1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29 
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33 
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35 
36 /*
37  * Module params
38  */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42 
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46 
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 		 " Range[false:0|true:1]");
51 
52 /*
53  * Global variables
54  */
55 u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_GET_MBOX_IRQ(_bnad)				\
65 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
66 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 	 ((_bnad)->pcidev->irq))
68 
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
70 do {								\
71 	(_res_info)->res_type = BNA_RES_T_MEM;			\
72 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
73 	(_res_info)->res_u.mem_info.num = (_num);		\
74 	(_res_info)->res_u.mem_info.len = (_size);		\
75 } while (0)
76 
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 	mutex_lock(&bnad_list_mutex);
81 	list_add_tail(&bnad->list_entry, &bnad_list);
82 	bnad->id = bna_id++;
83 	mutex_unlock(&bnad_list_mutex);
84 }
85 
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 	mutex_lock(&bnad_list_mutex);
90 	list_del(&bnad->list_entry);
91 	mutex_unlock(&bnad_list_mutex);
92 }
93 
94 /*
95  * Reinitialize completions in CQ, once Rx is taken down
96  */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 	struct bna_cq_entry *cmpl;
101 	int i;
102 
103 	for (i = 0; i < ccb->q_depth; i++) {
104 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 		cmpl->valid = 0;
106 	}
107 }
108 
109 /* Tx Datapath functions */
110 
111 
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 			      struct bnad_tx_unmap *unmap_q,
116 			      u32 q_depth, u32 index)
117 {
118 	struct bnad_tx_unmap *unmap;
119 	struct sk_buff *skb;
120 	int vector, nvecs;
121 
122 	unmap = &unmap_q[index];
123 	nvecs = unmap->nvecs;
124 
125 	skb = unmap->skb;
126 	unmap->skb = NULL;
127 	unmap->nvecs = 0;
128 	dma_unmap_single(&bnad->pcidev->dev,
129 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 		skb_headlen(skb), DMA_TO_DEVICE);
131 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 	nvecs--;
133 
134 	vector = 0;
135 	while (nvecs) {
136 		vector++;
137 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 			vector = 0;
139 			BNA_QE_INDX_INC(index, q_depth);
140 			unmap = &unmap_q[index];
141 		}
142 
143 		dma_unmap_page(&bnad->pcidev->dev,
144 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 			skb_shinfo(skb)->frags[nvecs].size, DMA_TO_DEVICE);
146 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
147 		nvecs--;
148 	}
149 
150 	BNA_QE_INDX_INC(index, q_depth);
151 
152 	return index;
153 }
154 
155 /*
156  * Frees all pending Tx Bufs
157  * At this point no activity is expected on the Q,
158  * so DMA unmap & freeing is fine.
159  */
160 static void
161 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
162 {
163 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 	struct sk_buff *skb;
165 	int i;
166 
167 	for (i = 0; i < tcb->q_depth; i++) {
168 		skb = unmap_q[i].skb;
169 		if (!skb)
170 			continue;
171 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
172 
173 		dev_kfree_skb_any(skb);
174 	}
175 }
176 
177 /*
178  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
179  * Can be called in a) Interrupt context
180  *		    b) Sending context
181  */
182 static u32
183 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
184 {
185 	u32 sent_packets = 0, sent_bytes = 0;
186 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
187 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
188 	struct bnad_tx_unmap *unmap;
189 	struct sk_buff *skb;
190 
191 	/* Just return if TX is stopped */
192 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
193 		return 0;
194 
195 	hw_cons = *(tcb->hw_consumer_index);
196 	cons = tcb->consumer_index;
197 	q_depth = tcb->q_depth;
198 
199 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
200 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
201 
202 	while (wis) {
203 		unmap = &unmap_q[cons];
204 
205 		skb = unmap->skb;
206 
207 		sent_packets++;
208 		sent_bytes += skb->len;
209 
210 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
211 		wis -= unmap_wis;
212 
213 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
214 		dev_kfree_skb_any(skb);
215 	}
216 
217 	/* Update consumer pointers. */
218 	tcb->consumer_index = hw_cons;
219 
220 	tcb->txq->tx_packets += sent_packets;
221 	tcb->txq->tx_bytes += sent_bytes;
222 
223 	return sent_packets;
224 }
225 
226 static u32
227 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
228 {
229 	struct net_device *netdev = bnad->netdev;
230 	u32 sent = 0;
231 
232 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
233 		return 0;
234 
235 	sent = bnad_txcmpl_process(bnad, tcb);
236 	if (sent) {
237 		if (netif_queue_stopped(netdev) &&
238 		    netif_carrier_ok(netdev) &&
239 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
240 				    BNAD_NETIF_WAKE_THRESHOLD) {
241 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
242 				netif_wake_queue(netdev);
243 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
244 			}
245 		}
246 	}
247 
248 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
249 		bna_ib_ack(tcb->i_dbell, sent);
250 
251 	smp_mb__before_clear_bit();
252 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
253 
254 	return sent;
255 }
256 
257 /* MSIX Tx Completion Handler */
258 static irqreturn_t
259 bnad_msix_tx(int irq, void *data)
260 {
261 	struct bna_tcb *tcb = (struct bna_tcb *)data;
262 	struct bnad *bnad = tcb->bnad;
263 
264 	bnad_tx_complete(bnad, tcb);
265 
266 	return IRQ_HANDLED;
267 }
268 
269 static inline void
270 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
271 {
272 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
273 
274 	unmap_q->reuse_pi = -1;
275 	unmap_q->alloc_order = -1;
276 	unmap_q->map_size = 0;
277 	unmap_q->type = BNAD_RXBUF_NONE;
278 }
279 
280 /* Default is page-based allocation. Multi-buffer support - TBD */
281 static int
282 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
283 {
284 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
285 	int mtu, order;
286 
287 	bnad_rxq_alloc_uninit(bnad, rcb);
288 
289 	mtu = bna_enet_mtu_get(&bnad->bna.enet);
290 	order = get_order(mtu);
291 
292 	if (bna_is_small_rxq(rcb->id)) {
293 		unmap_q->alloc_order = 0;
294 		unmap_q->map_size = rcb->rxq->buffer_size;
295 	} else {
296 		unmap_q->alloc_order = order;
297 		unmap_q->map_size =
298 			(rcb->rxq->buffer_size > 2048) ?
299 			PAGE_SIZE << order : 2048;
300 	}
301 
302 	BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
303 
304 	unmap_q->type = BNAD_RXBUF_PAGE;
305 
306 	return 0;
307 }
308 
309 static inline void
310 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
311 {
312 	if (!unmap->page)
313 		return;
314 
315 	dma_unmap_page(&bnad->pcidev->dev,
316 			dma_unmap_addr(&unmap->vector, dma_addr),
317 			unmap->vector.len, DMA_FROM_DEVICE);
318 	put_page(unmap->page);
319 	unmap->page = NULL;
320 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
321 	unmap->vector.len = 0;
322 }
323 
324 static inline void
325 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
326 {
327 	if (!unmap->skb)
328 		return;
329 
330 	dma_unmap_single(&bnad->pcidev->dev,
331 			dma_unmap_addr(&unmap->vector, dma_addr),
332 			unmap->vector.len, DMA_FROM_DEVICE);
333 	dev_kfree_skb_any(unmap->skb);
334 	unmap->skb = NULL;
335 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
336 	unmap->vector.len = 0;
337 }
338 
339 static void
340 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
341 {
342 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 	int i;
344 
345 	for (i = 0; i < rcb->q_depth; i++) {
346 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
347 
348 		if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
349 			bnad_rxq_cleanup_page(bnad, unmap);
350 		else
351 			bnad_rxq_cleanup_skb(bnad, unmap);
352 	}
353 	bnad_rxq_alloc_uninit(bnad, rcb);
354 }
355 
356 static u32
357 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
358 {
359 	u32 alloced, prod, q_depth;
360 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
361 	struct bnad_rx_unmap *unmap, *prev;
362 	struct bna_rxq_entry *rxent;
363 	struct page *page;
364 	u32 page_offset, alloc_size;
365 	dma_addr_t dma_addr;
366 
367 	prod = rcb->producer_index;
368 	q_depth = rcb->q_depth;
369 
370 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
371 	alloced = 0;
372 
373 	while (nalloc--) {
374 		unmap = &unmap_q->unmap[prod];
375 
376 		if (unmap_q->reuse_pi < 0) {
377 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
378 					unmap_q->alloc_order);
379 			page_offset = 0;
380 		} else {
381 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
382 			page = prev->page;
383 			page_offset = prev->page_offset + unmap_q->map_size;
384 			get_page(page);
385 		}
386 
387 		if (unlikely(!page)) {
388 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
389 			rcb->rxq->rxbuf_alloc_failed++;
390 			goto finishing;
391 		}
392 
393 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
394 				unmap_q->map_size, DMA_FROM_DEVICE);
395 
396 		unmap->page = page;
397 		unmap->page_offset = page_offset;
398 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
399 		unmap->vector.len = unmap_q->map_size;
400 		page_offset += unmap_q->map_size;
401 
402 		if (page_offset < alloc_size)
403 			unmap_q->reuse_pi = prod;
404 		else
405 			unmap_q->reuse_pi = -1;
406 
407 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
408 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
409 		BNA_QE_INDX_INC(prod, q_depth);
410 		alloced++;
411 	}
412 
413 finishing:
414 	if (likely(alloced)) {
415 		rcb->producer_index = prod;
416 		smp_mb();
417 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
418 			bna_rxq_prod_indx_doorbell(rcb);
419 	}
420 
421 	return alloced;
422 }
423 
424 static u32
425 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
426 {
427 	u32 alloced, prod, q_depth, buff_sz;
428 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
429 	struct bnad_rx_unmap *unmap;
430 	struct bna_rxq_entry *rxent;
431 	struct sk_buff *skb;
432 	dma_addr_t dma_addr;
433 
434 	buff_sz = rcb->rxq->buffer_size;
435 	prod = rcb->producer_index;
436 	q_depth = rcb->q_depth;
437 
438 	alloced = 0;
439 	while (nalloc--) {
440 		unmap = &unmap_q->unmap[prod];
441 
442 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
443 
444 		if (unlikely(!skb)) {
445 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
446 			rcb->rxq->rxbuf_alloc_failed++;
447 			goto finishing;
448 		}
449 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
450 					  buff_sz, DMA_FROM_DEVICE);
451 
452 		unmap->skb = skb;
453 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
454 		unmap->vector.len = buff_sz;
455 
456 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
457 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
458 		BNA_QE_INDX_INC(prod, q_depth);
459 		alloced++;
460 	}
461 
462 finishing:
463 	if (likely(alloced)) {
464 		rcb->producer_index = prod;
465 		smp_mb();
466 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
467 			bna_rxq_prod_indx_doorbell(rcb);
468 	}
469 
470 	return alloced;
471 }
472 
473 static inline void
474 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
475 {
476 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
477 	u32 to_alloc;
478 
479 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
480 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
481 		return;
482 
483 	if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
484 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
485 	else
486 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
487 }
488 
489 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 					BNA_CQ_EF_IPV6 | \
491 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
492 					BNA_CQ_EF_L4_CKSUM_OK)
493 
494 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
495 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
496 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
497 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
498 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
499 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
500 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
501 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
502 
503 static inline struct sk_buff *
504 bnad_cq_prepare_skb(struct bnad_rx_ctrl *rx_ctrl,
505 		struct bnad_rx_unmap_q *unmap_q,
506 		struct bnad_rx_unmap *unmap,
507 		u32 length, u32 flags)
508 {
509 	struct bnad *bnad = rx_ctrl->bnad;
510 	struct sk_buff *skb;
511 
512 	if (BNAD_RXBUF_IS_PAGE(unmap_q->type)) {
513 		skb = napi_get_frags(&rx_ctrl->napi);
514 		if (unlikely(!skb))
515 			return NULL;
516 
517 		dma_unmap_page(&bnad->pcidev->dev,
518 				dma_unmap_addr(&unmap->vector, dma_addr),
519 				unmap->vector.len, DMA_FROM_DEVICE);
520 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
521 				unmap->page, unmap->page_offset, length);
522 		skb->len += length;
523 		skb->data_len += length;
524 		skb->truesize += length;
525 
526 		unmap->page = NULL;
527 		unmap->vector.len = 0;
528 
529 		return skb;
530 	}
531 
532 	skb = unmap->skb;
533 	BUG_ON(!skb);
534 
535 	dma_unmap_single(&bnad->pcidev->dev,
536 			dma_unmap_addr(&unmap->vector, dma_addr),
537 			unmap->vector.len, DMA_FROM_DEVICE);
538 
539 	skb_put(skb, length);
540 
541 	skb->protocol = eth_type_trans(skb, bnad->netdev);
542 
543 	unmap->skb = NULL;
544 	unmap->vector.len = 0;
545 	return skb;
546 }
547 
548 static u32
549 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
550 {
551 	struct bna_cq_entry *cq, *cmpl;
552 	struct bna_rcb *rcb = NULL;
553 	struct bnad_rx_unmap_q *unmap_q;
554 	struct bnad_rx_unmap *unmap;
555 	struct sk_buff *skb;
556 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
557 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
558 	u32 packets = 0, length = 0, flags, masked_flags;
559 
560 	prefetch(bnad->netdev);
561 
562 	cq = ccb->sw_q;
563 	cmpl = &cq[ccb->producer_index];
564 
565 	while (cmpl->valid && (packets < budget)) {
566 		packets++;
567 		flags = ntohl(cmpl->flags);
568 		length = ntohs(cmpl->length);
569 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
570 
571 		if (bna_is_small_rxq(cmpl->rxq_id))
572 			rcb = ccb->rcb[1];
573 		else
574 			rcb = ccb->rcb[0];
575 
576 		unmap_q = rcb->unmap_q;
577 		unmap = &unmap_q->unmap[rcb->consumer_index];
578 
579 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
580 					BNA_CQ_EF_FCS_ERROR |
581 					BNA_CQ_EF_TOO_LONG))) {
582 			if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
583 				bnad_rxq_cleanup_page(bnad, unmap);
584 			else
585 				bnad_rxq_cleanup_skb(bnad, unmap);
586 
587 			rcb->rxq->rx_packets_with_error++;
588 			goto next;
589 		}
590 
591 		skb = bnad_cq_prepare_skb(ccb->ctrl, unmap_q, unmap,
592 				length, flags);
593 
594 		if (unlikely(!skb))
595 			break;
596 
597 		masked_flags = flags & flags_cksum_prot_mask;
598 
599 		if (likely
600 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
601 		     ((masked_flags == flags_tcp4) ||
602 		      (masked_flags == flags_udp4) ||
603 		      (masked_flags == flags_tcp6) ||
604 		      (masked_flags == flags_udp6))))
605 			skb->ip_summed = CHECKSUM_UNNECESSARY;
606 		else
607 			skb_checksum_none_assert(skb);
608 
609 		rcb->rxq->rx_packets++;
610 		rcb->rxq->rx_bytes += length;
611 
612 		if (flags & BNA_CQ_EF_VLAN)
613 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
614 
615 		if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
616 			napi_gro_frags(&rx_ctrl->napi);
617 		else
618 			netif_receive_skb(skb);
619 
620 next:
621 		cmpl->valid = 0;
622 		BNA_QE_INDX_INC(rcb->consumer_index, rcb->q_depth);
623 		BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
624 		cmpl = &cq[ccb->producer_index];
625 	}
626 
627 	napi_gro_flush(&rx_ctrl->napi, false);
628 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
629 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
630 
631 	bnad_rxq_post(bnad, ccb->rcb[0]);
632 	if (ccb->rcb[1])
633 		bnad_rxq_post(bnad, ccb->rcb[1]);
634 
635 	return packets;
636 }
637 
638 static void
639 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
640 {
641 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
642 	struct napi_struct *napi = &rx_ctrl->napi;
643 
644 	if (likely(napi_schedule_prep(napi))) {
645 		__napi_schedule(napi);
646 		rx_ctrl->rx_schedule++;
647 	}
648 }
649 
650 /* MSIX Rx Path Handler */
651 static irqreturn_t
652 bnad_msix_rx(int irq, void *data)
653 {
654 	struct bna_ccb *ccb = (struct bna_ccb *)data;
655 
656 	if (ccb) {
657 		((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
658 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
659 	}
660 
661 	return IRQ_HANDLED;
662 }
663 
664 /* Interrupt handlers */
665 
666 /* Mbox Interrupt Handlers */
667 static irqreturn_t
668 bnad_msix_mbox_handler(int irq, void *data)
669 {
670 	u32 intr_status;
671 	unsigned long flags;
672 	struct bnad *bnad = (struct bnad *)data;
673 
674 	spin_lock_irqsave(&bnad->bna_lock, flags);
675 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
676 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
677 		return IRQ_HANDLED;
678 	}
679 
680 	bna_intr_status_get(&bnad->bna, intr_status);
681 
682 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
683 		bna_mbox_handler(&bnad->bna, intr_status);
684 
685 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
686 
687 	return IRQ_HANDLED;
688 }
689 
690 static irqreturn_t
691 bnad_isr(int irq, void *data)
692 {
693 	int i, j;
694 	u32 intr_status;
695 	unsigned long flags;
696 	struct bnad *bnad = (struct bnad *)data;
697 	struct bnad_rx_info *rx_info;
698 	struct bnad_rx_ctrl *rx_ctrl;
699 	struct bna_tcb *tcb = NULL;
700 
701 	spin_lock_irqsave(&bnad->bna_lock, flags);
702 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
703 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
704 		return IRQ_NONE;
705 	}
706 
707 	bna_intr_status_get(&bnad->bna, intr_status);
708 
709 	if (unlikely(!intr_status)) {
710 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
711 		return IRQ_NONE;
712 	}
713 
714 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
715 		bna_mbox_handler(&bnad->bna, intr_status);
716 
717 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
718 
719 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
720 		return IRQ_HANDLED;
721 
722 	/* Process data interrupts */
723 	/* Tx processing */
724 	for (i = 0; i < bnad->num_tx; i++) {
725 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
726 			tcb = bnad->tx_info[i].tcb[j];
727 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
728 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
729 		}
730 	}
731 	/* Rx processing */
732 	for (i = 0; i < bnad->num_rx; i++) {
733 		rx_info = &bnad->rx_info[i];
734 		if (!rx_info->rx)
735 			continue;
736 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
737 			rx_ctrl = &rx_info->rx_ctrl[j];
738 			if (rx_ctrl->ccb)
739 				bnad_netif_rx_schedule_poll(bnad,
740 							    rx_ctrl->ccb);
741 		}
742 	}
743 	return IRQ_HANDLED;
744 }
745 
746 /*
747  * Called in interrupt / callback context
748  * with bna_lock held, so cfg_flags access is OK
749  */
750 static void
751 bnad_enable_mbox_irq(struct bnad *bnad)
752 {
753 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
754 
755 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
756 }
757 
758 /*
759  * Called with bnad->bna_lock held b'cos of
760  * bnad->cfg_flags access.
761  */
762 static void
763 bnad_disable_mbox_irq(struct bnad *bnad)
764 {
765 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
766 
767 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
768 }
769 
770 static void
771 bnad_set_netdev_perm_addr(struct bnad *bnad)
772 {
773 	struct net_device *netdev = bnad->netdev;
774 
775 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
776 	if (is_zero_ether_addr(netdev->dev_addr))
777 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
778 }
779 
780 /* Control Path Handlers */
781 
782 /* Callbacks */
783 void
784 bnad_cb_mbox_intr_enable(struct bnad *bnad)
785 {
786 	bnad_enable_mbox_irq(bnad);
787 }
788 
789 void
790 bnad_cb_mbox_intr_disable(struct bnad *bnad)
791 {
792 	bnad_disable_mbox_irq(bnad);
793 }
794 
795 void
796 bnad_cb_ioceth_ready(struct bnad *bnad)
797 {
798 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
799 	complete(&bnad->bnad_completions.ioc_comp);
800 }
801 
802 void
803 bnad_cb_ioceth_failed(struct bnad *bnad)
804 {
805 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
806 	complete(&bnad->bnad_completions.ioc_comp);
807 }
808 
809 void
810 bnad_cb_ioceth_disabled(struct bnad *bnad)
811 {
812 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
813 	complete(&bnad->bnad_completions.ioc_comp);
814 }
815 
816 static void
817 bnad_cb_enet_disabled(void *arg)
818 {
819 	struct bnad *bnad = (struct bnad *)arg;
820 
821 	netif_carrier_off(bnad->netdev);
822 	complete(&bnad->bnad_completions.enet_comp);
823 }
824 
825 void
826 bnad_cb_ethport_link_status(struct bnad *bnad,
827 			enum bna_link_status link_status)
828 {
829 	bool link_up = false;
830 
831 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
832 
833 	if (link_status == BNA_CEE_UP) {
834 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
835 			BNAD_UPDATE_CTR(bnad, cee_toggle);
836 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
837 	} else {
838 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
839 			BNAD_UPDATE_CTR(bnad, cee_toggle);
840 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
841 	}
842 
843 	if (link_up) {
844 		if (!netif_carrier_ok(bnad->netdev)) {
845 			uint tx_id, tcb_id;
846 			printk(KERN_WARNING "bna: %s link up\n",
847 				bnad->netdev->name);
848 			netif_carrier_on(bnad->netdev);
849 			BNAD_UPDATE_CTR(bnad, link_toggle);
850 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
851 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
852 				      tcb_id++) {
853 					struct bna_tcb *tcb =
854 					bnad->tx_info[tx_id].tcb[tcb_id];
855 					u32 txq_id;
856 					if (!tcb)
857 						continue;
858 
859 					txq_id = tcb->id;
860 
861 					if (test_bit(BNAD_TXQ_TX_STARTED,
862 						     &tcb->flags)) {
863 						/*
864 						 * Force an immediate
865 						 * Transmit Schedule */
866 						printk(KERN_INFO "bna: %s %d "
867 						      "TXQ_STARTED\n",
868 						       bnad->netdev->name,
869 						       txq_id);
870 						netif_wake_subqueue(
871 								bnad->netdev,
872 								txq_id);
873 						BNAD_UPDATE_CTR(bnad,
874 							netif_queue_wakeup);
875 					} else {
876 						netif_stop_subqueue(
877 								bnad->netdev,
878 								txq_id);
879 						BNAD_UPDATE_CTR(bnad,
880 							netif_queue_stop);
881 					}
882 				}
883 			}
884 		}
885 	} else {
886 		if (netif_carrier_ok(bnad->netdev)) {
887 			printk(KERN_WARNING "bna: %s link down\n",
888 				bnad->netdev->name);
889 			netif_carrier_off(bnad->netdev);
890 			BNAD_UPDATE_CTR(bnad, link_toggle);
891 		}
892 	}
893 }
894 
895 static void
896 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
897 {
898 	struct bnad *bnad = (struct bnad *)arg;
899 
900 	complete(&bnad->bnad_completions.tx_comp);
901 }
902 
903 static void
904 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
905 {
906 	struct bnad_tx_info *tx_info =
907 			(struct bnad_tx_info *)tcb->txq->tx->priv;
908 
909 	tcb->priv = tcb;
910 	tx_info->tcb[tcb->id] = tcb;
911 }
912 
913 static void
914 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
915 {
916 	struct bnad_tx_info *tx_info =
917 			(struct bnad_tx_info *)tcb->txq->tx->priv;
918 
919 	tx_info->tcb[tcb->id] = NULL;
920 	tcb->priv = NULL;
921 }
922 
923 static void
924 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
925 {
926 	struct bnad_rx_info *rx_info =
927 			(struct bnad_rx_info *)ccb->cq->rx->priv;
928 
929 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
930 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
931 }
932 
933 static void
934 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
935 {
936 	struct bnad_rx_info *rx_info =
937 			(struct bnad_rx_info *)ccb->cq->rx->priv;
938 
939 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
940 }
941 
942 static void
943 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
944 {
945 	struct bnad_tx_info *tx_info =
946 			(struct bnad_tx_info *)tx->priv;
947 	struct bna_tcb *tcb;
948 	u32 txq_id;
949 	int i;
950 
951 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
952 		tcb = tx_info->tcb[i];
953 		if (!tcb)
954 			continue;
955 		txq_id = tcb->id;
956 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
957 		netif_stop_subqueue(bnad->netdev, txq_id);
958 		printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
959 			bnad->netdev->name, txq_id);
960 	}
961 }
962 
963 static void
964 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
965 {
966 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
967 	struct bna_tcb *tcb;
968 	u32 txq_id;
969 	int i;
970 
971 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
972 		tcb = tx_info->tcb[i];
973 		if (!tcb)
974 			continue;
975 		txq_id = tcb->id;
976 
977 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
978 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
979 		BUG_ON(*(tcb->hw_consumer_index) != 0);
980 
981 		if (netif_carrier_ok(bnad->netdev)) {
982 			printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
983 				bnad->netdev->name, txq_id);
984 			netif_wake_subqueue(bnad->netdev, txq_id);
985 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
986 		}
987 	}
988 
989 	/*
990 	 * Workaround for first ioceth enable failure & we
991 	 * get a 0 MAC address. We try to get the MAC address
992 	 * again here.
993 	 */
994 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
995 		bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
996 		bnad_set_netdev_perm_addr(bnad);
997 	}
998 }
999 
1000 /*
1001  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1002  */
1003 static void
1004 bnad_tx_cleanup(struct delayed_work *work)
1005 {
1006 	struct bnad_tx_info *tx_info =
1007 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1008 	struct bnad *bnad = NULL;
1009 	struct bna_tcb *tcb;
1010 	unsigned long flags;
1011 	u32 i, pending = 0;
1012 
1013 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1014 		tcb = tx_info->tcb[i];
1015 		if (!tcb)
1016 			continue;
1017 
1018 		bnad = tcb->bnad;
1019 
1020 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1021 			pending++;
1022 			continue;
1023 		}
1024 
1025 		bnad_txq_cleanup(bnad, tcb);
1026 
1027 		smp_mb__before_clear_bit();
1028 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1029 	}
1030 
1031 	if (pending) {
1032 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1033 			msecs_to_jiffies(1));
1034 		return;
1035 	}
1036 
1037 	spin_lock_irqsave(&bnad->bna_lock, flags);
1038 	bna_tx_cleanup_complete(tx_info->tx);
1039 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1040 }
1041 
1042 static void
1043 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1044 {
1045 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1046 	struct bna_tcb *tcb;
1047 	int i;
1048 
1049 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1050 		tcb = tx_info->tcb[i];
1051 		if (!tcb)
1052 			continue;
1053 	}
1054 
1055 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1056 }
1057 
1058 static void
1059 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1060 {
1061 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1062 	struct bna_ccb *ccb;
1063 	struct bnad_rx_ctrl *rx_ctrl;
1064 	int i;
1065 
1066 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1067 		rx_ctrl = &rx_info->rx_ctrl[i];
1068 		ccb = rx_ctrl->ccb;
1069 		if (!ccb)
1070 			continue;
1071 
1072 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1073 
1074 		if (ccb->rcb[1])
1075 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1076 	}
1077 }
1078 
1079 /*
1080  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1081  */
1082 static void
1083 bnad_rx_cleanup(void *work)
1084 {
1085 	struct bnad_rx_info *rx_info =
1086 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1087 	struct bnad_rx_ctrl *rx_ctrl;
1088 	struct bnad *bnad = NULL;
1089 	unsigned long flags;
1090 	u32 i;
1091 
1092 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1093 		rx_ctrl = &rx_info->rx_ctrl[i];
1094 
1095 		if (!rx_ctrl->ccb)
1096 			continue;
1097 
1098 		bnad = rx_ctrl->ccb->bnad;
1099 
1100 		/*
1101 		 * Wait till the poll handler has exited
1102 		 * and nothing can be scheduled anymore
1103 		 */
1104 		napi_disable(&rx_ctrl->napi);
1105 
1106 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1107 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1108 		if (rx_ctrl->ccb->rcb[1])
1109 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1110 	}
1111 
1112 	spin_lock_irqsave(&bnad->bna_lock, flags);
1113 	bna_rx_cleanup_complete(rx_info->rx);
1114 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1115 }
1116 
1117 static void
1118 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1119 {
1120 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1121 	struct bna_ccb *ccb;
1122 	struct bnad_rx_ctrl *rx_ctrl;
1123 	int i;
1124 
1125 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1126 		rx_ctrl = &rx_info->rx_ctrl[i];
1127 		ccb = rx_ctrl->ccb;
1128 		if (!ccb)
1129 			continue;
1130 
1131 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1132 
1133 		if (ccb->rcb[1])
1134 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1135 	}
1136 
1137 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1138 }
1139 
1140 static void
1141 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1142 {
1143 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1144 	struct bna_ccb *ccb;
1145 	struct bna_rcb *rcb;
1146 	struct bnad_rx_ctrl *rx_ctrl;
1147 	int i, j;
1148 
1149 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1150 		rx_ctrl = &rx_info->rx_ctrl[i];
1151 		ccb = rx_ctrl->ccb;
1152 		if (!ccb)
1153 			continue;
1154 
1155 		napi_enable(&rx_ctrl->napi);
1156 
1157 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1158 			rcb = ccb->rcb[j];
1159 			if (!rcb)
1160 				continue;
1161 
1162 			bnad_rxq_alloc_init(bnad, rcb);
1163 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1164 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1165 			bnad_rxq_post(bnad, rcb);
1166 		}
1167 	}
1168 }
1169 
1170 static void
1171 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1172 {
1173 	struct bnad *bnad = (struct bnad *)arg;
1174 
1175 	complete(&bnad->bnad_completions.rx_comp);
1176 }
1177 
1178 static void
1179 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1180 {
1181 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1182 	complete(&bnad->bnad_completions.mcast_comp);
1183 }
1184 
1185 void
1186 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1187 		       struct bna_stats *stats)
1188 {
1189 	if (status == BNA_CB_SUCCESS)
1190 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1191 
1192 	if (!netif_running(bnad->netdev) ||
1193 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1194 		return;
1195 
1196 	mod_timer(&bnad->stats_timer,
1197 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1198 }
1199 
1200 static void
1201 bnad_cb_enet_mtu_set(struct bnad *bnad)
1202 {
1203 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1204 	complete(&bnad->bnad_completions.mtu_comp);
1205 }
1206 
1207 void
1208 bnad_cb_completion(void *arg, enum bfa_status status)
1209 {
1210 	struct bnad_iocmd_comp *iocmd_comp =
1211 			(struct bnad_iocmd_comp *)arg;
1212 
1213 	iocmd_comp->comp_status = (u32) status;
1214 	complete(&iocmd_comp->comp);
1215 }
1216 
1217 /* Resource allocation, free functions */
1218 
1219 static void
1220 bnad_mem_free(struct bnad *bnad,
1221 	      struct bna_mem_info *mem_info)
1222 {
1223 	int i;
1224 	dma_addr_t dma_pa;
1225 
1226 	if (mem_info->mdl == NULL)
1227 		return;
1228 
1229 	for (i = 0; i < mem_info->num; i++) {
1230 		if (mem_info->mdl[i].kva != NULL) {
1231 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1232 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1233 						dma_pa);
1234 				dma_free_coherent(&bnad->pcidev->dev,
1235 						  mem_info->mdl[i].len,
1236 						  mem_info->mdl[i].kva, dma_pa);
1237 			} else
1238 				kfree(mem_info->mdl[i].kva);
1239 		}
1240 	}
1241 	kfree(mem_info->mdl);
1242 	mem_info->mdl = NULL;
1243 }
1244 
1245 static int
1246 bnad_mem_alloc(struct bnad *bnad,
1247 	       struct bna_mem_info *mem_info)
1248 {
1249 	int i;
1250 	dma_addr_t dma_pa;
1251 
1252 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1253 		mem_info->mdl = NULL;
1254 		return 0;
1255 	}
1256 
1257 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1258 				GFP_KERNEL);
1259 	if (mem_info->mdl == NULL)
1260 		return -ENOMEM;
1261 
1262 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1263 		for (i = 0; i < mem_info->num; i++) {
1264 			mem_info->mdl[i].len = mem_info->len;
1265 			mem_info->mdl[i].kva =
1266 				dma_alloc_coherent(&bnad->pcidev->dev,
1267 						   mem_info->len, &dma_pa,
1268 						   GFP_KERNEL);
1269 			if (mem_info->mdl[i].kva == NULL)
1270 				goto err_return;
1271 
1272 			BNA_SET_DMA_ADDR(dma_pa,
1273 					 &(mem_info->mdl[i].dma));
1274 		}
1275 	} else {
1276 		for (i = 0; i < mem_info->num; i++) {
1277 			mem_info->mdl[i].len = mem_info->len;
1278 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1279 							GFP_KERNEL);
1280 			if (mem_info->mdl[i].kva == NULL)
1281 				goto err_return;
1282 		}
1283 	}
1284 
1285 	return 0;
1286 
1287 err_return:
1288 	bnad_mem_free(bnad, mem_info);
1289 	return -ENOMEM;
1290 }
1291 
1292 /* Free IRQ for Mailbox */
1293 static void
1294 bnad_mbox_irq_free(struct bnad *bnad)
1295 {
1296 	int irq;
1297 	unsigned long flags;
1298 
1299 	spin_lock_irqsave(&bnad->bna_lock, flags);
1300 	bnad_disable_mbox_irq(bnad);
1301 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1302 
1303 	irq = BNAD_GET_MBOX_IRQ(bnad);
1304 	free_irq(irq, bnad);
1305 }
1306 
1307 /*
1308  * Allocates IRQ for Mailbox, but keep it disabled
1309  * This will be enabled once we get the mbox enable callback
1310  * from bna
1311  */
1312 static int
1313 bnad_mbox_irq_alloc(struct bnad *bnad)
1314 {
1315 	int		err = 0;
1316 	unsigned long	irq_flags, flags;
1317 	u32	irq;
1318 	irq_handler_t	irq_handler;
1319 
1320 	spin_lock_irqsave(&bnad->bna_lock, flags);
1321 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1322 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1323 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1324 		irq_flags = 0;
1325 	} else {
1326 		irq_handler = (irq_handler_t)bnad_isr;
1327 		irq = bnad->pcidev->irq;
1328 		irq_flags = IRQF_SHARED;
1329 	}
1330 
1331 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1332 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1333 
1334 	/*
1335 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1336 	 * called from request_irq() for SHARED IRQs do not execute
1337 	 */
1338 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1339 
1340 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1341 
1342 	err = request_irq(irq, irq_handler, irq_flags,
1343 			  bnad->mbox_irq_name, bnad);
1344 
1345 	return err;
1346 }
1347 
1348 static void
1349 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1350 {
1351 	kfree(intr_info->idl);
1352 	intr_info->idl = NULL;
1353 }
1354 
1355 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1356 static int
1357 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1358 		    u32 txrx_id, struct bna_intr_info *intr_info)
1359 {
1360 	int i, vector_start = 0;
1361 	u32 cfg_flags;
1362 	unsigned long flags;
1363 
1364 	spin_lock_irqsave(&bnad->bna_lock, flags);
1365 	cfg_flags = bnad->cfg_flags;
1366 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1367 
1368 	if (cfg_flags & BNAD_CF_MSIX) {
1369 		intr_info->intr_type = BNA_INTR_T_MSIX;
1370 		intr_info->idl = kcalloc(intr_info->num,
1371 					sizeof(struct bna_intr_descr),
1372 					GFP_KERNEL);
1373 		if (!intr_info->idl)
1374 			return -ENOMEM;
1375 
1376 		switch (src) {
1377 		case BNAD_INTR_TX:
1378 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1379 			break;
1380 
1381 		case BNAD_INTR_RX:
1382 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1383 					(bnad->num_tx * bnad->num_txq_per_tx) +
1384 					txrx_id;
1385 			break;
1386 
1387 		default:
1388 			BUG();
1389 		}
1390 
1391 		for (i = 0; i < intr_info->num; i++)
1392 			intr_info->idl[i].vector = vector_start + i;
1393 	} else {
1394 		intr_info->intr_type = BNA_INTR_T_INTX;
1395 		intr_info->num = 1;
1396 		intr_info->idl = kcalloc(intr_info->num,
1397 					sizeof(struct bna_intr_descr),
1398 					GFP_KERNEL);
1399 		if (!intr_info->idl)
1400 			return -ENOMEM;
1401 
1402 		switch (src) {
1403 		case BNAD_INTR_TX:
1404 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1405 			break;
1406 
1407 		case BNAD_INTR_RX:
1408 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1409 			break;
1410 		}
1411 	}
1412 	return 0;
1413 }
1414 
1415 /* NOTE: Should be called for MSIX only
1416  * Unregisters Tx MSIX vector(s) from the kernel
1417  */
1418 static void
1419 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1420 			int num_txqs)
1421 {
1422 	int i;
1423 	int vector_num;
1424 
1425 	for (i = 0; i < num_txqs; i++) {
1426 		if (tx_info->tcb[i] == NULL)
1427 			continue;
1428 
1429 		vector_num = tx_info->tcb[i]->intr_vector;
1430 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1431 	}
1432 }
1433 
1434 /* NOTE: Should be called for MSIX only
1435  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1436  */
1437 static int
1438 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1439 			u32 tx_id, int num_txqs)
1440 {
1441 	int i;
1442 	int err;
1443 	int vector_num;
1444 
1445 	for (i = 0; i < num_txqs; i++) {
1446 		vector_num = tx_info->tcb[i]->intr_vector;
1447 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1448 				tx_id + tx_info->tcb[i]->id);
1449 		err = request_irq(bnad->msix_table[vector_num].vector,
1450 				  (irq_handler_t)bnad_msix_tx, 0,
1451 				  tx_info->tcb[i]->name,
1452 				  tx_info->tcb[i]);
1453 		if (err)
1454 			goto err_return;
1455 	}
1456 
1457 	return 0;
1458 
1459 err_return:
1460 	if (i > 0)
1461 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1462 	return -1;
1463 }
1464 
1465 /* NOTE: Should be called for MSIX only
1466  * Unregisters Rx MSIX vector(s) from the kernel
1467  */
1468 static void
1469 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1470 			int num_rxps)
1471 {
1472 	int i;
1473 	int vector_num;
1474 
1475 	for (i = 0; i < num_rxps; i++) {
1476 		if (rx_info->rx_ctrl[i].ccb == NULL)
1477 			continue;
1478 
1479 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1480 		free_irq(bnad->msix_table[vector_num].vector,
1481 			 rx_info->rx_ctrl[i].ccb);
1482 	}
1483 }
1484 
1485 /* NOTE: Should be called for MSIX only
1486  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1487  */
1488 static int
1489 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1490 			u32 rx_id, int num_rxps)
1491 {
1492 	int i;
1493 	int err;
1494 	int vector_num;
1495 
1496 	for (i = 0; i < num_rxps; i++) {
1497 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1498 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1499 			bnad->netdev->name,
1500 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1501 		err = request_irq(bnad->msix_table[vector_num].vector,
1502 				  (irq_handler_t)bnad_msix_rx, 0,
1503 				  rx_info->rx_ctrl[i].ccb->name,
1504 				  rx_info->rx_ctrl[i].ccb);
1505 		if (err)
1506 			goto err_return;
1507 	}
1508 
1509 	return 0;
1510 
1511 err_return:
1512 	if (i > 0)
1513 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1514 	return -1;
1515 }
1516 
1517 /* Free Tx object Resources */
1518 static void
1519 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1520 {
1521 	int i;
1522 
1523 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1524 		if (res_info[i].res_type == BNA_RES_T_MEM)
1525 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1526 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1527 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1528 	}
1529 }
1530 
1531 /* Allocates memory and interrupt resources for Tx object */
1532 static int
1533 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1534 		  u32 tx_id)
1535 {
1536 	int i, err = 0;
1537 
1538 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1539 		if (res_info[i].res_type == BNA_RES_T_MEM)
1540 			err = bnad_mem_alloc(bnad,
1541 					&res_info[i].res_u.mem_info);
1542 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1543 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1544 					&res_info[i].res_u.intr_info);
1545 		if (err)
1546 			goto err_return;
1547 	}
1548 	return 0;
1549 
1550 err_return:
1551 	bnad_tx_res_free(bnad, res_info);
1552 	return err;
1553 }
1554 
1555 /* Free Rx object Resources */
1556 static void
1557 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1558 {
1559 	int i;
1560 
1561 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1562 		if (res_info[i].res_type == BNA_RES_T_MEM)
1563 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1564 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1565 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1566 	}
1567 }
1568 
1569 /* Allocates memory and interrupt resources for Rx object */
1570 static int
1571 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1572 		  uint rx_id)
1573 {
1574 	int i, err = 0;
1575 
1576 	/* All memory needs to be allocated before setup_ccbs */
1577 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1578 		if (res_info[i].res_type == BNA_RES_T_MEM)
1579 			err = bnad_mem_alloc(bnad,
1580 					&res_info[i].res_u.mem_info);
1581 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1582 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1583 					&res_info[i].res_u.intr_info);
1584 		if (err)
1585 			goto err_return;
1586 	}
1587 	return 0;
1588 
1589 err_return:
1590 	bnad_rx_res_free(bnad, res_info);
1591 	return err;
1592 }
1593 
1594 /* Timer callbacks */
1595 /* a) IOC timer */
1596 static void
1597 bnad_ioc_timeout(unsigned long data)
1598 {
1599 	struct bnad *bnad = (struct bnad *)data;
1600 	unsigned long flags;
1601 
1602 	spin_lock_irqsave(&bnad->bna_lock, flags);
1603 	bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1604 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1605 }
1606 
1607 static void
1608 bnad_ioc_hb_check(unsigned long data)
1609 {
1610 	struct bnad *bnad = (struct bnad *)data;
1611 	unsigned long flags;
1612 
1613 	spin_lock_irqsave(&bnad->bna_lock, flags);
1614 	bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1615 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1616 }
1617 
1618 static void
1619 bnad_iocpf_timeout(unsigned long data)
1620 {
1621 	struct bnad *bnad = (struct bnad *)data;
1622 	unsigned long flags;
1623 
1624 	spin_lock_irqsave(&bnad->bna_lock, flags);
1625 	bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1626 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1627 }
1628 
1629 static void
1630 bnad_iocpf_sem_timeout(unsigned long data)
1631 {
1632 	struct bnad *bnad = (struct bnad *)data;
1633 	unsigned long flags;
1634 
1635 	spin_lock_irqsave(&bnad->bna_lock, flags);
1636 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1637 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1638 }
1639 
1640 /*
1641  * All timer routines use bnad->bna_lock to protect against
1642  * the following race, which may occur in case of no locking:
1643  *	Time	CPU m	CPU n
1644  *	0       1 = test_bit
1645  *	1			clear_bit
1646  *	2			del_timer_sync
1647  *	3	mod_timer
1648  */
1649 
1650 /* b) Dynamic Interrupt Moderation Timer */
1651 static void
1652 bnad_dim_timeout(unsigned long data)
1653 {
1654 	struct bnad *bnad = (struct bnad *)data;
1655 	struct bnad_rx_info *rx_info;
1656 	struct bnad_rx_ctrl *rx_ctrl;
1657 	int i, j;
1658 	unsigned long flags;
1659 
1660 	if (!netif_carrier_ok(bnad->netdev))
1661 		return;
1662 
1663 	spin_lock_irqsave(&bnad->bna_lock, flags);
1664 	for (i = 0; i < bnad->num_rx; i++) {
1665 		rx_info = &bnad->rx_info[i];
1666 		if (!rx_info->rx)
1667 			continue;
1668 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1669 			rx_ctrl = &rx_info->rx_ctrl[j];
1670 			if (!rx_ctrl->ccb)
1671 				continue;
1672 			bna_rx_dim_update(rx_ctrl->ccb);
1673 		}
1674 	}
1675 
1676 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1677 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1678 		mod_timer(&bnad->dim_timer,
1679 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1680 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1681 }
1682 
1683 /* c)  Statistics Timer */
1684 static void
1685 bnad_stats_timeout(unsigned long data)
1686 {
1687 	struct bnad *bnad = (struct bnad *)data;
1688 	unsigned long flags;
1689 
1690 	if (!netif_running(bnad->netdev) ||
1691 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1692 		return;
1693 
1694 	spin_lock_irqsave(&bnad->bna_lock, flags);
1695 	bna_hw_stats_get(&bnad->bna);
1696 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1697 }
1698 
1699 /*
1700  * Set up timer for DIM
1701  * Called with bnad->bna_lock held
1702  */
1703 void
1704 bnad_dim_timer_start(struct bnad *bnad)
1705 {
1706 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1707 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1708 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1709 			    (unsigned long)bnad);
1710 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1711 		mod_timer(&bnad->dim_timer,
1712 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1713 	}
1714 }
1715 
1716 /*
1717  * Set up timer for statistics
1718  * Called with mutex_lock(&bnad->conf_mutex) held
1719  */
1720 static void
1721 bnad_stats_timer_start(struct bnad *bnad)
1722 {
1723 	unsigned long flags;
1724 
1725 	spin_lock_irqsave(&bnad->bna_lock, flags);
1726 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1727 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1728 			    (unsigned long)bnad);
1729 		mod_timer(&bnad->stats_timer,
1730 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1731 	}
1732 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1733 }
1734 
1735 /*
1736  * Stops the stats timer
1737  * Called with mutex_lock(&bnad->conf_mutex) held
1738  */
1739 static void
1740 bnad_stats_timer_stop(struct bnad *bnad)
1741 {
1742 	int to_del = 0;
1743 	unsigned long flags;
1744 
1745 	spin_lock_irqsave(&bnad->bna_lock, flags);
1746 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1747 		to_del = 1;
1748 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1749 	if (to_del)
1750 		del_timer_sync(&bnad->stats_timer);
1751 }
1752 
1753 /* Utilities */
1754 
1755 static void
1756 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1757 {
1758 	int i = 1; /* Index 0 has broadcast address */
1759 	struct netdev_hw_addr *mc_addr;
1760 
1761 	netdev_for_each_mc_addr(mc_addr, netdev) {
1762 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1763 							ETH_ALEN);
1764 		i++;
1765 	}
1766 }
1767 
1768 static int
1769 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1770 {
1771 	struct bnad_rx_ctrl *rx_ctrl =
1772 		container_of(napi, struct bnad_rx_ctrl, napi);
1773 	struct bnad *bnad = rx_ctrl->bnad;
1774 	int rcvd = 0;
1775 
1776 	rx_ctrl->rx_poll_ctr++;
1777 
1778 	if (!netif_carrier_ok(bnad->netdev))
1779 		goto poll_exit;
1780 
1781 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1782 	if (rcvd >= budget)
1783 		return rcvd;
1784 
1785 poll_exit:
1786 	napi_complete(napi);
1787 
1788 	rx_ctrl->rx_complete++;
1789 
1790 	if (rx_ctrl->ccb)
1791 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1792 
1793 	return rcvd;
1794 }
1795 
1796 #define BNAD_NAPI_POLL_QUOTA		64
1797 static void
1798 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1799 {
1800 	struct bnad_rx_ctrl *rx_ctrl;
1801 	int i;
1802 
1803 	/* Initialize & enable NAPI */
1804 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1805 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1806 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1807 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1808 	}
1809 }
1810 
1811 static void
1812 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1813 {
1814 	int i;
1815 
1816 	/* First disable and then clean up */
1817 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1818 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1819 }
1820 
1821 /* Should be held with conf_lock held */
1822 void
1823 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1824 {
1825 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1826 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1827 	unsigned long flags;
1828 
1829 	if (!tx_info->tx)
1830 		return;
1831 
1832 	init_completion(&bnad->bnad_completions.tx_comp);
1833 	spin_lock_irqsave(&bnad->bna_lock, flags);
1834 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1835 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1836 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1837 
1838 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1839 		bnad_tx_msix_unregister(bnad, tx_info,
1840 			bnad->num_txq_per_tx);
1841 
1842 	spin_lock_irqsave(&bnad->bna_lock, flags);
1843 	bna_tx_destroy(tx_info->tx);
1844 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1845 
1846 	tx_info->tx = NULL;
1847 	tx_info->tx_id = 0;
1848 
1849 	bnad_tx_res_free(bnad, res_info);
1850 }
1851 
1852 /* Should be held with conf_lock held */
1853 int
1854 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1855 {
1856 	int err;
1857 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1858 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1859 	struct bna_intr_info *intr_info =
1860 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1861 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1862 	static const struct bna_tx_event_cbfn tx_cbfn = {
1863 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1864 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1865 		.tx_stall_cbfn = bnad_cb_tx_stall,
1866 		.tx_resume_cbfn = bnad_cb_tx_resume,
1867 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1868 	};
1869 
1870 	struct bna_tx *tx;
1871 	unsigned long flags;
1872 
1873 	tx_info->tx_id = tx_id;
1874 
1875 	/* Initialize the Tx object configuration */
1876 	tx_config->num_txq = bnad->num_txq_per_tx;
1877 	tx_config->txq_depth = bnad->txq_depth;
1878 	tx_config->tx_type = BNA_TX_T_REGULAR;
1879 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1880 
1881 	/* Get BNA's resource requirement for one tx object */
1882 	spin_lock_irqsave(&bnad->bna_lock, flags);
1883 	bna_tx_res_req(bnad->num_txq_per_tx,
1884 		bnad->txq_depth, res_info);
1885 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1886 
1887 	/* Fill Unmap Q memory requirements */
1888 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1889 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1890 			bnad->txq_depth));
1891 
1892 	/* Allocate resources */
1893 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1894 	if (err)
1895 		return err;
1896 
1897 	/* Ask BNA to create one Tx object, supplying required resources */
1898 	spin_lock_irqsave(&bnad->bna_lock, flags);
1899 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1900 			tx_info);
1901 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1902 	if (!tx)
1903 		goto err_return;
1904 	tx_info->tx = tx;
1905 
1906 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1907 			(work_func_t)bnad_tx_cleanup);
1908 
1909 	/* Register ISR for the Tx object */
1910 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1911 		err = bnad_tx_msix_register(bnad, tx_info,
1912 			tx_id, bnad->num_txq_per_tx);
1913 		if (err)
1914 			goto err_return;
1915 	}
1916 
1917 	spin_lock_irqsave(&bnad->bna_lock, flags);
1918 	bna_tx_enable(tx);
1919 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1920 
1921 	return 0;
1922 
1923 err_return:
1924 	bnad_tx_res_free(bnad, res_info);
1925 	return err;
1926 }
1927 
1928 /* Setup the rx config for bna_rx_create */
1929 /* bnad decides the configuration */
1930 static void
1931 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1932 {
1933 	rx_config->rx_type = BNA_RX_T_REGULAR;
1934 	rx_config->num_paths = bnad->num_rxp_per_rx;
1935 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1936 
1937 	if (bnad->num_rxp_per_rx > 1) {
1938 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
1939 		rx_config->rss_config.hash_type =
1940 				(BFI_ENET_RSS_IPV6 |
1941 				 BFI_ENET_RSS_IPV6_TCP |
1942 				 BFI_ENET_RSS_IPV4 |
1943 				 BFI_ENET_RSS_IPV4_TCP);
1944 		rx_config->rss_config.hash_mask =
1945 				bnad->num_rxp_per_rx - 1;
1946 		get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1947 			sizeof(rx_config->rss_config.toeplitz_hash_key));
1948 	} else {
1949 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
1950 		memset(&rx_config->rss_config, 0,
1951 		       sizeof(rx_config->rss_config));
1952 	}
1953 	rx_config->rxp_type = BNA_RXP_SLR;
1954 	rx_config->q_depth = bnad->rxq_depth;
1955 
1956 	rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1957 
1958 	rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1959 }
1960 
1961 static void
1962 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1963 {
1964 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1965 	int i;
1966 
1967 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1968 		rx_info->rx_ctrl[i].bnad = bnad;
1969 }
1970 
1971 /* Called with mutex_lock(&bnad->conf_mutex) held */
1972 void
1973 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
1974 {
1975 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1976 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1977 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1978 	unsigned long flags;
1979 	int to_del = 0;
1980 
1981 	if (!rx_info->rx)
1982 		return;
1983 
1984 	if (0 == rx_id) {
1985 		spin_lock_irqsave(&bnad->bna_lock, flags);
1986 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1987 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1988 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1989 			to_del = 1;
1990 		}
1991 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
1992 		if (to_del)
1993 			del_timer_sync(&bnad->dim_timer);
1994 	}
1995 
1996 	init_completion(&bnad->bnad_completions.rx_comp);
1997 	spin_lock_irqsave(&bnad->bna_lock, flags);
1998 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1999 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2001 
2002 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2003 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2004 
2005 	bnad_napi_delete(bnad, rx_id);
2006 
2007 	spin_lock_irqsave(&bnad->bna_lock, flags);
2008 	bna_rx_destroy(rx_info->rx);
2009 
2010 	rx_info->rx = NULL;
2011 	rx_info->rx_id = 0;
2012 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2013 
2014 	bnad_rx_res_free(bnad, res_info);
2015 }
2016 
2017 /* Called with mutex_lock(&bnad->conf_mutex) held */
2018 int
2019 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2020 {
2021 	int err;
2022 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2023 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2024 	struct bna_intr_info *intr_info =
2025 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2026 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2027 	static const struct bna_rx_event_cbfn rx_cbfn = {
2028 		.rcb_setup_cbfn = NULL,
2029 		.rcb_destroy_cbfn = NULL,
2030 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2031 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2032 		.rx_stall_cbfn = bnad_cb_rx_stall,
2033 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2034 		.rx_post_cbfn = bnad_cb_rx_post,
2035 	};
2036 	struct bna_rx *rx;
2037 	unsigned long flags;
2038 
2039 	rx_info->rx_id = rx_id;
2040 
2041 	/* Initialize the Rx object configuration */
2042 	bnad_init_rx_config(bnad, rx_config);
2043 
2044 	/* Get BNA's resource requirement for one Rx object */
2045 	spin_lock_irqsave(&bnad->bna_lock, flags);
2046 	bna_rx_res_req(rx_config, res_info);
2047 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2048 
2049 	/* Fill Unmap Q memory requirements */
2050 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPQ],
2051 			rx_config->num_paths +
2052 			((rx_config->rxp_type == BNA_RXP_SINGLE) ?
2053 			 0 : rx_config->num_paths),
2054 			((bnad->rxq_depth * sizeof(struct bnad_rx_unmap)) +
2055 			 sizeof(struct bnad_rx_unmap_q)));
2056 
2057 	/* Allocate resource */
2058 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2059 	if (err)
2060 		return err;
2061 
2062 	bnad_rx_ctrl_init(bnad, rx_id);
2063 
2064 	/* Ask BNA to create one Rx object, supplying required resources */
2065 	spin_lock_irqsave(&bnad->bna_lock, flags);
2066 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2067 			rx_info);
2068 	if (!rx) {
2069 		err = -ENOMEM;
2070 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2071 		goto err_return;
2072 	}
2073 	rx_info->rx = rx;
2074 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2075 
2076 	INIT_WORK(&rx_info->rx_cleanup_work,
2077 			(work_func_t)(bnad_rx_cleanup));
2078 
2079 	/*
2080 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2081 	 * so that IRQ handler cannot schedule NAPI at this point.
2082 	 */
2083 	bnad_napi_add(bnad, rx_id);
2084 
2085 	/* Register ISR for the Rx object */
2086 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2087 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2088 						rx_config->num_paths);
2089 		if (err)
2090 			goto err_return;
2091 	}
2092 
2093 	spin_lock_irqsave(&bnad->bna_lock, flags);
2094 	if (0 == rx_id) {
2095 		/* Set up Dynamic Interrupt Moderation Vector */
2096 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2097 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2098 
2099 		/* Enable VLAN filtering only on the default Rx */
2100 		bna_rx_vlanfilter_enable(rx);
2101 
2102 		/* Start the DIM timer */
2103 		bnad_dim_timer_start(bnad);
2104 	}
2105 
2106 	bna_rx_enable(rx);
2107 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2108 
2109 	return 0;
2110 
2111 err_return:
2112 	bnad_destroy_rx(bnad, rx_id);
2113 	return err;
2114 }
2115 
2116 /* Called with conf_lock & bnad->bna_lock held */
2117 void
2118 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2119 {
2120 	struct bnad_tx_info *tx_info;
2121 
2122 	tx_info = &bnad->tx_info[0];
2123 	if (!tx_info->tx)
2124 		return;
2125 
2126 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2127 }
2128 
2129 /* Called with conf_lock & bnad->bna_lock held */
2130 void
2131 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2132 {
2133 	struct bnad_rx_info *rx_info;
2134 	int	i;
2135 
2136 	for (i = 0; i < bnad->num_rx; i++) {
2137 		rx_info = &bnad->rx_info[i];
2138 		if (!rx_info->rx)
2139 			continue;
2140 		bna_rx_coalescing_timeo_set(rx_info->rx,
2141 				bnad->rx_coalescing_timeo);
2142 	}
2143 }
2144 
2145 /*
2146  * Called with bnad->bna_lock held
2147  */
2148 int
2149 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2150 {
2151 	int ret;
2152 
2153 	if (!is_valid_ether_addr(mac_addr))
2154 		return -EADDRNOTAVAIL;
2155 
2156 	/* If datapath is down, pretend everything went through */
2157 	if (!bnad->rx_info[0].rx)
2158 		return 0;
2159 
2160 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2161 	if (ret != BNA_CB_SUCCESS)
2162 		return -EADDRNOTAVAIL;
2163 
2164 	return 0;
2165 }
2166 
2167 /* Should be called with conf_lock held */
2168 int
2169 bnad_enable_default_bcast(struct bnad *bnad)
2170 {
2171 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2172 	int ret;
2173 	unsigned long flags;
2174 
2175 	init_completion(&bnad->bnad_completions.mcast_comp);
2176 
2177 	spin_lock_irqsave(&bnad->bna_lock, flags);
2178 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2179 				bnad_cb_rx_mcast_add);
2180 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2181 
2182 	if (ret == BNA_CB_SUCCESS)
2183 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2184 	else
2185 		return -ENODEV;
2186 
2187 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2188 		return -ENODEV;
2189 
2190 	return 0;
2191 }
2192 
2193 /* Called with mutex_lock(&bnad->conf_mutex) held */
2194 void
2195 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2196 {
2197 	u16 vid;
2198 	unsigned long flags;
2199 
2200 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2201 		spin_lock_irqsave(&bnad->bna_lock, flags);
2202 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2203 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2204 	}
2205 }
2206 
2207 /* Statistics utilities */
2208 void
2209 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2210 {
2211 	int i, j;
2212 
2213 	for (i = 0; i < bnad->num_rx; i++) {
2214 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2215 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2216 				stats->rx_packets += bnad->rx_info[i].
2217 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2218 				stats->rx_bytes += bnad->rx_info[i].
2219 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2220 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2221 					bnad->rx_info[i].rx_ctrl[j].ccb->
2222 					rcb[1]->rxq) {
2223 					stats->rx_packets +=
2224 						bnad->rx_info[i].rx_ctrl[j].
2225 						ccb->rcb[1]->rxq->rx_packets;
2226 					stats->rx_bytes +=
2227 						bnad->rx_info[i].rx_ctrl[j].
2228 						ccb->rcb[1]->rxq->rx_bytes;
2229 				}
2230 			}
2231 		}
2232 	}
2233 	for (i = 0; i < bnad->num_tx; i++) {
2234 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2235 			if (bnad->tx_info[i].tcb[j]) {
2236 				stats->tx_packets +=
2237 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2238 				stats->tx_bytes +=
2239 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2240 			}
2241 		}
2242 	}
2243 }
2244 
2245 /*
2246  * Must be called with the bna_lock held.
2247  */
2248 void
2249 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2250 {
2251 	struct bfi_enet_stats_mac *mac_stats;
2252 	u32 bmap;
2253 	int i;
2254 
2255 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2256 	stats->rx_errors =
2257 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2258 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2259 		mac_stats->rx_undersize;
2260 	stats->tx_errors = mac_stats->tx_fcs_error +
2261 					mac_stats->tx_undersize;
2262 	stats->rx_dropped = mac_stats->rx_drop;
2263 	stats->tx_dropped = mac_stats->tx_drop;
2264 	stats->multicast = mac_stats->rx_multicast;
2265 	stats->collisions = mac_stats->tx_total_collision;
2266 
2267 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2268 
2269 	/* receive ring buffer overflow  ?? */
2270 
2271 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2272 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2273 	/* recv'r fifo overrun */
2274 	bmap = bna_rx_rid_mask(&bnad->bna);
2275 	for (i = 0; bmap; i++) {
2276 		if (bmap & 1) {
2277 			stats->rx_fifo_errors +=
2278 				bnad->stats.bna_stats->
2279 					hw_stats.rxf_stats[i].frame_drops;
2280 			break;
2281 		}
2282 		bmap >>= 1;
2283 	}
2284 }
2285 
2286 static void
2287 bnad_mbox_irq_sync(struct bnad *bnad)
2288 {
2289 	u32 irq;
2290 	unsigned long flags;
2291 
2292 	spin_lock_irqsave(&bnad->bna_lock, flags);
2293 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2294 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2295 	else
2296 		irq = bnad->pcidev->irq;
2297 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2298 
2299 	synchronize_irq(irq);
2300 }
2301 
2302 /* Utility used by bnad_start_xmit, for doing TSO */
2303 static int
2304 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2305 {
2306 	int err;
2307 
2308 	if (skb_header_cloned(skb)) {
2309 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2310 		if (err) {
2311 			BNAD_UPDATE_CTR(bnad, tso_err);
2312 			return err;
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2318 	 * excluding the length field.
2319 	 */
2320 	if (skb->protocol == htons(ETH_P_IP)) {
2321 		struct iphdr *iph = ip_hdr(skb);
2322 
2323 		/* Do we really need these? */
2324 		iph->tot_len = 0;
2325 		iph->check = 0;
2326 
2327 		tcp_hdr(skb)->check =
2328 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2329 					   IPPROTO_TCP, 0);
2330 		BNAD_UPDATE_CTR(bnad, tso4);
2331 	} else {
2332 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2333 
2334 		ipv6h->payload_len = 0;
2335 		tcp_hdr(skb)->check =
2336 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2337 					 IPPROTO_TCP, 0);
2338 		BNAD_UPDATE_CTR(bnad, tso6);
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 /*
2345  * Initialize Q numbers depending on Rx Paths
2346  * Called with bnad->bna_lock held, because of cfg_flags
2347  * access.
2348  */
2349 static void
2350 bnad_q_num_init(struct bnad *bnad)
2351 {
2352 	int rxps;
2353 
2354 	rxps = min((uint)num_online_cpus(),
2355 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2356 
2357 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2358 		rxps = 1;	/* INTx */
2359 
2360 	bnad->num_rx = 1;
2361 	bnad->num_tx = 1;
2362 	bnad->num_rxp_per_rx = rxps;
2363 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2364 }
2365 
2366 /*
2367  * Adjusts the Q numbers, given a number of msix vectors
2368  * Give preference to RSS as opposed to Tx priority Queues,
2369  * in such a case, just use 1 Tx Q
2370  * Called with bnad->bna_lock held b'cos of cfg_flags access
2371  */
2372 static void
2373 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2374 {
2375 	bnad->num_txq_per_tx = 1;
2376 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2377 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2378 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2379 		bnad->num_rxp_per_rx = msix_vectors -
2380 			(bnad->num_tx * bnad->num_txq_per_tx) -
2381 			BNAD_MAILBOX_MSIX_VECTORS;
2382 	} else
2383 		bnad->num_rxp_per_rx = 1;
2384 }
2385 
2386 /* Enable / disable ioceth */
2387 static int
2388 bnad_ioceth_disable(struct bnad *bnad)
2389 {
2390 	unsigned long flags;
2391 	int err = 0;
2392 
2393 	spin_lock_irqsave(&bnad->bna_lock, flags);
2394 	init_completion(&bnad->bnad_completions.ioc_comp);
2395 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2396 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2397 
2398 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2399 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2400 
2401 	err = bnad->bnad_completions.ioc_comp_status;
2402 	return err;
2403 }
2404 
2405 static int
2406 bnad_ioceth_enable(struct bnad *bnad)
2407 {
2408 	int err = 0;
2409 	unsigned long flags;
2410 
2411 	spin_lock_irqsave(&bnad->bna_lock, flags);
2412 	init_completion(&bnad->bnad_completions.ioc_comp);
2413 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2414 	bna_ioceth_enable(&bnad->bna.ioceth);
2415 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2416 
2417 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2418 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2419 
2420 	err = bnad->bnad_completions.ioc_comp_status;
2421 
2422 	return err;
2423 }
2424 
2425 /* Free BNA resources */
2426 static void
2427 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2428 		u32 res_val_max)
2429 {
2430 	int i;
2431 
2432 	for (i = 0; i < res_val_max; i++)
2433 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2434 }
2435 
2436 /* Allocates memory and interrupt resources for BNA */
2437 static int
2438 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2439 		u32 res_val_max)
2440 {
2441 	int i, err;
2442 
2443 	for (i = 0; i < res_val_max; i++) {
2444 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2445 		if (err)
2446 			goto err_return;
2447 	}
2448 	return 0;
2449 
2450 err_return:
2451 	bnad_res_free(bnad, res_info, res_val_max);
2452 	return err;
2453 }
2454 
2455 /* Interrupt enable / disable */
2456 static void
2457 bnad_enable_msix(struct bnad *bnad)
2458 {
2459 	int i, ret;
2460 	unsigned long flags;
2461 
2462 	spin_lock_irqsave(&bnad->bna_lock, flags);
2463 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2464 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2465 		return;
2466 	}
2467 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2468 
2469 	if (bnad->msix_table)
2470 		return;
2471 
2472 	bnad->msix_table =
2473 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2474 
2475 	if (!bnad->msix_table)
2476 		goto intx_mode;
2477 
2478 	for (i = 0; i < bnad->msix_num; i++)
2479 		bnad->msix_table[i].entry = i;
2480 
2481 	ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2482 	if (ret > 0) {
2483 		/* Not enough MSI-X vectors. */
2484 		pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2485 			ret, bnad->msix_num);
2486 
2487 		spin_lock_irqsave(&bnad->bna_lock, flags);
2488 		/* ret = #of vectors that we got */
2489 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2490 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2491 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2492 
2493 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2494 			 BNAD_MAILBOX_MSIX_VECTORS;
2495 
2496 		if (bnad->msix_num > ret)
2497 			goto intx_mode;
2498 
2499 		/* Try once more with adjusted numbers */
2500 		/* If this fails, fall back to INTx */
2501 		ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2502 				      bnad->msix_num);
2503 		if (ret)
2504 			goto intx_mode;
2505 
2506 	} else if (ret < 0)
2507 		goto intx_mode;
2508 
2509 	pci_intx(bnad->pcidev, 0);
2510 
2511 	return;
2512 
2513 intx_mode:
2514 	pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2515 
2516 	kfree(bnad->msix_table);
2517 	bnad->msix_table = NULL;
2518 	bnad->msix_num = 0;
2519 	spin_lock_irqsave(&bnad->bna_lock, flags);
2520 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2521 	bnad_q_num_init(bnad);
2522 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2523 }
2524 
2525 static void
2526 bnad_disable_msix(struct bnad *bnad)
2527 {
2528 	u32 cfg_flags;
2529 	unsigned long flags;
2530 
2531 	spin_lock_irqsave(&bnad->bna_lock, flags);
2532 	cfg_flags = bnad->cfg_flags;
2533 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2534 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2535 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2536 
2537 	if (cfg_flags & BNAD_CF_MSIX) {
2538 		pci_disable_msix(bnad->pcidev);
2539 		kfree(bnad->msix_table);
2540 		bnad->msix_table = NULL;
2541 	}
2542 }
2543 
2544 /* Netdev entry points */
2545 static int
2546 bnad_open(struct net_device *netdev)
2547 {
2548 	int err;
2549 	struct bnad *bnad = netdev_priv(netdev);
2550 	struct bna_pause_config pause_config;
2551 	int mtu;
2552 	unsigned long flags;
2553 
2554 	mutex_lock(&bnad->conf_mutex);
2555 
2556 	/* Tx */
2557 	err = bnad_setup_tx(bnad, 0);
2558 	if (err)
2559 		goto err_return;
2560 
2561 	/* Rx */
2562 	err = bnad_setup_rx(bnad, 0);
2563 	if (err)
2564 		goto cleanup_tx;
2565 
2566 	/* Port */
2567 	pause_config.tx_pause = 0;
2568 	pause_config.rx_pause = 0;
2569 
2570 	mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2571 
2572 	spin_lock_irqsave(&bnad->bna_lock, flags);
2573 	bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2574 	bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2575 	bna_enet_enable(&bnad->bna.enet);
2576 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2577 
2578 	/* Enable broadcast */
2579 	bnad_enable_default_bcast(bnad);
2580 
2581 	/* Restore VLANs, if any */
2582 	bnad_restore_vlans(bnad, 0);
2583 
2584 	/* Set the UCAST address */
2585 	spin_lock_irqsave(&bnad->bna_lock, flags);
2586 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2587 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2588 
2589 	/* Start the stats timer */
2590 	bnad_stats_timer_start(bnad);
2591 
2592 	mutex_unlock(&bnad->conf_mutex);
2593 
2594 	return 0;
2595 
2596 cleanup_tx:
2597 	bnad_destroy_tx(bnad, 0);
2598 
2599 err_return:
2600 	mutex_unlock(&bnad->conf_mutex);
2601 	return err;
2602 }
2603 
2604 static int
2605 bnad_stop(struct net_device *netdev)
2606 {
2607 	struct bnad *bnad = netdev_priv(netdev);
2608 	unsigned long flags;
2609 
2610 	mutex_lock(&bnad->conf_mutex);
2611 
2612 	/* Stop the stats timer */
2613 	bnad_stats_timer_stop(bnad);
2614 
2615 	init_completion(&bnad->bnad_completions.enet_comp);
2616 
2617 	spin_lock_irqsave(&bnad->bna_lock, flags);
2618 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2619 			bnad_cb_enet_disabled);
2620 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2621 
2622 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2623 
2624 	bnad_destroy_tx(bnad, 0);
2625 	bnad_destroy_rx(bnad, 0);
2626 
2627 	/* Synchronize mailbox IRQ */
2628 	bnad_mbox_irq_sync(bnad);
2629 
2630 	mutex_unlock(&bnad->conf_mutex);
2631 
2632 	return 0;
2633 }
2634 
2635 /* TX */
2636 /* Returns 0 for success */
2637 static int
2638 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2639 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2640 {
2641 	u16 flags = 0;
2642 	u32 gso_size;
2643 	u16 vlan_tag = 0;
2644 
2645 	if (vlan_tx_tag_present(skb)) {
2646 		vlan_tag = (u16)vlan_tx_tag_get(skb);
2647 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2648 	}
2649 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2650 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2651 				| (vlan_tag & 0x1fff);
2652 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2653 	}
2654 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2655 
2656 	if (skb_is_gso(skb)) {
2657 		gso_size = skb_shinfo(skb)->gso_size;
2658 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2659 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2660 			return -EINVAL;
2661 		}
2662 		if (unlikely((gso_size + skb_transport_offset(skb) +
2663 			      tcp_hdrlen(skb)) >= skb->len)) {
2664 			txqent->hdr.wi.opcode =
2665 				__constant_htons(BNA_TXQ_WI_SEND);
2666 			txqent->hdr.wi.lso_mss = 0;
2667 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2668 		} else {
2669 			txqent->hdr.wi.opcode =
2670 				__constant_htons(BNA_TXQ_WI_SEND_LSO);
2671 			txqent->hdr.wi.lso_mss = htons(gso_size);
2672 		}
2673 
2674 		if (bnad_tso_prepare(bnad, skb)) {
2675 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2676 			return -EINVAL;
2677 		}
2678 
2679 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2680 		txqent->hdr.wi.l4_hdr_size_n_offset =
2681 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2682 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2683 	} else  {
2684 		txqent->hdr.wi.opcode =	__constant_htons(BNA_TXQ_WI_SEND);
2685 		txqent->hdr.wi.lso_mss = 0;
2686 
2687 		if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2688 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2689 			return -EINVAL;
2690 		}
2691 
2692 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2693 			u8 proto = 0;
2694 
2695 			if (skb->protocol == __constant_htons(ETH_P_IP))
2696 				proto = ip_hdr(skb)->protocol;
2697 #ifdef NETIF_F_IPV6_CSUM
2698 			else if (skb->protocol ==
2699 				 __constant_htons(ETH_P_IPV6)) {
2700 				/* nexthdr may not be TCP immediately. */
2701 				proto = ipv6_hdr(skb)->nexthdr;
2702 			}
2703 #endif
2704 			if (proto == IPPROTO_TCP) {
2705 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2706 				txqent->hdr.wi.l4_hdr_size_n_offset =
2707 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2708 					      (0, skb_transport_offset(skb)));
2709 
2710 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2711 
2712 				if (unlikely(skb_headlen(skb) <
2713 					    skb_transport_offset(skb) +
2714 				    tcp_hdrlen(skb))) {
2715 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2716 					return -EINVAL;
2717 				}
2718 			} else if (proto == IPPROTO_UDP) {
2719 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2720 				txqent->hdr.wi.l4_hdr_size_n_offset =
2721 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2722 					      (0, skb_transport_offset(skb)));
2723 
2724 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2725 				if (unlikely(skb_headlen(skb) <
2726 					    skb_transport_offset(skb) +
2727 				    sizeof(struct udphdr))) {
2728 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2729 					return -EINVAL;
2730 				}
2731 			} else {
2732 
2733 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2734 				return -EINVAL;
2735 			}
2736 		} else
2737 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2738 	}
2739 
2740 	txqent->hdr.wi.flags = htons(flags);
2741 	txqent->hdr.wi.frame_length = htonl(skb->len);
2742 
2743 	return 0;
2744 }
2745 
2746 /*
2747  * bnad_start_xmit : Netdev entry point for Transmit
2748  *		     Called under lock held by net_device
2749  */
2750 static netdev_tx_t
2751 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2752 {
2753 	struct bnad *bnad = netdev_priv(netdev);
2754 	u32 txq_id = 0;
2755 	struct bna_tcb *tcb = NULL;
2756 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2757 	u32		prod, q_depth, vect_id;
2758 	u32		wis, vectors, len;
2759 	int		i;
2760 	dma_addr_t		dma_addr;
2761 	struct bna_txq_entry *txqent;
2762 
2763 	len = skb_headlen(skb);
2764 
2765 	/* Sanity checks for the skb */
2766 
2767 	if (unlikely(skb->len <= ETH_HLEN)) {
2768 		dev_kfree_skb(skb);
2769 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2770 		return NETDEV_TX_OK;
2771 	}
2772 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2773 		dev_kfree_skb(skb);
2774 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2775 		return NETDEV_TX_OK;
2776 	}
2777 	if (unlikely(len == 0)) {
2778 		dev_kfree_skb(skb);
2779 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2780 		return NETDEV_TX_OK;
2781 	}
2782 
2783 	tcb = bnad->tx_info[0].tcb[txq_id];
2784 	q_depth = tcb->q_depth;
2785 	prod = tcb->producer_index;
2786 
2787 	unmap_q = tcb->unmap_q;
2788 
2789 	/*
2790 	 * Takes care of the Tx that is scheduled between clearing the flag
2791 	 * and the netif_tx_stop_all_queues() call.
2792 	 */
2793 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2794 		dev_kfree_skb(skb);
2795 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2796 		return NETDEV_TX_OK;
2797 	}
2798 
2799 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2800 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2801 
2802 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2803 		dev_kfree_skb(skb);
2804 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2805 		return NETDEV_TX_OK;
2806 	}
2807 
2808 	/* Check for available TxQ resources */
2809 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2810 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2811 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2812 			u32 sent;
2813 			sent = bnad_txcmpl_process(bnad, tcb);
2814 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2815 				bna_ib_ack(tcb->i_dbell, sent);
2816 			smp_mb__before_clear_bit();
2817 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2818 		} else {
2819 			netif_stop_queue(netdev);
2820 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2821 		}
2822 
2823 		smp_mb();
2824 		/*
2825 		 * Check again to deal with race condition between
2826 		 * netif_stop_queue here, and netif_wake_queue in
2827 		 * interrupt handler which is not inside netif tx lock.
2828 		 */
2829 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2830 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2831 			return NETDEV_TX_BUSY;
2832 		} else {
2833 			netif_wake_queue(netdev);
2834 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2835 		}
2836 	}
2837 
2838 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2839 	head_unmap = &unmap_q[prod];
2840 
2841 	/* Program the opcode, flags, frame_len, num_vectors in WI */
2842 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
2843 		dev_kfree_skb(skb);
2844 		return NETDEV_TX_OK;
2845 	}
2846 	txqent->hdr.wi.reserved = 0;
2847 	txqent->hdr.wi.num_vectors = vectors;
2848 
2849 	head_unmap->skb = skb;
2850 	head_unmap->nvecs = 0;
2851 
2852 	/* Program the vectors */
2853 	unmap = head_unmap;
2854 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2855 				  len, DMA_TO_DEVICE);
2856 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2857 	txqent->vector[0].length = htons(len);
2858 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
2859 	head_unmap->nvecs++;
2860 
2861 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
2862 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2863 		u16		size = skb_frag_size(frag);
2864 
2865 		if (unlikely(size == 0)) {
2866 			/* Undo the changes starting at tcb->producer_index */
2867 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
2868 				tcb->producer_index);
2869 			dev_kfree_skb(skb);
2870 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2871 			return NETDEV_TX_OK;
2872 		}
2873 
2874 		len += size;
2875 
2876 		vect_id++;
2877 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2878 			vect_id = 0;
2879 			BNA_QE_INDX_INC(prod, q_depth);
2880 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2881 			txqent->hdr.wi_ext.opcode =
2882 				__constant_htons(BNA_TXQ_WI_EXTENSION);
2883 			unmap = &unmap_q[prod];
2884 		}
2885 
2886 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2887 					    0, size, DMA_TO_DEVICE);
2888 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2889 		txqent->vector[vect_id].length = htons(size);
2890 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
2891 						dma_addr);
2892 		head_unmap->nvecs++;
2893 	}
2894 
2895 	if (unlikely(len != skb->len)) {
2896 		/* Undo the changes starting at tcb->producer_index */
2897 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
2898 		dev_kfree_skb(skb);
2899 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2900 		return NETDEV_TX_OK;
2901 	}
2902 
2903 	BNA_QE_INDX_INC(prod, q_depth);
2904 	tcb->producer_index = prod;
2905 
2906 	smp_mb();
2907 
2908 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2909 		return NETDEV_TX_OK;
2910 
2911 	bna_txq_prod_indx_doorbell(tcb);
2912 	smp_mb();
2913 
2914 	return NETDEV_TX_OK;
2915 }
2916 
2917 /*
2918  * Used spin_lock to synchronize reading of stats structures, which
2919  * is written by BNA under the same lock.
2920  */
2921 static struct rtnl_link_stats64 *
2922 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2923 {
2924 	struct bnad *bnad = netdev_priv(netdev);
2925 	unsigned long flags;
2926 
2927 	spin_lock_irqsave(&bnad->bna_lock, flags);
2928 
2929 	bnad_netdev_qstats_fill(bnad, stats);
2930 	bnad_netdev_hwstats_fill(bnad, stats);
2931 
2932 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2933 
2934 	return stats;
2935 }
2936 
2937 void
2938 bnad_set_rx_mode(struct net_device *netdev)
2939 {
2940 	struct bnad *bnad = netdev_priv(netdev);
2941 	u32	new_mask, valid_mask;
2942 	unsigned long flags;
2943 
2944 	spin_lock_irqsave(&bnad->bna_lock, flags);
2945 
2946 	new_mask = valid_mask = 0;
2947 
2948 	if (netdev->flags & IFF_PROMISC) {
2949 		if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2950 			new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2951 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2952 			bnad->cfg_flags |= BNAD_CF_PROMISC;
2953 		}
2954 	} else {
2955 		if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2956 			new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2957 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2958 			bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2959 		}
2960 	}
2961 
2962 	if (netdev->flags & IFF_ALLMULTI) {
2963 		if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2964 			new_mask |= BNA_RXMODE_ALLMULTI;
2965 			valid_mask |= BNA_RXMODE_ALLMULTI;
2966 			bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2967 		}
2968 	} else {
2969 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2970 			new_mask &= ~BNA_RXMODE_ALLMULTI;
2971 			valid_mask |= BNA_RXMODE_ALLMULTI;
2972 			bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2973 		}
2974 	}
2975 
2976 	if (bnad->rx_info[0].rx == NULL)
2977 		goto unlock;
2978 
2979 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2980 
2981 	if (!netdev_mc_empty(netdev)) {
2982 		u8 *mcaddr_list;
2983 		int mc_count = netdev_mc_count(netdev);
2984 
2985 		/* Index 0 holds the broadcast address */
2986 		mcaddr_list =
2987 			kzalloc((mc_count + 1) * ETH_ALEN,
2988 				GFP_ATOMIC);
2989 		if (!mcaddr_list)
2990 			goto unlock;
2991 
2992 		memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2993 
2994 		/* Copy rest of the MC addresses */
2995 		bnad_netdev_mc_list_get(netdev, mcaddr_list);
2996 
2997 		bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2998 					mcaddr_list, NULL);
2999 
3000 		/* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
3001 		kfree(mcaddr_list);
3002 	}
3003 unlock:
3004 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3005 }
3006 
3007 /*
3008  * bna_lock is used to sync writes to netdev->addr
3009  * conf_lock cannot be used since this call may be made
3010  * in a non-blocking context.
3011  */
3012 static int
3013 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3014 {
3015 	int err;
3016 	struct bnad *bnad = netdev_priv(netdev);
3017 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
3018 	unsigned long flags;
3019 
3020 	spin_lock_irqsave(&bnad->bna_lock, flags);
3021 
3022 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3023 
3024 	if (!err)
3025 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3026 
3027 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3028 
3029 	return err;
3030 }
3031 
3032 static int
3033 bnad_mtu_set(struct bnad *bnad, int mtu)
3034 {
3035 	unsigned long flags;
3036 
3037 	init_completion(&bnad->bnad_completions.mtu_comp);
3038 
3039 	spin_lock_irqsave(&bnad->bna_lock, flags);
3040 	bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
3041 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3042 
3043 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3044 
3045 	return bnad->bnad_completions.mtu_comp_status;
3046 }
3047 
3048 static int
3049 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3050 {
3051 	int err, mtu = netdev->mtu;
3052 	struct bnad *bnad = netdev_priv(netdev);
3053 
3054 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3055 		return -EINVAL;
3056 
3057 	mutex_lock(&bnad->conf_mutex);
3058 
3059 	netdev->mtu = new_mtu;
3060 
3061 	mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
3062 	err = bnad_mtu_set(bnad, mtu);
3063 	if (err)
3064 		err = -EBUSY;
3065 
3066 	mutex_unlock(&bnad->conf_mutex);
3067 	return err;
3068 }
3069 
3070 static int
3071 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3072 {
3073 	struct bnad *bnad = netdev_priv(netdev);
3074 	unsigned long flags;
3075 
3076 	if (!bnad->rx_info[0].rx)
3077 		return 0;
3078 
3079 	mutex_lock(&bnad->conf_mutex);
3080 
3081 	spin_lock_irqsave(&bnad->bna_lock, flags);
3082 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3083 	set_bit(vid, bnad->active_vlans);
3084 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3085 
3086 	mutex_unlock(&bnad->conf_mutex);
3087 
3088 	return 0;
3089 }
3090 
3091 static int
3092 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3093 {
3094 	struct bnad *bnad = netdev_priv(netdev);
3095 	unsigned long flags;
3096 
3097 	if (!bnad->rx_info[0].rx)
3098 		return 0;
3099 
3100 	mutex_lock(&bnad->conf_mutex);
3101 
3102 	spin_lock_irqsave(&bnad->bna_lock, flags);
3103 	clear_bit(vid, bnad->active_vlans);
3104 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3105 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3106 
3107 	mutex_unlock(&bnad->conf_mutex);
3108 
3109 	return 0;
3110 }
3111 
3112 #ifdef CONFIG_NET_POLL_CONTROLLER
3113 static void
3114 bnad_netpoll(struct net_device *netdev)
3115 {
3116 	struct bnad *bnad = netdev_priv(netdev);
3117 	struct bnad_rx_info *rx_info;
3118 	struct bnad_rx_ctrl *rx_ctrl;
3119 	u32 curr_mask;
3120 	int i, j;
3121 
3122 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3123 		bna_intx_disable(&bnad->bna, curr_mask);
3124 		bnad_isr(bnad->pcidev->irq, netdev);
3125 		bna_intx_enable(&bnad->bna, curr_mask);
3126 	} else {
3127 		/*
3128 		 * Tx processing may happen in sending context, so no need
3129 		 * to explicitly process completions here
3130 		 */
3131 
3132 		/* Rx processing */
3133 		for (i = 0; i < bnad->num_rx; i++) {
3134 			rx_info = &bnad->rx_info[i];
3135 			if (!rx_info->rx)
3136 				continue;
3137 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3138 				rx_ctrl = &rx_info->rx_ctrl[j];
3139 				if (rx_ctrl->ccb)
3140 					bnad_netif_rx_schedule_poll(bnad,
3141 							    rx_ctrl->ccb);
3142 			}
3143 		}
3144 	}
3145 }
3146 #endif
3147 
3148 static const struct net_device_ops bnad_netdev_ops = {
3149 	.ndo_open		= bnad_open,
3150 	.ndo_stop		= bnad_stop,
3151 	.ndo_start_xmit		= bnad_start_xmit,
3152 	.ndo_get_stats64		= bnad_get_stats64,
3153 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3154 	.ndo_validate_addr      = eth_validate_addr,
3155 	.ndo_set_mac_address    = bnad_set_mac_address,
3156 	.ndo_change_mtu		= bnad_change_mtu,
3157 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3158 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3159 #ifdef CONFIG_NET_POLL_CONTROLLER
3160 	.ndo_poll_controller    = bnad_netpoll
3161 #endif
3162 };
3163 
3164 static void
3165 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3166 {
3167 	struct net_device *netdev = bnad->netdev;
3168 
3169 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3170 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3171 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX;
3172 
3173 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3174 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3175 		NETIF_F_TSO | NETIF_F_TSO6;
3176 
3177 	netdev->features |= netdev->hw_features |
3178 		NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
3179 
3180 	if (using_dac)
3181 		netdev->features |= NETIF_F_HIGHDMA;
3182 
3183 	netdev->mem_start = bnad->mmio_start;
3184 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3185 
3186 	netdev->netdev_ops = &bnad_netdev_ops;
3187 	bnad_set_ethtool_ops(netdev);
3188 }
3189 
3190 /*
3191  * 1. Initialize the bnad structure
3192  * 2. Setup netdev pointer in pci_dev
3193  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3194  * 4. Initialize work queue.
3195  */
3196 static int
3197 bnad_init(struct bnad *bnad,
3198 	  struct pci_dev *pdev, struct net_device *netdev)
3199 {
3200 	unsigned long flags;
3201 
3202 	SET_NETDEV_DEV(netdev, &pdev->dev);
3203 	pci_set_drvdata(pdev, netdev);
3204 
3205 	bnad->netdev = netdev;
3206 	bnad->pcidev = pdev;
3207 	bnad->mmio_start = pci_resource_start(pdev, 0);
3208 	bnad->mmio_len = pci_resource_len(pdev, 0);
3209 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3210 	if (!bnad->bar0) {
3211 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3212 		pci_set_drvdata(pdev, NULL);
3213 		return -ENOMEM;
3214 	}
3215 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3216 	       (unsigned long long) bnad->mmio_len);
3217 
3218 	spin_lock_irqsave(&bnad->bna_lock, flags);
3219 	if (!bnad_msix_disable)
3220 		bnad->cfg_flags = BNAD_CF_MSIX;
3221 
3222 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3223 
3224 	bnad_q_num_init(bnad);
3225 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3226 
3227 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3228 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3229 			 BNAD_MAILBOX_MSIX_VECTORS;
3230 
3231 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3232 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3233 
3234 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3235 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3236 
3237 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3238 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3239 	if (!bnad->work_q) {
3240 		iounmap(bnad->bar0);
3241 		return -ENOMEM;
3242 	}
3243 
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Must be called after bnad_pci_uninit()
3249  * so that iounmap() and pci_set_drvdata(NULL)
3250  * happens only after PCI uninitialization.
3251  */
3252 static void
3253 bnad_uninit(struct bnad *bnad)
3254 {
3255 	if (bnad->work_q) {
3256 		flush_workqueue(bnad->work_q);
3257 		destroy_workqueue(bnad->work_q);
3258 		bnad->work_q = NULL;
3259 	}
3260 
3261 	if (bnad->bar0)
3262 		iounmap(bnad->bar0);
3263 	pci_set_drvdata(bnad->pcidev, NULL);
3264 }
3265 
3266 /*
3267  * Initialize locks
3268 	a) Per ioceth mutes used for serializing configuration
3269 	   changes from OS interface
3270 	b) spin lock used to protect bna state machine
3271  */
3272 static void
3273 bnad_lock_init(struct bnad *bnad)
3274 {
3275 	spin_lock_init(&bnad->bna_lock);
3276 	mutex_init(&bnad->conf_mutex);
3277 	mutex_init(&bnad_list_mutex);
3278 }
3279 
3280 static void
3281 bnad_lock_uninit(struct bnad *bnad)
3282 {
3283 	mutex_destroy(&bnad->conf_mutex);
3284 	mutex_destroy(&bnad_list_mutex);
3285 }
3286 
3287 /* PCI Initialization */
3288 static int
3289 bnad_pci_init(struct bnad *bnad,
3290 	      struct pci_dev *pdev, bool *using_dac)
3291 {
3292 	int err;
3293 
3294 	err = pci_enable_device(pdev);
3295 	if (err)
3296 		return err;
3297 	err = pci_request_regions(pdev, BNAD_NAME);
3298 	if (err)
3299 		goto disable_device;
3300 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3301 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3302 		*using_dac = true;
3303 	} else {
3304 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3305 		if (err) {
3306 			err = dma_set_coherent_mask(&pdev->dev,
3307 						    DMA_BIT_MASK(32));
3308 			if (err)
3309 				goto release_regions;
3310 		}
3311 		*using_dac = false;
3312 	}
3313 	pci_set_master(pdev);
3314 	return 0;
3315 
3316 release_regions:
3317 	pci_release_regions(pdev);
3318 disable_device:
3319 	pci_disable_device(pdev);
3320 
3321 	return err;
3322 }
3323 
3324 static void
3325 bnad_pci_uninit(struct pci_dev *pdev)
3326 {
3327 	pci_release_regions(pdev);
3328 	pci_disable_device(pdev);
3329 }
3330 
3331 static int
3332 bnad_pci_probe(struct pci_dev *pdev,
3333 		const struct pci_device_id *pcidev_id)
3334 {
3335 	bool	using_dac;
3336 	int	err;
3337 	struct bnad *bnad;
3338 	struct bna *bna;
3339 	struct net_device *netdev;
3340 	struct bfa_pcidev pcidev_info;
3341 	unsigned long flags;
3342 
3343 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3344 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3345 
3346 	mutex_lock(&bnad_fwimg_mutex);
3347 	if (!cna_get_firmware_buf(pdev)) {
3348 		mutex_unlock(&bnad_fwimg_mutex);
3349 		pr_warn("Failed to load Firmware Image!\n");
3350 		return -ENODEV;
3351 	}
3352 	mutex_unlock(&bnad_fwimg_mutex);
3353 
3354 	/*
3355 	 * Allocates sizeof(struct net_device + struct bnad)
3356 	 * bnad = netdev->priv
3357 	 */
3358 	netdev = alloc_etherdev(sizeof(struct bnad));
3359 	if (!netdev) {
3360 		err = -ENOMEM;
3361 		return err;
3362 	}
3363 	bnad = netdev_priv(netdev);
3364 	bnad_lock_init(bnad);
3365 	bnad_add_to_list(bnad);
3366 
3367 	mutex_lock(&bnad->conf_mutex);
3368 	/*
3369 	 * PCI initialization
3370 	 *	Output : using_dac = 1 for 64 bit DMA
3371 	 *			   = 0 for 32 bit DMA
3372 	 */
3373 	using_dac = false;
3374 	err = bnad_pci_init(bnad, pdev, &using_dac);
3375 	if (err)
3376 		goto unlock_mutex;
3377 
3378 	/*
3379 	 * Initialize bnad structure
3380 	 * Setup relation between pci_dev & netdev
3381 	 */
3382 	err = bnad_init(bnad, pdev, netdev);
3383 	if (err)
3384 		goto pci_uninit;
3385 
3386 	/* Initialize netdev structure, set up ethtool ops */
3387 	bnad_netdev_init(bnad, using_dac);
3388 
3389 	/* Set link to down state */
3390 	netif_carrier_off(netdev);
3391 
3392 	/* Setup the debugfs node for this bfad */
3393 	if (bna_debugfs_enable)
3394 		bnad_debugfs_init(bnad);
3395 
3396 	/* Get resource requirement form bna */
3397 	spin_lock_irqsave(&bnad->bna_lock, flags);
3398 	bna_res_req(&bnad->res_info[0]);
3399 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3400 
3401 	/* Allocate resources from bna */
3402 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3403 	if (err)
3404 		goto drv_uninit;
3405 
3406 	bna = &bnad->bna;
3407 
3408 	/* Setup pcidev_info for bna_init() */
3409 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3410 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3411 	pcidev_info.device_id = bnad->pcidev->device;
3412 	pcidev_info.pci_bar_kva = bnad->bar0;
3413 
3414 	spin_lock_irqsave(&bnad->bna_lock, flags);
3415 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3416 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3417 
3418 	bnad->stats.bna_stats = &bna->stats;
3419 
3420 	bnad_enable_msix(bnad);
3421 	err = bnad_mbox_irq_alloc(bnad);
3422 	if (err)
3423 		goto res_free;
3424 
3425 	/* Set up timers */
3426 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3427 				((unsigned long)bnad));
3428 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3429 				((unsigned long)bnad));
3430 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3431 				((unsigned long)bnad));
3432 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3433 				((unsigned long)bnad));
3434 
3435 	/* Now start the timer before calling IOC */
3436 	mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3437 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3438 
3439 	/*
3440 	 * Start the chip
3441 	 * If the call back comes with error, we bail out.
3442 	 * This is a catastrophic error.
3443 	 */
3444 	err = bnad_ioceth_enable(bnad);
3445 	if (err) {
3446 		pr_err("BNA: Initialization failed err=%d\n",
3447 		       err);
3448 		goto probe_success;
3449 	}
3450 
3451 	spin_lock_irqsave(&bnad->bna_lock, flags);
3452 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3453 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3454 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3455 			bna_attr(bna)->num_rxp - 1);
3456 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3457 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3458 			err = -EIO;
3459 	}
3460 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3461 	if (err)
3462 		goto disable_ioceth;
3463 
3464 	spin_lock_irqsave(&bnad->bna_lock, flags);
3465 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3466 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3467 
3468 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3469 	if (err) {
3470 		err = -EIO;
3471 		goto disable_ioceth;
3472 	}
3473 
3474 	spin_lock_irqsave(&bnad->bna_lock, flags);
3475 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3476 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3477 
3478 	/* Get the burnt-in mac */
3479 	spin_lock_irqsave(&bnad->bna_lock, flags);
3480 	bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3481 	bnad_set_netdev_perm_addr(bnad);
3482 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3483 
3484 	mutex_unlock(&bnad->conf_mutex);
3485 
3486 	/* Finally, reguister with net_device layer */
3487 	err = register_netdev(netdev);
3488 	if (err) {
3489 		pr_err("BNA : Registering with netdev failed\n");
3490 		goto probe_uninit;
3491 	}
3492 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3493 
3494 	return 0;
3495 
3496 probe_success:
3497 	mutex_unlock(&bnad->conf_mutex);
3498 	return 0;
3499 
3500 probe_uninit:
3501 	mutex_lock(&bnad->conf_mutex);
3502 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3503 disable_ioceth:
3504 	bnad_ioceth_disable(bnad);
3505 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3506 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3507 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3508 	spin_lock_irqsave(&bnad->bna_lock, flags);
3509 	bna_uninit(bna);
3510 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3511 	bnad_mbox_irq_free(bnad);
3512 	bnad_disable_msix(bnad);
3513 res_free:
3514 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3515 drv_uninit:
3516 	/* Remove the debugfs node for this bnad */
3517 	kfree(bnad->regdata);
3518 	bnad_debugfs_uninit(bnad);
3519 	bnad_uninit(bnad);
3520 pci_uninit:
3521 	bnad_pci_uninit(pdev);
3522 unlock_mutex:
3523 	mutex_unlock(&bnad->conf_mutex);
3524 	bnad_remove_from_list(bnad);
3525 	bnad_lock_uninit(bnad);
3526 	free_netdev(netdev);
3527 	return err;
3528 }
3529 
3530 static void
3531 bnad_pci_remove(struct pci_dev *pdev)
3532 {
3533 	struct net_device *netdev = pci_get_drvdata(pdev);
3534 	struct bnad *bnad;
3535 	struct bna *bna;
3536 	unsigned long flags;
3537 
3538 	if (!netdev)
3539 		return;
3540 
3541 	pr_info("%s bnad_pci_remove\n", netdev->name);
3542 	bnad = netdev_priv(netdev);
3543 	bna = &bnad->bna;
3544 
3545 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3546 		unregister_netdev(netdev);
3547 
3548 	mutex_lock(&bnad->conf_mutex);
3549 	bnad_ioceth_disable(bnad);
3550 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3551 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3552 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3553 	spin_lock_irqsave(&bnad->bna_lock, flags);
3554 	bna_uninit(bna);
3555 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3556 
3557 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3558 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3559 	bnad_mbox_irq_free(bnad);
3560 	bnad_disable_msix(bnad);
3561 	bnad_pci_uninit(pdev);
3562 	mutex_unlock(&bnad->conf_mutex);
3563 	bnad_remove_from_list(bnad);
3564 	bnad_lock_uninit(bnad);
3565 	/* Remove the debugfs node for this bnad */
3566 	kfree(bnad->regdata);
3567 	bnad_debugfs_uninit(bnad);
3568 	bnad_uninit(bnad);
3569 	free_netdev(netdev);
3570 }
3571 
3572 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3573 	{
3574 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3575 			PCI_DEVICE_ID_BROCADE_CT),
3576 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3577 		.class_mask =  0xffff00
3578 	},
3579 	{
3580 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3581 			BFA_PCI_DEVICE_ID_CT2),
3582 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3583 		.class_mask =  0xffff00
3584 	},
3585 	{0,  },
3586 };
3587 
3588 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3589 
3590 static struct pci_driver bnad_pci_driver = {
3591 	.name = BNAD_NAME,
3592 	.id_table = bnad_pci_id_table,
3593 	.probe = bnad_pci_probe,
3594 	.remove = bnad_pci_remove,
3595 };
3596 
3597 static int __init
3598 bnad_module_init(void)
3599 {
3600 	int err;
3601 
3602 	pr_info("Brocade 10G Ethernet driver - version: %s\n",
3603 			BNAD_VERSION);
3604 
3605 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3606 
3607 	err = pci_register_driver(&bnad_pci_driver);
3608 	if (err < 0) {
3609 		pr_err("bna : PCI registration failed in module init "
3610 		       "(%d)\n", err);
3611 		return err;
3612 	}
3613 
3614 	return 0;
3615 }
3616 
3617 static void __exit
3618 bnad_module_exit(void)
3619 {
3620 	pci_unregister_driver(&bnad_pci_driver);
3621 	release_firmware(bfi_fw);
3622 }
3623 
3624 module_init(bnad_module_init);
3625 module_exit(bnad_module_exit);
3626 
3627 MODULE_AUTHOR("Brocade");
3628 MODULE_LICENSE("GPL");
3629 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3630 MODULE_VERSION(BNAD_VERSION);
3631 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3632 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3633