hdrlen(skb))) {
2887 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2888 					return -EINVAL;
2889 				}
2890 			} else if (proto == IPPROTO_UDP) {
2891 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2892 				txqent->hdr.wi.l4_hdr_size_n_offset =
2893 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2894 					      (0, skb_transport_offset(skb)));
2895 
2896 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2897 				if (unlikely(skb_headlen(skb) <
2898 					    skb_transport_offset(skb) +
2899 				    sizeof(struct udphdr))) {
2900 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2901 					return -EINVAL;
2902 				}
2903 			} else {
2904 
2905 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2906 				return -EINVAL;
2907 			}
2908 		} else
2909 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2910 	}
2911 
2912 	txqent->hdr.wi.flags = htons(flags);
2913 	txqent->hdr.wi.frame_length = htonl(skb->len);
2914 
2915 	return 0;
2916 }
2917 
2918 /*
2919  * bnad_start_xmit : Netdev entry point for Transmit
2920  *		     Called under lock held by net_device
2921  */
2922 static netdev_tx_t
2923 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2924 {
2925 	struct bnad *bnad = netdev_priv(netdev);
2926 	u32 txq_id = 0;
2927 	struct bna_tcb *tcb = NULL;
2928 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2929 	u32		prod, q_depth, vect_id;
2930 	u32		wis, vectors, len;
2931 	int		i;
2932 	dma_addr_t		dma_addr;
2933 	struct bna_txq_entry *txqent;
2934 
2935 	len = skb_headlen(skb);
2936 
2937 	/* Sanity checks for the skb */
2938 
2939 	if (unlikely(skb->len <= ETH_HLEN)) {
2940 		dev_kfree_skb_any(skb);
2941 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2942 		return NETDEV_TX_OK;
2943 	}
2944 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2945 		dev_kfree_skb_any(skb);
2946 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2947 		return NETDEV_TX_OK;
2948 	}
2949 	if (unlikely(len == 0)) {
2950 		dev_kfree_skb_any(skb);
2951 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2952 		return NETDEV_TX_OK;
2953 	}
2954 
2955 	tcb = bnad->tx_info[0].tcb[txq_id];
2956 
2957 	/*
2958 	 * Takes care of the Tx that is scheduled between clearing the flag
2959 	 * and the netif_tx_stop_all_queues() call.
2960 	 */
2961 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2962 		dev_kfree_skb_any(skb);
2963 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2964 		return NETDEV_TX_OK;
2965 	}
2966 
2967 	q_depth = tcb->q_depth;
2968 	prod = tcb->producer_index;
2969 	unmap_q = tcb->unmap_q;
2970 
2971 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2972 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2973 
2974 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2975 		dev_kfree_skb_any(skb);
2976 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2977 		return NETDEV_TX_OK;
2978 	}
2979 
2980 	/* Check for available TxQ resources */
2981 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2982 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2983 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2984 			u32 sent;
2985 			sent = bnad_txcmpl_process(bnad, tcb);
2986 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2987 				bna_ib_ack(tcb->i_dbell, sent);
2988 			smp_mb__before_atomic();
2989 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2990 		} else {
2991 			netif_stop_queue(netdev);
2992 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2993 		}
2994 
2995 		smp_mb();
2996 		/*
2997 		 * Check again to deal with race condition between
2998 		 * netif_stop_queue here, and netif_wake_queue in
2999 		 * interrupt handler which is not inside netif tx lock.
3000 		 */
3001 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3002 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3003 			return NETDEV_TX_BUSY;
3004 		} else {
3005 			netif_wake_queue(netdev);
3006 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3007 		}
3008 	}
3009 
3010 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3011 	head_unmap = &unmap_q[prod];
3012 
3013 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3014 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3015 		dev_kfree_skb_any(skb);
3016 		return NETDEV_TX_OK;
3017 	}
3018 	txqent->hdr.wi.reserved = 0;
3019 	txqent->hdr.wi.num_vectors = vectors;
3020 
3021 	head_unmap->skb = skb;
3022 	head_unmap->nvecs = 0;
3023 
3024 	/* Program the vectors */
3025 	unmap = head_unmap;
3026 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3027 				  len, DMA_TO_DEVICE);
3028 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3029 	txqent->vector[0].length = htons(len);
3030 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3031 	head_unmap->nvecs++;
3032 
3033 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3034 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3035 		u32		size = skb_frag_size(frag);
3036 
3037 		if (unlikely(size == 0)) {
3038 			/* Undo the changes starting at tcb->producer_index */
3039 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3040 				tcb->producer_index);
3041 			dev_kfree_skb_any(skb);
3042 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3043 			return NETDEV_TX_OK;
3044 		}
3045 
3046 		len += size;
3047 
3048 		vect_id++;
3049 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3050 			vect_id = 0;
3051 			BNA_QE_INDX_INC(prod, q_depth);
3052 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3053 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3054 			unmap = &unmap_q[prod];
3055 		}
3056 
3057 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3058 					    0, size, DMA_TO_DEVICE);
3059 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3060 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3061 		txqent->vector[vect_id].length = htons(size);
3062 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3063 				   dma_addr);
3064 		head_unmap->nvecs++;
3065 	}
3066 
3067 	if (unlikely(len != skb->len)) {
3068 		/* Undo the changes starting at tcb->producer_index */
3069 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3070 		dev_kfree_skb_any(skb);
3071 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3072 		return NETDEV_TX_OK;
3073 	}
3074 
3075 	BNA_QE_INDX_INC(prod, q_depth);
3076 	tcb->producer_index = prod;
3077 
3078 	smp_mb();
3079 
3080 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3081 		return NETDEV_TX_OK;
3082 
3083 	skb_tx_timestamp(skb);
3084 
3085 	bna_txq_prod_indx_doorbell(tcb);
3086 	smp_mb();
3087 
3088 	return NETDEV_TX_OK;
3089 }
3090 
3091 /*
3092  * Used spin_lock to synchronize reading of stats structures, which
3093  * is written by BNA under the same lock.
3094  */
3095 static struct rtnl_link_stats64 *
3096 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3097 {
3098 	struct bnad *bnad = netdev_priv(netdev);
3099 	unsigned long flags;
3100 
3101 	spin_lock_irqsave(&bnad->bna_lock, flags);
3102 
3103 	bnad_netdev_qstats_fill(bnad, stats);
3104 	bnad_netdev_hwstats_fill(bnad, stats);
3105 
3106 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3107 
3108 	return stats;
3109 }
3110 
3111 static void
3112 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3113 {
3114 	struct net_device *netdev = bnad->netdev;
3115 	int uc_count = netdev_uc_count(netdev);
3116 	enum bna_cb_status ret;
3117 	u8 *mac_list;
3118 	struct netdev_hw_addr *ha;
3119 	int entry;
3120 
3121 	if (netdev_uc_empty(bnad->netdev)) {
3122 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3123 		return;
3124 	}
3125 
3126 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3127 		goto mode_default;
3128 
3129 	mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3130 	if (mac_list == NULL)
3131 		goto mode_default;
3132 
3133 	entry = 0;
3134 	netdev_for_each_uc_addr(ha, netdev) {
3135 		ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3136 		entry++;
3137 	}
3138 
3139 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3140 	kfree(mac_list);
3141 
3142 	if (ret != BNA_CB_SUCCESS)
3143 		goto mode_default;
3144 
3145 	return;
3146 
3147 	/* ucast packets not in UCAM are routed to default function */
3148 mode_default:
3149 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3150 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3151 }
3152 
3153 static void
3154 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3155 {
3156 	struct net_device *netdev = bnad->netdev;
3157 	int mc_count = netdev_mc_count(netdev);
3158 	enum bna_cb_status ret;
3159 	u8 *mac_list;
3160 
3161 	if (netdev->flags & IFF_ALLMULTI)
3162 		goto mode_allmulti;
3163 
3164 	if (netdev_mc_empty(netdev))
3165 		return;
3166 
3167 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3168 		goto mode_allmulti;
3169 
3170 	mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3171 
3172 	if (mac_list == NULL)
3173 		goto mode_allmulti;
3174 
3175 	ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3176 
3177 	/* copy rest of the MCAST addresses */
3178 	bnad_netdev_mc_list_get(netdev, mac_list);
3179 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3180 	kfree(mac_list);
3181 
3182 	if (ret != BNA_CB_SUCCESS)
3183 		goto mode_allmulti;
3184 
3185 	return;
3186 
3187 mode_allmulti:
3188 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3189 	bna_rx_mcast_delall(bnad->rx_info[0].rx);
3190 }
3191 
3192 void
3193 bnad_set_rx_mode(struct net_device *netdev)
3194 {
3195 	struct bnad *bnad = netdev_priv(netdev);
3196 	enum bna_rxmode new_mode, mode_mask;
3197 	unsigned long flags;
3198 
3199 	spin_lock_irqsave(&bnad->bna_lock, flags);
3200 
3201 	if (bnad->rx_info[0].rx == NULL) {
3202 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3203 		return;
3204 	}
3205 
3206 	/* clear bnad flags to update it with new settings */
3207 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3208 			BNAD_CF_ALLMULTI);
3209 
3210 	new_mode = 0;
3211 	if (netdev->flags & IFF_PROMISC) {
3212 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3213 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3214 	} else {
3215 		bnad_set_rx_mcast_fltr(bnad);
3216 
3217 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3218 			new_mode |= BNA_RXMODE_ALLMULTI;
3219 
3220 		bnad_set_rx_ucast_fltr(bnad);
3221 
3222 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3223 			new_mode |= BNA_RXMODE_DEFAULT;
3224 	}
3225 
3226 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3227 			BNA_RXMODE_ALLMULTI;
3228 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3229 
3230 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3231 }
3232 
3233 /*
3234  * bna_lock is used to sync writes to netdev->addr
3235  * conf_lock cannot be used since this call may be made
3236  * in a non-blocking context.
3237  */
3238 static int
3239 bnad_set_mac_address(struct net_device *netdev, void *addr)
3240 {
3241 	int err;
3242 	struct bnad *bnad = netdev_priv(netdev);
3243 	struct sockaddr *sa = (struct sockaddr *)addr;
3244 	unsigned long flags;
3245 
3246 	spin_lock_irqsave(&bnad->bna_lock, flags);
3247 
3248 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3249 	if (!err)
3250 		ether_addr_copy(netdev->dev_addr, sa->sa_data);
3251 
3252 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3253 
3254 	return err;
3255 }
3256 
3257 static int
3258 bnad_mtu_set(struct bnad *bnad, int frame_size)
3259 {
3260 	unsigned long flags;
3261 
3262 	init_completion(&bnad->bnad_completions.mtu_comp);
3263 
3264 	spin_lock_irqsave(&bnad->bna_lock, flags);
3265 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3266 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3267 
3268 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3269 
3270 	return bnad->bnad_completions.mtu_comp_status;
3271 }
3272 
3273 static int
3274 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3275 {
3276 	int err, mtu;
3277 	struct bnad *bnad = netdev_priv(netdev);
3278 	u32 rx_count = 0, frame, new_frame;
3279 
3280 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3281 		return -EINVAL;
3282 
3283 	mutex_lock(&bnad->conf_mutex);
3284 
3285 	mtu = netdev->mtu;
3286 	netdev->mtu = new_mtu;
3287 
3288 	frame = BNAD_FRAME_SIZE(mtu);
3289 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3290 
3291 	/* check if multi-buffer needs to be enabled */
3292 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3293 	    netif_running(bnad->netdev)) {
3294 		/* only when transition is over 4K */
3295 		if ((frame <= 4096 && new_frame > 4096) ||
3296 		    (frame > 4096 && new_frame <= 4096))
3297 			rx_count = bnad_reinit_rx(bnad);
3298 	}
3299 
3300 	/* rx_count > 0 - new rx created
3301 	 *	- Linux set err = 0 and return
3302 	 */
3303 	err = bnad_mtu_set(bnad, new_frame);
3304 	if (err)
3305 		err = -EBUSY;
3306 
3307 	mutex_unlock(&bnad->conf_mutex);
3308 	return err;
3309 }
3310 
3311 static int
3312 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3313 {
3314 	struct bnad *bnad = netdev_priv(netdev);
3315 	unsigned long flags;
3316 
3317 	if (!bnad->rx_info[0].rx)
3318 		return 0;
3319 
3320 	mutex_lock(&bnad->conf_mutex);
3321 
3322 	spin_lock_irqsave(&bnad->bna_lock, flags);
3323 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3324 	set_bit(vid, bnad->active_vlans);
3325 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3326 
3327 	mutex_unlock(&bnad->conf_mutex);
3328 
3329 	return 0;
3330 }
3331 
3332 static int
3333 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3334 {
3335 	struct bnad *bnad = netdev_priv(netdev);
3336 	unsigned long flags;
3337 
3338 	if (!bnad->rx_info[0].rx)
3339 		return 0;
3340 
3341 	mutex_lock(&bnad->conf_mutex);
3342 
3343 	spin_lock_irqsave(&bnad->bna_lock, flags);
3344 	clear_bit(vid, bnad->active_vlans);
3345 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3346 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3347 
3348 	mutex_unlock(&bnad->conf_mutex);
3349 
3350 	return 0;
3351 }
3352 
3353 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3354 {
3355 	struct bnad *bnad = netdev_priv(dev);
3356 	netdev_features_t changed = features ^ dev->features;
3357 
3358 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3359 		unsigned long flags;
3360 
3361 		spin_lock_irqsave(&bnad->bna_lock, flags);
3362 
3363 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3364 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3365 		else
3366 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3367 
3368 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 #ifdef CONFIG_NET_POLL_CONTROLLER
3375 static void
3376 bnad_netpoll(struct net_device *netdev)
3377 {
3378 	struct bnad *bnad = netdev_priv(netdev);
3379 	struct bnad_rx_info *rx_info;
3380 	struct bnad_rx_ctrl *rx_ctrl;
3381 	u32 curr_mask;
3382 	int i, j;
3383 
3384 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3385 		bna_intx_disable(&bnad->bna, curr_mask);
3386 		bnad_isr(bnad->pcidev->irq, netdev);
3387 		bna_intx_enable(&bnad->bna, curr_mask);
3388 	} else {
3389 		/*
3390 		 * Tx processing may happen in sending context, so no need
3391 		 * to explicitly process completions here
3392 		 */
3393 
3394 		/* Rx processing */
3395 		for (i = 0; i < bnad->num_rx; i++) {
3396 			rx_info = &bnad->rx_info[i];
3397 			if (!rx_info->rx)
3398 				continue;
3399 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3400 				rx_ctrl = &rx_info->rx_ctrl[j];
3401 				if (rx_ctrl->ccb)
3402 					bnad_netif_rx_schedule_poll(bnad,
3403 							    rx_ctrl->ccb);
3404 			}
3405 		}
3406 	}
3407 }
3408 #endif
3409 
3410 static const struct net_device_ops bnad_netdev_ops = {
3411 	.ndo_open		= bnad_open,
3412 	.ndo_stop		= bnad_stop,
3413 	.ndo_start_xmit		= bnad_start_xmit,
3414 	.ndo_get_stats64		= bnad_get_stats64,
3415 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3416 	.ndo_validate_addr      = eth_validate_addr,
3417 	.ndo_set_mac_address    = bnad_set_mac_address,
3418 	.ndo_change_mtu		= bnad_change_mtu,
3419 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3420 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3421 	.ndo_set_features	= bnad_set_features,
3422 #ifdef CONFIG_NET_POLL_CONTROLLER
3423 	.ndo_poll_controller    = bnad_netpoll
3424 #endif
3425 };
3426 
3427 static void
3428 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3429 {
3430 	struct net_device *netdev = bnad->netdev;
3431 
3432 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3433 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3434 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3435 		NETIF_F_HW_VLAN_CTAG_RX;
3436 
3437 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3438 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3439 		NETIF_F_TSO | NETIF_F_TSO6;
3440 
3441 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3442 
3443 	if (using_dac)
3444 		netdev->features |= NETIF_F_HIGHDMA;
3445 
3446 	netdev->mem_start = bnad->mmio_start;
3447 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3448 
3449 	netdev->netdev_ops = &bnad_netdev_ops;
3450 	bnad_set_ethtool_ops(netdev);
3451 }
3452 
3453 /*
3454  * 1. Initialize the bnad structure
3455  * 2. Setup netdev pointer in pci_dev
3456  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3457  * 4. Initialize work queue.
3458  */
3459 static int
3460 bnad_init(struct bnad *bnad,
3461 	  struct pci_dev *pdev, struct net_device *netdev)
3462 {
3463 	unsigned long flags;
3464 
3465 	SET_NETDEV_DEV(netdev, &pdev->dev);
3466 	pci_set_drvdata(pdev, netdev);
3467 
3468 	bnad->netdev = netdev;
3469 	bnad->pcidev = pdev;
3470 	bnad->mmio_start = pci_resource_start(pdev, 0);
3471 	bnad->mmio_len = pci_resource_len(pdev, 0);
3472 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3473 	if (!bnad->bar0) {
3474 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3475 		return -ENOMEM;
3476 	}
3477 	dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3478 		 (unsigned long long) bnad->mmio_len);
3479 
3480 	spin_lock_irqsave(&bnad->bna_lock, flags);
3481 	if (!bnad_msix_disable)
3482 		bnad->cfg_flags = BNAD_CF_MSIX;
3483 
3484 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3485 
3486 	bnad_q_num_init(bnad);
3487 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3488 
3489 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3490 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3491 			 BNAD_MAILBOX_MSIX_VECTORS;
3492 
3493 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3494 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3495 
3496 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3497 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3498 
3499 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3500 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3501 	if (!bnad->work_q) {
3502 		iounmap(bnad->bar0);
3503 		return -ENOMEM;
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 /*
3510  * Must be called after bnad_pci_uninit()
3511  * so that iounmap() and pci_set_drvdata(NULL)
3512  * happens only after PCI uninitialization.
3513  */
3514 static void
3515 bnad_uninit(struct bnad *bnad)
3516 {
3517 	if (bnad->work_q) {
3518 		flush_workqueue(bnad->work_q);
3519 		destroy_workqueue(bnad->work_q);
3520 		bnad->work_q = NULL;
3521 	}
3522 
3523 	if (bnad->bar0)
3524 		iounmap(bnad->bar0);
3525 }
3526 
3527 /*
3528  * Initialize locks
3529 	a) Per ioceth mutes used for serializing configuration
3530 	   changes from OS interface
3531 	b) spin lock used to protect bna state machine
3532  */
3533 static void
3534 bnad_lock_init(struct bnad *bnad)
3535 {
3536 	spin_lock_init(&bnad->bna_lock);
3537 	mutex_init(&bnad->conf_mutex);
3538 	mutex_init(&bnad_list_mutex);
3539 }
3540 
3541 static void
3542 bnad_lock_uninit(struct bnad *bnad)
3543 {
3544 	mutex_destroy(&bnad->conf_mutex);
3545 	mutex_destroy(&bnad_list_mutex);
3546 }
3547 
3548 /* PCI Initialization */
3549 static int
3550 bnad_pci_init(struct bnad *bnad,
3551 	      struct pci_dev *pdev, bool *using_dac)
3552 {
3553 	int err;
3554 
3555 	err = pci_enable_device(pdev);
3556 	if (err)
3557 		return err;
3558 	err = pci_request_regions(pdev, BNAD_NAME);
3559 	if (err)
3560 		goto disable_device;
3561 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3562 		*using_dac = true;
3563 	} else {
3564 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3565 		if (err)
3566 			goto release_regions;
3567 		*using_dac = false;
3568 	}
3569 	pci_set_master(pdev);
3570 	return 0;
3571 
3572 release_regions:
3573 	pci_release_regions(pdev);
3574 disable_device:
3575 	pci_disable_device(pdev);
3576 
3577 	return err;
3578 }
3579 
3580 static void
3581 bnad_pci_uninit(struct pci_dev *pdev)
3582 {
3583 	pci_release_regions(pdev);
3584 	pci_disable_device(pdev);
3585 }
3586 
3587 static int
3588 bnad_pci_probe(struct pci_dev *pdev,
3589 		const struct pci_device_id *pcidev_id)
3590 {
3591 	bool	using_dac;
3592 	int	err;
3593 	struct bnad *bnad;
3594 	struct bna *bna;
3595 	struct net_device *netdev;
3596 	struct bfa_pcidev pcidev_info;
3597 	unsigned long flags;
3598 
3599 	mutex_lock(&bnad_fwimg_mutex);
3600 	if (!cna_get_firmware_buf(pdev)) {
3601 		mutex_unlock(&bnad_fwimg_mutex);
3602 		dev_err(&pdev->dev, "failed to load firmware image!\n");
3603 		return -ENODEV;
3604 	}
3605 	mutex_unlock(&bnad_fwimg_mutex);
3606 
3607 	/*
3608 	 * Allocates sizeof(struct net_device + struct bnad)
3609 	 * bnad = netdev->priv
3610 	 */
3611 	netdev = alloc_etherdev(sizeof(struct bnad));
3612 	if (!netdev) {
3613 		err = -ENOMEM;
3614 		return err;
3615 	}
3616 	bnad = netdev_priv(netdev);
3617 	bnad_lock_init(bnad);
3618 	bnad_add_to_list(bnad);
3619 
3620 	mutex_lock(&bnad->conf_mutex);
3621 	/*
3622 	 * PCI initialization
3623 	 *	Output : using_dac = 1 for 64 bit DMA
3624 	 *			   = 0 for 32 bit DMA
3625 	 */
3626 	using_dac = false;
3627 	err = bnad_pci_init(bnad, pdev, &using_dac);
3628 	if (err)
3629 		goto unlock_mutex;
3630 
3631 	/*
3632 	 * Initialize bnad structure
3633 	 * Setup relation between pci_dev & netdev
3634 	 */
3635 	err = bnad_init(bnad, pdev, netdev);
3636 	if (err)
3637 		goto pci_uninit;
3638 
3639 	/* Initialize netdev structure, set up ethtool ops */
3640 	bnad_netdev_init(bnad, using_dac);
3641 
3642 	/* Set link to down state */
3643 	netif_carrier_off(netdev);
3644 
3645 	/* Setup the debugfs node for this bfad */
3646 	if (bna_debugfs_enable)
3647 		bnad_debugfs_init(bnad);
3648 
3649 	/* Get resource requirement form bna */
3650 	spin_lock_irqsave(&bnad->bna_lock, flags);
3651 	bna_res_req(&bnad->res_info[0]);
3652 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3653 
3654 	/* Allocate resources from bna */
3655 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3656 	if (err)
3657 		goto drv_uninit;
3658 
3659 	bna = &bnad->bna;
3660 
3661 	/* Setup pcidev_info for bna_init() */
3662 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3663 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3664 	pcidev_info.device_id = bnad->pcidev->device;
3665 	pcidev_info.pci_bar_kva = bnad->bar0;
3666 
3667 	spin_lock_irqsave(&bnad->bna_lock, flags);
3668 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3669 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3670 
3671 	bnad->stats.bna_stats = &bna->stats;
3672 
3673 	bnad_enable_msix(bnad);
3674 	err = bnad_mbox_irq_alloc(bnad);
3675 	if (err)
3676 		goto res_free;
3677 
3678 	/* Set up timers */
3679 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3680 		    (unsigned long)bnad);
3681 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3682 		    (unsigned long)bnad);
3683 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3684 		    (unsigned long)bnad);
3685 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3686 		    (unsigned long)bnad);
3687 
3688 	/*
3689 	 * Start the chip
3690 	 * If the call back comes with error, we bail out.
3691 	 * This is a catastrophic error.
3692 	 */
3693 	err = bnad_ioceth_enable(bnad);
3694 	if (err) {
3695 		dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3696 		goto probe_success;
3697 	}
3698 
3699 	spin_lock_irqsave(&bnad->bna_lock, flags);
3700 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3701 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3702 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3703 			bna_attr(bna)->num_rxp - 1);
3704 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3705 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3706 			err = -EIO;
3707 	}
3708 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3709 	if (err)
3710 		goto disable_ioceth;
3711 
3712 	spin_lock_irqsave(&bnad->bna_lock, flags);
3713 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3714 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3715 
3716 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3717 	if (err) {
3718 		err = -EIO;
3719 		goto disable_ioceth;
3720 	}
3721 
3722 	spin_lock_irqsave(&bnad->bna_lock, flags);
3723 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3724 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3725 
3726 	/* Get the burnt-in mac */
3727 	spin_lock_irqsave(&bnad->bna_lock, flags);
3728 	bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3729 	bnad_set_netdev_perm_addr(bnad);
3730 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3731 
3732 	mutex_unlock(&bnad->conf_mutex);
3733 
3734 	/* Finally, reguister with net_device layer */
3735 	err = register_netdev(netdev);
3736 	if (err) {
3737 		dev_err(&pdev->dev, "registering net device failed\n");
3738 		goto probe_uninit;
3739 	}
3740 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3741 
3742 	return 0;
3743 
3744 probe_success:
3745 	mutex_unlock(&bnad->conf_mutex);
3746 	return 0;
3747 
3748 probe_uninit:
3749 	mutex_lock(&bnad->conf_mutex);
3750 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3751 disable_ioceth:
3752 	bnad_ioceth_disable(bnad);
3753 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3754 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3755 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3756 	spin_lock_irqsave(&bnad->bna_lock, flags);
3757 	bna_uninit(bna);
3758 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3759 	bnad_mbox_irq_free(bnad);
3760 	bnad_disable_msix(bnad);
3761 res_free:
3762 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3763 drv_uninit:
3764 	/* Remove the debugfs node for this bnad */
3765 	kfree(bnad->regdata);
3766 	bnad_debugfs_uninit(bnad);
3767 	bnad_uninit(bnad);
3768 pci_uninit:
3769 	bnad_pci_uninit(pdev);
3770 unlock_mutex:
3771 	mutex_unlock(&bnad->conf_mutex);
3772 	bnad_remove_from_list(bnad);
3773 	bnad_lock_uninit(bnad);
3774 	free_netdev(netdev);
3775 	return err;
3776 }
3777 
3778 static void
3779 bnad_pci_remove(struct pci_dev *pdev)
3780 {
3781 	struct net_device *netdev = pci_get_drvdata(pdev);
3782 	struct bnad *bnad;
3783 	struct bna *bna;
3784 	unsigned long flags;
3785 
3786 	if (!netdev)
3787 		return;
3788 
3789 	bnad = netdev_priv(netdev);
3790 	bna = &bnad->bna;
3791 
3792 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3793 		unregister_netdev(netdev);
3794 
3795 	mutex_lock(&bnad->conf_mutex);
3796 	bnad_ioceth_disable(bnad);
3797 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3798 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3799 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3800 	spin_lock_irqsave(&bnad->bna_lock, flags);
3801 	bna_uninit(bna);
3802 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3803 
3804 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3805 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3806 	bnad_mbox_irq_free(bnad);
3807 	bnad_disable_msix(bnad);
3808 	bnad_pci_uninit(pdev);
3809 	mutex_unlock(&bnad->conf_mutex);
3810 	bnad_remove_from_list(bnad);
3811 	bnad_lock_uninit(bnad);
3812 	/* Remove the debugfs node for this bnad */
3813 	kfree(bnad->regdata);
3814 	bnad_debugfs_uninit(bnad);
3815 	bnad_uninit(bnad);
3816 	free_netdev(netdev);
3817 }
3818 
3819 static const struct pci_device_id bnad_pci_id_table[] = {
3820 	{
3821 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3822 			PCI_DEVICE_ID_BROCADE_CT),
3823 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3824 		.class_mask =  0xffff00
3825 	},
3826 	{
3827 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3828 			BFA_PCI_DEVICE_ID_CT2),
3829 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3830 		.class_mask =  0xffff00
3831 	},
3832 	{0,  },
3833 };
3834 
3835 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3836 
3837 static struct pci_driver bnad_pci_driver = {
3838 	.name = BNAD_NAME,
3839 	.id_table = bnad_pci_id_table,
3840 	.probe = bnad_pci_probe,
3841 	.remove = bnad_pci_remove,
3842 };
3843 
3844 static int __init
3845 bnad_module_init(void)
3846 {
3847 	int err;
3848 
3849 	pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3850 		BNAD_VERSION);
3851 
3852 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3853 
3854 	err = pci_register_driver(&bnad_pci_driver);
3855 	if (err < 0) {
3856 		pr_err("bna: PCI driver registration failed err=%d\n", err);
3857 		return err;
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static void __exit
3864 bnad_module_exit(void)
3865 {
3866 	pci_unregister_driver(&bnad_pci_driver);
3867 	release_firmware(bfi_fw);
3868 }
3869 
3870 module_init(bnad_module_init);
3871 module_exit(bnad_module_exit);
3872 
3873 MODULE_AUTHOR("Brocade");
3874 MODULE_LICENSE("GPL");
3875 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3876 MODULE_VERSION(BNAD_VERSION);
3877 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3878 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3879